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Abstract. We study some one-parameter families of exponential sums of Airy-Laurent type. Their
general theory was developed in [KT6]. In the present paper, we make use of that general theory
to compute monodromy groups in some particularly simple families (in the sense of “simple to
remember”), realizing Weyl groups of type E6 and E8.
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1. Introduction

In classical analysis, Airy functions are the Fourier transforms of exponentials eg(x) of polynomials,
(originally for the polynomial g(x) := x3/3) and Airy differential equations are the linear differential
equations g′(d/dt)y + ty = 0 they satisfy. These differential equations have an irregular singularity
at ∞, and have quite interesting differential galois groups. In the seminal paper [Such] of Such, he
introduces their `-adic finite field analogues, the local systems whose trace functions are of the form

t 7→ −
∑
x

ψ(g(x) + tx).

The local systems we are concerned with here are generalizations of these Airy local systems in
several ways. We allow the “t term” tx to be replaced by txa, we allow the polynomial g(x) to be
replaced by a Laurent polynomial f(1/x) + g(x), and we allow an “outside factor” χ(x) in the sum.
Here is a more detailed discussion.

We work in odd characteristic p > 0, and denote by Fp an algebraic closure of Fp. We also fix a

prime ` 6= p to be able to speak of Q`-adic cohomology. We fix integers

A ≥ 1, a ≥ 1
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about which we assume
p - Aa.

We fix polynomials

f(x) ∈ k[x], deg(f) = A, k some finite subfield of Fp,

g(x) ∈ k[x], deg(g) < a, k some finite subfield of Fp,
We make the assumption that f(x) is Artin-Schreier reduced: this means that in the expression
f(x) =

∑
i cix

i, we have ci = 0, if p|i. We define

gcddeg(f) := gcd({i|ci 6= 0}))
the greatest common divisor of the degrees of the monomials appearing in f . We suppose

gcd(a, gcddeg(f)) = 1.

We fix χ a (possibly trivial) multiplicative character of a finite extension k/Fp containing the
coefficients of f and g. We denote by ψ a chosen nontrivial additive character of Fp. For L/k a
finite extension, we denote by χL, respectively by ψL, the composition of χ, respectively of ψ, with
NormL/k, respectively with TraceL/Fp

.

We denote by G(f, g, a, χ) the lisse sheaf on Gm/k whose trace function at time t ∈ L×, for L/k
a finite extension, is

t 7→ −
∑
x∈L×

ψL(f(1/x) + g(x) + txa)χL(x).

We will mostly be concerned with the case when χ = χ2, the quadratic character.

2. Basic facts about G(f, g, a, χ)

The local system G(f, g, a, χ) is lisse of rank D = A+ a on Gm, and pure of weight one. We view
it as being the Fourier transform

FTψ([a]?(Lψ(f(1/x)+g(x)) ⊗ Lχ(x))).

Lemma 2.1. Let A ≥ 1, a ≥ 1, p - Aa, f be Artin-Schreier reduced, and gcd(a, gcddeg(f)) = 1.
Then the I(∞)-representation of G(f, g, a, χ) is irreducible. It has rank A+a and all slopes A/(A+a).

Proof. This is a straightforward application of Laumon’s results on the local monodromy of FTψ.
The input sheaf to FTψ is lisse on Gm of rank a, with I(0)-slopes A/a. The hypothesis

gcd(a, gcddeg(f)) = 1

implies that the I(0)-representation of the input sheaf is irreducible, cf. the proof of [KT6, Lemma
2.1].

Then the I(∞)-representation of G(f, g, a, χ) is FTloc(0,∞)(rank a, slopes A/a), which has rank
A+ a and all slopes A/(A+ a), cf. [Ka3, 7.4.4(4)]. The asserted irreducibility result from the the
irreducibility of the input and the fact that FTloc(0,∞) is a suitable equivalence of categories. �

Lemma 2.2. Suppose that A = 1 and that p - (a + 1). Then the image of P (∞) in the the
representation attached to G(f, g, a, χ) is isomorphic to the the additive group of the field Fp(µa+1).

Proof. The I(∞)-representation is irreducible of prime to p rank a+ 1 and has Swan = 1. By [Ka2,
1.14], the I(∞)-representation is the Kummer direct image [a + 1]?L of some L with Swan = 1.
Moreover, as a P (∞)-representation, the I(∞) representation is the direct sum of the multiplicative
translates, by elements of µa+1, of L. Because L has Swan = 1, it is of the form Lψ(ax) for some

a 6= 0 in Fp. Now repeat the (end of) the proof of [KRLT1, Lemma 1.2]. �
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Lemma 2.3. If both f, g are odd polynomials, the local system G(f, g, a, χ2) is geometrically self-
dual. Indeed, its constant field twist by 1/Gauss(ψ, χ2) is arithmetically self-dual.

Proof. The local system G(f, g, a, χ2) is geometrically irreducible. The oddness of f, g, a insures
that its constant field twist by 1/Gauss(ψ, χ2), which is pure of weight zero, has real traces, hence
the asserted autoduality. �

Theorem 2.4. If both f, g are odd polynomials, the geometric determinant of G(f, g, a, χ2) is Lχ2.

Proof. We first explain the idea. For fixed data f, a, the local system G(f, g, a, χ2) makes sense for

any odd polynomial g of degree < a. Such g form an affine space A(a−1)/2, and indeed there is a
local system on A(a−1)/2 ×Gm, call it Guniv(f, a, χ), whose trace function at a point (g, t) is

(g, t) 7→ −
∑
x

ψ(f(1/x) + g(x) + txa)χ2(x).

Because this local system is self-dual, its determinant, call it Luniv is either trivial or is nontrivial
of order 2. Viewing µ2 as Z/2Z, we view Luniv as an element of H1((A(a−1)/2 × Gm)/Fp,Z/2Z).

Because we are in odd characteristic p, the groups H i(A(a−1)/2/Fp,Z/2Z) = 0 for all i > 0, and

H0(A(a−1)/2/Fp,Z/2Z) = Z/2Z.
By the Kunneth formula [De, Cor. 1.11], the map

pr2 : A(a−1)/2 ×Gm → Gm, (g, t) 7→ t,

induces by pullback an isomorphism

H1(Gm/Fp,Z/2Z) ∼= H1((A(a−1)/2 ×Gm)/Fp,Z/2Z).

For any fixed g0 ∈ A(a−1)/2, pullback by the inclusion

inclg0 : Gm ⊂ A(a−1)/2 ×Gm, t 7→ (g0, t)

induces an isomorphism

H1((A(a−1)/2 ×Gm)/Fp,Z/2Z) ∼= H1(Gm/Fp,Z/2Z).

The composition pr2 ◦ inclg0 is the identity map of Gm to itself. Therefore the composition of their

pullbacks, incl?g0 ◦ pr?2 is the identity on H1(Gm/Fp,Z/2Z).
On the one hand, if we view Luniv as the pullback by pr2 of a class L0 on Gm, then for any g0

we have
incl?g0Luniv = L0,

The key point is that this pullback incl?g0Luniv is the determinant of the local system G(f, g0, a, χ2)

on Gm/Fp. What we must show is that L0 is Lχ2 . For this, it suffices to check at the single point
g0 = 0.

The local system G(f, g0 = 0, a, χ2) is the local system denoted G(f, a, χ2) in [KT5]. This local
system has all ∞-slopes A/(A + a) < 1, and hence its entire Ggeom is the Zariski closure of all
conjugates of the image of I(0). So its determinant is Lχ2 if and only if the determinant of its
I(0)-representation is Lχ2 . But its I(0)-representation is the direct sum⊕

ρ:ρa=χ2

Lρ ⊕ (Q`)
A.

Because a is odd, its determinant is Lχ2 . Indeed, if we fix one ath root ρ0 of χ2, then all the ath

roots are ρ0Λ as Λ runs over the characters of order dividing a. So we have∏
ρ:ρa=χ2

ρ = ρa0 ×
∏

Λ∈Char(a)

Λ = χ2 × 1 = χ2.
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�

Theorem 2.5. If f is an odd polynomial, and a > 2 deg(g), the geometric determinant of G(f, g, a, χ2)
is Lχ2.

Proof. By [KT6, Corollary 2.2], the geometric determinant is either trivial or is Lχ2 . Using the
argument above, it first suffices to check for the specialization g = 0, and then to observe that,
again by the previous argument, this specialization has the asserted determinant Lχ2 . �

We will now consider the following local systems on G3
m with trace functions

(r, s, t) 7→ −
∑
x∈L×

ψL(r/x+ sxB + txa)χ2,L(x),

where

(2.5.1) (B, a, p) = (3, 7, 5), (5, 7, 3), or (1, 7, 3),

or

(2.5.2) (B, a, p) = (1, 5, 3) or (2, 5, 3).

We will deviate from our previous notation, and denote this system as Gr,s as we always let t vary.
In particular, Gr0,s0 is the pullback of Gr,s by r = r0 and s = s0 for any (r0, s0) ∈ G2

m.
Recall the conditions (S+) and (S−) defined in [KT3, §1.1]. A basic fact about Gr,s is the

following

Proposition 2.6. For the three choices of (B, a, p) as in (2.5.1), and for any (r0, s0) ∈ G2
m, Gr0,s0,

and hence Gr,s, satisfies (S+).

Proof. We already proved in Lemma 2.1 that the underlying representation V is I(∞)-irreducible.
Next, primitivity of Gr0,s0 is proved for (B, a, p) = (3, 7, 5), (5, 7, 3) in [KT6, Theorem 2.10(d)], and
for (B, a, p) = (1, 7, 3) in [KT6, Theorem 2.11]. An application of [KT6, Proposition 2.8] shows
that V is tensor indecomposable over I(0). Finally, for the first two choices of (B, a, p), V is not
tensor induced by [KT6, Proposition 2.9(d)]. The same conclusion holds for the third choice by
[KT6, Lemma 3.9], for in this case, D = 8 = 23, so the only possible n is 3, which is not prime to
p = 3. �

Proposition 2.7. For the two choices of (B, a, p) as in (2.5.2), and for any (r0, s0) ∈ G2
m, Gr0,s0,

and hence Gr,s, satisfies (S+).

Proof. This is [KT6, Corollary 2.13]. �

A natural question is what we can say about these local systems after specializing s = 0.

Proposition 2.8. In any odd characteristic p, for any integer a ≥ 4 with p - a, and any multi-
plicative character Λ of order N prime to p, the local system on (Gm × Gm)/Fp(µaN ) whose trace
function is

(r, t) 7→ −
∑
x6=0

ψ(r/x+ txa)Λ(x)

satisfies (S+). In fact, its specialization r = 1 satisfies (S+) and has Ggeom containing a scalar
multiple of a complex reflection if Λ 6= 1.

Proof. Choose an ath root χ of Λ, i.e., a character χ of Fp(µaN )× with χa = Λ. [Concretely, in

terms of a generator ω of Fp(µaN )×, Λ(ω) has order N , and the choice of χ is the choice of an ath
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root of Λ(ω) in µaN . One then takes χ(ω) to be this choice of ath root.] We first prove that the
r = 1 specialization, namely the local system on Gm/Fp(µaN ) whose trace function is

t 7→ −
∑
x6=0

ψ(1/x+ txa)χa(x)

is geometrically isomorphic to the Kloosterman sheaf Kl(1, {χρ}ρ∈Char(a)). Indeed, this r = 1, s = 0
local system is geometrically calculated in terms of hypergeometric sheaves H as being

FTψ([a]?(Lψ(1/x)⊗ Lχa(x))) = FTψ(Lχ ⊗ [a]?H(∅;1))

∼= FTψ(Lχ ⊗H(∅;Char(a))

= FTψ(H(∅;χChar(a))) = Klψ(1, χChar(a)),

cf. [Ka3, 8.1.12 & 8.4.2]. Now, if Λ has order e > 1 then the ath power of a generator g0 of I(0)
of this Kloosterman sheaf has spectrum {1, ζe, . . . , ζe} and thus it is the ζe-multiple of a complex
reflection.

We next check that this Kloosterman sheaf is primitive. It suffices to show it is not Kummer
induced, by Pink’s result [Ka1, Lemmas 11, 12]. We argue by contradiction. Suppose it is Kummer
induced of some degree d ≥ 2, d|(a+ 1). Choose a prime divisor r of d. Then it is Kummer induced
of degree r, and its characters are cosets of Char(r). If r = a + 1, then its characters are precisely
Char(r). But if we take two distinct elements of χChar(a), their ratio is a nontrivial element of
Char(a), so has order dividing a, so cannot be an element of Char(r) (simply because gcd(r, a) = 1).
If r < a+1, then r ≤ (a+1)/2, hence outside the Char(r) coset of 1, there are two distinct elements
of χChar(a), and their ratio again gives a contradiction.

Because this Kloosterman sheaf is primitive, it has (S+) by [KT2, 1.7]. Once this r = 1 pullback
local system has (S+), then so does the (r, t) local system. �

Corollary 2.9. For any odd prime p, any integer a ≥ 4 with p - a, any integer 1 ≤ B < a, and
any multiplicative character Λ of order N prime to p, the local system on (Gm×A1×Gm)/Fp(µaN )
whose trace function is

(r, s, t) 7→ −
∑
x6=0

ψ(r/x+ sxB + txa)Λ(x)

satisfies (S+).

Proof. Indeed, its s = 0 pullback satisfies (S+). �

Next we study M2,2 of G(1/x, xB, a, χ) for B = 1, 2.

Lemma 2.10. For any prime p, any integer a ≥ 2 with p - a, and any multiplicative character
χ of order prime to p, consider the local system G(1/x, x, a, χ) on G3

m/F(values of χ) whose trace
function at points of Gm(L)3, for L/F(values of χ) a finite extension, is

(r, s, t) 7→ −1√
#L

∑
x∈L×

ψL(r/x+ sx+ txa)χL(x).

Then M2,2 ≤ 3, with equality precisely when a is odd and χ is either 1 or χ2, this second case
allowed only for p odd.

Proof. Since M2,2 only decreases as Ggeom grows, it suffices to prove M2,2 ≤ 3 when we freeze t = 1,
and consider the two parameter local system on Gm ×Gm whose trace function is

(r, s) 7→ −1√
#L

∑
x∈L×

ψL(r/x+ sx+ xa)χL(x).
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By [KT4, 2.1], we may calculate its M2,2 as the limsup, over finite extensions Fq/F(values of χ) of

1

q2(q − 1)2

∑
r,s∈F×q

∑
x,y,z,w∈F×q

ψFq(r(
1

x
+

1

y
− 1

z
− 1

w
) + s(x+y− z−w) +xa+ya− za−wa)χ(xy)χ(zw).

We first show that this limsup does not change if, instead of summing over (r, s) ∈ (F×q )2, we

sum over (r, s) ∈ (Fq)2. An individual summand with r = 0, any s, is∑
x,y,z,w∈F×q

ψFq(s(x+ y − z − w) + xa + ya − za − wa)χ(xy)χ(zw) = |
∑
x∈F×q

ψFq(sx+ xa)χ(x))|4,

which is ≤ (a
√
q)4, hence is O(q2). Similarly, an individual summand with s = 0, any r, is ≤ (a

√
q)4,

hence is O(q2). The total number of (r, s) ∈ (Fq)2 with rs = 0 is 2q − 1, so we are only changing
the inner sum by O(q3), while we are dividing by 1/q2(q − 1)2.

We now examine
1

q2(q − 1)2

∑
r,s∈Fq

∑
x,y,z,w∈F×q

ψFq(r(
1

x
+

1

y
− 1

z
− 1

w
) + s(x+ y− z−w) +xa + ya− za−wa)χ(xy)χ(zw)

=
1

q2(q − 1)4

∑
x,y,z,w∈F×q

ψFq(xa + ya − za − wa)χ(xy)χ(zw)×

∑
r,s∈Fq

∑
x,y,z,w∈F×q

ψFq(r(
1

x
+

1

y
− 1

z
− 1

w
) + s(x+ y − z − w))

=
1

(q − 1)2

∑
x,y,z,w∈F×q , 1/x+1/y=1/z+1/w, x+y=z+w

ψFq(xa + ya − za − wa)χ(xy)χ(zw).

We now examine the two equations in x, y, z, w with xyzw 6= 0 given by

1/x+ 1/y = 1/z + 1/w, x+ y = z + w,

which we rewrite as
(x+ y)/xy = (z + w)/zw, x+ y = z + w.

If x + y = z + w = 0, we have the plane y = −x, z = −w. If x + y = z + w 6= 0, then we divide
by them and get 1/xy = 1/zw. Thus we have x+ y = z + w and xy = zw, and hence the two sets
{x, y} and {z, w} coincide. So have the two planes x = z, y = w and x = w, y = z. On each of
these last two planes, the function xa + ya − za − wa vanishes, so ψ(xa + ya − za − wa) = 1, and
χ(xy)χ(zw) = 1.

On the first plane y = −x, z = −w, the sum xa + ya − za −wa vanishes precisely when a is odd,
and χ(xy)χ(zw) = χ(x2/w2).

Thus if both a is odd and χ2 = 1, then the first plane also contributes 1 to M2,2. In general its
contribution is

1

(q − 1)2

∑
x,w∈F×q

ψFq(xa + (−x)a − wa − (−w)a)χ(−x2)χ(−w2) =

1

(q − 1)2

∣∣∣∑
x∈F×q

ψFq(xa + (−x)a)χ(−x2)
∣∣∣2,

which is O(1/q) unless both a is odd and χ2 = 1.
Now we return to G(1/x, x, a, χ) on G3

m. We have proven that for its t = 1 specialization, we have
M2,2 ≤ 3, with equality precisely when both a is odd and χ2 = 1. When we do not have equality,
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we have M2,2 = 2. As M2,2 can only decrease for a bigger group, we certainly have M2,2 ≤ 2, and
hence M2,2 = 2, for G(1, x, x, a, χ) unless both a is add and χ2 = 1. In the case when a is odd and
χ2 = 1, then G(1, x, x, a, χ) is self dual, hence has M2,2 ≥ 3, and thus has the asserted M2,2 = 3. �

Lemma 2.11. For any odd prime p, any integer a ≥ 3 with p - a, and any multiplicative character
χ of order prime to p, consider the local system G(1/x, x2, a, χ) on G3

m/Fp(values of χ) whose trace
function at points of Gm(L)3, for L/Fp(values of χ) a finite extension, is

(r, s, t) 7→ −1√
#L

∑
x∈L×

ψL(r/x+ sx2 + txa)χL(x).

Then M2,2 = 2.

Proof. By [KT4, 2.1], we may calculate the M2,2 as the limsup, over finite extensions Fq/F(values of χ)
of

1

q2(q − 1)3

∑
r,s,t∈F×q

∑
x,y,z,w∈F×q

ψFq(r(
1

x
+

1

y
−1

z
− 1

w
)+s(x2+y2−z2−w2)+t(xa+ya−za−wa))χ(xy)χ(zw).

We will refer to∑
r,s,t∈F×q

∑
x,y,z,w∈F×q

ψFq(r(
1

x
+

1

y
− 1

z
− 1

w
) + s(x2 + y2 − z2 −w2) + t(xa + ya − za −wa))χ(xy)χ(zw)

as “a summand”.
We first show that this limsup does not change if, instead of summing over (r, s, t) ∈ (F×q )3, we

sum over (r, s, t) ∈ (Fq)3. The summand with (r, s, t) = (0, 0, 0) is∑
x,y,z,w∈F×q

χ(xy)χ(zw) = |
∑
x∈F×q

χ(x))|4,

which vanishes if χ 6= 1, and is (q − 1)4 if χ = 1.
An individual summand with r = 0, any (s, t) 6= (0, 0), is∑

x,y,z,w∈F×q

ψFq(s(x2 +y2−z2−w2)+ t(xa+ya−za−wa))χ(xy)χ(zw) = |
∑
x∈F×q

ψFq(sx2 + txa)χ(x))|4,

which is ≤ ((a + 1)
√
q)4, hence is O(q2). Similarly, an individual summand with s = 0, any

(r, t) 6= (0, 0), is ≤ ((a + 1)
√
q)4, hence is O(q2). Finally, an individual summand with t = 0, any

(r, s) 6= (0, 0), is ≤ (3
√
q)4, hence is O(q2). The total number of (r, s, t) ∈ (Fq)3 with (r, s, t) 6=

(0, 0, 0) but rst = 0 is O(q2), so those terms are only changing the inner sum by O(q4), and the
(0, 0, 0) term is either 0 or (q − 1)4, while we are dividing by q2(q − 1)3.

We now examine

1

q2(q − 1)3

∑
r,s,t∈Fq , x,y,z,w∈F×q

ψFq(r(
1

x
+

1

y
−1

z
− 1

w
)+s(x2+y2−z2−w2)+t(xa+ya−za−wa))χ(xy)χ(zw)
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=
1

q2(q − 1)3

∑
x,y,z,w∈F×q

χ(xy)χ(zw)
∑
t∈Fq

ψFq(t(xa + ya − za − wa))×

∑
r∈Fq

ψFq(r(
1

x
+

1

y
− 1

z
− 1

w
))
∑
s∈Fq

ψFq(s(x2 + y2 − z2 − w2))

=
q

(q − 1)3

∑
x,y,z,w∈F×q , (x,y,z,w)∈Σ

χ(xy)χ(zw),

where the locus Σ is defined by the equations

1/x+ 1/y = 1/z + 1/w, x2 + y2 = z2 + w2, xa + ya = za + wa.

We first look at the intersection of Σ with x+ y = z + w. If x+ y = z + w = 0, then as p 6= 2 the
second equation x2+y2 = z2+w2 gives the the two lines y = −x, z = −w = ±x. If x+y = z+w 6= 0,
then we divide the first equation by them and get 1/xy = 1/zw. Thus we have x+ y = z + w and
xy = zw, and hence the two sets {x, y} and {z, w} coincide. So we have the two planes x = z, y = w
and x = w, y = z. On each of these two planes, xa + ya − za −wa = 0 and χ(xy)χ(zw) = 1. So the
contribution of this intersection to the limsup is 2 + O(1/q).

It remains to show that the number of points (x, y, z, w) ∈ Σ(F×q ) with x + y 6= z + w is O(q).
Note that if x+ y = 0 then 1/z + 1/w = 1/x+ 1/y = 0 and hence z + w = 0 = x+ y. So we may
assume x+ y 6= 0, z + w 6= 0, and introduce new variables

u = x+ y, v = z + w, t = xy/(x+ y),

so that

s := xy = tu, zw = tv, but u 6= v.

Now

u2 − 2tu = x2 + y2 = z2 + w2 = v2 − 2tv,

and so

u+ v = 2t, i.e. v = 2t− u.
An easy induction on odd a ≥ 3 shows that there are some integers c0 = 1, c1, . . . , c(a−1)/2 such that

xa + ya =
∑(a−1)/2

i=0 ciu
n−2isi; in fact, ci = n

n−i
(
n−i
i

)
. It follows that xa + ya =

∑(a−1)/2
i=0 ciu

n−iti,
and so the condition xa + ya − za − wa=0 is equivalent to the vanishing of

(a−1)/2∑
i=0

ciu
n−iti −

(a−1)/2∑
i=0

ci(2t− u)n−iti,

a homogeneous polynomial in u, t of degree a with the coefficient for ua being 1 − (−1)a = 2. As
p 6= 2, given any t ∈ Fq there are at most a values for u that satisfies this last condition. For each
(u, t), there are at most two pairs (x, y) with x+ y = u, xy = tu, and there are at most two pairs
(z, w) with z+w = 2t−u, xy = t(2t−u). It follows that the number of points (x, y, z, w) ∈ Σ(F×q )
with x+ y 6= z + w is at most 4aq, as stated. �

3. Preliminaries on specializations of Ggeom

We first quote verbatim from [KT4, §11 and Theorem 11.1], cf. [Ka3, 8.17, 8.18].
“The situation we consider is the following. We are given a normal connected affine noetherian

scheme S = Spec (A) with A a noetherian normal integral domain with fraction field K, and a chosen
algebraic closure K of K. Thus Spec (K) is a generic point η of S, and Spec (K) is a geometric
point η of S. We are given X/S a smooth S-scheme of relative dimension D, with geometrically
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connected fibres, and φ ∈ X(S) a section of X/S. Then φ(η) is a geometric point of X. We are
given a finite group G and a surjective homomorphism

π1(X,φ(η))� G.

For each geometric point s of S, φ(s) is a geometric point of Xs (and also of X). We have a
continuous group homomorphism

π1(Xs, φ(s))→ π1(X,φ(s)) ∼= π1(X,φ(η)).

This last isomorphism is only canonical up to inner automorphism of the target group π1(X,φ(η)).
By composition, we get a group homomorphism

π1(Xs, φ(s))→ G

which is well defined up to inner automorphism of G. This applies in particular with s taken to be
η. We are interested in how the image of π1(Xs, φ(s)) in G compares with the image of π1(Xη, φ(η))
in G: when are these two subgroups of G conjugate in G? Let us denote these image groups Gs
and Gη.

Theorem 3.1. [KT4, 11.1]There exists a dense open set U ⊂ S such that for any geometric point
s ∈ U , Gs and Gη are conjugate subgroups of G. Moreover, for any geometric point s ∈ S, Gs is
conjugate to a subgroup of Gη.”

Because G is a finite group, this theorem has the following more precise corollary.

Corollary 3.2. The set of points s ∈ S at which Gs is conjugate to Gη in G is open in S.

Proof. The group Gη is finite (because it is a subgroup of the finite group G). Therefore it has only
finitely many subgroups, say Gη = H0, H1, . . . Hr. The proof of [Ka3, 8.17, 8.18] shows that each
of the sets

Zi := {s ∈ S | Gs is conjugate to Hi}
and each of the sets

Wi := {s ∈ S | Gs is conjugate to a subgroup of Hi}
is constructible (a finite union of sets of the form (open set)∩(closed set)). But each set Wi is stable
by specialization, hence is closed, cf. [Hart, Ch. II, 3.18]. Therefore ∪i≥1Wi is closed. Then its
open complement is precisely the set Z0. �

4. Finiteness theorems

We denote by q the cardinality of k, and by kr the unique extension of k of degree r in Fq.
V : (Q/Z)prime to p → [0, 1) will denote Kubert’s V function for the prime p (cf. [KRLT1]).

Theorem 4.1. Let d1 > d2 > . . . > dn > 0 be prime to p integers, d = (d1, . . . , dn) and F the local
system on Gn+1

m,k whose trace function is given by

F (L; s, t1, . . . , tn) = − 1√
|L|

∑
x∈L×

ψL(s/x+ t1x
d1 + · · ·+ tnx

dn)χ2,L(x).

Then F has finite (geometric and arithmetic) monodromy group if and only if

V

(
d1x1 + · · ·+ dnxn +

1

2

)
+ V (x1) + · · ·+ V (xn) ≥ 1

2

for every (x1, . . . , xn) ∈ (Q/Z)nprime to p.
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Proof. By [KRLT1, Proposition 2.1], we need to show that F (L; s, t1, . . . , tn) is an algebraic integer
or, equivalently, that

ordqr

∑
x∈k×r

ψkr(s/x+ t1x
d1 + · · ·+ tnx

dn)χ2,kr(x)

 ≥ 1

2

for every r ≥ 1 and (s, t1, . . . , tn) ∈ (k×r )n+1. Taking Mellin transform on Gn+1
m , this is equivalent

to ∑
s,t1,...,tn∈k×r

η(s)ξ1(t1) · · · ξn(tn)
∑
x∈k×r

ψkr(s/x+ t1x
d1 + · · ·+ tnx

dn)χ2,kr(x) =

=
∑
x∈k×r

χ2,kr(x)

∑
s∈k×r

ψkr(s/x)η(s)

 ∑
t1∈k×r

ψkr(t1x
d1)ξ1(t1))

 · · ·
 ∑
tn∈k×r

ψkr(tnx
dn)ξn(tn)

 =

=
∑
x∈k×r

χ2,kr(x)η(x)Gr(η)ξ̄d11 (x)Gr(ξ1) · · · ξ̄dnn (x)Gr(ξn) =

= Gr(η)Gr(ξ1) · · ·Gr(ξn)
∑
x∈k×r

(χ2,krηξ̄
d1
1 · · · ξ̄

dn
n )(x) =

=

{
0 if χ2,krηξ̄

d1
1 · · · ξ̄dnn 6= 1

(qr − 1)Gr(η)Gr(ξ1) · · ·Gr(ξn) if χ2,krηξ̄
d1
1 · · · ξ̄dnn = 1

has ordqr ≥ 1
2 for every η, ξ1, . . . , ξn ∈ k̂×r , where Gr(χ) denotes the Gauss sum associated to the

multiplicative character χ on kr. This reduces to

ordqr(Gr(χ2,krξ
d1
1 · · · ξ

dn
n )Gr(ξ1) · · ·Gr(ξn)) ≥ 1

2

for every ξ1, . . . , ξn ∈ k̂×r which, by Stickelberger, is equivalent to the given condition. �

If d1x1 + · · ·+dnxn+ 1
2 6= 0, using that V (y) +V (−y) = 1 for y 6= 0, we can rewrite the condition

as

V

(
d1x1 + · · ·+ dnxn +

1

2

)
≤ V (−x1) + · · ·+ V (−xn) +

1

2
,

which trivially holds for d1x1 + · · ·+ dnxn + 1
2 = 0. So we have

Corollary 4.2. The local system F has finite monodromy if and only if the following two conditions
hold:

(i) V
(
d1x1 + · · ·+ dnxn + 1

2

)
≤ V (−x1)+· · ·+V (−xn)+1

2 for every (x1, . . . , xn) ∈ (Q/Z)nprime to p.

(ii) V (x1) + V (x2) + · · ·+ V (xn) ≥ 1
2 for every (x1, . . . , xn) ∈ (Q/Z)nprime to p with

∑n
i=1 dixi = 1

2 .

Note that the second condition is the criterion for the local system on Gn
m with trace function

F (L; t1, . . . , tn) = − 1√
|L|

∑
x∈L×

ψL(t1x
d1 + · · ·+ tnx

dn)χ2,L(x)

to have finite monodromy. In terms of the sum-of-digits function [−]p,r,− defined in [KRL, Appen-
dix], the first condition becomes[

d1x1 + · · ·+ dnxn +
pr − 1

2

]
p,r,−

≤ [pr − 1− x1]p,r,− + · · ·+ [pr − 1− xn]p,r,− +
r(p− 1)

2
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for every r ≥ 1 and every 0 < x1, . . . , xn < pr such that pr−1 does not divide d1x1+· · ·+dnxn+ pr−1
2 .

An argument similar to [KRLT1, Theorem 2.12] then shows

Proposition 4.3. Suppose that there exists some real A ≥ 0 such that[
d1x1 + · · ·+ dnxn +

pr − 1

2

]
p

≤ [pr − 1− x1]p + · · ·+ [pr − 1− xn]p +
r(p− 1)

2
+A

for every r ≥ 1 and every 0 ≤ x1, . . . , xn ≤ pr − 1, where [x]p denotes the sum of the p-adic digits
of x. Then condition (i) in Corollary 4.2 holds.

For r ≥ 1 and an n-tuple (x1, . . . , xn) with 0 ≤ xi ≤ pr − 1, let

C(r;x1, . . . , xn) =

[
n∑
i=1

dixi +
pr − 1

2

]
p

−
n∑
i=1

[pr − 1− xi]p −
r(p− 1)

2
.

For s ≥ 1 we say that the n-tuple (z1, . . . , zn) with 0 ≤ z1, . . . , zn ≤ ps − 1 is s-good if one of these
conditions hold:

a) C(s; z1, . . . , zn) ≤ 0.

b) There exists an s′ < s and an n-tuple (z′1, . . . , z
′
n) with 0 ≤ z′i ≤ ps

′ − 1 such that
C(s′; z′1, . . . , z

′
n) ≥ C(s; z1, . . . , zn) and for every j > 0 the (s + j)-th digit in the p-adic

expansion of
∑n

i=1 dizi + ps−1
2 is greater than or equal to the (s′ + j)-th digit in the p-adic

expansion of
∑n

i=1 diz
′
i + ps

′−1
2 (counting the digits from right to left).

We say that the n tuple (x1, . . . , xn) with 0 ≤ x1, . . . , xn ≤ pr − 1 has good termination if, for some
1 ≤ s < r, the n-tuple (z1, . . . , zn) whose i-th coordinate is the number formed by the last s p-adic
digits of xi (ie. the remainder of the division of xi by ps) is s-good.

Proposition 4.4. Suppose that there exists some r0 ≥ 1 such that all n-tuples (x1, . . . , xn) with
0 ≤ x1, . . . , xn ≤ pr0 − 1 have good termination. Then the hypothesis of Proposition 4.3 holds.

Proof. Let

A = max
1≤r≤r0

max
1≤x1,...,xn≤pr−1

C(r;x1, . . . , xn).

We will prove by induction on r that

C(r;x1, . . . , xn) ≤ A

for every r ≥ 1 and every 0 ≤ x1, . . . , xn ≤ pr − 1. For r ≤ r0 this is obvious by definition of A.
Fix r > r0 and assume that the inequality holds for all smaller r. Let (x1, . . . , xn) be an n-tuple
with 0 ≤ x1, . . . , xn ≤ pr − 1. By hypothesis it has good termination, since every s < r0 is also
< r. Hence there is some 1 ≤ s < r0 such that the n-tuple (z1, . . . , zn) whose i-th coordinate
is the number formed by the last s p-adic digits of xi is s-good. Let yi = p−s(xi − zi), that
is, the number obtained from xi by removing its last s p-adic digits. Then 0 ≤ yi ≤ pr−s − 1,
[pr − 1− xi] = [pr−s − 1− yi] + [ps − 1− zi] and[

n∑
i=1

dixi +
pr − 1

2

]
=

[
n∑
i=1

diyi +
pr−s − 1

2

]
+

[
n∑
i=1

dizi +
ps − 1

2

]
− δ(p− 1)

where δ is the number of digit carries in the (outer) sum

n∑
i=1

dixi +
pr − 1

2
= ps

(
n∑
i=1

diyi +
pr−s − 1

2

)
+

(
n∑
i=1

dizi +
ps − 1

2

)
.
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In particular, C(r;x1, . . . , xn) = C(r− s; y1, . . . , yn) +C(s; z1, . . . , zn)− δ(p− 1). We now have two
options according to the definition of s-good.

(a) C(s; z1, . . . , zn) ≤ 0. Then

C(r;x1, . . . , xn) ≤ C(r − s; y1, . . . , yn) + C(s; z1, . . . , zn) ≤ C(r − s; y1, . . . , yn) ≤ A
by induction.

(b) There exists an s′ < s and an n-tuple (z′1, . . . , z
′
n) with 0 ≤ z′i ≤ ps

′ − 1 such that
C(s′; z′1, . . . , z

′
n) ≥ C(s; z1, . . . , zn) and for every j > 0 the (s + j)-th digit in the p-adic expan-

sion of
∑n

i=1 dizi + ps−1
2 is greater than or equal to the (s′ + j)-th digit in the p-adic expansion of∑n

i=1 diz
′
i + ps

′−1
2 (counting from the right).

Let x′i = ps
′
yi + z′i for i = 1, . . . , n. Then

C(r − s+ s′;x′1, . . . , x
′
n) = C(r − s; y1, . . . , yn) + C(s′; z′1, . . . , z

′
n)− ε(p− 1),

where ε is the number of digit carries in the (outer) sum

n∑
i=1

dix
′
i +

pr−s+s
′ − 1

2
= ps

′

(
n∑
i=1

diyi +
pr−s − 1

2

)
+

(
n∑
i=1

diz
′
i +

ps
′ − 1

2

)
.

The hypothesis on the digits of
∑n

i=1 dizi+
ps−1

2 and
∑n

i=1 diz
′
i+

ps
′−1
2 implies that ε ≤ δ. Therefore

C(r;x1, . . . , xn) = C(r − s; y1, . . . , yn) + C(s; z1, . . . , zn)− δ(p− 1)

≤ C(r − s; y1, . . . , yn) + C(s′; z′1, . . . , z
′
n)− ε(p− 1) = C(r − s+ s′;x′1, . . . , x

′
n)

≤ A
by induction. �

Theorem 4.5. The local system on G3
m,F3

whose trace function is given by

(F3r ; s, t, u) 7→ − 1

3r/2

∑
x∈F×3r

ψF3r
(s/x+ tx+ ux7)χ2,F3r

(x)

has finite monodromy.

Proof. By Corollary 4.2, we need to show

(i) V
(
x1 + 7x2 + 1

2

)
≤ V (−x1) + V (−x2) + 1

2 for every (x1, x2) ∈ (Q/Z)2
prime to 3.

(ii) V (x) + V (−7x+ 1
2) ≥ 1

2 for every x ∈ (Q/Z)prime to 3.

Condition (ii) is the criterion for finite monodromy of the local system with trace function

F (F3r ; t, u) 7→ − 1

3r/2

∑
x∈F×3r

ψF3r
(tx+ ux7)χ2,F3r

(x)

which holds by [KT1, Theorem 4.3] since 7 = 33+1
3+1 . For the first condition, following Proposition

4.4, we check by a computer search that all pairs (x1, x2) with 0 ≤ x1, x2 ≤ 34 − 1 have good
termination.

For each s = 1, 2, 3, the following tables show the list of all pairs (z1, z2) with 0 ≤ z1, z2 ≤ 3s − 1
such that

(a) C(s; z1, z2) > 0 and
(b) do not have good termination (ie. all their last-digits truncations appear in the previous

tables marked with •).
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If the condition (b) for being s-good can be applied to them, we show the possible values of
s′, z′1, z

′
2 on the table, otherwise we mark it with • and move it on to the next s. All values of zi

and z′i are shown as their 3-adic expansion. The columns D and D′ show the result of removing the

last s (respectively s′) digits of z1 + 7z2 + 3s−1
2 (resp. of z′1 + 7z′2 + 3s

′−1
2 ). Each digit of the number

in column D must be greater than or equal to the corresponding digit of the number in column D′.
s = 1

z1 z2 C(s; z1, z2) D

1 2 2 12 •
2 2 4 12 •

s = 2

z1 z2 C(s; z1, z2) D s′ z′1 z′2 C(s′; z′1, z
′
2) D′

21 22 2 21 •
02 22 2 20 •
12 12 2 11 •
12 22 2 21 •
22 02 2 2 •
22 12 2 12 1 1 2 2 12
22 22 4 21 •

s = 3

z1 z2 C(s; z1, z2) D s′ z′1 z′2 C(s′; z′1, z
′
2) D′

121 222 2 21 2 21 22 2 21
221 122 2 12 1 1 2 2 12
221 222 2 22 1 1 2 2 12
102 222 2 21 2 21 22 2 21
202 122 2 12 1 1 2 2 12
202 222 4 21 2 22 22 4 21
112 212 2 20 2 02 22 2 20
212 112 2 11 2 12 12 2 11
212 212 2 21 2 12 22 2 21
112 222 2 11 2 12 12 2 11
212 122 2 12 1 1 2 2 12
212 222 2 22 1 1 2 2 12
022 202 2 12 1 1 2 2 12
222 202 2 20 2 02 22 2 20
222 212 2 21 2 21 22 2 21
022 222 2 21 2 21 22 2 21
122 122 2 12 1 1 2 2 12
122 222 4 21 2 22 22 4 21
222 122 4 12 1 2 2 4 12
222 222 4 22 1 2 2 4 12

In the last table (for s = 3) there are no remaining cases left with •, so this finishes the proof. �

Theorem 4.6. The local system on G3
m,F3

whose trace function is given by

(F3r ; s, t, u) 7→ − 1

3r/2

∑
x∈F×3r

ψF3r
(s/x+ tx5 + ux7)χ2,F3r

(x)



14 NICHOLAS M. KATZ, ANTONIO ROJAS-LEÓN, AND PHAM HUU TIEP

has finite monodromy.

Proof. By Corollary 4.2, we need to show

(ii) V
(
5x1 + 7x2 + 1

2

)
≤ V (−x1) + V (−x2) + 1

2 for every (x1, x2) ∈ (Q/Z)2
prime to 3.

(iiii) V (x1) + V (x2) ≥ 1
2 for every (x1, x2) ∈ (Q/Z)2

prime to 3 such that 5x1 + 7x2 = 1
2 .

Condition (ii) is the criterion for finite monodromy of the local system with trace function

F (F3r ; t, u) 7→ − 1

3r/2

∑
x∈F×3r

ψF3r
(tx5 + ux7)χ2,F3r

(x)

which holds by [KT3, Theorem 10.3.13(vi)]. For the first condition, following Proposition 4.4, we
check by a computer search that all pairs (x1, x2) with 0 ≤ x1, x2 ≤ 36 − 1 have good termination.

For each s = 1, 2, 3, 4, 5, the following tables show the list of all pairs (z1, z2) with 0 ≤ z1, z2 ≤
3s − 1 such that

(a) C(s; z1, z2) > 0 and
(b) do not have good termination (ie. all their last-digits truncations appear in the previous

tables marked with •).
If the condition (b) for being s-good can be applied to them, we show the possible values of

s′, z′1, z
′
2 on the table, otherwise we mark it with • and move it on to the next s. All values of zi and

z′i are shown as their 3-adic expansion. The columns D and D′ show the result of removing the last

s (respectively s′) digits of 5z1 + 7z2 + 3s−1
2 (resp. of 5z′1 + 7z′2 + 3s

′−1
2 ). Each digit of the number

in column D must be greater than or equal to the corresponding digit of the number in column D′.
s = 1

z1 z2 C(s; z1, z2) D

1 2 2 20 •
2 2 4 22 •

s = 2

z1 z2 C(s; z1, z2) D s′ z′1 z′2 C(s′; z′1, z
′
2) D′

11 22 4 22 1 2 2 4 22
21 02 2 12 •
21 12 2 22 1 2 2 4 22
21 22 2 101 •
02 22 2 21 1 1 2 2 20
22 12 4 22 1 2 2 4 22
22 22 2 102 •

s = 3

z1 z2 C(s; z1, z2) D s′ z′1 z′2 C(s′; z′1, z
′
2) D′

121 202 2 22 1 2 2 4 22
221 102 2 21 1 1 2 2 20
021 222 2 22 1 2 2 4 22
121 122 2 21 1 1 2 2 20
221 222 4 102 •
022 222 2 22 1 2 2 4 22
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s = 4

z1 z2 C(s; z1, z2) D s′ z′1 z′2 C(s′; z′1, z
′
2) D′

0221 2222 4 22 1 2 2 4 22
1221 0222 2 12 2 21 02 2 12
1221 1222 2 22 1 2 2 4 22
1221 2222 2 101 2 21 22 2 101
2221 0222 2 21 1 1 2 2 20
2221 1222 2 100 •
2221 2222 2 110 •

s = 5

z1 z2 C(s; z1, z2) D s′ z′1 z′2 C(s′; z′1, z
′
2) D′

02221 11222 2 12 2 21 02 2 12
02221 21222 2 22 1 2 2 4 22
12221 11222 2 21 1 1 2 2 20
12221 21222 2 100 4 2221 1222 2 100
22221 01222 2 20 1 1 2 2 20
22221 21222 4 102 3 221 222 4 102
12221 12222 2 22 1 2 2 4 22
12221 22222 2 101 2 21 22 2 101
22221 02222 2 21 1 1 2 2 20
22221 22222 2 110 4 2221 2222 2 110

In the last table (for s = 5) there are no remaining cases left with •, so this finishes the proof. �

Theorem 4.7. The local system on G3
m,F5

whose trace function is given by

F (F5r ; s, t, u) 7→ − 1

5r/2

∑
x∈F×5r

ψF5r
(s/x+ tx3 + ux7)χ2,F5r

(x)

has finite monodromy.

Proof. By Corollary 4.2, we need to show

(i) V
(
3x1 + 7x2 + 1

2

)
≤ V (−x1) + V (−x2) + 1

2 for every (x1, x2) ∈ (Q/Z)2
prime to 5.

(ii) V (x1) + V (x2) ≥ 1
2 for every (x1, x2) ∈ (Q/Z)2

prime to 5 such that 3x1 + 7x2 = 1
2 .

Condition (ii) is the criterion for finite monodromy of the local system with trace function

F (F5r ; t, u) 7→ − 1

5r/2

∑
x∈F×5r

ψF5r
(tx3 + ux7)χ2,F5r

(x)

which holds by [KT3, Theorem 10.3.13(ix)]. For the first condition, following Proposition 4.4, we
check by a computer search that all pairs (x1, x2) with 0 ≤ x1, x2 ≤ 56 − 1 have good termination.

For each s = 1, 2, 3, 4, 5, the following tables show the list of all pairs (z1, z2) with

0 ≤ z1, z2 ≤ 5s − 1

such that
(a) C(s; z1, z2) > 0 and
(b) do not have good termination (ie. all their last-digits truncations appear in the previous

tables marked with •).
If the condition (b) for being s-good can be applied to them, we show the possible values of

s′, z′1, z
′
2 on the table, otherwise we mark it with • and move it on to the next s. All values of zi and
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z′i are shown as their 5-adic expansion. The columns D and D′ show the result of removing the last

s (respectively s′) digits of 3z1 + 7z2 + 5s−1
2 (resp. of 3z′1 + 7z′2 + 5s

′−1
2 ). Each digit of the number

in column D must be greater than or equal to the corresponding digit of the number in column D′.
s = 1

z1 z2 C(s; z1, z2) D

3 4 4 12 •
4 4 4 13 •

s = 2

z1 z2 C(s; z1, z2) D s′ z′1 z′2 C(s′; z′1, z
′
2) D′

23 44 4 13 1 4 4 4 13
33 34 4 12 1 3 4 4 12
33 44 4 14 1 4 4 4 13
43 34 4 13 1 4 4 4 13
43 44 8 14 •
24 44 4 13 1 4 4 4 13
34 44 4 14 1 4 4 4 13
44 34 4 13 1 4 4 4 13

s = 3

z1 z2 C(s; z1, z2) D s′ z′1 z′2 C(s′; z′1, z
′
2) D′

043 444 4 12 1 3 4 4 12
143 444 4 13 1 4 4 4 13
243 144 4 4 •
243 344 4 12 1 3 4 4 12
243 444 4 14 1 4 4 4 13
343 244 4 11 •
343 344 4 13 1 4 4 4 13
343 444 8 14 2 43 44 8 14
443 044 4 4 •
443 244 4 12 1 3 4 4 12
443 344 8 13 •
443 444 4 20 •
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s = 4

z1 z2 C(s; z1, z2) D s′ z′1 z′2 C(s′; z′1, z
′
2) D′

3243 4144 4 13 1 4 4 4 13
4243 3144 4 12 1 3 4 4 12
4243 4144 4 14 1 4 4 4 13
1343 4244 4 12 1 3 4 4 12
2343 4244 4 13 1 4 4 4 13
3343 1244 4 4 3 443 044 4 4
3343 3244 4 12 1 3 4 4 12
3343 4244 4 14 1 4 4 4 13
4343 2244 4 11 3 343 244 4 11
4343 3244 4 13 1 4 4 4 13
4343 4244 8 14 2 43 44 8 14
3443 4044 4 13 1 4 4 4 13
4443 3044 4 12 1 3 4 4 12
4443 4044 4 14 1 4 4 4 13
0443 2344 4 4 3 443 044 4 4
0443 4344 4 12 1 3 4 4 12
1443 3344 4 11 3 343 244 4 11
1443 4344 4 13 1 4 4 4 13
2443 1344 4 4 3 443 044 4 4
2443 3344 4 12 1 3 4 4 12
2443 4344 8 13 3 443 344 8 13
3443 0344 4 3 •
3443 2344 4 11 3 343 244 4 11
3443 3344 4 13 1 4 4 4 13
3443 4344 8 14 2 43 44 8 14
4443 0344 4 4 3 443 044 4 4
4443 1344 4 10 •
4443 2344 4 12 1 3 4 4 12
4443 3344 8 13 3 443 344 8 13
4443 4344 4 20 3 443 444 4 20
1443 4444 4 13 1 4 4 4 13
2443 3444 4 12 1 3 4 4 12
2443 4444 4 14 1 4 4 4 13
3443 3444 4 13 1 4 4 4 13
3443 4444 8 14 2 43 44 8 14
4443 0444 4 4 3 443 044 4 4
4443 2444 4 12 1 3 4 4 12
4443 3444 4 14 1 4 4 4 13
4443 4444 4 20 3 443 444 4 20
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s = 5

z1 z2 C(s; z1, z2) D s′ z′1 z′2 C(s′; z′1, z
′
2) D′

23443 40344 4 12 1 3 4 4 12
33443 40344 4 13 1 4 4 4 13
43443 10344 4 4 3 443 044 4 4
43443 30344 4 12 1 3 4 4 12
43443 40344 4 14 1 4 4 4 13
14443 21344 4 4 3 443 044 4 4
14443 41344 4 12 1 3 4 4 12
24443 31344 4 11 3 343 244 4 11
24443 41344 4 13 1 4 4 4 13
34443 11344 4 4 3 443 044 4 4
34443 31344 4 12 1 3 4 4 12
34443 41344 8 13 3 443 344 8 13
44443 01344 4 3 4 3443 0344 4 3
44443 21344 4 11 3 343 244 4 11
44443 31344 4 13 1 4 4 4 13
44443 41344 8 14 2 43 44 8 14

In the last table (for s = 5) there are no remaining cases left with •, so this finishes the proof. �

Theorem 4.8. The local system on G3
m,F3

whose trace function is given by

(F3r ; s, t, u) 7→ − 1

3r/2

∑
x∈F×3r

ψF3r
(s/x+ tx+ ux5)χ2,F3r

(x)

has finite monodromy.

Proof. By Corollary 4.2, we need to show

(i) V
(
x1 + 5x2 + 1

2

)
≤ V (−x1) + V (−x2) + 1

2 for every (x1, x2) ∈ (Q/Z)2
prime to 3.

(ii) V (x) + V (−5x+ 1
2) ≥ 1

2 for every x ∈ (Q/Z)prime to 3.

Condition (ii) is the criterion for finite monodromy of the local system with trace function

F (F3r ; t, u) 7→ − 1

3r/2

∑
x∈F×3r

ψF3r
(tx+ ux5)χ2,F3r

(x)

which holds by [KT1, Theorem 4.2] since 5 = 32+1
2 . For the first condition, following Proposition

4.4, we check by a computer search that all pairs (x1, x2) with 0 ≤ x1, x2 ≤ 35 − 1 have good
termination.

For each s = 1, 2, 3, 4, the following tables show the list of all pairs (z1, z2) with 0 ≤ z1, z2 ≤ 3s−1
such that

(a) C(s; z1, z2) > 0 and
(b) do not have good termination (ie. all their last-digits truncations appear in the previous

tables marked with •).
If the condition (b) for being s-good can be applied to them, we show the possible values of

s′, z′1, z
′
2 on the table, otherwise we mark it with • and move it on to the next s. All values of zi

and z′i are shown as their 3-adic expansion. The columns D and D′ show the result of removing the

last s (respectively s′) digits of z1 + 5z2 + 3s−1
2 (resp. of z′1 + 5z′2 + 3s

′−1
2 ). Each digit of the number

in column D must be greater than or equal to the corresponding digit of the number in column D′.
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s = 1

z1 z2 C(s; z1, z2) D

2 1 2 2 •
2 2 2 11 •

s = 2

z1 z2 C(s; z1, z2) D s′ z′1 z′2 C(s′; z′1, z
′
2) D′

12 21 2 11 1 2 2 2 11
22 21 2 12 1 2 2 2 11
12 22 2 12 1 2 2 2 11
22 22 4 12 •

s = 3

z1 z2 C(s; z1, z2) D s′ z′1 z′2 C(s′; z′1, z
′
2) D′

022 222 2 12 1 2 2 2 11
122 222 4 12 2 22 22 4 12
222 022 2 2 1 2 1 2 2
222 122 2 11 1 2 2 2 11
222 222 2 20 •

s = 4

z1 z2 C(s; z1, z2) D s′ z′1 z′2 C(s′; z′1, z
′
2) D′

0222 2222 2 12 1 2 2 2 11
2222 1222 2 11 1 2 2 2 11
2222 2222 2 20 3 222 222 2 20

In the last table (for s = 4) there are no remaining cases left with •, so this finishes the proof. �

Theorem 4.9. The local system on G3
m,F3

whose trace function is given by

(F3r ; s, t, u) 7→ − 1

3r/2

∑
x∈F×3r

ψF3r
(s/x+ tx2 + ux5)χ2,F3r

(x)

has finite monodromy.

Proof. By Corollary 4.2, we need to show

(i) V
(
2x1 + 5x2 + 1

2

)
≤ V (−x1) + V (−x2) + 1

2 for every (x1, x2) ∈ (Q/Z)2
prime to 3.

(ii) V (x1) + V (x2) ≥ 1
2 for every (x1, x2) ∈ (Q/Z)2

prime to 3 such that 2x1 + 5x2 = 1
2 .

Condition (ii) is the criterion for finite monodromy of the local system with trace function

F (F3r ; t, u) 7→ − 1

3r/2

∑
x∈F×3r

ψF3r
(tx2 + ux5)χ2,F3r

(x)

which holds by [KT3, Theorem 10.3.13(i)]. For the first condition, following Proposition 4.4, we
check by a computer search that all pairs (x1, x2) with 0 ≤ x1, x2 ≤ 36 − 1 have good termination.

For each s = 1, 2, 3, 4, 5, the following tables show the list of all pairs (z1, z2) with 0 ≤ z1, z2 ≤
3s − 1 such that

(a) C(s; z1, z2) > 0 and
(b) do not have good termination (ie. all their last-digits truncations appear in the previous

tables marked with •).
If the condition (b) for being s-good can be applied to them, we show the possible values of

s′, z′1, z
′
2 on the table, otherwise we mark it with • and move it on to the next s. All values of zi and
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z′i are shown as their 3-adic expansion. The columns D and D′ show the result of removing the last

s (respectively s′) digits of 2z1 + 5z2 + 3s−1
2 (resp. of 2z′1 + 5z′2 + 3s

′−1
2 ). Each digit of the number

in column D must be greater than or equal to the corresponding digit of the number in column D′.
s = 1

z1 z2 C(s; z1, z2) D

1 1 1 2 •
1 2 1 11 •
2 2 2 12 •

s = 2

z1 z2 C(s; z1, z2) D s′ z′1 z′2 C(s′; z′1, z
′
2) D′

21 21 3 12 •
11 22 2 12 1 2 2 2 12
21 12 1 11 1 1 2 1 11
21 22 1 20 •
22 22 2 20 •

s = 3

z1 z2 C(s; z1, z2) D s′ z′1 z′2 C(s′; z′1, z
′
2) D′

021 221 1 12 1 2 2 2 12
221 121 1 12 1 2 2 2 12
221 221 3 20 •
021 222 1 12 1 2 2 2 12
221 122 1 12 1 2 2 2 12
221 222 1 21 1 1 2 1 11
022 222 2 12 1 2 2 2 12
122 122 1 11 1 1 2 1 11
122 222 1 20 2 21 22 1 20
222 122 2 12 1 2 2 2 12
222 222 2 21 2 22 22 2 20

s = 4

z1 z2 C(s; z1, z2) D s′ z′1 z′2 C(s′; z′1, z
′
2) D′

0221 2221 3 12 2 21 21 3 12
1221 1221 2 11 •
1221 2221 2 20 3 221 221 3 20
2221 0221 1 10 •
2221 1221 3 12 2 21 21 3 12
2221 2221 3 21 3 221 221 3 20
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s = 5

z1 z2 C(s; z1, z2) D s′ z′1 z′2 C(s′; z′1, z
′
2) D′

11221 21221 3 12 2 21 21 3 12
21221 11221 2 11 4 1221 1221 2 11
21221 21221 2 20 3 221 221 3 20
02221 20221 1 11 4 2221 0221 1 10
12221 20221 2 12 1 2 2 2 12
22221 00221 1 2 1 1 1 1 2
22221 10221 1 11 4 2221 0221 1 10
22221 20221 1 20 3 221 221 3 20

In the last table (for s = 5) there are no remaining cases left with •, so this finishes the proof. �

5. Ggeom for local systems of rank 8

In this section, we will determine Ggeom,r,s, the geometric monodromy group of Gr,s, andGgeom,r0,s0 ,
the geometric monodromy group of Gr0,s0 for any (r0, s0) ∈ G2

m, of rank 8. With (B, a, p) as in
(2.5.1), it follows from Theorems 4.5, 4.7, and 4.6 that Ggeom,r,s is finite. [Those results show that
the restriction of Gr,s to the open dense subset G3

m of G1
m × A1 ×Gm has finite Ggeom. In general,

for a local system F on some smooth, geometrically connected variety X, and U ⊂ X a dense open
set, π1(U) maps onto π1(X), so F on X and F|U on U have the same Ggeom (indeed have the same
image of π1).]

Theorem 5.1. Let (B, a, p) = (3, 7, 5). Then both Gr,s, and Gr0,s0 for any (r0, s0) ∈ G2
m, have

Ggeom = W (E8), the Weyl group of type E8.

Proof. By Theorem 4.7, G := Ggeom,r,s is a finite subgroup of GL8(C), whence the same holds for
its subgroup H := Ggeom,r0,s0 . Next, H satisfies (S+) by Proposition 2.6, whence the same holds
for G.

Let ϕ denote the G-character afforded by the underlying representation. By Lemma 2.3, ϕ takes
real values for any specializations of (r, s), and hence ϕ is real-valued. This implies that

(5.1.1) Z(H) ≤ Z(G) ≤ C2.

Next, by Lemma 2.2 the image of P (∞) in H is isomorphic to the additive group of F5(µ8) = F52 ,
which is elementary abelian of order 52, whence (5.1.1) implies that

(5.1.2) 52 divides |H/Z(H)|.
Now we can apply [KT2, Lemma 1.1] to both H and G. If either of them is an extraspecial

normalizer, then there is some ε = ± such that

H ≤ 21+6
ε ·Oε

6(2),

which violates (5.1.2). So both H and G are almost quasisimple; in particular, L := H(∞) is a
quasisimple group with

S := L/Z(L)

being the unique non-abelian composition factor of H. The condition (S+) implies that ϕ|L is
irreducible, and so CH(L) = Z(H) by Schur’s lemma. It follows that

H/Z(H) ↪→ Aut(L),

and so 52||Aut(L)| by (5.1.2). Now we can inspect Table 2 in [HM] to see that 2 · Ω+
8 (2) is the

unique possibility for L. Note that ϕ|L is of type +, so

2 · Ω+
8 (2) = LCH ≤ NO8(C)(L) = W (E8) = L · 2.
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Also note from Theorem 2.4 that Gr0,s0 has geometric determinant χ2, which shows that H cannot
be perfect. Hence H = W (E8).

The preceding arguments can also be repeated to show that G ∼= W (E8). As H ≤ G, we conclude
that G = H. �

Theorem 5.2. Let (B, a, p) = (5, 7, 3). Then Gr,s has Ggeom = W (E8), the Weyl group of type
E8. Furthermore, there is a dense open set U ⊆ G2

m that contains (1, 1), such that Gr0,s0 has Ggeom

equal to W (E8) when (r0, s0) ∈ U , and to S9 when (r0, s0) /∈ U .

Proof. By Theorem 4.6, G := Ggeom,r,s is a finite subgroup of GL8(C), whence the same holds for
its subgroup H := Ggeom,r0,s0 . Next, H satisfies (S+) by Proposition 2.6, whence the same holds
for G.

(a) Let ϕ denote the G-character afforded by the underlying representation V . By Lemma 2.3,
ϕ takes real values for any specializations of (r, s), and hence ϕ is real-valued. This implies that

(5.2.1) Z(H) ≤ Z(G) ≤ C2.

Also note from Theorem 2.4 that Gr0,s0 has geometric determinant χ2, which shows that ϕ|H cannot
be of symplectic type, and

(5.2.2) H ≤ O(V ) but H 6≤ SO(V ).

Next, the wild part of the I(0)-representation V has rank 2 and slopes 5/2, so by [Ka2, 1.14] it
is the Kummer induction [2]?L of some L with Swan = 5, and the P (0)-representation is the direct
sum L ⊕ [x 7→ −x]?L. Moreover, these two pieces are permuted by any element g0 ∈ I(0) which
is a generator of I(0) modulo P (0). Thus g0 acts on V with spectrum (α,−α, 1, 1, . . . , 1) for some
α ∈ C×. Since the image Q of P (0) is a 3-group, it is contained in SO(V ). Now, if the image of
g0 is contained in SO(V ), then so is the image J of I(0). By [KT2, 4.2], the fact that all ∞-slopes
are < 1 implies that H is the normal closure of J , so we get H ≤ SO(V ), contrary to (5.2.2). Thus
−α2 = −1, i.e. α = ±1 and g0 acts on V as a reflection.

The version of Mitchell’s theorem given in the proof of [KT3, Theorem 4.2.3] now shows that H =
Z(H)H0, where H0 = W (E8), or H0 is S9 acting in the deleted natural permutation representation.
In the former case, (5.2.1) implies that

H = W (E8).

Suppose we are in the latter case. First we consider the case Z(H) = C2. Then note that

L := H(∞) ∼= A9 and H/L ∼= C2
2 . In particular, Q ≤ L, and J is contained in 〈L, g0〉, a subgroup

of index 2, whence normal, in H. Hence the normal closure of J in H is contained in 〈L, g0〉, and
so cannot be equal to H, a contradiction. We have shown that, in the latter case, H = S9 in its
deleted natural permutation representation.

Now we apply the above consideration to (r0, s0) = (1, 1), and assume that H = S9. We consider
the weight zero twist of G by 1/Gauss(ψ, χ2), which is orthogonally self-dual with integer Frobenius
traces. Let us denote by Harith its arithmetic monodromy group. Then Harith normalizes H, and
hence we have H ≤ Harith ≤ NO(V )(H) = C2 ×H. In either case, over any even degree extension
k/F3, we have Harith,k = H = S9. So over any such k, all Frobenius traces lie in [−1, 8]. But a
Magma calculation shows that over F34 , both −3 and −2 (as well as 2 and 3) occur as Frobenius
traces. That H = W (E8) at (r0, s0) = (1, 1).

(b) The preceding arguments can also be repeated to show that either G ∼= W (E8) or G ≤ C2×S9.
Since W (E8) = Ggeom,1,1 ≤ G and |C2 × S9| < |W (E8)|, we conclude that G ∼= W (E8).

By Corollary 3.2, there is a dense open subset U of G2
m containing (1, 1) such that Ggeom,r0,s0

equals W (E8) for (r0, s0) ∈ U and Ggeom,r0,s0 = S9 for (r0, s0) /∈ U . �
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Theorem 5.3. Let (B, a, p) = (1, 7, 3). Then both Gr,s, and Gr0,s0 for any (r0, s0) ∈ G2
m, have

Ggeom = W (E8), the Weyl group of type E8.

Proof. (a) By Theorem 4.5, G := Ggeom,r,s is a finite subgroup of GL8(C), whence the same holds
for its subgroup H := Ggeom,r0,s0 . Let ϕ denote the G-character afforded by the underlying rep-
resentation V . By Lemma 2.3, ϕ takes real values for any specializations of (r, s), and hence ϕ is
real-valued. This implies that

(5.3.1) Z(H) ≤ Z(G) ≤ C2.

Also note from Theorem 2.4 that Gr0,s0 has geometric determinant χ2, which shows that ϕ|H cannot
be of symplectic type, and

(5.3.2) H ≤ G ≤ O(V ) but G,H 6≤ SO(V ).

Next, the wild part of the I(0)-representation V has rank 6, and so the image Q of P (0) is
non-abelian, and hence is a 3-group of order at least 33. It follows that 33 divides |H| and |G|. On
the other hand, G has M2,2 = 3 by Lemma 2.10. It follows from [GT, Theorem 1.5] and (5.3.2)
that either

E = 21+6
+ CG ≤ NO(V )(E) = E ·O+

6 (2),

or G = 2 · A9, or 2 · Ω+
8 (2) ≤ G ≤ W (E8). The first possibility is ruled out since 33 divides |G|.

Next, G is not perfect by (5.3.2), ruling out the groups 2 ·A9 and 2 ·Ω+
8 (2). Hence we conclude that

G = W (E8).

(b) It remains to determine H = Ggeom,r0,s0 which is a subgroup of G = W (E8). By Proposition
2.6, H satisfies condition (S+). Hence, by [KT2, Lemma 1.1], one of the following two cases holds.

(b1) H is an extraspecial normalizer, i.e. R contains a normal 2-subgroup R = Z(R)E, with
E = 21+6

ε acting irreducibly on V = C8, ε = ±, and Z(R) = Z(E) or Z(R) = C4. Now (5.3.2)
implies that ε = + and Z(R) = Z(E). Thus R = E = 21+6

+ and

H ≤ NO(V )(E) = E ·O+
6 (2).

This is however impossible since 33 divides |H|.
(b2) H is almost quasisimple, i.e. S CH/Z(H) ≤ Aut(S) for a non-abelian simple group S, and

the quasisimple group L = E(H), with S = L/Z(L), acts irreducibly on V . Furthermore, (5.3.1)
implies that 33 divides |Aut(S)|. Now we analyze the possibilities for (S,L) as listed in [HM].
• S = L = SL2(8). In this case, H/Z(H) ≤ Aut(S) = SL2(8) · 3 contains no element of order 4,

whereas a generator g∞ of I(∞) modulo P (∞) has order 8 in H/Z(H), a contradiction.
• (S,L) = (Sp6(2), 2 · Sp6(2)). Since Aut(S) ∼= S, by (5.3.1) we have H = L. Let J and Q

denote the image of I(∞), respectively of P (∞) in H. Then Q is elementary abelian of order 9 by
Lemma 2.2. As J acts irreducibly on V , JZ(H) transitively permutes the 8 nontrivial irreducible
characters of Q which all occur in V . Identifying Q with QZ(H)/Z(H), we see that the subgroup
JZ(H)/Z(H) of S also permutes the 8 nontrivial irreducible characters of Q transitively. Note that
S = Sp6(2) admits an irreducible complex character θ of degree 7, and certainly θ|Q contains some
irreducible constituent λ 6= 1Q. But then all 8 nontrivial irreducible characters of Q must occur in
θ|Q of degree 7, a contradiction.
• (S,L) = (A9, 2 · A9). Since 2 · S9 does not act on C8, we must have H = L. In particular,

H/Z(H) contains no element of order 8, whereas g∞ has order 8 in H/Z(H), a contradiction.
• S = L = A9. As in the previous case, the fact that g∞ has central order 8 implies that

H/Z(H) ∼= S9. It follows from (5.3.1) that H/L is a group of order 2 or 4, whence the image P
of P (0) in H is contained in L = S. Note that the restriction of the character ϕ to L is just the
character of the deleted permutation module of A9. Now, ϕ|P = 2 · 1P + α+ α for some irreducible
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character α of P of degree 3, using the fact that ϕ is real-valued. It follows that the 3-subgroup P
of A9 acts on {1, 2, . . . , 9} with exactly three orbits. The length of any of these orbits is a power
of 3. So we conclude that each of them has length 3; say they are {1, 2, 3}, {4, 5, 6}, and {7, 8, 9}.
Now, as P fixes each of these three subsets, we see that P ≤ A3

3 and hence abelian, contrary to the
fact that α has degree 3.
• (S,L) = (Ω+

8 (2), 2·Ω+
8 (2)). Here we have Z(H) = Z(L) = Z(G) = C2, and S ≤ H/Z(H) ≤ S ·2.

Again using the fact that Gr0,s0 having nontrivial determinant we see that H > L. Hence we conclude
that |H/Z(H)| = |S · 2| = |G/Z(H)| and thus H = G. �

Remark 5.4. As we mentioned at the beginning of the section, the extension to Gr,s to Gm×A1×Gm

does not change its Ggeom. Now, the specialization G1,0 of Gr,s in both Theorems 5.2 and 5.3 yield
the Kloosterman sheaf Kl(χ2,Char(7)) ⊗ Lχ2 by the proof of Proposition 2.8. In particular, its
geometric monodromy group G1,0 contains minus a reflection. Applying [KT2, Theorem 9.3(b)], we
see that G1,0 = S9, acting on the tensor product of the deleted permutation representation with the
sign representation, i.e. on the non-reflection representation.

6. Ggeom for local systems of rank 6

Theorem 6.1. Let (B, a, p) = (1, 5, 3). Then Gr,s has Ggeom = W (E6) × 2. Moreover, for any
(r0, s0) ∈ G2

m, the geometric monodromy group of Gr0,s0 is W (E6), acting on the non-reflection
representation of degree 6.

Proof. (a) By Theorem 4.8, G := Ggeom,r,s is a finite subgroup of GL6(C), whence the same holds
for its subgroup H := Ggeom,r0,s0 for any (r0, s0) ∈ G2

m. Let ϕ denote the G-character afforded by
the underlying representation V . Then

(6.1.1) Q(ϕ) = Q, and so Z(H) ≤ Z(G) ≤ C2.

Also note from Theorem 2.4 that Gr0,s0 has geometric determinant χ2, and so it cannot be of
symplectic type, and

(6.1.2) H ≤ G ≤ O(V ) and H 6≤ SO(V ).

Now we apply Lemma 2.10 to get M2,2(G) = 3. Applying [GT, Theorem 1.5] and using (6.1.1), we

see that G is almost quasisimple, and arrive at one of the following cases for L = G(∞).

• L = SU3(3). In this case, L C G/Z(G) ≤ L · 2. Using [GAP] one can check that the rational-
valued character ϕ|L does not have rational-valued extensions to L · 2. Hence (6.1.1) implies that
G = Z(G)× L. But in this case G < SO(V ), contradicting (6.1.2).

• L = SU4(2). In this case, LCG/Z(G) ≤ L · 2. Since G 6≤ SO(V ) by (6.1.2), G must induce an
outer automorphism of L, i.e. G/Z(G) = L · 2 ∼= W (E6). Together with (6.1.1), this implies that
W (E6) ≤ G ≤W (E6)×2. The same arguments applied to Garith,F3 show that Garith,F3 ≤W (E6)×2.
In particular, [Garith,F3 : G] ≤ 2 and Garith,F9 = G. Now, a calculation with Magma [BCP] over F38

shows that the Frobenius at the point (r, s, t) = (1, 1, w437) for w a primitive element in F38 has
trace −4. We also note that a change of variable x 7→ rx in the trace function sends the trace of
the Frobenius at (1, 1, t) to χ2(r) times the trace of the Frobenius at (1, r, tr5). Choosing r ∈ F38

with χ2(r) = −1, we then get a trace 4, namely at (1, sr, tr5), in addition to trace −4. Since neither
of the two 6-dimensional irreducible representations of W (E6) possesses both traces 4 and −4, we
conclude that G = W (E6)× 2.

(b) It remains to determine H = Ggeom,r0,s0 which is a subgroup of G = W (E6) × 2. By
Proposition 2.7, H satisfies condition (S+). Hence, by [KT2, Lemma 1.1], H is almost quasisimple:
S C H/Z(H) ≤ Aut(S) for a non-abelian simple group S, and the quasisimple group K = E(H)
with S = K/Z(K), acts irreducibly on V . By Lemma 2.1, the image of P (∞) in H is a non-abelian
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3-group, so (6.1.1) implies that 33 divides |Aut(S)|. Since K = K(∞) ≤ G(∞) = SU4(2), the list of
maximal subgroups of SU4(2) in [Atlas] shows that K = SU4(2) = L. Now Z(G)L has index 2 in
G and Z(G)L ≤ SO(V ). Hence (6.1.2) implies that

(6.1.3) L < H ≤ G = Lo C2
2 .

Now we look at the image J of I(0) in H. Since H/L is a 2-group, the image Q of P (0), a
3-subgroup, is contained in L. Next, J = 〈Q, h〉, where h is the image in H of a generator g0 of
I(0) modulo P (0). Since H/L has exponent 2, we have h2 ∈ L, and hence

(6.1.4) [LJ : L] ≤ 2.

Also, since G/L is abelian, LJ is normal in G and hence also in H. But H is the normal closure of
J by [KT2, Proposition 4.2], so H ≤ LJ . Hence H = LJ , and now (6.1.3) and (6.1.4) imply that
[H : L] = 2 = [G : H]. Among the three subgroups of index 2 in G, Z(G)×L is contained in SO(V ),
and the other two are isomorphic to W (E6), which act on V via the two irreducible 6-dimensional
representations of W (E6), the reflection and the non-reflection representation. Using (6.1.2), we
obtain

(6.1.5) H ∼= W (E6).

By Theorem 3.1, there is a subgroup Gη̄ of G and an open dense subset U of G2
m such that for all

(r1, s1) ∈ U , Ggeom,r1,s1 is conjugate to Gη̄ in G. Now (6.1.5) implies that |Ggeom,r1,s1 | = |Gη̄|. It
follows that Gη̄ ∼= W (E6) and hence, being of index 2, that Gη̄ CG. Also by Theorem 3.1, for any
(r2, s2) ∈ G2

m, Ggeom,r2,s2 is conjugate in G to a subgroup of Gη̄ C G, hence it is a subgroup Gη̄.
Again using (6.1.5), we obtain that H = Gη̄. In particular, Ggeom,1,1 = H, and the calculation in
(a) shows that H acts on V via the non-reflection representation. �

Theorem 6.2. Let (B, a, p) = (2, 5, 3). Then both Gr,s, and Gr0,s0 for any (r0, s0) ∈ G2
m, have

Ggeom = 61 · PSU4(3) · 22, the Mitchell group.

Proof. (a) By Theorem 4.9, G := Ggeom,r,s is a finite subgroup of GL6(C), whence the same holds
for its subgroup H := Ggeom,r0,s0 for any (r0, s0) ∈ G2

m. Let ϕ denote the G-character afforded by
the underlying representation V . Then

(6.2.1) Q(ϕ) ⊆ Q(ζ3), and so Z(H) ≤ Z(G) ≤ C6.

Also note from Theorem 2.5 that Gr,s has geometric determinant χ2, and so

(6.2.2) G 6≤ SL(V ), H 6≤ SL(V ).

Now we apply Lemma 2.11 to get M2,2(G) = 2. Applying [GT, Theorem 1.5] and using (6.2.1), we

see that G is almost quasisimple, and arrive at one of the following cases for L = G(∞).

• L = SU4(2) or SU3(3). In this case, L C G/Z(G) ≤ L · 2. Using [GAP] one can check that
M2,2 = 3, a contradiction.

• L = 6 · PSL3(4). In this case, LCG ≤ L · 21 (in the notation of [GAP]). The condition (6.2.1)
now implies that G = L is perfect, which contradicts (6.2.2).

• L = 6 ·PSU4(3). In this case, LCG ≤ L · 22 (in the notation of [GAP]). Since G is not perfect
by (6.2.2), we have that G = L · 22, the Mitchell group.

(b) It remains to determine H = Ggeom,r0,s0 which is a subgroup of G, the Mitchell group. By
Proposition 2.7, H satisfies condition (S+). Hence, by [KT2, Lemma 1.1], H is almost quasisimple:
S C H/Z(H) ≤ Aut(S) for a non-abelian simple group S, and the quasisimple group K = E(H)
with S = K/Z(K) acts irreducibly on V . We next show that

(6.2.3) Q(ϕ|K) = Q(ζ3).
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By (6.2.1), it suffices to show that V |K is not self-dual. Assume the contrary. Then V and V ∗ are
two extensions of the absolutely irreducible module V |K to H. By Gallagher’s theorem [Is, (6.17)],
V ∗ ∼= V ⊗U for some one-dimensional H/K-module U . Applying [KT6, Corollary 2.7], we see that
U ∼= Q` is trivial, and thus V is self-dual. But this is impossible by [KT6, Lemma 2.3].

Using [HM] and (6.2.3), we arrive at one of the following cases for K.
• K = 3·A6. Since the faithful module V |K is invariant only under the outer automorphisms 23 of

K (in the notation of [Atlas]), we have H = KCH(K) = KZ(H) or H ≤ Z(H)K ·23. In the former
case, K is perfect and Z(H) ≤ C6 has determinant 1 on V , and so H ≤ SL(V ), contrary to (6.2.2).
In the latter case, one can check using [Atlas] that Q(ϕ|H) contains

√
2 or

√
−2, contradicting

(6.2.1). [Note that the Mitchell group contains a subgroup 3 · A6 · 23 which however acts reducibly
on the faithful irreducible representations of the Mitchell group – one can see it by checking the
character values at involutions insider 3 · A6.]
• K = 3 · A7. Since the faithful module V |K is not invariant under outer automorphisms of K,

we have H = KCH(K) = KZ(H). As K is perfect and Z(H) ≤ C6 has determinant 1 on V , we
get H ≤ SL(V ), contradicting (6.2.2).
• K = 6 · PSL3(4). As in part (a), this implies H = K is perfect, again contradicting (6.2.2).
• K = 6 · PSU4(3). As in part (a), using (6.2.2) we obtain that H = K · 22. Since H ≤ G and

|H| = |G|, it follows that H = G. �
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