ON SOME AIRY SHEAVES OF LAURENT TYPE

NICHOLAS M. KATZ, ANTONIO ROJAS-LEON, AND PHAM HUU TIEP

To the memory of Nikolai Aleksandrovich Vavilov

ABSTRACT. We study some one-parameter families of exponential sums of Airy-Laurent type. Their
general theory was developed in [KT6]. In the present paper, we make use of that general theory
to compute monodromy groups in some particularly simple families (in the sense of “simple to
remember” ), realizing Weyl groups of type Eg and Es.
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1. INTRODUCTION

In classical analysis, Airy functions are the Fourier transforms of exponentials 9(*) of polynomials,
(originally for the polynomial g(z) := 23/3) and Airy differential equations are the linear differential
equations ¢'(d/dt)y + ty = 0 they satisfy. These differential equations have an irregular singularity
at 0o, and have quite interesting differential galois groups. In the seminal paper [Such| of Such, he
introduces their /-adic finite field analogues, the local systems whose trace functions are of the form

t— — Zw(g(m’) + tx).

The local systems we are concerned with here are generalizations of these Airy local systems in
several ways. We allow the “t term” tx to be replaced by tx®, we allow the polynomial g(z) to be
replaced by a Laurent polynomial f(1/z)+ g(z), and we allow an “outside factor” x(z) in the sum.
Here is a more detailed discussion.

We work in odd characteristic p > 0, and denote by F,, an algebraic closure of F,. We also fix a
prime £ # p to be able to speak of Qs-adic cohomology. We fix integers

A>1, a>1
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about which we assume

p1Aa.
We fix polynomials

f(z) € k[z], deg(f) = A, k some finite subfield of F,
g(x) € k[z], deg(g) < a, k some finite subfield of F,,

We make the assumption that f(x) is Artin-Schreier reduced: this means that in the expression
f(x) =", ciz’, we have ¢; = 0, if p|i. We define

gedgeg (f) == ged({ile; # 0}))

the greatest common divisor of the degrees of the monomials appearing in f. We suppose
ng(aa ngdeg(f)) =1

We fix x a (possibly trivial) multiplicative character of a finite extension k/F, containing the
coefficients of f and g. We denote by 1 a chosen nontrivial additive character of F,. For L/k a
finite extension, we denote by xr,, respectively by v, the composition of y, respectively of ¢, with
Normyp p, respectively with Tracer /g, .

We denote by G(f, g, a, x) the lisse sheaf on G,,/k whose trace function at time ¢ € L™, for L/k
a finite extension, is

ts = > vr(f(1/@) + g(x) + ta*)xr(2).
zeLX

We will mostly be concerned with the case when xy = x2, the quadratic character.

2. BASIC FACTS ABOUT G(f,g,a,X)

The local system G(f, g, a, x) is lisse of rank D = A+ a on G,,, and pure of weight one. We view
it as being the Fourier transform

FTy([als(Loy(r(1/a)+g(x)) @ Lx(2)))-

Lemma 2.1. Let A > 1,a > 1, p{ Aa, f be Artin-Schreier reduced, and ged(a,gedge,(f)) = 1.
Then the I(oco)-representation of G(f, g, a, x) is irreducible. It has rank A+a and all slopes A/(A+a).

Proof. This is a straightforward application of Laumon’s results on the local monodromy of F'T.
The input sheaf to FTy is lisse on G, of rank a, with 1(0)-slopes A/a. The hypothesis

ng(av ngdeg(f)) =1

implies that the I(0)-representation of the input sheaf is irreducible, cf. the proof of [KT6, Lemma
2.1].

Then the I(oco)-representation of G(f, g,a, x) is FTloc(0, co)(rank a,slopes A/a), which has rank
A+ a and all slopes A/(A + a), cf. [Ka3, 7.4.4(4)]. The asserted irreducibility result from the the
irreducibility of the input and the fact that FTloc(0, c0) is a suitable equivalence of categories. [

Lemma 2.2. Suppose that A = 1 and that p ¥ (a + 1). Then the image of P(c0) in the the
representation attached to G(f,g,a,x) is isomorphic to the the additive group of the field Fp(ptq+1)-

Proof. The I(oco)-representation is irreducible of prime to p rank a + 1 and has Swan = 1. By [Ka2,
1.14], the I(oo)-representation is the Kummer direct image [a + 1],£ of some £ with Swan = 1.
Moreover, as a P(oo)-representation, the I(oco) representation is the direct sum of the multiplicative
translates, by elements of pg41, of £. Because £ has Swan = 1, it is of the form Ly, for some

a # 0 in F,. Now repeat the (end of) the proof of [KRLT1, Lemma 1.2]. O
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Lemma 2.3. If both f,g are odd polynomials, the local system G(f,g,a,x2) is geometrically self-
dual. Indeed, its constant field twist by 1/Gauss(1), x2) is arithmetically self-dual.

Proof. The local system G(f,g,a, x2) is geometrically irreducible. The oddness of f,g,a insures
that its constant field twist by 1/Gauss(v, x2), which is pure of weight zero, has real traces, hence
the asserted autoduality. O

Theorem 2.4. If both f,g are odd polynomials, the geometric determinant of G(f,g,a, x2) s Ly,.

Proof. We first explain the idea. For fixed data f,a, the local system G(f, g, a, x2) makes sense for
any odd polynomial g of degree < a. Such g form an affine space A@1/2 and indeed there is a
local system on A@1/2 x G,,, call it Guniv(f, a, x), whose trace function at a point (g,t) is

(9,0) = = D o(f(1/2) + g(2) + ta*)xa ().

Because this local system is self-dual, its determinant, call it L, is either trivial or is iontrivial
of order 2. Viewing s as Z/27Z, we view Luniy as an element of H'((A~Y/2 x G,,)/F,,Z/27).
Because we are in odd characteristic p, the groups Hi(A(“_l)/z/E, 7/27) = 0 for all ¢ > 0, and
HO(A=D/2 /R, 7,/27) = 7./2Z.

By the Kunneth formula [De, Cor. 1.11], the map

pry : AlCD2 % G, — G, (g,t) —t,
induces by pullback an isomorphism
H (G /By, /2Z) = HY (A2 x Gyy) [y, 2/22).
For any fixed gy € A®=1/2 pullback by the inclusion
incly, : G, € ACV/25 Gy, £ (go,t)
induces an isomorphism
HY (A2 X Gyp) /By, 2/22) = H' (G [Ty, Z,/22).

The composition pry o incly, is the identity map of G, to itself. Therefore the composition of their
pullbacks, incl} o pr3 is the identity on H'(G,/Fy, Z/27Z).

On the one hand, if we view Lyniy as the pullback by pry of a class Ly on Gy, then for any g
we have

indgoﬁuniv = L07

The key point is that this pullback incl} Lyniy is the determinant of the local system G(f, go, a, x2)
on G,,/F,. What we must show is that Lo is £,. For this, it suffices to check at the single point
go = 0.

The local system G(f,go = 0, a, x2) is the local system denoted G(f,a, x2) in [KT5]. This local
system has all co-slopes A/(A 4+ a) < 1, and hence its entire Ggeom is the Zariski closure of all

conjugates of the image of 1(0). So its determinant is £,, if and only if the determinant of its
I(0)-representation is L,,. But its I(0)-representation is the direct sum

D Loo@™
p:pt=x2

Because a is odd, its determinant is £,,. Indeed, if we fix one a'™ root py of xo, then all the a'®
roots are pgA as A runs over the characters of order dividing a. So we have

H p=pg % H A=x2x1=xs.
pip=Xx2 AeChar(a)
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g

Theorem 2.5. If f is an odd polynomial, and a > 2deg(g), the geometric determinant of G(f, g, a, x2)
is Ly,.

Proof. By [KT6, Corollary 2.2], the geometric determinant is either trivial or is £,,. Using the
argument above, it first suffices to check for the specialization g = 0, and then to observe that,
again by the previous argument, this specialization has the asserted determinant L,,. ]

We will now consider the following local systems on G2, with trace functions

(r,s,t) — — Z Yr(r/x + szB 4+ tx®) o1 (2),

zEL*
where

(2.5.1) (B,a,p) =(3,7,5), (5,7,3), or (1,7,3),
or

(2.5.2) (B,a,p) =(1,5,3) or (2,5,3).

We will deviate from our previous notation, and denote this system as G, ; as we always let ¢ vary.
In particular, Gy, s, is the pullback of G, s by r =g and s = sy for any (rg, so) € G2,.

Recall the conditions (S+) and (S—) defined in [KT3, §1.1]. A basic fact about G, is the
following

Proposition 2.6. For the three choices of (B,a,p) as in (2.5.1), and for any (o, s0) € G2,, Gro.s0
and hence G, s, satisfies (S+).

Proof. We already proved in Lemma 2.1 that the underlying representation V' is I(oo)-irreducible.
Next, primitivity of G, s, is proved for (B, a,p) = (3,7,5), (5,7,3) in [KT6, Theorem 2.10(d)], and
for (B,a,p) = (1,7,3) in [KT6, Theorem 2.11]. An application of [KT6, Proposition 2.8] shows
that V is tensor indecomposable over I(0). Finally, for the first two choices of (B,a,p), V is not
tensor induced by [KT6, Proposition 2.9(d)]. The same conclusion holds for the third choice by
[KT6, Lemma 3.9], for in this case, D = 8 = 23, so the only possible n is 3, which is not prime to
p=3. O

Proposition 2.7. For the two choices of (B, a,p) as in (2.5.2), and for any (ro,50) € G2,, Gry.s0
and hence G, s, satisfies (S+).

Proof. This is [KT6, Corollary 2.13]. O
A natural question is what we can say about these local systems after specializing s = 0.

Proposition 2.8. In any odd characteristic p, for any integer a > 4 with p 1 a, and any multi-
plicative character A of order N prime to p, the local system on (G, x Gp,)/Fp(pan) whose trace
function is

(r,t) > = > ap(r/z + tz*)A(z)
x#0
satisfies (S+). In fact, its specialization v = 1 satisfies (S+) and has Ggeom containing a scalar
multiple of a complex reflection if A # 1.

Proof. Choose an a'"

terms of a generator w of Fp(pen)™, A(w) has order N, and the choice of x is the choice of an a

root x of A, i.e., a character x of Fj(u,n)> with x* = A. [Concretely, in
th
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root of A(w) in pigy. One then takes x(w) to be this choice of a'" root.] We first prove that the
r = 1 specialization, namely the local system on G, /Fp(pen) whose trace function is

= =Y (/e + )X (x)
x#0
is geometrically isomorphic to the Kloosterman sheaf ICI(1, {xp} peChar(a))- Indeed, thisr =1,5 =0
local system is geometrically calculated in terms of hypergeometric sheaves H as being

FTy((ale(Ly(1/2) ® Lya(r)) = FTy(Ly ® [a]H(251))
=~ FTy(Ly ® H(@; Char(a))
= FTy(H(@; xChar(a))) = Kly (1, xChar(a)),

cf. [Ka3, 8.1.12 & 8.4.2]. Now, if A has order e > 1 then the a'" power of a generator gy of I(0)
of this Kloosterman sheaf has spectrum {1,(,...,{.} and thus it is the (.-multiple of a complex
reflection.

We next check that this Kloosterman sheaf is primitive. It suffices to show it is not Kummer
induced, by Pink’s result [Kal, Lemmas 11, 12]. We argue by contradiction. Suppose it is Kummer
induced of some degree d > 2, d|(a+ 1). Choose a prime divisor r of d. Then it is Kummer induced
of degree r, and its characters are cosets of Char(r). If r = a + 1, then its characters are precisely
Char(r). But if we take two distinct elements of yYChar(a), their ratio is a nontrivial element of
Char(a), so has order dividing a, so cannot be an element of Char(r) (simply because ged(r,a) = 1).
If r <a+1, then r < (a+1)/2, hence outside the Char(r) coset of 1, there are two distinct elements
of xChar(a), and their ratio again gives a contradiction.

Because this Kloosterman sheaf is primitive, it has (S+) by [KT2, 1.7]. Once this = 1 pullback
local system has (S+), then so does the (r,t) local system. O

Corollary 2.9. For any odd prime p, any integer a > 4 with p { a, any integer 1 < B < a, and
any multiplicative character A of order N prime to p, the local system on (G, x Al X Gp,) /Fp(ptan)
whose trace function is
(r,5,t) = = > _(r/x + sz¥ + tz*)A(z)
z#0
satisfies (S+).

Proof. Indeed, its s = 0 pullback satisfies (S+). O
Next we study Mo of G(1/z,27,a,x) for B =1,2.

Lemma 2.10. For any prime p, any integer a > 2 with p t a, and any multiplicative character
X of order prime to p, consider the local system G(1/x,x,a,x) on G2, /F(values of x) whose trace
function at points of G,,(L)3, for L/F(values of x) a finite extension, is

-1
— Yr(r/z + sx + tx®)xr(x).
#L xGZL:X

Then Mso < 3, with equality precisely when a is odd and x s either 1 or xa, this second case
allowed only for p odd.

(rys,t) —

Proof. Since Ma 2 only decreases as Ggeom grows, it suffices to prove Mz 2 < 3 when we freeze ¢ = 1,
and consider the two parameter local system on G,, x G,, whose trace function is

1
— Yr(r/z + sz + x%)xr(x).
/7#‘[/ xezL:X L L

(rys) —
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By [KT4, 2.1], we may calculate its M2 as the limsup, over finite extensions F,/F(values of x) of

11 B

q—lQZ > Wq(( *—*—w)+8(x+y—z—w)+x“+y“—Z“—w“)x(xy)x(zw).
rsEIF :vyzweIF

X)Q

We first show that this limsup does not change if, instead of summing over (r,s) € (F;

, we
sum over (r,s) € (F,)2. An individual summand with r = 0, any s, is

Yo Ur(s(@ty -z —w) + a2yt =2 —wh)x(ey)x(w) = | Y v, sz + 2)x ()],

%y:Z,WGF; ZEFX

which is < (ay/g)*, hence is O(¢?). Similarly, an individual summand with s = 0, any r, is < (a\/g)*,
hence is O(g?). The total number of (r,s) € (F,)? with 7s = 0 is 2¢ — 1, so we are only changing
the inner sum by O(q?), while we are dividing by 1/¢%(¢ — 1)

We now examine

o L Y VRl m ) bale =z o) £at 4y = 2wy (R

Yy
r,s€Fq 24, 2, weFY

1 —_
T (g - 1)° Y e, (@ =2t = w)x(ay)X(zw) %
x,y,z,wé]F;<

>y qu(r(i—F;—i—;)—ks(a?—i-y—z—w))

r,s€F, x,y,z,weF;

1 _
rEE 2 i, (2 4y = 2 — w)x(ay)X(zw)
z,y,2,weFRY , 1/a+1/y=1/24+1/w, z+y=z+w

We now examine the two equations in z,y, z, w with xyzw # 0 given by
ljx+1/y=1/z+1/w, 2+ y =z +w,
which we rewrite as
(x+y)/zy = (z+w)/z2w, x+y=2z+w.

If x+y =24 w=0, we have the plane y = —z,2 = —w. If z + y = 2z + w # 0, then we divide
by them and get 1/zy = 1/zw. Thus we have  +y = z + w and zy = zw, and hence the two sets
{z,y} and {z,w} coincide. So have the two planes © = z,y = w and x = w,y = z. On each of
these last two planes, the function z® + y* — 2% — w® vanishes, so ¥ (z® + y* — 2% — w?®) = 1, and
x(zy)x(zw) = 1.

On the first plane y = —x, 2 = —w, the sum x + y® — z* — w® vanishes precisely when a is odd,
and x(zy)X(zw) = x(2°/w?).

Thus if both a is odd and x? = 1, then the first plane also contributes 1 to M 2. In general its
contribution is

T D e () =t — ()t T(u) =
z,wERS
2

ol 2 e )

z€Fy
which is O(1/q) unless both a is odd and x? = 1.

Now we return to G(1/z, x,a,x) on G3,. We have proven that for its t = 1 specialization, we have
Mo < 3, with equality precisely when both a is odd and x? = 1. When we do not have equality,

q—l
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we have Mao = 2. As My can only decrease for a bigger group, we certainly have Mo < 2, and
hence Mo = 2, for G(1,x,z,a, x) unless both a is add and x? = 1. In the case when a is odd and
x% =1, then G(1,,z,a, x) is self dual, hence has M5 2 > 3, and thus has the asserted Moo = 3. [

Lemma 2.11. For any odd prime p, any integer a > 3 with p{ a, and any multiplicative character
x of order prime to p, consider the local system G(1/x, 22, a,x) on G3,/F,(values of x) whose trace
function at points of G (L)3, for L/F,(values of x) a finite extension, is

-1
(r,s,t) —» —— 1/1L(7“/x+51:2+t:ca)XL(x).
#L :):EXL:X

Then M272 = 2.

Proof. By [KT4, 2.1], we may calculate the My 5 as the limsup, over finite extensions F,/F(values of x)
of

1 1 1 1 _
a1y 2 2 vl sy ety e ()X ().
TS tGIF T,Y,2, wEF

We will refer to

SN gy — ) st = ) e - 2 — ) e ew)

TstEIF a:yszF

as “a summand”.
We first show that this limsup does not change if, instead of summing over (r,s,t) € (FX)3, we
sum over (r,s,t) € (F;)?. The summand with (r,s,t) = (0,0,0) is

> x(y)xzw) =1 ) x(@)*

z,y,2,weFy z€FY

which vanishes if x # 1, and is (¢ — 1)* if x = 1.
An individual summand with » = 0, any (s,t) # (0,0), is

D r, (52 +y7 = 27— w?) (- 2 — ) x(ey)X(zw) = | > e, (sa® + ") x(2))[,

I,y,Z,'LUE]F;( IE]FX

which is < ((a + 1)/g)*, hence is O(¢?). Similarly, an individual summand with s = 0, any
(r,t) # (0,0), is < ((a + 1)\/g)*, hence is O(¢?). Finally, an individual summand with ¢ = 0, any
(r,s) # (0,0), is < (3,/)*, hence is O(¢*). The total number of (r,s,t) € (Fq)* with (r,s,t) #
(0,0,0) but rst = 0 is O(q¢?), so those terms are only changing the inner sum by O(q?), and the
(0,0,0) term is either 0 or (¢ — 1)*, while we are dividing by ¢*(q — 1)3.

We now examine

D DR o R IR (T
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:qg(ql_l)g, Z x(zy)x(zw) Z Y, (t(z® +y* — 2% —w?))x
x,y,z,weﬁ“; telFy
Dy = ) 2 e el =2t )
S sclFy
o X xaRGw),

x,?ﬁZ,WEF;, (x,y,z,w)EE
where the locus ¥ is defined by the equations

Vz+1/y=1/z+1/w, 2® +y* = 2> + w?, 2%+ y* = 2" + "

We first look at the intersection of ¥ with x +y=z4+w. If x +y = 2+ w = 0, then as p # 2 the
second equation 22432 = 22 +w? gives the the two lines y = —x,2 = —w = +x. fx+y = z2+w # 0,
then we divide the first equation by them and get 1/xy = 1/zw. Thus we have z +y = z + w and
xy = zw, and hence the two sets {x,y} and {z,w} coincide. So we have the two planes x = z,y = w
and z = w,y = z. On each of these two planes, % + y* — 2 — w® = 0 and x(zy)x(zw) = 1. So the
contribution of this intersection to the limsup is 2 + O(1/q).

It remains to show that the number of points (z,y,2,w) € X(Fy) with z +y # 2z + w is O(q).
Note that if z +y =0 then 1/2+1/w =1/z+ 1/y = 0 and hence z +w = 0 = z + y. So we may
assume x + y # 0, z + w # 0, and introduce new variables

u=z+y, v=z+w, t=uzy/(x+y),

so that

s :=axy = tu, zw = tv, but u # v.
Now

u2—2tu:m2—|—y2 =22 +w? :UQ—Qtv,
and so
u+v=2tie v=2—u.
An easy induction on odd a > 3 shows that there are some integers co = 1, ¢y, ..., c(,_1)/2 such that
%+ y* = Zgial)ﬂ c;u™ %t in fact, ¢; = %(":’) It follows that z% + y® = 21(161)/2 cu i,
and so the condition z% + y® — z* — w*=0 is equivalent to the vanishing of
(a—1)/2 (a—1)/2
Z cu™ i — Z ci(2t — u)" i,
i=0 i=0

a homogeneous polynomial in u, ¢ of degree a with the coefficient for u® being 1 — (—=1)* = 2. As
p # 2, given any t € [F, there are at most a values for u that satisfies this last condition. For each
(u,t), there are at most two pairs (z,y) with z + y = u, xy = tu, and there are at most two pairs
(z,w) with 2z +w = 2t —u, zy = (2t —u). It follows that the number of points (z,y, 2, w) € %(Fy)
with 4+ y # z 4+ w is at most 4agq, as stated. 0

3. PRELIMINARIES ON SPECIALIZATIONS OF Ggeom

We first quote verbatim from [KT4, §11 and Theorem 11.1], cf. [Ka3, 8.17, 8.18].

“The situation we consider is the following. We are given a normal connected affine noetherian
scheme S = Spec (A) with A a noetherian normal integral domain with fraction field K, and a chosen
algebraic closure K of K. Thus Spec(K) is a generic point 7 of S, and Spec (K) is a geometric
point 77 of S. We are given X/S a smooth S-scheme of relative dimension D, with geometrically
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connected fibres, and ¢ € X(S) a section of X/S. Then ¢(7) is a geometric point of X. We are
given a finite group G and a surjective homomorphism

m (X, ¢(1) — G.

For each geometric point s of S, ¢(s) is a geometric point of X, (and also of X). We have a
continuous group homomorphism

™1 (X, 9(s)) = m (X, ¢(s)) = m1 (X, ¢(7)).
This last isomorphism is only canonical up to inner automorphism of the target group m (X, ¢(7)).
By composition, we get a group homomorphism
7T1(X87 ¢(8)) -G
which is well defined up to inner automorphism of GG. This applies in particular with s taken to be

7. We are interested in how the image of 71 (X, ¢(s)) in G compares with the image of 71 (X5, ¢(7))

in G: when are these two subgroups of G conjugate in G7 Let us denote these image groups G
and Gﬁ

Theorem 3.1. [KT4, 11.1] There exists a dense open set U C S such that for any geometric point
s € U, Gs and Gy are conjugate subgroups of G. Moreover, for any geometric point s € S, G is
conjugate to a subgroup of Gy.”

Because G is a finite group, this theorem has the following more precise corollary.
Corollary 3.2. The set of points s € S at which G is conjugate to Gy in G is open in S.

Proof. The group G is finite (because it is a subgroup of the finite group G). Therefore it has only
finitely many subgroups, say Gy = Ho, H1, ... H,. The proof of [Ka3, 8.17, 8.18] shows that each
of the sets

Z; = {s € S| Gs is conjugate to H;}
and each of the sets
W; = {s € S| Gy is conjugate to a subgroup of H;}

is constructible (a finite union of sets of the form (open set)N(closed set)). But each set W is stable
by specialization, hence is closed, cf. [Hart, Ch. II, 3.18]. Therefore U;>1W; is closed. Then its
open complement is precisely the set Z. O

4. FINITENESS THEOREMS

We denote by ¢ the cardinality of k, and by k, the unique extension of k of degree r in F,.
V : (Q/Z)prime to p — [0, 1) will denote Kubert’s V' function for the prime p (cf. [KRLT1]).

Theorem 4.1. Let dy > dy > ... > d, > 0 be prime to p integers, d = (dy,...,d,) and F the local
system on Ggfkl whose trace function is given by
1
F(La Sytlv s ,tn) = T T == Z T,Z)L(S/(E + tlxdl + -+ tnxdn)XQ,L(x)~

v ‘L’ zeL>

Then F has finite (geometric and arithmetic) monodromy group if and only if

1 1
V<d1x1+---+dnxn+2>+V(x1)+~~+V(:cn)22

for every (z1,...,2n) € (Q/Z)}rime 10 p-
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Proof. By [KRLT1, Proposition 2.1}, we need to show that F'(L;s,t1,...,t,) is an algebraic integer
or, equivalently, that

1
ordgr Z U, (s)x +tiz® 4+ -+ tnxd")xg,kr ()| > 5
xekx
for every r > 1 and (s,t1,...,t,) € (kX)"1. Taking Mellin transform on G, this is equivalent
to
Do )t Ealtn) Y r(s/x+tia® -+ gz ) xop, (z) =
Syt1 eyt €EY x€kS
= > xew @) | D b (s/anls) | | Do rtiz™at) | - | Do vrtar®)u(tn) | =
xeky sek) t1€k) tnEk
= D e (@@ G E @) Gr(&) - Er (@)Gr () =
xeky
= Gr()Gr(&1) - Grl&a) Y O -G (@) =
zekr
_ { 0 if xz,kmﬁ:gl b £ 1
(¢" = 1Gr(n)Gr(&1) - Gr(&n) i Xok,mé1" - & =
has ordg > % for every n,&1,...,&, € k°, where G, (x) denotes the Gauss sum associated to the
multiplicative character x on k,. This reduces to
1
ordyr (Gr(xak, &'+ 6)Gr(&1) - Gr(8n)) = 5
for every &1,...,&, € gr; which, by Stickelberger, is equivalent to the given condition. O

Ifdizi1+--+dpz,+ % # 0, using that V(y)+V(—y) =1 for y # 0, we can rewrite the condition
as

1 1
Vv (dlm + -+ dpzn + 2> <V(—z)+--+V(—zn) + 2
which trivially holds for dyxz1 + -+ + dpxp + % = 0. So we have
Corollary 4.2. The local system F has finite monodromy if and only if the following two conditions
hold:

(1) V(diz1 + -+ +dpzn + 3) S V(—a1)+ - +V(—xy)+35 for every (z1,...,2,) € (Q/Z)prime to p-
(ii)) V(z1) +V(z2)+-- -+ V(xy) > % for every (z1,...,20) € (Q/Z)}ime 10 p With Yo divy = %
Note that the second condition is the criterion for the local system on G}, with trace function

1

Z wL(hl‘dl 4+ + tn$d")X2,L(fU)
reLX*

to have finite monodromy. In terms of the sum-of-digits function [—], , — defined in [KRL, Appen-
dix], the first condition becomes

r(p—1)
2

pr—1
2

d1x1++dnxn+ :| S [pr_1_‘%1]1977‘,_+'”+[p7q_1_xn]p77‘7_+
p,r,—
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for every r > 1 and every 0 < z1,...,z, < p" such that p"—1 does not divide dyx1+- - -+dnar:n—|—‘r'DTTf1
An argument similar to [KRLT1, Theorem 2.12] then shows

Proposition 4.3. Suppose that there exists some real A > 0 such that

T

diry + -+ dpoy +

-1
] S[pr_l_$11p+"'+[p’"—1—:cn]p+r(pQ)+A
p

for every r > 1 and every 0 < z1,...,x, < p" — 1, where [z], denotes the sum of the p-adic digits
of x. Then condition (i) in Corollary 4.2 holds.

For r > 1 and an n-tuple (x1,...,2,) with 0 < x; <p" —1, let

n r_q n 1
i=1 p

i=1

For s > 1 we say that the n-tuple (z1,...,2,) with 0 < z1,..., 2, < p® — 1 is s-good if one of these

conditions hold:
a) C(s;21,...,2n) <0.
b) There exists an s’ < s and an n-tuple (2},...,2,) with 0 < 2/ < p¥ — 1 such that

’ n

C(s'52],...,2,) > C(s;21,...,2,) and for every j > 0 the (s —1—]) th digit in the p-adic

’rTn
expansion of Y " | diz; + pT is greater than or equal to the (s’ + j)-th digit in the p-adic
expansion of > 7" | d;z} + T (counting the digits from right to left).
We say that the n tuple (z1,...,zy,) with 0 < z1,...,z, < p" — 1 has good termination if, for some
1 < s < r, the n-tuple (z1,...,2,) whose i-th coordinate is the number formed by the last s p-adic
digits of z; (ie. the remainder of the division of x; by p®) is s-good.

Proposition 4.4. Suppose that there exists some 1o > 1 such that all n-tuples (x1,...,x,) with
0<x1,...,2, <P — 1 have good termination. Then the hypothesis of Proposition 4.3 holds.

Proof. Let

A = max max Cryzy,y ..., oy).
1<r<rg 1<z1,...,zn,<p"—1

We will prove by induction on r that
C(T’;$1,... ,.'Bn) S A

for every r > 1 and every 0 < z1,...,2, < p" — 1. For r < rq this is obvious by definition of A.
Fix r > ro and assume that the inequality holds for all smaller r. Let (x1,...,z,) be an n-tuple
with 0 < z1,...,2, < p" — 1. By hypothesis it has good termination, since every s < rg is also
< r. Hence there is some 1 < s < rg such that the n-tuple (z1,...,2,) whose i-th coordinate
is the number formed by the last s p-adic digits of x; is s-good. Let y; = p~*(x; — 2;), that
is, the number obtained from x; by removing its last s p-adic digits. Then 0 < y; < p" % — 1,

[pr—l—ﬂfi]:[prfs—l—yi]-l-[ps—l—zi] and
]—5(19—1)

where ¢ is the number of digit carries in the (outer) sum

Z diz; + <Z diyi + ) (Z dizi +

Zdzz
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In particular, C(r;z1,...,xn) = C(r —s;y1,. .., yn) + C(s;21,...,2n) —d(p—1). We now have two
options according to the definition of s-good.
(a) C(s;21,...,2n) < 0. Then

C(T;LU]_,...,ITL) SC(T_S;ylw"ayn)+C(S;Zly"'7zn) SC(T_S;yl)"'ayn) SA
by induction.

(b) There exists an s’ < s and an n-tuple (2],...,2,) with 0 < 2/ < p¥ — 1 such that

rn
C(ss2y,...,2,) > C(s;21,...,2,) and for every j > 0 the (s + j)-th digit in the p-adic expan-

rTn

sion of Zl 1 d zl 5—_ is greater than or equal to the (s’ + j)-th digit in the p-adic expansion of

Zi:l 1

Let :ps/yi + 2z, for i =1,...,n. Then

—L (counting from the right).

/

C(T_S+5/;x/17'-"x;1) :C(T_S;yla---yyn)+C(S/;Ziv"'azn)_E(p_l)a
r s+s’

de+ — (Zdlyz ) (Zdz—l— )

The hypothesis on the digits of > | d;z; + 2=l and Yo diz) +p L implies that € < 8. Therefore
C(T;wl,---,fcn)=C(T—S;y1,---,yn)+C(S;z1,---,zn)—5(19—1)
<O =591 ) + O3 2o 2) — elp— 1) = Cr — 5 + /324, )
<A

where € is the number of digit carries in the (outer) sum

by induction. O

Theorem 4.5. The local system on G%FS whose trace function is given by

1
(Fsr;s,t,u) = e Z Ve (/2 4tz + ua’) xo py (@)

xE]F;T
has finite monodromy.

Proof. By Corollary 4.2, we need to show

(1) Vv (I‘l + 7$2 + %) S V(_'Tl) + V(-%Q) + % for every (%1,LU2) (Q/ )prlme to 3°
(ii)) V(x) + V(=Tx + %) > % for every x € (Q/Z)prime to 3-
Condition (ii) is the criterion for finite monodromy of the local system with trace function

F(Fgrit,u) — —33% Z Ur, (t7 + uz’) Xy (7)
:L‘EFBXT

which holds by [KT1, Theorem 4.3] since 7 = 3;%11 For the first condition, following Proposition
4.4, we check by a computer search that all pairs (z1,z2) with 0 < x1,29 < 3* — 1 have good
termination.

For each s = 1,2, 3, the following tables show the list of all pairs (z1, z2) with 0 < 27,20 < 3% —1
such that

(a) C(s;21,22) >0 and

(b) do not have good termination (ie. all their last-digits truncations appear in the previous
tables marked with e).
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If the condition (b) for being s-good can be applied to them, we show the possible values of
s', 2}, 25 on the table, otherwise we mark it with e and move it on to the next s. All values of z;
and z are shown as their 3-adic expansion. The columns D and D’ show the result of removing the

last s (respectively s') digits of 21 + 7zo + 252 (resp. of 2| + 724 + 35-1). Each digit of the number
in column D must be greater than or equal to the corresponding digit of the number in column D’.

| s=1 |
’Zl‘Zz‘C(S;Zl,ZQ)‘D‘ ‘

112 2 12

2| 2 4 12
| s =2 |
’ z1 \ Z2 \ C(s; 21, 22) ‘ D ‘ s' ‘ EA ‘ 2 ‘ C(s'; 21, 25) ‘ D’ ‘
21| 22 2 21 | o

02 | 22 2 20| o

1212 2 11| e

12| 22 2 21 | o

22 | 02 2 2 | e

22 | 12 2 12|11 2 2 12
22 | 22 4 21 | o
| = )
| 21 | 20 [Clsizi20) | D[ 8" | 2 [ 25| C(s's21,2) | D' ]
121 | 222 2 212 |21 22 2 21
221 | 122 2 121112 2 12
221 | 222 2 221111 2 2 12
102 | 222 2 21 2 |21 22 2 21
202 | 122 2 121112 2 12
202 | 222 4 2112 (22122 4 21
112 | 212 2 2012102122 2 20
212 | 112 2 11121212 2 11
212 | 212 2 2112 (1222 2 21
112 | 222 2 1121212 2 11
212 | 122 2 12111 2 2 12
212 | 222 2 2211111 2 2 12
022 | 202 2 12111 2 2 12
222 | 202 2 2012102122 2 20
222 | 212 2 21 2 |21 22 2 21
022 | 222 2 21| 2 |21 22 2 21
122 | 122 2 120112 2 12
122 | 222 4 21| 2 |22 22 4 21
222 | 122 4 1211] 2| 2 4 12
222 | 222 4 221112 ] 2 4 12

In the last table (for s = 3) there are no remaining cases left with e, so this finishes the proof. [

Theorem 4.6. The local system on Gf’n F, Whose trace function is given by

1
(Faris,tou) = =2 > e (/o + ta” + ual o, (2)
J?EF;:T'
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has finite monodromy.

Proof. By Corollary 4.2, we need to show

(if) V (521 + 7w + 3) < V(=21) + V(=22) + 5 for every (21,22) € (Q/Z)}1i1me 10 3-
(iiif) V(z1) + V(wz) = 5 for every (z1,22) € (Q/Z)jime 1o 3 Such that 5z1 + Tzz = 3.

Condition (ii) is the criterion for finite monodromy of the local system with trace function

1
F(Fsr;t,u) — — 72 Z Yy (t2° + uz”) xa p,. (2)

3r
xEJF;T

which holds by [KT3, Theorem 10.3.13(vi)]. For the first condition, following Proposition 4.4, we
check by a computer search that all pairs (z1,22) with 0 < 21,25 < 3% — 1 have good termination.

For each s = 1,2,3,4,5, the following tables show the list of all pairs (21, 22) with 0 < 2,29 <
3% — 1 such that

(a) C(s;21,22) >0 and

(b) do not have good termination (ie. all their last-digits truncations appear in the previous
tables marked with e).

If the condition (b) for being s-good can be applied to them, we show the possible values of
s, 2}, 24 on the table, otherwise we mark it with e and move it on to the next s. All values of z; and
2} are shown as their 3-adic expansion. The columns D and D’ show the result of removing the last

s (respectively ) digits of 521 + Tz + 251 (resp. of 521 + 7z + 251). Each digit of the number
in column D must be greater than or equal to the corresponding digit of the number in column D’.

| s=1 |
|21 22| C(s;21,22) [ D] ]

112 2 20

2] 2 4 22
| s =2 |
] 21 \ 29 \ C(s; 21, 22) \ D \ s’ \ 2] \ 24 \ C(s's 21, 25) \ D’ ‘
11 | 22 4 22 11122 4 22
21|02 2 12 | e

21 |12 2 22 | 11] 2|2 4 22
21 | 22 2 101 | e

02 | 22 2 20 (11112 2 20
22 112 4 22 (11212 4 22
22 | 22 2 102 | o
| 5= |
| z1 | 22 [Cls;zi,22) | D |8 [ 2] |25 | C(s521,25) | D]
121 | 202 2 22 11122 4 22
221 | 102 2 21 1112 2 20
021 | 222 2 22 11122 4 22
121 | 122 2 21 1112 2 20
221 | 222 4 102 | o

022 | 222 2 22 (1212 4 22
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| s=4 |
’ 21 \ 29 \ C(s; 21, 22) \ D \ s’ \ 2] \ 25 \ C(s's 21, 25) \ D’ ‘
0221 | 2222 4 22 | 1] 2] 2 4 22
1221 | 0222 2 12 1212102 2 12
1221 | 1222 2 22 | 1] 2] 2 4 22
1221 | 2222 2 101 | 2 | 21| 22 2 101
2221 | 0222 2 21 |11 2 2 20
2221 | 1222 2 100 |
2221 | 2222 2 110 | o
| s=5 |
| 21 | 2z [C(s;z,22) | D[] 20 | 2 [C(ss2,25) | D]
02221 | 11222 2 12 1 2] 21 02 2 12
02221 | 21222 2 22 |1 2 2 4 22
12221 | 11222 2 21 |1 1 2 2 20
12221 | 21222 2 100 | 4 | 2221 | 1222 2 100
22221 | 01222 2 20 |1 1 2 2 20
22221 | 21222 4 102 | 3 | 221 | 222 4 102
12221 | 12222 2 22 |1 2 2 4 22
12221 | 22222 2 101 2] 21 22 2 101
22221 | 02222 2 21 |1 1 2 2 20
22221 | 22222 2 110 | 4 | 2221 | 2222 2 110

In the last table (for s = 5) there are no remaining cases left with e, so this finishes the proof. [

3

m.Fs whose trace function is given by

Theorem 4.7. The local system on G

1
F(Fsr;s,t,u) — 0 Z Yy (s/7 + ta® + ur’)xo 0 ()
:EE]F;T
has finite monodromy.

Proof. By Corollary 4.2, we need to show
(i) Vv (3331 + Txo + %) <V(-z1) 4+ V(—xz2) + % for every (z1,x9) € (Q/Z)grime .
(ii) V(z1) + V(xg) > L for every (x1,22) € (Q/Z)[Q)rime to 5 such that 3xy + Txe = %

Condition (ii) is the criterion for finite monodromy of the local system with trace function

1
F<F5r;t, U) = _W Z w]Fg)r (tx?) + UZ'?)XZJFE)T (x)
IEF;T
which holds by [KT3, Theorem 10.3.13(ix)]. For the first condition, following Proposition 4.4, we

check by a computer search that all pairs (z1,22) with 0 < 21,29 < 5% — 1 have good termination.
For each s =1,2,3,4,5, the following tables show the list of all pairs (z1, z2) with

0§Z1,Z2§55—1

such that

(a) C(s;21,22) > 0 and

(b) do not have good termination (ie. all their last-digits truncations appear in the previous
tables marked with e).

If the condition (b) for being s-good can be applied to them, we show the possible values of
s, 2}, 25 on the table, otherwise we mark it with e and move it on to the next s. All values of z; and
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2z} are shown as their 5-adic expansion. The columns D and D’ show the result of removing the last

s (respectively ) digits of 321 + 722 + 251 (resp. of 32] + 7z + >51). Each digit of the number
in column D must be greater than or equal to the corresponding digit of the number in column D’.

| s=1 |
’21‘22‘0(8;21,22)‘D‘ ‘

3|4 4 12

4 1 4 4 13
’ 5=2 ‘
|21 22 [C(s;21,22) | D | 8" [ 21| 25 | O(s521,2) [ D' ]
23 | 44 4 13141 4 4 13
33 | 34 4 1211 3| 4 4 12
33 | 44 4 141114\ 4 4 13
43 | 34 4 13141 4 4 13
43 | 44 8 14 | o

24 | 44 4 13141 4 4 13
34 | 44 4 141114 4 4 13
44 | 34 4 13141 4 4 13
’ 5=3
| 21 | 22 [C(s;z1,22) | D[] 21 | 25 | O(s521,2) | D
043 | 444 4 1211 3| 4 12
143 | 444 4 1311|141 4 13
243 | 144 4 4 | e

243 | 344 4 1211 3| 4 12
243 | 444 4 141114 4 13
343 | 244 4 11| e

343 | 344 4 131141 4 13
343 | 444 8 14| 2 |43 | 44 14
443 | 044 4 4 | e

443 | 244 4 1211 3| 4 12
443 | 344 8 13| o

443 | 444 4 20 | o
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’ s=4
’ 21 \ 29 \ C(s; 21, 22) \ D \ s’ \ 21 | 7 \ C(s's 21, ) \ D’
3243 | 4144 4 13| 1] 4 4 4 13
4243 | 3144 4 121 1] 3 4 4 12
4243 | 4144 4 14|11 4 4 4 13
1343 | 4244 4 121 1] 3 4 4 12
2343 | 4244 4 13/1] 4 4 4 13
3343 | 1244 4 4 | 3 |443 | 044 4 4
3343 | 3244 4 121 3 4 4 12
3343 | 4244 4 1411 4 4 4 13
4343 | 2244 4 11| 3 | 343 | 244 4 11
4343 | 3244 4 13|11 4 4 4 13
4343 | 4244 8 14| 2| 43 | 44 8 14
3443 | 4044 4 13/1] 4 4 4 13
4443 | 3044 4 121 3 4 4 12
4443 | 4044 4 141 4 4 4 13
0443 | 2344 4 4 | 3|443 | 044 4 4
0443 | 4344 4 121 3 4 4 12
1443 | 3344 4 11| 3 | 343 | 244 4 11
1443 | 4344 4 13|/1] 4 4 4 13
2443 | 1344 4 4 | 3|443 | 044 4 4
2443 | 3344 4 121 3 4 4 12
2443 | 4344 8 13| 3 | 443 | 344 8 13
3443 | 0344 4 3| e
3443 | 2344 4 11| 3 | 343 | 244 4 11
3443 | 3344 4 13|/1] 4 4 4 13
3443 | 4344 8 14| 2| 43 | 44 8 14
4443 | 0344 4 4 | 3|443 | 044 4 4
4443 | 1344 4 10| e
4443 | 2344 4 121 1] 3 4 4 12
4443 | 3344 8 13| 3 | 443 | 344 8 13
4443 | 4344 4 20| 3 443 | 444 4 20
1443 | 4444 4 13|/ 1] 4 4 4 13
2443 | 3444 4 121 1] 3 4 4 12
2443 | 4444 4 1411 4 4 4 13
3443 | 3444 4 13|11 4 4 4 13
3443 | 4444 8 14|12 | 43 | 44 8 14
4443 | 0444 4 4 | 3 |443 | 044 4 4
4443 | 2444 4 121 3 4 4 12
4443 | 3444 4 1411 4 4 4 13
4443 | 4444 4 20 | 3 443 | 444 4 20

17
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| s=5 |

’ 21 \ 29 \ C(s; 21, 22) \ D \ s’ \ P4 \ 25 \ C(s's 21, 25) \ D’ ‘
23443 | 40344 4 121 3 4 4 12
33443 | 40344 4 131 4 4 4 13
43443 | 10344 4 4 | 3| 443 | 044 4 4
43443 | 30344 4 121 3 4 4 12
43443 | 40344 4 1411 4 4 4 13
14443 | 21344 4 4 | 3| 443 | 044 4 4
14443 | 41344 4 121 3 4 4 12
24443 | 31344 4 111 3| 343 | 244 4 11
24443 | 41344 4 131 4 4 4 13
34443 | 11344 4 4 | 3| 443 | 044 4 4
34443 | 31344 4 121 3 4 4 12
34443 | 41344 8 13| 3| 443 | 344 8 13
44443 | 01344 4 3 | 4] 3443 | 0344 4 3
44443 | 21344 4 11| 3| 343 | 244 4 11
44443 | 31344 4 131 4 4 4 13
44443 | 41344 8 14| 2| 43 44 8 14

In the last table (for s = 5) there are no remaining cases left with e, so this finishes the proof. [

Theorem 4.8. The local system on G%%FB whose trace function is given by

1
(Baris,tou) = =2 > ey (/2 + to + ur) oy (2)
mEIF:ifT

has finite monodromy.

Proof. By Corollary 4.2, we need to show
(i) V (@1 + bzo + %) <V(=z1)+ V(—x2) + % for every (x1,x2) € (@/Z)grime to 3-
(ii)) V(x) 4+ V(=bx + %) > % for every x € (Q/Z)prime to 3-

Condition (ii) is the criterion for finite monodromy of the local system with trace function

F(Fgrit,u) — —37,% Z Yrgr (t2 + u®) Xo g ()
:JcE]F§<T

which holds by [KT1, Theorem 4.2] since 5 = 322—“ For the first condition, following Proposition
4.4, we check by a computer search that all pairs (z1,z2) with 0 < z1, 29 < 35 — 1 have good
termination.

For each s = 1,2, 3,4, the following tables show the list of all pairs (21, z2) with 0 < 21,29 < 3°—1
such that

(a) C(s;21,22) >0 and

(b) do not have good termination (ie. all their last-digits truncations appear in the previous
tables marked with e).

If the condition (b) for being s-good can be applied to them, we show the possible values of
s', 2}, 2, on the table, otherwise we mark it with e and move it on to the next s. All values of z;
and z, are shown as their 3-adic expansion. The columns D and D’ show the result of removing the

last s (respectively s’) digits of 21 + 529 + 3@7_1 (resp. of z] +5z5 + ?)QT_I) Each digit of the number
in column D must be greater than or equal to the corresponding digit of the number in column D’.
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211 2 2

212 2 11
| s=2 |
’ 21 \ Z2 \ C(s; 21, 22) ‘ D ‘ s' ‘ 21 ‘ 2 ‘ C(s'; 21, 25) ‘ D’ ‘

12 | 21 2 11111212 2 11

22121 2 12111212 2 11

12| 22 2 121112 2 2 11

22 | 22 4 12| o
| s=3 |
| 21 | 22 [C(siz1,22) [ D[ 8| 21 | 25 | C(s5 21, 25) [ D' |
022 | 222 2 12111 2| 2 2 11

122 | 222 4 12| 2122122 4 12

222 | 022 2 2111211 2 2

222 | 122 2 1111 2| 2 2 11

222 | 222 2 20| o
| s=4 |
| 21 | 2 |Clsiz,20) [ D]s'] 2 | 25 [C(s52],25) [ D"
0222 | 2222 2 121 2 2 2 11
2222 | 1222 2 1111 2 2 2 11
2222 | 2222 2 20| 3| 222|222 2 20

In the last table (for s = 4) there are no remaining cases left with e, so this finishes the proof. [J

Theorem 4.9. The local system on G?n,Fs whose trace function is given by

1
(Fyristow) = =5 Y Uy (s/2 + t2® +ua®)xe 5, (1)

IEF;T

has finite monodromy.

Proof. By Corollary 4.2, we need to show

(i) V (221 + 5w + 5) < V(=21) + V(=22) + 3 for every (21,22) € (Q/Z)}rime o 3-

(ii) V(z1) + V(xg) > L for every (a1, 29) € (Q/Z)grime 1 3 Such that 221 + 5z9 = 3.
Condition (ii) is the criterion for finite monodromy of the local system with trace function

1
—g O v (2 u) g, (2)

xngfT

F(Fgr;t, u) —

which holds by [KT3, Theorem 10.3.13(i)]. For the first condition, following Proposition 4.4, we
check by a computer search that all pairs (z1,22) with 0 < 21,25 < 3% — 1 have good termination.

For each s = 1,2,3,4,5, the following tables show the list of all pairs (z1,22) with 0 < 21,29 <
3% — 1 such that

(a) C(s;21,22) > 0 and

(b) do not have good termination (ie.
tables marked with e).

If the condition (b) for being s-good can be applied to them, we show the possible values of
s, 2}, 25 on the table, otherwise we mark it with e and move it on to the next s. All values of z; and

all their last-digits truncations appear in the previous
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2z} are shown as their 3-adic expansion. The columns D and D’ show the result of removing the last

s (respectively ) digits of 221 + 522 + 51 (vesp. of 2z] + 52 +

/

382*1). Each digit of the number

in column D must be greater than or equal to the corresponding digit of the number in column D’.

|

s=1

|

121\2’2 \ 0(5321,22) ‘ D‘ ‘

1]1 1 2

1] 2 1 11

2|2 2 12
| s =2 |
21 [ 22 [Clsiz,20) [ D [ 8" 2 |2 | O] 21,25) | D]
21|21 3 12 | o

11|22 2 1211122 12
21|12 1 117112 11

21 | 22 1 20 |

22 | 22 2 20 | o
] s=3
| 21 | 22 [C(s;iz1,22) | D[] 21 | 25 | O(s521,2) | D

021 | 221 1 1211 2| 2 2 12

221 | 121 1 1211 2| 2 2 12

221 | 221 3 20| o

021 | 222 1 1211] 2| 2 2 12

221 | 122 1 1211] 2| 2 2 12

221 | 222 1 21 1| 1| 2 1 11

022 | 222 2 1211 2| 2 2 12

122 | 122 1 117112 1 11

122 | 222 1 2012|2122 1 20

222 | 122 2 1211212 2 12

222 | 222 2 2112|2222 2 20
| s=4 |
’ z1 \ 22 \ C(s; 21, 22) ‘ D ‘ s' ‘ 21 ‘ 25 ‘ C(s'; 21, 25) ‘ D’ ‘
0221 | 2221 3 1212 21 | 21 3 12
1221 | 1221 2 11| e

1221 | 2221 2 20| 3 | 221|221 3 20
2221 | 0221 1 10| e

2221 | 1221 3 1212 21 | 21 3 12
2221 | 2221 3 21| 3 | 221|221 3 20
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| s=5 |
’ z1 \ 29 \ C(s; 21, 22) \ D \ s’ \ 4 \ 25 \ C(s'; 21, 25) \ D’ ‘
11221 | 21221 3 121 2] 21 21 3 12
21221 | 11221 2 11| 4] 1221|1221 2 11
21221 | 21221 2 201 3| 221 | 221 3 20
02221 | 20221 1 11| 4| 2221 | 0221 1 10
12221 | 20221 2 121 2 2 2 12
22221 | 00221 1 2|1 1 1 1 2
22221 | 10221 1 11| 4 | 2221 | 0221 1 10
22221 | 20221 1 20 3 | 221 | 221 3 20

In the last table (for s = 5) there are no remaining cases left with e, so this finishes the proof. [

5. Ggeom FOR LOCAL SYSTEMS OF RANK 8

In this section, we will determine Ggeom,r,s, the geometric monodromy group of G, 5, and Ggeom,ro,s0 5
the geometric monodromy group of G, s, for any (rg,sg) € G2,, of rank 8. With (B, a,p) as in
(2.5.1), it follows from Theorems 4.5, 4.7, and 4.6 that Ggeom,r,s is finite. [Those results show that
the restriction of G, s to the open dense subset G3, of G}, x Al x G,, has finite Ggeom- In general,
for a local system F on some smooth, geometrically connected variety X, and U C X a dense open
set, m1(U) maps onto m1(X), so F on X and F|y on U have the same Ggeom (indeed have the same

image of m1).]

Theorem 5.1. Let (B,a,p) = (3,7,5). Then both G5, and Gy,s, for any (ro,s0) € G2,, have
Ggeom = W (E3g), the Weyl group of type Ex.

Proof. By Theorem 4.7, G := Ggeom,r,s is a finite subgroup of GLg(C), whence the same holds for
its subgroup H := Ggeom,r,so- Next, H satisfies (S+) by Proposition 2.6, whence the same holds
for G.

Let ¢ denote the G-character afforded by the underlying representation. By Lemma 2.3, ¢ takes
real values for any specializations of (r, s), and hence ¢ is real-valued. This implies that
(5.1.1) Z(H) <Z(G) < Cs.

Next, by Lemma 2.2 the image of P(o0) in H is isomorphic to the additive group of F5(ug) = Fsz,
which is elementary abelian of order 52, whence (5.1.1) implies that
(5.1.2) 5% divides |H/Z(H)|.

Now we can apply [KT2, Lemma 1.1] to both H and G. If either of them is an extraspecial
normalizer, then there is some € = £ such that

H < 224_6 : 03(2),

which violates (5.1.2). So both H and G are almost quasisimple; in particular, L := H () is a
quasisimple group with

S:=L/Z(L)
being the unique non-abelian composition factor of H. The condition (S+) implies that @[z is
irreducible, and so Cy (L) = Z(H) by Schur’s lemma. It follows that

H/Z(H) < Aut(L),

and so 5%[|Aut(L)| by (5.1.2). Now we can inspect Table 2 in [HM] to see that 2 - Qg (2) is the
unique possibility for L. Note that ¢|, is of type +, so

2-0f(2) = L<H < Noyc)(L) = W(Es) = L-2.
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Also note from Theorem 2.4 that G, s, has geometric determinant x>, which shows that H cannot
be perfect. Hence H = W (Ej).

The preceding arguments can also be repeated to show that G = W (Eg). As H < G, we conclude
that G = H. O

Theorem 5.2. Let (B,a,p) = (5,7,3). Then G, has Ggeom = W (Eg), the Weyl group of type
Eg. Furthermore, there is a dense open set U C G2, that contains (1,1), such that Gro,s0 has Ggeom
equal to W (Eg) when (rg, so) € U, and to Sg when (ro,so) ¢ U.

Proof. By Theorem 4.6, G := Ggeom,r,s is a finite subgroup of GLg(C), whence the same holds for
its subgroup H := Ggeom,ry,so- Next, H satisfies (S+) by Proposition 2.6, whence the same holds
for G.

(a) Let ¢ denote the G-character afforded by the underlying representation V. By Lemma 2.3,
¢ takes real values for any specializations of (r, s), and hence ¢ is real-valued. This implies that

(5.2.1) Z(H) < Z(G) < Cs.

Also note from Theorem 2.4 that G, s, has geometric determinant x2, which shows that ¢|y cannot
be of symplectic type, and

(5.2.2) H < O(V) but H % SO(V).

Next, the wild part of the I(0)-representation V' has rank 2 and slopes 5/2, so by [Ka2, 1.14] it
is the Kummer induction [2],£ of some £ with Swan = 5, and the P(0)-representation is the direct
sum L @ [z — —x]*L. Moreover, these two pieces are permuted by any element go € I(0) which
is a generator of I(0) modulo P(0). Thus go acts on V with spectrum (o, —c, 1,1,...,1) for some
a € C*. Since the image @ of P(0) is a 3-group, it is contained in SO(V). Now, if the image of
go is contained in SO(V'), then so is the image J of I(0). By [KT2, 4.2], the fact that all co-slopes
are < 1 implies that H is the normal closure of J, so we get H < SO(V), contrary to (5.2.2). Thus
—a? = —1,ie. a==+1 and gg acts on V as a reflection.

The version of Mitchell’s theorem given in the proof of [KT3, Theorem 4.2.3] now shows that H =
Z(H)Hy, where Hy = W (E3), or Hy is Sg acting in the deleted natural permutation representation.
In the former case, (5.2.1) implies that

H = W (Es).

Suppose we are in the latter case. First we consider the case Z(H) = C3. Then note that
L:= H(®) = Ag and H/L = C3. In particular, Q < L, and J is contained in (L, go), a subgroup
of index 2, whence normal, in H. Hence the normal closure of J in H is contained in (L, go), and
so cannot be equal to H, a contradiction. We have shown that, in the latter case, H = Sg in its
deleted natural permutation representation.

Now we apply the above consideration to (rg, sg) = (1,1), and assume that H = Sg. We consider
the weight zero twist of G by 1/Gauss(1), x2), which is orthogonally self-dual with integer Frobenius
traces. Let us denote by H,p its arithmetic monodromy group. Then H,., normalizes H, and
hence we have H < Hyiin < NO(V)(H ) = Cy x H. In either case, over any even degree extension
k/F3, we have Hyith iy = H = Sg. So over any such k, all Frobenius traces lie in [—1,8]. But a
Magma calculation shows that over Fszs, both —3 and —2 (as well as 2 and 3) occur as Frobenius
traces. That H = W(Eg) at (ro,s0) = (1,1).

(b) The preceding arguments can also be repeated to show that either G = W (Eg) or G < Co X Sg.
Since W(Eg) = Ggeom,1,1 < G and |Cy x Sg| < |W (E3g)|, we conclude that G = W (Ej).

By Corollary 3.2, there is a dense open subset U of G2, containing (1,1) such that G geom,ro,50
equals W (E3g) for (ro,so) € U and Ggeom,r,s0 = S9 for (ro,s0) ¢ U. O
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Theorem 5.3. Let (B,a,p) = (1,7,3). Then both G5, and Gy,s, for any (ro,s0) € G2,, have
Ggeom = W (E3g), the Weyl group of type Eg.

Proof. (a) By Theorem 4.5, G := Ggeom,r,s is a finite subgroup of GLg(C), whence the same holds
for its subgroup H := Ggeom,rg,s0- Let ¢ denote the G-character afforded by the underlying rep-
resentation V. By Lemma 2.3, ¢ takes real values for any specializations of (7, s), and hence ¢ is
real-valued. This implies that

(5.3.1) Z(H) < Z(G) < Cs.

Also note from Theorem 2.4 that G, s, has geometric determinant x», which shows that ¢|x cannot
be of symplectic type, and

(5.3.2) H<G<O(V)but G,H £ SO(V).

Next, the wild part of the I(0)-representation V' has rank 6, and so the image @ of P(0) is
non-abelian, and hence is a 3-group of order at least 33. It follows that 33 divides |[H| and |G|. On
the other hand, G has Ms2 = 3 by Lemma 2.10. It follows from [GT, Theorem 1.5] and (5.3.2)
that either

E =2"<9G < Now)(E) = E-0f(2),

or G =2:Ag, or 2-QF(2) <G < W(Eg). The first possibility is ruled out since 3% divides |G|.
Next, G is not perfect by (5.3.2), ruling out the groups 2-Ag and 2- € (2). Hence we conclude that
G = W(Eg).

(b) It remains to determine H = Ggeom,ry,s, Which is a subgroup of G = W(Eg). By Proposition
2.6, H satisfies condition (S+). Hence, by [KT2, Lemma 1.1], one of the following two cases holds.

(bl) H is an extraspecial normalizer, i.e. R contains a normal 2-subgroup R = Z(R)E, with
E = 216 acting irreducibly on V = C%, € = +, and Z(R) = Z(E) or Z(R) = C4. Now (5.3.2)
implies that € = + and Z(R) = Z(E). Thus R = E = 217% and

H < Now)(E) =E-Of(2).

This is however impossible since 3 divides |H]|.

(b2) H is almost quasisimple, i.e. S <9 H/Z(H) < Aut(S) for a non-abelian simple group S, and
the quasisimple group L = E(H), with S = L/Z(L), acts irreducibly on V. Furthermore, (5.3.1)
implies that 3% divides |Aut(S)|. Now we analyze the possibilities for (S, L) as listed in [HM].

e S =L = SL(8). In this case, H/Z(H) < Aut(S) = SL2(8) - 3 contains no element of order 4,
whereas a generator g, of I(co) modulo P(oco) has order 8 in H/Z(H ), a contradiction.

o (S,L) = (Spg(2),2 - Spg(2)). Since Aut(S) = S, by (5.3.1) we have H = L. Let J and Q
denote the image of I(00), respectively of P(co) in H. Then @ is elementary abelian of order 9 by
Lemma 2.2. As J acts irreducibly on V, JZ(H) transitively permutes the 8 nontrivial irreducible
characters of @ which all occur in V. Identifying Q with QZ(H)/Z(H), we see that the subgroup
JZ(H)/Z(H) of S also permutes the 8 nontrivial irreducible characters of () transitively. Note that
S = Spg(2) admits an irreducible complex character 6 of degree 7, and certainly 6|g contains some
irreducible constituent A # 1g. But then all 8 nontrivial irreducible characters of ¢ must occur in
6|q of degree 7, a contradiction.

o (S,L) = (Ag,2 - Ag). Since 2-Sg does not act on C® we must have H = L. In particular,
H/Z(H) contains no element of order 8, whereas g, has order 8 in H/Z(H ), a contradiction.

e S =L = Ag. As in the previous case, the fact that go, has central order 8 implies that
H/Z(H) = Sg. It follows from (5.3.1) that H/L is a group of order 2 or 4, whence the image P
of P(0) in H is contained in L = S. Note that the restriction of the character ¢ to L is just the
character of the deleted permutation module of Ag. Now, ¢|p = 2-1p + a + @ for some irreducible
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character a of P of degree 3, using the fact that ¢ is real-valued. It follows that the 3-subgroup P
of Ag acts on {1,2,...,9} with exactly three orbits. The length of any of these orbits is a power
of 3. So we conclude that each of them has length 3; say they are {1,2,3}, {4,5,6}, and {7,8,9}.
Now, as P fixes each of these three subsets, we see that P < Ag and hence abelian, contrary to the
fact that o has degree 3.

e (S, L) =(024(2),2-Q4 (2)). Here we have Z(H) = Z(L) = Z(G) = Cy, and S < H/Z(H) < §-2.
Again using the fact that G, 5, having nontrivial determinant we see that ' > L. Hence we conclude
that |H/Z(H)| =1|S -2| = |G/Z(H)| and thus H = G. g

Remark 5.4. As we mentioned at the beginning of the section, the extension to G, s to G,, x Al xG,,
does not change its Gigeom. Now, the specialization Gy o of G, s in both Theorems 5.2 and 5.3 yield
the Kloosterman sheaf Kl(x2,Char(7)) ® L,, by the proof of Proposition 2.8. In particular, its
geometric monodromy group G contains minus a reflection. Applying [KT2, Theorem 9.3(b)], we
see that G 9 = Sy, acting on the tensor product of the deleted permutation representation with the
sign representation, i.e. on the non-reflection representation.

6. Ggeom FOR LOCAL SYSTEMS OF RANK 6

Theorem 6.1. Let (B,a,p) = (1,5,3). Then G, has Ggeom = W (Es) x 2. Moreover, for any
(ro,50) € G2,, the geometric monodromy group of Gro,s0 s W(Es), acting on the non-reflection

m>
representation of degree 6.

Proof. (a) By Theorem 4.8, G := Ggeom,r,s is a finite subgroup of GLg(C), whence the same holds
for its subgroup H := Ggeom,ro,s, for any (ro, so) € G2,. Let ¢ denote the G-character afforded by
the underlying representation V. Then

(6.1.1) Q(y) = Q, and so Z(H) < Z(G) < Cs.

Also note from Theorem 2.4 that G,, s, has geometric determinant x2, and so it cannot be of
symplectic type, and

(6.1.2) H<G<O(V)and HLSO(V).
Now we apply Lemma 2.10 to get M3 2(G) = 3. Applying [GT, Theorem 1.5] and using (6.1.1), we

see that G is almost quasisimple, and arrive at one of the following cases for L = G(®).

e . = SU3(3). In this case, L < G/Z(G) < L -2. Using [GAP] one can check that the rational-
valued character ¢|;, does not have rational-valued extensions to L - 2. Hence (6.1.1) implies that
G = Z(G) x L. But in this case G < SO(V), contradicting (6.1.2).

o L = SU4(2). In this case, L <G/Z(G) < L-2. Since G £ SO(V) by (6.1.2), G must induce an
outer automorphism of L, i.e. G/Z(G) = L -2 = W(Es). Together with (6.1.1), this implies that
W(Es) < G < W(Eg)x2. The same arguments applied to Gayith 7, show that Gayithrs < W(Es) X 2.
In particular, [Gayith 7, © G] < 2 and Gayitn 7, = G. Now, a calculation with Magma [BCP] over Fgs
shows that the Frobenius at the point (r,s,t) = (1,1,w*7") for w a primitive element in Fss has
trace —4. We also note that a change of variable x — rz in the trace function sends the trace of
the Frobenius at (1,1,¢) to x2(r) times the trace of the Frobenius at (1,r,¢r%). Choosing r € Fys
with x2(r) = —1, we then get a trace 4, namely at (1, sr,tr°), in addition to trace —4. Since neither
of the two 6-dimensional irreducible representations of W (FEg) possesses both traces 4 and —4, we
conclude that G = W (Eg) x 2.

(b) It remains to determine H = Ggeom,rg,s, Which is a subgroup of G = W(FEs) x 2. By
Proposition 2.7, H satisfies condition (S+). Hence, by [KT2, Lemma 1.1], H is almost quasisimple:
S < H/Z(H) < Aut(S) for a non-abelian simple group S, and the quasisimple group K = E(H)
with S = K/Z(K), acts irreducibly on V. By Lemma 2.1, the image of P(c0) in H is a non-abelian
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3-group, so (6.1.1) implies that 3% divides |[Aut(S)|. Since K = K () < G(*) = SU4(2), the list of
maximal subgroups of SU4(2) in [Atlas] shows that K = SU4(2) = L. Now Z(G)L has index 2 in
G and Z(G)L < SO(V). Hence (6.1.2) implies that

(6.1.3) L<H<G=LxC3.

Now we look at the image J of I(0) in H. Since H/L is a 2-group, the image @ of P(0), a
3-subgroup, is contained in L. Next, J = (Q,h), where h is the image in H of a generator gy of
I(0) modulo P(0). Since H/L has exponent 2, we have h? € L, and hence

(6.1.4) [LJ:L]<2.

Also, since G/L is abelian, LJ is normal in G and hence also in H. But H is the normal closure of
J by [KT2, Proposition 4.2], so H < LJ. Hence H = LJ, and now (6.1.3) and (6.1.4) imply that
[H : L] =2 =[G : H|. Among the three subgroups of index 2 in G, Z(G) x L is contained in SO(V'),
and the other two are isomorphic to W (Es), which act on V' via the two irreducible 6-dimensional
representations of W (Eg), the reflection and the non-reflection representation. Using (6.1.2), we
obtain

(6.1.5) H =~ W (Es).

By Theorem 3.1, there is a subgroup Gj of G and an open dense subset U of G2, such that for all
(r1,51) € U, Ggeom,r1,5;, is conjugate to G in G. Now (6.1.5) implies that |Geeom,r,s;| = |Grl- It
follows that G = W (Eg) and hence, being of index 2, that G < G. Also by Theorem 3.1, for any
(r2,82) € G2, Ggeom,rs,s, 18 conjugate in G' to a subgroup of Gj < G, hence it is a subgroup Gj.
Again using (6.1.5), we obtain that H = Gj. In particular, Ggeom,1,1 = H, and the calculation in
(a) shows that H acts on V via the non-reflection representation. g

Theorem 6.2. Let (B,a,p) = (2,5,3). Then both G5, and Gy,s, for any (ro,s0) € G2,, have
Ggeom = 61 - PSU4(3) - 22, the Mitchell group.

Proof. (a) By Theorem 4.9, G := Ggeom,r,s is a finite subgroup of GLg(C), whence the same holds
for its subgroup H := Ggeom,ro,s, for any (ro, so) € G?n. Let ¢ denote the G-character afforded by
the underlying representation V. Then

(6.2.1) Q) CQ(¢3), and so Z(H) < Z(G) < C.
Also note from Theorem 2.5 that G, s has geometric determinant x», and so
(6.2.2) G £SL(V), H £ SL(V).

Now we apply Lemma 2.11 to get M3 2(G) = 2. Applying [GT, Theorem 1.5] and using (6.2.1), we
see that G is almost quasisimple, and arrive at one of the following cases for L = G(°°),

o L = SUy4(2) or SU3(3). In this case, L < G/Z(G) < L -2. Using [GAP] one can check that
M3 2 = 3, a contradiction.

e L =6-PSL3(4). In this case, L <G < L-2; (in the notation of [GAP]). The condition (6.2.1)
now implies that G = L is perfect, which contradicts (6.2.2).

e L =6-PSU4(3). In this case, L 9G < L-25 (in the notation of [GAP]). Since G is not perfect
by (6.2.2), we have that G = L - 29, the Mitchell group.

(b) It remains to determine H = Ggeom,ry,s, Which is a subgroup of G, the Mitchell group. By
Proposition 2.7, H satisfies condition (S+). Hence, by [KT2, Lemma 1.1], H is almost quasisimple:
S < H/Z(H) < Aut(S) for a non-abelian simple group S, and the quasisimple group K = E(H)
with S = K/Z(K) acts irreducibly on V. We next show that

(6.2.3) Qlelx) = Q(¢3)-
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By (6.2.1), it suffices to show that V|g is not self-dual. Assume the contrary. Then V and V* are
two extensions of the absolutely irreducible module V|x to H. By Gallagher’s theorem [Is, (6.17)],
V* =2V ®U for some one-dimensional H/K-module U. Applying [KT6, Corollary 2.7], we see that
U = Q, is trivial, and thus V is self-dual. But this is impossible by [KT6, Lemma 2.3].

Using [HM] and (6.2.3), we arrive at one of the following cases for K.

e K = 3-Ag. Since the faithful module V' |k is invariant only under the outer automorphisms 23 of
K (in the notation of [Atlas]), we have H = KCy(K) = KZ(H) or H < Z(H)K -23. In the former
case, K is perfect and Z(H) < Cg has determinant 1 on V', and so H < SL(V'), contrary to (6.2.2).
In the latter case, one can check using [Atlas] that Q(p|g) contains v/2 or \/—2, contradicting
(6.2.1). [Note that the Mitchell group contains a subgroup 3 - Ag - 23 which however acts reducibly
on the faithful irreducible representations of the Mitchell group — one can see it by checking the
character values at involutions insider 3 - Ag.]

e K = 3-A7. Since the faithful module Vg is not invariant under outer automorphisms of K,
we have H = KCg(K) = KZ(H). As K is perfect and Z(H) < Cg has determinant 1 on V, we
get H < SL(V), contradicting (6.2.2).

e K =6-PSL3(4). As in part (a), this implies H = K is perfect, again contradicting (6.2.2).

e K =6-PSU4(3). As in part (a), using (6.2.2) we obtain that H = K - 25. Since H < G and
|H| = |G|, it follows that H = G. O
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