SIMPLE MODULES AS SUBMODULES AND QUOTIENTS OF SYMMETRIC POWERS

JÁNOS KOLLÁR AND PHAM HUU TIEP

Given a faithful (linear) action of a finite group G on a finite-dimensional vector space V over a field \mathbb{F} , it is a classical theme to study the *invariants* $\mathbb{F}[V]^G$, or *semi-invariants*, i.e. the one-dimensional G-submodules in $\mathbb{F}[V]$. One is particularly interested in the first nontrivial occurrence (in $\operatorname{Sym}^m(V)$ with $m \geq 1$) of invariants, or semi-invariants, see e.g. [9].

More generally, one can ask whether, and when, a given irreducible $\mathbb{F}G$ -module W occurs, as a submodule or as a quotient, of $\operatorname{Sym}^m(V)$ for suitable m. An affirmative answer to the first question was given in [2, Theorem A], see also [3, Theorem 4.3] and [8, Theorem 1.2], namely, the regular representation of G occurs as a summand of the symmetric algebra $\operatorname{Sym}(V)$. Motivated in particular by the study of automorphism groups of rings of invariants, see e.g. [7, Examples 10, 14], we give an answer to the second question.

First we prove the following statement.

Proposition 1. Let \mathbb{F} be an algebraically closed field, G any finite group, and $V = \mathbb{F}^n$ any finite-dimensional, faithful $\mathbb{F}G$ -module. Then, for any $k \in \mathbb{Z}_{\geq 0}$, the regular $\mathbb{F}G$ -module reg_G is a direct summand of

$$\bigoplus_{j=1}^{|Z|} \operatorname{Sym}^{|G|-j+k|G|}(V),$$

where $Z := \mathbf{Z}(\mathrm{GL}(V)) \cap G$.

Proof. (i) Fixing a basis (x_1, \ldots, x_n) of V, for any $k \in \mathbb{Z}_{\geq 0}$ we can identify $\operatorname{Sym}^k(V)$ with the space of degree k homogeneous polynomials in n variables x_1, \ldots, x_n .

Since Z is isomorphic to a finite subgroup of \mathbb{F}^{\times} , Z is cyclic. The statement is obvious in the case G = Z, so we will assume

throughout. Note that any element $g \in G \setminus Z$ does not act as a scalar on V, and hence each of its eigenspaces in V is a proper subspace of V, giving a proper closed subset of V viewed as $\mathbb{A}^n_{\mathbb{F}}$. Since $\mathbb{A}^n_{\mathbb{F}}$ is an irreducible affine variety and G is finite, the union of all these eigenspaces, when g runs over $G \setminus Z$, is a proper closed subset of V. It follows that we can find $0 \neq v \in V$ such that no element $g \in G \setminus Z$ can fix the line $\langle v \rangle_{\mathbb{F}}$.

The first author was partially supported by the NSF (grant DMS-1901855).

The second author gratefully acknowledges the support of the NSF (grant DMS-2200850), the Simons Foundation, and the Joshua Barlaz Chair in Mathematics.

Part of this work was done when the second author visited Princeton University. It is a pleasure to thank Princeton University for generous hospitality and stimulating environment.

The authors are grateful to the referee for helpful comments and suggestions which lead to shorter proofs of the results and better exposition of the paper.

For any coset $\bar{h} = hZ$, note that the line $\langle h(v) \rangle_{\mathbb{F}}$ does not depend on the choice of the representative $h \in G$; we will use $\bar{h}(v)$ to denote h(v) for some choice of h. Now we set

(1)
$$F(\bar{g}) := \prod_{\bar{h} \in G/Z \setminus \{\bar{g}\}} \bar{h}(v) \in \operatorname{Sym}^{N-1}(V),$$

where

$$N := |G/Z| > 1.$$

By this definition, for any $g, h \in G$ and any $j \in \mathbb{Z}_{\geq 1}$, we see that g sends the line $\langle F(\bar{h})^j \rangle_{\mathbb{F}}$ to $\langle F(\bar{g}\bar{h})^j \rangle_{\mathbb{F}}$. In particular, G/Z permutes the N lines $\langle F(\bar{g})^j \rangle_{\mathbb{F}}$, $\bar{g} \in G/Z$, transitively for any $j \geq 1$.

Next we show that, for any $j \in \mathbb{Z}_{\geq 1}$, the N polynomials $F(\bar{g})^j$, $\bar{g} \in G/Z$, are linearly independent. Assume the contrary:

(2)
$$\sum_{\bar{g} \in G/Z} a_{\bar{g}} F(\bar{g})^j = 0$$

for some constants $a_{\bar{g}} \in \mathbb{F}$, and $a_{\bar{g}_0} \neq 0$. Applying g_0^{-1} to this relation, we may assume that $a_{\bar{1}} \neq 0$. For any $\bar{g} \neq \bar{1}$, the definition (1) implies that the polynomial $F(\bar{g})$ is divisible by v in $k[x_1,\ldots,x_n]$. As $a_{\bar{1}} \neq 0$, it follows from (2) that $F(\bar{1})^j$ is divisible by v in $k[x_1,\ldots,x_n]$ which is a unique factorization domain. Using (1), we see that there is some $h \in G \setminus Z$ such that h(v) is a multiple of v, contrary to the choice of v.

We have shown that the $\mathbb{F}G$ -submodule

$$A_j := \langle F(\bar{g})^j \mid \bar{g} \in G/Z \rangle_{\mathbb{F}}$$

of $\operatorname{Sym}^{(N-1)j}(V)$ has dimension N. Since G acts transitively on the basis $\{F(\bar{g})^j \mid \bar{g} \in G/Z\}$ of A_j , with Z being the stabilizer of $F(\bar{1})^j$, A_j is induced from the one-dimensional $\mathbb{F}Z$ -module $\langle F(\bar{1})^j \rangle_{\mathbb{F}}$. In fact,

$$A_j = \operatorname{Ind}_Z^G(\lambda^{(N-1)j}),$$

if λ denotes the linear character via which Z acts on V.

(ii) We will now consider A_i in the range

$$1 \leq j \leq |Z|$$
.

For each such j, we choose

$$i := |Z| - j$$

and consider

$$B_i := \langle \prod_{\bar{h} \in G/Z} (\bar{h}(v)^i) \rangle_{\mathbb{F}},$$

which is a one-dimensional $\mathbb{F}G$ -submodule of $\operatorname{Sym}^{Ni}(V)$. Then Z acts on B_i via the character λ^{Ni} . It follows that Z acts on the $\mathbb{F}G$ -module A_jB_i with character $\lambda^m = \lambda^i$, where

$$m := Ni + (N-1)j = N|Z| - j = |G| - j.$$

Moreover,

$$(3) A_j B_i = \operatorname{Ind}_Z^G(\lambda^i),$$

and it is a submodule of $\operatorname{Sym}^{|G|-j}(V)$.

(iii) For any $k \in \mathbb{Z}_{>0}$, we note that

$$C = \langle \prod_{h \in G} h(v)^k \rangle_{\mathbb{F}},$$

is a trivial $\mathbb{F}G$ -submodule in $\operatorname{Sym}^{k|G|}(V)$. Hence,

$$A_j B_i C \cong \operatorname{Ind}_Z^G(\lambda^i),$$

and it is a submodule of $\operatorname{Sym}^{|G|-j+k|G|}(V)$.

We also note that the regular $\mathbb{F}Z$ -module \mathbf{reg}_Z is semisimple. (Indeed, this is obvious if $\mathrm{char}(\mathbb{F}) = 0$. If $\mathrm{char}(\mathbb{F}) = p > 0$, then, since the finite subgroup Z embeds in \mathbb{F}^\times , $p \nmid |Z|$.) Furthermore, \mathbf{reg}_Z is isomorphic to the direct sum

$$\bigoplus_{t=0}^{|Z|-1} \lambda^t$$

(where we have identified one-dimensional modules with their Brauer characters). In turn, this implies by (3) that

$$\mathbf{reg}_G = \mathrm{Ind}_1^G(\mathbb{F}) \cong \mathrm{Ind}_Z^G(\mathrm{Ind}_1^Z(\mathbb{F})) = \mathrm{Ind}_Z^G(\mathbf{reg}_Z)$$

is isomorphic to the direct sum

$$\bigoplus_{t=0}^{|Z|-1}\operatorname{Ind}_Z^G(\lambda^t)\cong\bigoplus_{j=1}^{|Z|}A_jB_iC.$$

It follows from (ii) that \mathbf{reg}_G is a submodule of

$$M_k := \bigoplus_{j=1}^{|Z|} \operatorname{Sym}^{|G|-j+k|G|}(V).$$

Clearly, \mathbf{reg}_G is projective and injective, see [4, Lemma 45.3]. Hence \mathbf{reg}_G is a direct summand of M_k , as stated.

Corollary 2. Let \mathbb{F} be any field, G any finite group, and $V = \mathbb{F}^n$ any finite-dimensional, faithful $\mathbb{F}G$ -module. Then, for any $k \in \mathbb{Z}_{\geq 0}$, the regular $\mathbb{F}G$ -module reg_G is a direct summand of

$$\bigoplus_{j=1}^{|Z|} \operatorname{Sym}^{|G|-j+k|G|}(V),$$

where $Z := \mathbf{Z}(G)$.

Proof. Let $\tilde{V} := V \otimes_{\mathbb{F}} \overline{\mathbb{F}}$. By Proposition 1, the regular $\overline{\mathbb{F}}G$ -module is a direct summand of

$$\bigoplus_{j=1}^{t} \operatorname{Sym}^{|G|-j+k|G|}(\tilde{V}),$$

where $t := |\mathbf{Z}(\operatorname{GL}(\tilde{V}) \cap G| \leq |Z|$. By (a variation of) the Noether–Deuring theorem, cf. [5, Problem 3.8.4], the condition of whether or not a finite-dimensional module contains the regular module as a direct summand does not change under field extensions. Hence the statement follows.

Now we can prove the main result of the paper.

Theorem 3. Let \mathbb{F} be any field, G any finite group, and $V = \mathbb{F}^n$ any finite-dimensional, faithful $\mathbb{F}G$ -module. Let W be any irreducible $\mathbb{F}G$ -module. Then there is some integer $1 \leq m \leq |G|$ (depending on W) such that the following statements hold.

- (i) W is isomorphic to a submodule of $Sym^m(V)$.
- (ii) W is isomorphic to a quotient of $Sym^m(V)$.

(iii) In fact, for any $k \in \mathbb{Z}_{\geq 0}$, W is isomorphic to a submodule of $\operatorname{Sym}^{m+k|G|}(V)$, and to a quotient of $\operatorname{Sym}^{m+k|G|}(V)$.

Proof. By Frobenius reciprocity, W is both a submodule and a quotient of the regular $\mathbb{F}G$ -module reg_G . Hence the theorem follows from Corollary 2.

We conclude with some remarks concerning the range of the integers m in Theorem 3 needed to cover all irreducible $\mathbb{F}G$ -modules.

- **Remark 4.** (i) Let $V = \mathbb{F} = \overline{\mathbb{F}}$ and $G \leq \operatorname{GL}(V) \cong \operatorname{GL}_1(\mathbb{F})$ be a finite cyclic subgroup. Then, to cover all irreducible $\mathbb{F}G$ -modules W, we need to use all $\operatorname{Sym}^m(V)$ with m up to |G| 1.
- (ii) Let char(\mathbb{F}) = p > 0, and consider the natural 2-dimensional module $V = \mathbb{F}^2$ of $G \cong \mathrm{SL}_2(p)$. A full set of non-isomorphic irreducible $\mathbb{F}G$ -modules is given by $\mathrm{Sym}^m(V)$, $0 \le m \le p-1$, see e.g. [1, §10.2]. Thus in Theorem 3, we need to use m up to $\approx |G|^{1/3}$.
- (iii) Let $\mathbb{F} = \overline{\mathbb{F}}$ be of characteristic p > 0, $f \ge 2$ any integer, and consider the natural 2-dimensional module $V = \mathbb{F}^2$ of $G \cong \mathrm{SL}_2(p^f)$. For any integer $0 \le m \le p^{f-1} 1$, the module $\mathrm{Sym}^m(V)$ has highest weight $m\varpi_1$, whereas the $(p^{f-1})^{\mathrm{th}}$ Frobenius twist $V^{(p^{f-1})}$ of V has highest weight $p^{f-1}\varpi_1$, see e.g. [1, §10.2] or [6, §5.4], and is irreducible of dimension 2. So again in Theorem 3 we have to use m up to $\approx |G|^{1/3}$.
- (iv) In general, $\dim(W)$ can grow unboundedly compared to $\dim(V)$. Hence, the m in Theorem 3 cannot be bounded in terms of $\dim(V)$, cf. the examples in (i)–(iii). In fact the example in (i) shows that m cannot be bounded in terms of both $\dim(V)$ and $\dim(W)$, whereas (ii) shows m cannot be bounded in terms of $\dim(V)$ and $|\mathbf{Z}(G)|$. Furthermore, the example in (iii) shows that m cannot be bounded in terms of $\dim(V)$, $\dim(W)$, $|\mathbf{Z}(G)|$, and $p = \operatorname{char}(\mathbb{F})$. One may compare this to the first nontrivial occurrence in $\operatorname{Sym}^m(V)$ of semi-invariants for $\mathbb{C}G$ -modules V considered in [9], where it is shown that m can be taken to be at most 1184036($\dim V$).

REFERENCES

- [1] C. Bonnafé, 'Representations of $SL_2(\overline{\mathbb{F}}_q)$ ', Algebra and Applications, 13, Springer-Verlag London, Ltd., London, 2011. xxii+186 pp.
- [2] R. M. Bryant, Symmetric powers of representations of finite groups, J. Algebra 154 (1993), 416-436.
- [3] R. M. Bryant, Groups acting on polynomial algebras, in: 'Finite and Locally Finite Groups', (Istanbul, 1994), 327–346, NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., 471.
- [4] L. Dornhoff, 'Group Representation Theory', Dekker, New York, 1971.
- [5] P. Etingof, O. Golberg, S. Hensel, T. Liu, A. Schwendner, D. Vaintrob, and E. Yudovina, 'Introduction to Representation Theory', With historical interludes by Slava Gerovitch, Student Mathematical Library, 59, American Mathematical Society, Providence, RI, 2011. viii+228 pp.
- [6] P. B. Kleidman and M. W. Liebeck, 'The Subgroup Structure of the Finite Classical Groups', London Math. Soc. Lecture Note Ser. no. 129, Cambridge University Press, 1990.
- [7] J. Kollár, Automorphisms of rings of invariants, arXiv:2212.03772v1
- [8] P. Symonds, Group actions on polynomial and power series rings, Pacif. J. Math. 195 (2000), 225–230.
- [9] Pham Huu Tiep, The α-invariant and Thompson's conjecture, Forum of Math. Pi 4 (2016), e5, 28 pages.

DEPARTMENT OF MATHEMATICS, PRINCETON UNIVERSITY, PRINCETON, NJ 08544 Email address: kollar@math.princeton.edu

Department of Mathematics, Rutgers University, Piscataway, NJ 08854 $\it Email\ address$: tiep@math.rutgers.edu