CONDITION (S+) IN RANKS 4, 8, AND 9

NICHOLAS M. KATZ AND PHAM HUU TIEP

ABSTRACT. Condition (S+), introduced in [KT5], plays a key role in the study of Kloosterman and hypergeometric l-adic local systems in positive characteristic p. Prior results of [KT5], [KT8] establish (S+) for primitive Kloosterman and hypergeometric sheaves, except possibly in ranks 4, 8, and 9. In this paper we study (S+) in these remaining ranks, and completely determine when (S+) does or does not hold.

1. Introduction

We work over an algebraically closed field \mathbb{C} of characteristic zero, which we will take to be $\overline{\mathbb{Q}_{\ell}}$ for a suitable prime ℓ . Given a nonzero finite-dimensional \mathbb{C} -vector space V, a group Γ and a representation $\Phi: \Gamma \to \mathrm{GL}(V)$, we say that the pair (Γ, V) satisfies condition $(\mathbf{S}+)$ if each of the following five conditions is satisfied.

- (i) The Γ -module V is irreducible.
- (ii) The Γ -module V is primitive.
- (iii) The Γ -module V is tensor indecomposable.
- (iv) The Γ -module V is not tensor induced.
- (v) The determinant $det(\Gamma|V)$ is finite.

One knows [KT5, Lemma 1.6] that (Γ, V) satisfies condition $(\mathbf{S}+)$ if and only if for G the Zariski closure of $\Phi(\Gamma)$ in $\mathrm{GL}(V)$, the pair (G, V) satisfies condition $(\mathbf{S}+)$. Condition $(\mathbf{S}+)$ is a slightly strengthening of condition (\mathbf{S}) introduced in [GT2], and roughly speaking, corresponds to Aschbacher's class \mathcal{S} of maximal subgroups of classical groups [Asch].

The importance of condition (S+) is this, cf. [KT5, Lemma 1.1].

Lemma 1.1. Suppose $G \leq GL(V)$ is a Zariski closed subgroup, $\dim(V) > 1$, and (G, V) satisfies condition (S+). Then we have three possibilities:

- (a) The identity component G° is a simple algebraic group, and $V|_{G^{\circ}}$ is irreducible.
- (b) G is finite, and almost quasisimple, i.e. there is a finite non-abelian simple group S such that $S \triangleleft G/\mathbf{Z}(G) < \operatorname{Aut}(S)$.
- (c) G is finite and it is an "extraspecial normalizer" (in characteristic r), that is, $\dim(V) = r^n$ for a prime r, and G contains a normal r-subgroup $R = \mathbf{Z}(R)E$, where E is an extraspecial r-group E of order r^{1+2n} acting irreducibly on V, and either R = E or $\mathbf{Z}(R) \cong C_4$.

The application to hypergeometric sheaves is this. In a given characteristic p, we are given a prime $\ell \neq p$ and a (geometrically irreducible) $\overline{\mathbb{Q}_{\ell}}$ -hypergeometric sheaf \mathcal{H} of type (D, m) with $D > m \geq 0$ on $\mathbb{G}_m/\overline{\mathbb{F}_p}$, definable over some finite extension k/\mathbb{F}_p . We view \mathcal{H} as a representation

²⁰¹⁰ Mathematics Subject Classification. 11T23, 20C15, 20D06, 20C33, 20G40.

Key words and phrases. Local systems, Hypergeometric sheaves, Monodromy groups.

The second author gratefully acknowledges the support of the NSF (grant DMS-2200850) and the Joshua Barlaz Chair in Mathematics.

The authors are grateful to the referee for careful reading and helpful comments on the paper.

 $\pi_1(\mathbb{G}_m/\overline{\mathbb{F}_p}) \to \mathrm{GL}_D(\overline{\mathbb{Q}_\ell})$. If this pair satisfies condition (S+), we say that \mathcal{H} satisfies condition (S+).

In previous papers [KT5] and [KT8], we showed that all primitive \mathcal{H} of rank D > 1 satisfy condition (S+) with the possible exception of ranks 4,8,9. This paper gives the complete analysis of these exceptional cases. The inverse problem of which of the pairs (G, V) satisfying (S+) can actually occur as geometric monodromy groups of ℓ -adic hypergeometric sheaves is the subject of several recent papers, see e.g. [KRLT3], [KRLT4], [KT1], [KT2], [KT3], [KT4], [KT5], [KT6], [KT7], [KT8], [Lee].

As defined above, the notion of (S+) for a geometrically irreducible hypergeometric sheaf \mathcal{H} requires, in addition to being tensor indecomposable and not tensor induced, being primitive. By [KT5, 2.3], Kloosterman sheaves of any rank are tensor indecomposable; their being primitive or not is irrelevant. By [KRLT3, 10.4]), hypergeometric sheaves of any type (D, m) with D > m > 0 and $D \neq 4$ are tensor indecomposable; their being primitive or not is irrelevant. [For D = 4, tensor indecomposability is more complicated, and can fail.] Whether or not a given hypergeometric sheaf is primitive can be visibly determined by its shape, see [KRLT3, Proposition 1.2].

The main result of the paper is summarized in the table below, in which we consider **only primitive** hypergeometric sheaves of a given type (D, m) in a given characteristic p. We specify for each listed type and characteristic whether all are (S+), or whether there exist some which, despite being primitive, are not (S+).

type (D, m)	all are (S+) in characteristic	some are not $(S+)$ in characteristic
(4,0)	p=2	p > 2
(4,1)	p > 2	p=2
(4,2)	p = 2	p > 2
(4,3)	p > 2	p=2
(8,0)	p > 2	p=2
(8,1)	all p	
(8,2)	p = 2, 3	$p \ge 5$
(8,3)	all p	
(8,4)	all p	
(8,5)	all p	
(8,6)	all p	
(8,7)	all p	
(9,0)	all p	
(9,1)	$p \neq 3$	p=3
(9,2)	all p	
(9,3)	p = 2, 3	$p \ge 5$
(9,4)	all p	
(9,5)	all p	
(9,6)	all p	
(9,7)	all p	
(9,8)	all p	

Table 1. (S+) for primitive hypergeometric sheaves in ranks 4, 8, 9

2. Review of known results in rank 4

Lemma 2.1. In characteristic p = 2, any primitive Kloosterman sheaf Kl of rank 4 has (S+).

Proof. By [KT5, proof of 2.3], all Kloosterman sheaves are tensor indecomposable for $I(\infty)$. Suppose $\mathcal{K}l$ is 2-tensor induced. Then the map of $I(\infty)$ to S_2 is trivial on $P(\infty)$ (because $w=4\geq 2$), while the group $I(\infty)/P(\infty)$ has odd pro-order. So $\mathcal{K}l$ is tensor decomposable for $I(\infty)$, contradiction. \square

Lemma 2.2. In odd characteristic p, there exist primitive Kloosterman sheaves Kl of rank 4 which are tensor induced. More precisely, choose a character χ of order $r \geq 5$, $p \nmid r$. Then the (primitive) Kloosterman sheaf

$$\mathcal{K}l_{\psi}(\chi,\overline{\chi},\mathbb{1},\chi_{\mathrm{quad}})$$

is 2-tensor induced.

Proof. This is an instance of [Ka3, 6.3].

Lemma 2.3. In characteristic p = 2, there exist primitive hypergeometric sheaves \mathcal{H} of type (4,1) which are tensor decomposable. More precisely, choose two odd primes r, s, a character χ of order r and a character ρ of order s. Then the (primitive) hypergeometric sheaf

$$\mathcal{H}yp_{\psi}(\chi\rho,\chi\overline{\rho},\overline{\chi}\rho,\overline{\chi}\overline{\rho}:\mathbb{1})$$

is tensor decomposable.

Proof. This is an instance of [Ka3, 5.2].

Lemma 2.4. In odd characteristic p, every hypergeometric sheaf of type (4,1) has (S+).

Proof. By [KRLT3, 10.4], any such \mathcal{H} is tensor decomposable on $I(\infty)$. If it were 2-tensor induced, the map of $I(\infty)$ to S_2 would be trivial on $P(\infty)$. The image of a generator of $I(\infty)/P(\infty)$ is a three cycle (if it were trivial, \mathcal{H} would be tensor decomposed for $I(\infty)$). Then $[2]^*\mathcal{H}$ would be tensor decomposable for $I(\infty)$. But $[2]^*Wild_{\mathcal{H}}$ is totally wild and $I(\infty)$ -irreducible (all its slopes are 2/3), contradicting [KRLT3, 10.4].

Lemma 2.5. In characteristic p = 2, every hypergeometric sheaf \mathcal{H} of type (4,2) has $(\mathbf{S}+)$.

Proof. This is an instance of [KT5, 3.3].

Lemma 2.6. In any odd characteristic p, there are primitive hypergeometric sheaves \mathcal{H} of type (4,2) which are 2-tensor induced. More precisely, choose two odd primes $r, s, p \nmid rs$. Choose characters α of order r and β of order s. Then the (primitive) hypergeometric sheaf

 $\mathcal{H}yp_{\psi}(\alpha,\beta, \text{ both square roots of } \alpha\beta; \mathbb{1}, \alpha\beta)$

is 2-tensor induced.

Proof. This is an instance of [Ka3, 6.5].

Lemma 2.7. In characteristic p = 2, there exist primitive hypergeometric sheaves \mathcal{H} of type (4,3) which are not $(\mathbf{S}+)$.

Proof. Consider the (primitive) hypergeometric sheaf $\mathcal{H}yp_{\psi}(\mathsf{Char}(5) \setminus \{1\}; 1, 1, 1)$. By [Ka2, 8.8.1 and 8.8.2], it is orthogonally self-dual. Its G_{geom} is not finite, because its "downstairs" characters, all 1, are not pairwise distinct. By [KT8, 4.1.5], it follows that $G_{\mathrm{geom}}^{\circ} = \mathrm{SO}(4)$. Therefore \mathcal{H} cannot be (S+), because its $G_{\mathrm{geom}}^{\circ}$ is not a simple algebraic group.

Lemma 2.8. In characteristic p = 3, primitive hypergeometric sheaves \mathcal{H} of type (4,3) satisfy $(\mathbf{S}+)$.

Proof. Since p = 3 and w = 1, the image Q of $P(\infty)$ in $G := G_{\text{geom}}$ of \mathcal{H} is generated by a single element h which is a complex reflection of order 3. If G_0 denotes the normal closure of Q in G, then G/G_0 is cyclic of order coprime to 3 by [KT5, Theorem 4.7].

First we show that G_0 is irreducible in the underlying representation V. As $G_0 \triangleleft G$, G permutes the m isotypic components of $V|_{G_0}$. But G is assumed to be primitive, so m=1. This means that if φ_0 is an irreducible constituent of the character of the representation $V|_{G_0}$, then φ_0 is G-invariant. But G/G_0 is cyclic, so φ_0 extends to an irreducible character θ of G. As φ lies above φ_0 , by Gallagher's theorem [Is, (6.17)], $\varphi = \theta \lambda$ for some irreducible character λ of G/G_0 . In this case, $\lambda(1) = 1$ and $\varphi|_{G_0} = \theta_{G_0} = \varphi_0$, which means G_0 is irreducible.

Suppose that G_0 is an irreducible, but imprimitive subgroup of GL(V) that is generated by complex reflections of order 3. Such a group, by [ST], has index r for some $r \in \mathbb{Z}_{\geq 1}$ in $C_m \wr S_4$ for some $m \in \mathbb{Z}_{\geq 1}$ divisible by 3r: $G_0 = A \rtimes S_4$, where

$$A = \left\{ \operatorname{diag}(\epsilon^{a_1}, \dots, \epsilon^{a_4}) \mid a_i \in \mathbb{Z}, \ r \mid \sum_{i=1}^4 a_i \right\},\,$$

 $\epsilon \in \mathbb{C}^{\times}$ has order m, and S_4 consists of permutational 4×4 -matrices. The group G_0 contains exactly 3^8 complex reflections of order 3, each conjugate in G_0 to $\operatorname{diag}(\epsilon^{m/3}, 1, 1, 1)$ or $\operatorname{diag}(\epsilon^{-m/3}, 1, 1, 1)$. All these elements are contained in the normal subgroup A of G_0 , so they do not generate G_0 , a contradiction.

The remaining possibility is that G_0 is irreducible and primitive. Then the classification theorem of [ST] implies that the primitive complex reflection group G_0 in dimension 4 must be $3 \times \operatorname{Sp}_4(3)$ in one of its 4-dimensional reflection representations, for which it is easy to verify (S+) for G_0 and hence for G as well.

Lemma 2.9. In characteristic $p \geq 5$, all primitive hypergeometric sheaves \mathcal{H} of type (4,3) have $(\mathbf{S}+)$.

Proof. This is [KT8,
$$4.1.1$$
].

3. Previously known cases of tensor induction in ranks 8 and 9

Lemma 3.1. In characteristic $p \ge 5$, there exist hypergeometric sheaves of type (8,2) which are 3-tensor induced. More precisely, the tensor induction

$$[3]_{\otimes \star} \mathcal{K} l_{\psi}(\mathsf{Char}(3) \setminus \mathsf{Char}(1))$$

is geometrically isomorphic to a multiplicative translate of

$$\mathcal{H}yp_{\psi}(\mathsf{Char}(9) \setminus \mathsf{Char}(1); \mathsf{Char}(4) \setminus \mathsf{Char}(2)).$$

Proof. This is the special case of [Ka2, 10.6.11] with its χ_1, χ_2 taken to be the two characters of order 3.

Lemma 3.2. In characteristic $p \ge 5$, there exist hypergeometric sheaves of type (9,3) which are 2-tensor induced. More precisely, choose a prime $r \ge 7, r \ne p$, and a character χ of order r. Then the tensor induction

$$[2]_{\otimes\star}\mathcal{K}l_{\psi}(\chi,\chi^2,\chi^{-3})$$

is geometrically isomorphic to a multiplicative translate of

$$\mathcal{H}yp_{\psi}(\chi,\chi^2,\chi^{-3},\text{both square roots of each of }\chi^3,\chi^{-2},\chi^{-1};\text{Char}(3)).$$

Proof. This is the special case of [Ka2, 10.6.9] with its χ_1, χ_2, χ_3 taken to be the three characters χ, χ^2, χ^{-3} .

Remark 3.3. In both Lemmas 3.1 and 3.2, the indicated examples of tensor induced sheaves can be checked to be primitive.

4. Kloosterman sheaves of rank 8 in characteristic p=2

In Lemma 3.1, the "downstairs" characters are the two characters of order 4, which make no sense in characteristic p = 2. So we simply erase them.

Theorem 4.1. In characteristic p = 2, the Kloosterman sheaf $Kl_{\psi}(\mathsf{Char}(9) \setminus \mathsf{Char}(1))$ is 3-tensor induced. More precisely, the tensor induced local system

$$[3]_{\otimes \star} \mathcal{K} l_{\psi}(\mathsf{Char}(3) \setminus \mathsf{Char}(1))$$

is geometrically isomorphic to

$$\mathcal{K}l_{\psi}(\mathsf{Char}(9) \setminus \mathsf{Char}(1)).$$

Proof. The argument is not conceptual, but rather by means of a Magma calculation. First we recall from [KRLT2, Lemma 1.2] some descent results. The sheaf $\mathcal{K}l_{\psi}(\mathsf{Char}(3) \setminus \mathsf{Char}(1))$ has a descent to $\mathbb{G}_m/\mathbb{F}_4$, given by the pure of weight zero lisse sheaf \mathcal{A} whose trace function is given as follows: for k/\mathbb{F}_4 a finite extension, and $t \in k^{\times}$,

Trace(Frob_{t,k}|
$$\mathcal{A}$$
) = $\frac{-1}{2^{\deg(k/\mathbb{F}_4)}} \sum_{x \in k} \psi_k(x^3/t + x)$.

Let us denote

$$\mathcal{A}(t,k) := \operatorname{Trace}(\operatorname{\mathsf{Frob}}_{t,k}|\mathcal{A}).$$

The sheaf $\mathcal{K}l_{\psi}(\mathsf{Char}(9) \setminus \mathsf{Char}(1))$ has a descent to $\mathbb{G}_m/\mathbb{F}_4$, given by the pure of weight zero lisse sheaf \mathcal{B} whose trace function is given as follows: for k/\mathbb{F}_4 a finite extension, and $t \in k^{\times}$,

Trace(Frob_{t,k}|
$$\mathcal{B}$$
) = $\frac{-1}{2^{\deg(k/F_4)}} \sum_{x \in k} \psi_k(x^9/t + x)$.

Let us denote

$$\mathcal{B}(t,k) := \operatorname{Trace}(\operatorname{\mathsf{Frob}}_{t,k}|\mathcal{B}).$$

[In both cases, we consider these descents to live on $\mathbb{G}_m/\mathbb{F}_4$ rather than on $\mathbb{G}_m/\mathbb{F}_2$ in order both to have integer traces and to be pure of weight zero.]

It suffices to show that the Kummer pullback $[3]^*(\mathcal{B})$ and the triple tensor product

$$\mathcal{C} := \bigotimes_{\zeta \in \mu_3} [t \mapsto \zeta t]^*(\mathcal{A})$$

are are geometrically isomorphic. Indeed, once we have this, we argue as follows. The tensor induction $[3]_{\otimes\star}\mathcal{A}$ is a descent through]3] of sC, , cf, $[\mathrm{Ka2},\ 10.3.5]$. Because \mathcal{B} has all slopes 1/8, its pullback $[3]^{\star}(\mathcal{B})$ has all slopes 3/8, so is geometrically irreducible (indeed $I(\infty)$ irreducible). Therefore \mathcal{C} is geometrically irreducible. A fortiori, its descent $[3]_{\otimes\star}\mathcal{A}$ is geometrically irreducible. Thus both \mathcal{B} and $[3]_{\otimes\star}\mathcal{A}$ are geometrically irreducible, and their $[3]^{\star}$ pullbacks are geometrically isomorphic. Therefore for some Kummer sheaf \mathcal{L}_{ρ} with $\rho^3 = \mathbb{1}$, we have a geometric isomorphism of $[3]_{\otimes\star}\mathcal{A}$ with $\mathcal{L}_{\rho}\otimes\mathcal{B}$. By $[\mathrm{Ka2},\ 10.6.9]$, the I(0)-representation of $[3]_{\otimes\star}\mathcal{A}$ is precisely $\mathrm{Char}(9) \setminus \mathrm{Char}(1)$. Since \mathcal{B} itself has $\mathrm{Char}(9) \setminus \mathrm{Char}(1)$ as its I(0)-representation, then both \mathcal{B} and $\mathcal{L}_{\rho}\otimes\mathcal{B}$ have this I(0)-representation, and hence $\rho = \mathbb{1}$.

We now prove that $[3]^*(\mathcal{B})$ and \mathcal{C} are geometrically isomorphic. Because $[3]^*(\mathcal{B})$ is geometrically irreducible and of the same rank (8) as \mathcal{C} , it suffices to show there is a nonzero hom (as local systems on $\mathbb{G}_m/\overline{\mathbb{F}_4}$ from $[3]^*(\mathcal{B})$ to \mathcal{C} ; any such map is an isomorphism. Up to scalars there is at

most one isomorphism, as the "ratio" of two is an automorphism of $[3]^*(\mathcal{B})$; as $[3]^*(\mathcal{B})$ is geometrically irreducible, its only endomorphisms are scalars. Thus the hom group

$$H_c^2(\mathbb{G}_m/\overline{\mathbb{F}_4},[3]^{\star}(\mathcal{B})^{\vee}\otimes\mathcal{C})$$

either vanishes, or has dimenion one. As \mathcal{B} is self-dual [Ka2, 8.8.1], this hom group is also

$$H_c^2(\mathbb{G}_m/\overline{\mathbb{F}_4},[3]^*(\mathcal{B})\otimes\mathcal{C}).$$

We next calculate the Euler-Poincaré characteristic of $[3]^*(\mathcal{B}) \otimes \mathcal{C}$. The first factor $[3]^*(\mathcal{B})$ has all slopes 3/8. The second factor has all slopes $\leq 1/2$, simply because \mathcal{A} and each of its multiplicative translates has all slopes 1/2. Therefore $[3]^*(\mathcal{B}) \otimes \mathcal{C}$ has all slopes $\leq 1/2$, and rank 64. Thus $\mathsf{Swan}_{\infty}([3]^*(\mathcal{B}) \otimes \mathcal{C}) \leq 32$ (and $[3]^*(\mathcal{B}) \otimes \mathcal{C}$) is tame at 0). For any lisse sheaf \mathcal{F} on \mathbb{G}_m which is tame at 0, the Euler-Poincaré formula gives

$$h_c^1(\mathbb{G}_m/\overline{\mathbb{F}_4},\mathcal{F}) - h_c^2(\mathbb{G}_m/\overline{\mathbb{F}_4},\mathcal{F}) = \mathsf{Swan}_{\infty}(\mathcal{F}),$$

So either

$$h_c^2(\mathbb{G}_m/\overline{\mathbb{F}_4},[3]^{\star}(\mathcal{B})\otimes\mathcal{C})=1$$
 and $h_c^1(\mathbb{G}_m/\overline{\mathbb{F}_4},[3]^{\star}(\mathcal{B})\otimes\mathcal{C})\leq 33,$

or

$$h_c^2(\mathbb{G}_m/\overline{\mathbb{F}_4},[3]^{\star}(\mathcal{B})\otimes\mathcal{C})=0$$
 and $h_c^1(\mathbb{G}_m/\overline{\mathbb{F}_4},[3]^{\star}(\mathcal{B})\otimes\mathcal{C})\leq 32.$

We next calculate the Euler-Poincaré characteristic of $[3]^*(\mathcal{B}) \otimes [3]^*(\mathcal{B})^{\vee}$. Here all slopes are at most 3/8, so

$$\mathsf{Swan}_{\infty}([3]^{\star}(\mathcal{B})\otimes[3]^{\star}(\mathcal{B})^{\vee})\leq 64\times(3/8)=24.$$

Here the $h_c^2 = 1$, and for any finite extension $\mathbb{F}_q/\mathbb{F}_4$, the eigenvalue of $\mathsf{Frob}_{\mathbb{F}_q}$ on this H_c^2 is q. Thus $h_c^1 \leq 25$. By Deligne's fundamental result [De, 3.3.1], the H_c^1 is mixed of weight ≤ 1 . So by the Lefschetz trace formula, for any finite extension $\mathbb{F}_q/\mathbb{F}_4$, the estimate

$$\left| q - \sum_{t \in \mathbb{F}_q^{\times}} (\operatorname{Trace}(\mathsf{Frob}_{t,\mathbb{F}_q} | [3]^{\star}(\mathcal{B})))^2 \right| \le 25\sqrt{q}.$$

Suppose now that $[3]^*(\mathcal{B})$ and \mathcal{C} are not geometrically isomorphic. We obtain a contradiction as follows. The H_c^2 of $[3]^*(\mathcal{B}) \otimes \mathcal{C}$ vanishes, and for any finite extension $\mathbb{F}_q/\mathbb{F}_4$ we have the estimate

$$\left|\sum_{t\in\mathbb{F}_q^\times}\operatorname{Trace}(\mathsf{Frob}_{t,\mathbb{F}_q}|[3]^\star(\mathcal{B}))\operatorname{Trace}(\mathsf{Frob}_{t,\mathbb{F}_q}|\mathcal{C})\right|\leq 32\sqrt{q}.$$

A Magma calculation shows that $[3]^*(\mathcal{B})$ and \mathcal{C} have the same traces at all points of $\mathbb{G}_m(\mathbb{F}_{4^6})$. Thus the sum

$$\sum_{t \in \mathbb{F}_{46}^{\times}} \mathrm{Trace}(\mathsf{Frob}_{t,\mathbb{F}_{46}}|[3]^{\star}(\mathcal{B})) \mathrm{Trace}(\mathsf{Frob}_{t,\mathbb{F}_{q}}|\mathcal{C})$$

ie equal to the sum

$$\sum_{t \in \mathbb{F}_{46}^{\times}} \operatorname{Trace}(\mathsf{Frob}_{t,\mathbb{F}_{46}} | [3]^{\star}(\mathcal{B}))^{2}.$$

This first sum has absolute value $\leq 32 \times 2^6 = 2048$, while the second sum is within $25 \times 2^6 = 1600$ of $q = 4^6 = 4048$. So the first sum is at most 2048, while the second sum is at least 2448, the desired contradiction.

Remark 4.2. In any characteristic $p \neq 3$, the Kloosterman sheaf $\mathcal{K}l_{\psi}(\mathsf{Char}(9) \setminus \mathsf{Char}(1))$ is primitive.

5. Hypergeometric sheaves of type (9,1) in characteristic p=3

In Lemma 3.2, the "downstairs" characters are Char(3), of which only 1 makes sense in characteristic p = 3. So we erase the others.

Theorem 5.1. In characteristic p = 3, pick an prime $r \ge 7$, and fix a character χ of order r. Then either the hypergeometric sheaf

$$\mathcal{H}yp_{\psi}(\chi,\chi^2,\chi^{-3},\text{both square roots of each of }\chi^3,\chi^{-2},\chi^{-1};\mathbb{1})$$

or the hypergeometric sheaf

$$\mathcal{H}yp_{\psi}(\chi,\chi^{2},\chi^{-3},\text{both square roots of each of }\chi^{3},\chi^{-2},\chi^{-1};\chi_{\text{quad}})$$

with $\chi_{\rm quad}$ the quadratic chacter, is 2-tensor induced. More precisely, a multiplicative translate of one of them is the tensor induced local system

$$[2]_{\otimes \star} \mathcal{K} l_{\psi}(\chi, \chi^2, \chi^{-3}).$$

Proof. All Kloosterman sheaves $\mathcal{K}l_{\psi}(\rho_1, \rho_2, \rho_3)$ with $\rho_1\rho_2\rho_3 = 1$ yield isomorphic $I(\infty)$ -representations, cf. [Ka2, 8.6.4], call it Wild₃. Because p = 3, Wild₃ is $P(\infty)$ -irreducible. The dual of $\mathcal{K}l_{\psi}(\rho_1, \rho_2, \rho_3)$ is $\mathcal{K}l_{\overline{\psi}}(\overline{\rho_1}, \overline{\rho_2}, \overline{\rho_3})$, which is in turn geometrically isomorphic to $[t \mapsto -t]^*\mathcal{K}l_{\psi}(\overline{\rho_1}, \overline{\rho_2}, \overline{\rho_3})$. Looking at the $I(\infty)$ -representations, we find an isomorphism

$$\mathsf{Wild}_3^\vee \cong [t \mapsto -t]^* \mathsf{Wild}_3.$$

Let us denote

$$\mathcal{A} := \mathcal{K}l_{\psi}(\chi, \chi^2, \chi^{-3}), \mathcal{C} := \mathcal{K}l_{\psi}(\chi, \chi^2, \chi^{-3}) \otimes [t \mapsto -t]^* \mathcal{K}l_{\psi}(\chi, \chi^2, \chi^{-3}),$$

and

$$\mathcal{B}:=\mathcal{H}yp_{\psi}(\chi,\chi^2,\chi^{-3},\text{both square roots of each of }\chi^3,\chi^{-2},\chi^{-1};\mathbb{1}).$$

By [Ka2, 10.6.5(2(1)], [2] $_{\otimes\star}\mathcal{A}$ and \mathcal{B} have the same I(0)-representations as each other.

What about their $I(\infty)$ -representations? By [Ka2, 10.3.5], the $I(\infty)$ -representation of $\mathcal{C} = [2]^*[2]_{\otimes \star}(\mathcal{A})$ is

$$\mathsf{Wild}_3 \otimes [t \mapsto -t] \mathsf{Wild}_3 \cong \mathsf{Wild}_3 \otimes \mathsf{Wild}_3^{\vee} = \mathbb{1} \oplus \mathsf{End}^0(\mathsf{Wild}_3).$$

Because Wild₃ is $P(\infty)$ -irreducible, the space of $P(\infty)$ -invariants in Wild₃ \otimes Wild^{\vee}₃ is one-dimensional. Thus End⁰(Wild₃) is totally wild. The slopes of End⁰(Wild₃) are $\leq 1/3$, and its rank is 8. By the integrality of Swan conductors, we have $\mathsf{Swan}_{\infty}(\mathsf{End}^0(\mathsf{Wild}_3)) \leq 2$. Recalling that

$$\mathsf{Swan}_{\infty}([2]^{\star}[2]_{\otimes_{\star}}(\mathcal{A})) = \mathsf{Swan}_{\infty}(\mathbb{1} \oplus \mathrm{End}^{0}(\mathsf{Wild}_{3})) = \mathsf{Swan}_{\infty}(\mathrm{End}^{0}(\mathsf{Wild}_{3})),$$

Thus the $I(\infty)$ -representation of $[2]^*[2]_{\otimes_*}(\mathcal{A})$ is the direct sum of a totally wild part of rank 8, with \mathbb{I} . Therefore the $I(\infty)$ -representation of $[2]_{\otimes_*}(\mathcal{A})$ is the direct sum of a totally wild part of rank 8, and either \mathbb{I} or χ_{quad} . Thus $\mathsf{Swan}_{\infty}([2]_{\otimes_*}(\mathcal{A}) \geq 1$, while $\mathsf{Swan}_{\infty}([2]^*[2]_{\otimes_*}(\mathcal{A})) \leq 2$. Therefore

$$\mathsf{Swan}_\infty([2]_{\otimes \star}(\mathcal{A}) = 1, \ \mathsf{Swan}_\infty([2]^{\star}[2]_{\otimes \star}(\mathcal{A})) = 2.$$

Thus the semisimplification of $[2]_{\otimes_{\star}}(\mathcal{A})$ is either the direct sum of a Kloosterman sheaf of rank 8 with one of $\mathbb{1}$, χ_{quad} , or it is a multiplicative translate of one of the asserted hypergeometrics. As neither $\mathbb{1}$ nor χ_{quad} is among the characters occurring in the I(0)-representation of $[2]_{\otimes_{\star}}(\mathcal{A})$, it must be the latter.

Remark 5.2. In Theorem 5.1, each of the specified local systems of type (9,1) can be checked to be primitive.

6. The case
$$p=2$$

Theorem 6.1. In characteristic p = 2, no primitive, geometrically irreducible hypergeometric sheaf \mathcal{H} of type (8, m) with 8 > m > 0 is tensor induced. In the case (8, m) with $6 \ge m > 0$, primitivity is not needed.

Proof. Consider first the case (8,7). If G_{geom} is infinite, we are done by [KT8, 4.1.5]. Suppose G_{geom} is finite and primitive. Since p=2 and w=1, the image Q of $P(\infty)$ in G_{geom} is generated by a single element h which is a (true) reflection; let G_0 denote the normal closure of Q in G_{geom} . Then G_{geom}/G_0 is cyclic of odd order by [KT5, Theorem 4.7]. Moreover, as shown in the proof of [KT8, Theorem 4.2.3], G_0 is either S_9 in its deleted permutation representation, or it is the Weyl group $W(E_8)$ in its reflection representation. In both of these cases, one know that (S+) holds. Indeed, the quasisimple subgroup $G_0^{(\infty)}$ (which is either A_9 or $2 \cdot \Omega_8^+(2)$) acts irreducibly in the representation in question, but has no proper subgroup of index ≤ 8 and no nontrivial irreducible projective representation of degree < 8, see [Atlas], and hence (S+) already holds for $G_0^{(\infty)}$.

Consider next the case of an \mathcal{H} of type (8, m) with $6 \geq m > 0$, and the map of G_{geom} to S_3 arising if \mathcal{H} is 3-tensor induced. The image of $P(\infty)$ is either trivial or it is a 2-group inside S_3 .

Suppose first that the image of $P(\infty)$ is nontrivial. Then up to conjugation it is the cyclic group generated by the transposition (1,2). But the image of $I(\infty)$ normalizes the image of $P(\infty)$. Therefore the image of $I(\infty)$ is again the cyclic group generated by (1,2). In this case, \mathcal{H} is tensor decomposable as an $I(\infty)$ -representation, a contradiction by [KRLT3, 10.4].

Suppose next that the image of $P(\infty)$ is trivial. In this case, the map to S_3 factors through the group $I(\infty)/P(\infty)$, a pro-cyclic group of odd pro-order. So either the image of $I(\infty)$ is trivial, or is the cyclic group generated by a 3-cycle. If the image is trivial, then \mathcal{H} is tensor decomposable as an $I(\infty)$ -representation, contradiction. If the image is nontrivial, then the Kummer pullback $[3]^*\mathcal{H}$ is tensor decomposable. If w := 8 - m, the dimension of the wild part $\mathsf{Wild}_{\mathcal{H}}$ of \mathcal{H} , is prime to 3, then $[3]^*\mathsf{Wild}_{\mathcal{H}}$ is still $I(\infty)$ -irreducible and totally wild (all slopes 3/w), and again a contradiction by $[\mathsf{KRLT3}, 10.4]$.

This $3 \nmid m$ consideration leaves only the cases when \mathcal{H} has type (8,5) or (8,2).

Let us treat first the case of (8,2). Here the wild part Wild_{\mathcal{H}} has rank 6, so is the Kummer direct image $[3]_{\star}$ Wild_{\mathcal{H}} of a totally wild $I(\infty)$ -representation of rank 2 with both slopes 1/2. Then $[3]^{\star}$ Wild_{\mathcal{H}} is

$$[3]^{\star}\mathsf{Wild}_{\mathcal{H}} = [3]^{\star}[3]_{\star}\mathsf{Wild}_{2} \cong \bigoplus_{\zeta \in \mu_{3}} [t \mapsto \zeta t]^{\star}\mathsf{Wild}_{2}.$$

At this point, we invoke the following lemma.

Lemma 6.2. Let p be a prime, q a (possibly trivial) power p^e of p for some $e \geq 0$. Let Wild_q be an irreducible $I(\infty)$ -representation of dimension q with $\mathsf{Swan}_\infty(\mathsf{Wild}_q) = 1$. Then Wild_q is $P(\infty)$ -irreducible, and for any $\lambda \neq 1$ in $\overline{\mathbb{F}_p}^\times$, Wild_q is not $P(\infty)$ -isomorphic to $[t \mapsto \lambda t]^*\mathsf{Wild}_q$.

Proof. In the case q=1, Wild₁ is of the form $\mathcal{L}_{\rho}\otimes\mathcal{L}_{\psi(ax)}$ for some Kummer sheaf \mathcal{L}_{ρ} and some $a\in\overline{\mathbb{F}_{p}}^{\times}$. So in this case the assertion amounts to the observation that

$$\mathcal{L}_{\psi(ax)}\otimes\mathcal{L}_{\psi(\lambda ax)}^{\vee}\cong\mathcal{L}_{\psi(a(1-\lambda)x)}$$

is nontrivial on $P(\infty)$.

Suppose now that q > 1. By [Ka1, 8.6.3(2)], for any $\lambda \neq 1$ in $\overline{\mathbb{F}_p}^{\times}$, we have

$$\det(\mathsf{Wild}_q) = \det([t \mapsto \lambda t]^* \mathsf{Wild}_q).$$

That Wild_q is $P(\infty)$ -irreducible is [Ka1, 1.14.2]. We now argue by contradiction. Suppose that for some $\lambda \neq 1$ in $\overline{\mathbb{F}_p}^\times$, we have a $P(\infty)$ -isomorphism $\mathsf{Wild}_q \cong [t \mapsto \lambda t]^* \mathsf{Wild}_q$. Because $P(\infty) \lhd I(\infty)$, it follows that for some Kummer sheaf \mathcal{L}_ρ , we have an $I(\infty)$ -isomorphism

$$\mathcal{L}_{\rho} \otimes \mathsf{Wild}_q \cong [t \mapsto \lambda t]^* \mathsf{Wild}_q.$$

Comparing determinants, we see that $\det(\mathcal{L}_{\rho} \otimes \mathsf{Wild}_q) = \det(\mathsf{Wild}_q)$. But

$$\det(\mathcal{L}_{\rho} \otimes \mathsf{Wild}_{q}) = \mathcal{L}_{\rho^{q}} \otimes \det(\mathsf{Wild}_{q}).$$

Therefore $\det(\mathsf{Wild}_q) = \mathcal{L}_{\rho^q} \otimes \det(\mathsf{Wild}_q)$, and hence $\rho^q = 1$. Being in characteristic p, this forces $\rho = 1$. Thus we find an $I(\infty)$ -isomorphism $\mathsf{Wild}_q \cong [t \mapsto \lambda t]^* \mathsf{Wild}_q$, contradicting [Ka2, 8.6.3(1)]. \square

We now return to \mathcal{H} of type (8,2) in characteristic p=2. We argue by contradiction. If \mathcal{H} is 3-tensor induced, then $[3]^*\mathcal{H}$ is tensor decomposable, and hence [KRLT3, 10.1, 10.4] linearly tensor decomposable, as $I(\infty)$ -representation. Then $[3]^*\mathcal{H}$ is linearly tensor decomposable as $P(\infty)$ -representation. This representation is

$$2 \cdot \mathbb{1} + \bigoplus_{\zeta \in \mu_3} [t \mapsto \zeta t]^* \mathsf{Wild}_2.$$

The key point is that we have three pairwise nonisomorphic irreducible $P(\infty)$ -representations of dimension 2, along with a two dimensional trivial representation.

Suppose that there exist two dimensional representations $\mathcal{A}, \mathcal{B}, \mathcal{C}$ of $P(\infty)$ such that

$$\mathcal{A} \otimes \mathcal{B} \otimes \mathcal{C} \cong 2 \cdot \mathbb{1} + \bigoplus_{\zeta \in \mu_3} [t \mapsto \zeta t]^{\star} \mathsf{Wild}_2.$$

It cannot be the case that each of $\mathcal{A}, \mathcal{B}, \mathcal{C}$ is the direct sum of two linear characters, for then their tensor product is the sum of eight linear characters. So at least one of them, say \mathcal{A} , is $P(\infty)$ -irreducible. Write $\mathcal{D} := \mathcal{B} \otimes \mathcal{C}$. Then $\mathcal{A} \otimes \mathcal{D}$ has a two dimensional space of $P(\infty)$ -invariants. In other words, \mathcal{A}^{\vee} occurs with multiplicity 2 in \mathcal{D} . But \mathcal{D} has rank 4, while \mathcal{A} has rank 2, so we must have $\mathcal{D} = 2\mathcal{A}^{\vee}$. But then $\mathcal{A} \otimes \mathcal{D} = 2\mathrm{End}(\mathcal{A})$ has all multiplicities even. This is a contradiction, since Wild₂ occurs with multiplicity one.

We now turn to the case of an \mathcal{H} of type (8,5). Here the $P(\infty)$ -representation of $[3]^*\mathcal{H}$ is

$$5 \cdot 1 + \alpha + \beta + \gamma$$
,

with α, β, γ being three distinct nontrivial linear characters of $P(\infty)$. Suppose this is $\mathcal{A} \otimes \mathcal{B} \otimes \mathcal{C}$. In any of the factors is $P(\infty)$ -irreducible, say \mathcal{A} , then exactly as in the (8,2) case the dimension of the space of $P(\infty)$ -invariants is the multiplicity of \mathcal{A}^{\vee} in $\mathcal{B} \otimes \mathcal{C}$. But this multiplicity is at most 2 (rather than 5). So each of $\mathcal{A}, \mathcal{B}, \mathcal{C}$ is the sum of two linear characters, say

$$(A+B)(S+T)(X+Y).$$

Among the 8 linear characters we get by multiplying out, precisely 5 are trivial. Write

$$\mathcal{D} := (S+T)(X+Y).$$

If $A \otimes \mathcal{D}$ contains 4 trivial characters, then \mathcal{D} is $4A^{\vee}$, and all multiplicities are multiples of 4, a contradiction. If $A \otimes \mathcal{D}$ contains just one trivial character, then $B \otimes \mathcal{D}$ contains 4 trivial characters, again a contradiction. At the expense of interchanging A and B, we may assume that

 $A \otimes \mathcal{D}$ contains 3 trivial characters, $B \otimes \mathcal{D}$ contains 2 trivial characters.

Thus among the four characters of \mathcal{D} , namely SX, SY, TX, TY, precisely 3 are A^{\vee} , and precisely 2 are B^{\vee} . At the expense of interchanging S and T, and of interchanging X and Y, we may assume that each of SX, SY, TX is A^{\vee} . Then SX = SY and hence X = Y. But then \mathcal{D} has even

multiplicities, hence also $\mathcal{A} \otimes \mathcal{D}$ has even multiplicities, a contradiction. This completes the (8,5) case, and, with it, the proof of Theorem 6.1.

Theorem 6.3. In characteristic p = 2, no geometrically irreducible hypergeometric sheaf \mathcal{H} of type (9, m) with $9 > m \ge 0$ is tensor induced.

Proof. The case of Kloosterman sheaves of rank 9 is done in [KT5, 3.4]. The case (9,8) is done by combining [KT8, 4.2.3] and [KT8, 4.1.5]. For \mathcal{H} of type (9, m) with $7 \geq m > 0$, we argue as follows. In these cases, the dimension w := 9 - m of the wild part is ≥ 2 . So if \mathcal{H} were 2-tensor induced, the resulting map of $I(\infty)$ to S_2 would be trivial on $P(\infty)$, and the image of a generator of $I(\infty)/P(\infty)$ would be a transposition, cf. [KT5, 3.2(ii)]. But $I(\infty)/P(\infty)$ has pro-order prime to p = 2. So \mathcal{H} is tensor decomposable, contradicting [KRLT3, 10.1, 10.4].

7. The case
$$p=3$$

Theorem 7.1. In characteristic p = 3, no geometrically irreducible hypergeometric sheaf \mathcal{H} of type (8, m) with $8 > m \ge 0$, is tensor induced.

Proof. The case of Kloosterman sheaves of rank 8 is done in [KT5, 3.4]. The case of type (8,7) is done in [KT8, 4.4.1]. Suppose now that \mathcal{H} has type (8,m) with $6 \geq m > 0$. In these cases, \mathcal{H} is tensor indecomposable by [KT5, Lemma 2.4]. By way of contradiction, assume \mathcal{H} is 3-tensor induced.

Consider the case m < 6, so that the dimension w := 8 - m of the wild part is ≥ 3 . Then the resulting map of $I(\infty)$ to S_3 would be trivial on $P(\infty)$, and the image of a generator of $I(\infty)/P(\infty)$ would be a 3-cycle, cf. [KT5, 3.2(ii)]. But $I(\infty)/P(\infty)$ has pro-order prime to p = 3. So \mathcal{H} is tensor decomposable, a contradiction.

Suppose finally that m=6. Then the wild part has dimension 2, and so the image Q of $P(\infty)$ in G_{geom} is generated by an element h of order 3 which acts in the underlying representation V as $\text{diag}(\zeta_3, \overline{\zeta_3}, 1, 1, 1, 1, 1, 1)$. In particular, h has trace 5. Suppose h permutes the 3 tensor factors V_1, V_2, V_3 of V nontrivially. Without any loss of generality, we may assume that

$$h: V_1 \to V_2 \to V_3 \to V_1$$
.

Then the arguments in the proof of [GT3, Lemma 2.25] show that $\operatorname{Trace}(h)=2$. More precisely, if (e_1^1,e_2^1) is a basis of V_1 , then $(e_i^1\otimes e_j^2\otimes e_k^3\mid 1\leq i,j,k\leq 2)$ is a basis of V, where

$$h:e_i^1\mapsto e_i^2\mapsto e_i^3\mapsto e_i^1$$

for i=1,2. Now observe that h permutes the indicated 8 basis vectors of V, fixing exactly two of them: $e_1^1\otimes e_1^2\otimes e_1^3$ and $e_2^1\otimes e_2^2\otimes e_2^3$. Hence $\operatorname{Trace}(h)=2$. Since the element h has trace 5 on V, we conclude that h acts trivially on $\{V_1,V_2,V_3\}$. Thus Q

Since the element h has trace 5 on V, we conclude that h acts trivially on $\{V_1, V_2, V_3\}$. Thus Q acts trivially on $\{V_1, V_2, V_3\}$. This closed condition also holds for every conjugate of Q in G_{geom} . Hence it holds for the Zariski closure G_0 of the normal closure of Q in G_{geom} . In other words, G_0 acts trivially on $\{V_1, V_2, V_3\}$. On the other hand, G/G_0 is a finite cyclic group of order coprime to 3 by [KT5, Theorem 4.7]. It follows that G cannot permute V_1, V_2, V_3 transitively, again a contradiction.

Theorem 7.2. In characteristic p = 3, no hypergeometric sheaf \mathcal{H} of type (9, m) with $9 > m \ge 0$ and $m \ne 1$ is tensor induced.

Proof. The case of (9,8) is done in [KT8, 4.1.1]. It remains to treat the types (9,m) with $7 \ge m > 0$. In these cases, the dimension w := 9 - m of the wild part is ≥ 2 . So if \mathcal{H} were 2-tensor induced, the resulting map of $I(\infty)$ to S_2 would be trivial on $P(\infty)$, and the image of a generator of $I(\infty)/P(\infty)$

would be a transposition, cf. [KT5, 3.2(ii)]. Therefore $[2]^*\mathcal{H}$ would be tensor decomposed, and hence linearly tensor decomposed.

If w is odd, the $[2]^*Wild_{\mathcal{H}}$ is totally wild and $I(\infty)$ -irreducible, contradicting [KRLT3, 10.1, 10.4]. It remains to treat the types (9,7), (9,5), (9,3). The case (9,3) is done in [KT5, 3.6].

For (9,5) and (9,7), we argue as we did in the p=2 treatment of the case of (8,5). Consider first an \mathcal{H} of type (9,5). The $P(\infty)$ -representation of $[4]^*\mathcal{H}$ is

$$5 \cdot 1 + \alpha + \beta + \gamma + \delta$$
,

with $\alpha, \beta, \gamma, \delta$ being four distinct nontrivial linear characters of $P(\infty)$. Suppose this is $\mathcal{A} \otimes \mathcal{B}$. We cannot have \mathcal{A} an irreducible $P(\infty)$ -representation, otherwise the dimension of the invariants in $\mathcal{A} \otimes \mathcal{B}$ is the multiplicity of \mathcal{A}^{\vee} in \mathcal{B} , which is at most 1 (rather than 5).

As irreducible representations of $P(\infty)$ are either linear or of dimension $\geq p = 3$, each of \mathcal{A}, \mathcal{B} is the sum of three linear characters, say

$$(A+B+C)(X+Y+Z).$$

Then of the nine characters we get by multiplying out, precisely 5 are trivial. We cannot have A(X+Y+Z)=31, otherwise each of X,Y,Z is A^{\vee} and all multiplicties would be divisible by 3. Similarly for B(X+Y+Z) and C(X+Y+Z). At the expense of reordering A,B,C, we may assume that each of A(X+Y+Z) and B(X+Y+Z) contains precisely two trivial characters, and C(X+Y+Z) contains precisely one trivial character. At the expense of reordering X,Y,Z, we may assume that $X=Y=A^{\vee}$. Precisely two of X,Y,Z are B^{\vee} , so at least one of X,Y is equal to $B^{\nu}ee$. Therefore $A^{\vee}=B^{\vee}$, i.e., A=B. Then

$$A \otimes B = (2A + C)(2A^{\vee} + Z) = 4 \cdot 1 + 2AZ + 2CA^{\vee} + CZ.$$

But $C(X+Y+Z)=C(2A^{\vee}+Z)$ contains 1 precisely once, so we must have CZ=1. Then $\mathcal{A}\otimes\mathcal{B}$ is $5\cdot 1+2AZ+2CA^{\vee}$, contradicting the fact that each of $\alpha,\beta,\gamma,\delta$ occurs with multiplicity one. Thus $[4]^{\star}\mathcal{H}$, and a fortiori $[4]^{\star}\mathcal{H}$ is tensor indecomposable for $P(\infty)$,

In the case of an \mathcal{H} of type (9,7), the $P(\infty)$ -representation of $[2]^*\mathcal{H}$ is

$$5 \cdot 1 + \alpha + \beta$$
,

with α, β two distinct nontrivial linear characters of $P(\infty)$. Exactly as in the (9,5) case, each of \mathcal{A}, \mathcal{B} is the sum of three linear characters, say

$$(A+B+C)(X+Y+Z)$$
.

None of A(X+Y+Z)B(X+Y+Z)C(X+Y+Z) can be $3\cdot 1$. So each contains at most two trivial characters, giving at most 6 trivial characters (rather than 7). Thus $[2]^*\mathcal{H}$ is tensor indecomposable for $P(\infty)$,

8. The case
$$p \geq 5$$

Theorem 8.1. In character $p \ge 5$, no geometrically irreducible hypergeometric sheaf of type (8, m) with $8 > m \ge 0$, $m \ne 2$, is tensor induced.

Proof. The case of Kloosterman sheaves of rank 8 is done in [KT5, 1.7]. If \mathcal{H} of type (8, m) with 8 > m > 0 is tensor induced, the map of $I(\infty)$ to S_3 must be trivial on the p-group $P(\infty)$ (because $p \geq 5$), and the image of a generator of $I(\infty)/P(\infty)$ must be a three cycle (if it were trivial, \mathcal{H} would be tensor decomposable for $I(\infty)$, contradicting [KRLT3, 10.4]). Then $[3]^*\mathcal{H}$ is tensor decomposable, hence linearly tensor decomposable, for $I(\infty)$, and a fortiori for $P(\infty)$. If the dimension w = 8 - m of the wild part is prime to 3, then $[3]^*\mathsf{Wild}_{\mathcal{H}}$ is totally wild and $I(\infty)$ -irreducible, contradicting [KRLT3, 10.4]. It remains to treat the case (8,5). Here we repeat verbatim the p=2 discussion of the (8,5) case.

Theorem 8.2. In character $p \ge 5$, no geometrically irreducible hypergeometric sheaf of type (9, m) with $9 > m \ge 0$, $m \ne 3$, is tensor induced.

Proof. The case of Kloosterman sheaves of rank 9 is done in [KT5, 1.7]. If \mathcal{H} of type (9, m) with 9 > m > 0 is tensor induced, the map of $I(\infty)$ to S_2 must be trivial on the p-group $P(\infty)$ (because p is odd), and the image of a generator of $I(\infty)/P(\infty)$ must be a transposition (if it were trivial, \mathcal{H} would be tensor decomposable for $I(\infty)$, contradicting [KRLT3, 10.4]). Then $[2]^*\mathcal{H}$ is tensor decomposable, hence linearly tensor decomposable, for $I(\infty)$, and a fortiori for $P(\infty)$. If the dimension w = 9 - m of the wild part is odd, then $[2]^*Wild_{\mathcal{H}}$ is totally wild and $I(\infty)$ -irreducible, contradicting [KRLT3, 10.4].

Thus it remains to treat the cases (9,7), (9,5), (9,1). The case (9,1) is done by [KT5, 1.9]. The cases of (9,7) and (9,5) are done exactly as they were in the p=3 case.

References

- [Asch] Aschbacher, M., Maximal subgroups of classical groups, On the maximal subgroups of the finite classical groups, *Invent. Math.* **76** (1984), 469–514.
- [Atlas] Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A. and Wilson, R. A., Atlas of finite groups. Maximal subgroups and ordinary characters for simple groups. Oxford University Press, Eynsham, 1985.
- [De] Deligne, P., La conjecture de Weil II. Publ. Math. IHES 52 (1981), 313-428.
- [GT2] Guralnick, R. M. and Tiep, P. H., Symmetric powers and a conjecture of Kollár and Larsen, *Invent. Math.* 174 (2008), 505–554.
- [GT3] Guralnick, R. M. and Tiep, P. H., A problem of Kollár and Larsen on finite linear groups and crepant resolutions, J. Europ. Math. Soc. 14 (2012), 605–657.
- [Is] Isaacs, I. M., Character Theory of Finite Groups, AMS-Chelsea, Providence, 2006.
- [Ka1] Katz, N., Gauss sums, Kloosterman sums, and monodromy groups, Annals of Mathematics Studies, 116.
 Princeton Univ. Press, Princeton, NJ, 1988. ix+246 pp.
- [Ka2] Katz, N., Exponential sums and differential equations. Annals of Mathematics Studies, 124. Princeton Univ. Press, Princeton, NJ, 1990. xii+430 pp.
- [Ka3] Katz, N.. From Clausen to Carlitz: low-dimensional spin groups and identities among character sums, Mosc. Math. J. 9 (2009), 57–89.
- [KRLT2] Katz, N., Rojas-León, A., and Tiep, P.H., Rigid local systems with monodromy group the Conway group Co₂, Int. J. Number Theory 16 (2020), 341–360.
- [KRLT3] Katz, N., Rojas-León, A., and Tiep, P.H., A rigid local system with monodromy group the big Conway group 2.Co₁ and two others with monodromy group the Suzuki group 6.Suz, *Trans. Amer. Math. Soc.* 373 (2020), 2007–2044.
- [KRLT4] Katz, N., Rojas-León, A., and Tiep, P.H., Rigid local systems and sporadic simple groups, *Mem. Amer. Math. Soc.* (to appear).
- [KT1] Katz, N., with an Appendix by Tiep, P.H., Rigid local systems on A¹ with finite monodromy, Mathematika 64 (2018), 785–846.
- [KT2] Katz, N., and Tiep, P.H., Rigid local systems and finite symplectic groups, Finite Fields Appl. 59 (2019), 134–174.
- [KT3] Katz, N., and Tiep, P.H., Local systems and finite unitary and symplectic groups, Advances in Math. 358 (2019), 106859, 37 pp.
- [KT4] Katz, N., and Tiep, P.H., Rigid local systems and finite general linear groups, Math. Z. 298 (2021), 1293– 1321.
- [KT5] Katz, N., and Tiep, P.H., Monodromy groups of Kloosterman and hypergeometric sheaves, *Geom. Funct. Analysis* **31** (2021), 562–662.

- [KT6] Katz, N., and Tiep, P.H., Exponential sums and total Weil representations of finite symplectic and unitary groups, Proc. Lond. Math. Soc. 122 (2021), 745–807.
- [KT7] Katz, N., and Tiep, P.H., Hypergeometric sheaves and finite symplectic and unitary groups, Cambridge J. Math. 9 (2021), 577–691.
- [KT8] Katz, N., and Tiep, P.H., Exponential sums, hypergeometric sheaves, and monodromy groups, (submitted).
- [Lee] Lee, T. Y., Hypergeometric sheaves and finite general linear groups, (submitted).
- [ST] Shephard, G. C., and Todd, J. A., Finite unitary reflection groups, Can. J. Math. 6 (1954), 274–304.

Department of Mathematics, Princeton University, Princeton, NJ 08544 $Email\ address:$ nmk@math.princeton.edu

Department of Mathematics, Rutgers University, Piscataway, NJ 08854 $\it Email~address: {\tt tiep@math.rutgers.edu}$