SIMPLE MODULES AS SUBMODULES AND QUOTIENTS OF SYMMETRIC
POWERS

JANOS KOLLAR AND PHAM HUU TIEP

Given a faithful (linear) action of a finite group G on a finite-dimensional vector space V over
a field T, it is a classical theme to study the invariants IF[V]G, or semi-invariants, i.e. the one-
dimensional G-submodules in F[V]. One is particularly interested in the first nontrivial occurrence
(in Sym™ (V') with m > 1) of invariants, or semi-invariants, see e.g. [9].

More generally, one can ask whether, and when, a given irreducible FG-module W occurs, as a
submodule or as a quotient, of Sym” (V') for suitable m. An affirmative answer to the first question
was given in [2, Theorem A], see also [3, Theorem 4.3] and [8, Theorem 1.2], namely, the regular
representation of G occurs as a summand of the symmetric algebra Sym(V'). Motivated in particular
by the study of automorphism groups of rings of invariants, see e.g. [7, Examples 10, 14], we give
an answer to the second question.

First we prove the following statement.

Proposition 1. Let F be an algebraically closed field, G any finite group, and V = F" any finite-
dimensional, faithful FG-module. Then, for any k € Z>q, the reqular FG-module regg is a direct
summand of

17
€P) Sym/€1-I+HGI (1),

j=1
where Z :=Z(GL(V))NG.

Proof. (i) Fixing a basis (x1,...,,) of V, for any k € Z>q we can identify Sym*(V) with the space
of degree k homogeneous polynomials in n variables x1, ..., Z,.

Since Z is isomorphic to a finite subgroup of F*, Z is cyclic. The statement is obvious in the
case G = Z, so we will assume

G>Z7

throughout. Note that any element ¢ € G \ Z does not act as a scalar on V', and hence each of
its eigenspaces in V' is a proper subspace of V', giving a proper closed subset of V' viewed as Ag.
Since Af is an irreducible affine variety and G is finite, the union of all these eigenspaces, when g
runs over G \. Z, is a proper closed subset of V. It follows that we can find 0 # v € V such that no
element g € G \ Z can fix the line (v)p.
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For any coset h = hZ, note that the line (h(v))r does not depend on the choice of the represen-
tative h € G; we will use h(v) to denote h(v) for some choice of h. Now we set

(1) Fg = [ 7~ esym (V)
heG/Z~{g}
where
N :=|G/Z| > 1.

By this definition, for any g,h € G and any j € Z>1, we see that g sends the line (F(h)?)g to
(F(gh)?)r. In particular, G/Z permutes the N lines (F(g)!)r, g € G/Z, transitively for any j > 1.

Next we show that, for any j € Z>1, the N polynomials F(g)?, g € G/Z, are linearly independent.
Assume the contrary:

(2) S agF(g) =0
§geG/Z

for some constants a; € IF, and ag, # 0. Applying g, 1 to this relation, we may assume that
aj # 0. For any g # 1, the definition (1) implies that the polynomial F'(g) is divisible by v in
k[x1,...,2,]. As ag # 0, it follows from (2) that F(1)7 is divisible by v in k[z1,...,z,] which is a
unique factorization domain. Using (1), we see that there is some h € G ~\ Z such that h(v) is a
multiple of v, contrary to the choice of v.

We have shown that the FG-submodule
Aj:=(F(g) | g€ G/Z)r

of Sym™ =13 (V) has dimension N. Since G acts transitively on the basis {F(3)’ | g € G/Z} of A;,
with Z being the stabilizer of F(1)/, A4; is induced from the one-dimensional FZ-module (F(1)7)g.
In fact,

Aj = Ind§ (AN -7,
if X denotes the linear character via which Z acts on V.
(ii) We will now consider A; in the range
1< <|Z).
For each such j, we choose
i:=1Z|—j
and consider

Bi=( [[ ().

heG/Z

which is a one-dimensional FG-submodule of Sym™*(V'). Then Z acts on B; via the character AN
It follows that Z acts on the FG-module A;B; with character A = \*, where

m = Ni+ (N —1)j = N|Z| - j = |G| — .
Moreover,
(3) A;jB; = IndZ (XY),
and it is a submodule of Sym!®l—7 (V).
(iii) For any k € Z>0, we note that

C = (] r@)")r,
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is a trivial FG-submodule in Sym*!“/(V'). Hence,
A;B;C = Ind% (X),

and it is a submodule of Sym!®I=7+*IGI (),
We also note that the regular FZ-module reg, is semisimple. (Indeed, this is obvious if char(F) =
0. If char(F) = p > 0, then, since the finite subgroup Z embeds in F*, p{|Z|.) Furthermore, reg,
is isomorphic to the direct sum
1Z]-1

D X
=0

(where we have identified one-dimensional modules with their Brauer characters). In turn, this
implies by (3) that
reg, = Ind{(F) 2 Ind§ (Ind? (F)) = Ind$ (reg )
is isomorphic to the direct sum
|Z|-1 12|

P mag(\) = P A;BiC.
t=0 j=1

It follows from (ii) that reg is a submodule of
1Z]
M;, := @ Syml“I=HHCI (v).
j=1
Clearly, reg; is projective and injective, see [4, Lemma 45.3]. Hence regg is a direct summand of
M., as stated. O

Corollary 2. Let F be any field, G any finite group, and V = F" any finite-dimensional, faithful
FG-module. Then, for any k € Z>q, the reqular FG-module reg is a direct summand of

1]
@SymlGl—jJrk\G\(V%
j=1

where Z :=Z(G).

Proof. Let V := V @ F. By Proposition 1, the regular FG-module is a direct summand of

t
@SymlGl—jJrk\G\(f/)’
j=1

where ¢ := |Z(GL(V) NG| < |Z|. By (a variation of) the Noether-Deuring theorem, cf. [5, Problem
3.8.4], the condition of whether or not a finite-dimensional module contains the regular module as
a direct summand does not change under field extensions. Hence the statement follows. O

Now we can prove the main result of the paper.

Theorem 3. Let F be any field, G any finite group, and V = F" any finite-dimensional, faithful FG-
module. Let W be any irreducible FG-module. Then there is some integer 1 < m < |G| (depending
on W) such that the following statements hold.

(i) W is isomorphic to a submodule of Sym™ (V).

(ii) W is isomorphic to a quotient of Sym™ (V).
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(iii)
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In fact, for any k € Z>o, W is isomorphic to a submodule of Symm+k‘G|(V), and to a quotient
of Sym™+*IGI(V),

Proof. By Frobenius reciprocity, W is both a submodule and a quotient of the regular FG-module
reg.. Hence the theorem follows from Corollary 2. O

We conclude with some remarks concerning the range of the integers m in Theorem 3 needed to
cover all irreducible FG-modules.

Remark 4. (i) Let V =F =F and G < GL(V) = GL{(F) be a finite cyclic subgroup. Then, to

(i)

(iii)

cover all irreducible FG-modules W, we need to use all Sym™ (V') with m up to |G| — 1.

Let char(F) = p > 0, and consider the natural 2-dimensional module V = F? of G = SLy(p).
A full set of non-isomorphic irreducible FG-modules is given by Sym™(V), 0 < m <p—1, see
e.g. [1, §10.2]. Thus in Theorem 3, we need to use m up to ~ |G/|'/3.

Let F = F be of characteristic p > 0, f > 2 any integer, and consider the natural 2-dimensional
module V' = F? of G 2 SLy(p/). For any integer 0 < m < p/~! — 1, the module Sym™ (V)
has highest weight mw1, whereas the (p/ ~1)*" Frobenius twist V@™ of V has highest weight
p/ 1wy, see e.g. [1, §10.2] or [6, §5.4], and is irreducible of dimension 2. So again in Theorem
3 we have to use m up to =~ |G|'/3.

In general, dim(W') can grow unboundedly compared to dim(V'). Hence, the m in Theorem 3
cannot be bounded in terms of dim(V'), cf. the examples in (i)—(iii). In fact the example in (i)
shows that m cannot be bounded in terms of both dim(V) and dim(W), whereas (ii) shows m
cannot be bounded in terms of dim(V') and |Z(G)|. Furthermore, the example in (iii) shows
that m cannot be bounded in terms of dim(V'), dim(W), |Z(G)|, and p = char(F). One may
compare this to the first nontrivial occurrence in Sym™ (V') of semi-invariants for CG-modules
V considered in [9], where it is shown that m can be taken to be at most 1184036 (dim V).
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