CONDITION (S+) IN RANKS 4, 8, AND 9

NICHOLAS M. KATZ AND PHAM HUU TIEP

ABSTRACT. Condition (S+), introduced in [KT5], plays a key role in the study of Kloosterman
and hypergeometric l-adic local systems in positive characteristic p. Prior results of [KT5], [KT§]
establish (S+) for primitive Kloosterman and hypergeometric sheaves, except possibly in ranks 4,
8, and 9. In this paper we study (S+) in these remaining ranks, and completely determine when
(S+) does or does not hold.

1. INTRODUCTION

We work over an algebraically closed field C of characteristic zero, which we will take to be
Qy for a suitable prime ¢. Given a nonzero finite-dimensional C-vector space V, a group I' and a
representation ® : I' — GL(V'), we say that the pair (I, V') satisfies condition (S+) if each of the
following five conditions is satisfied.

(i) The I'-module V is irreducible.
(ii) The I''module V' is primitive.
(iii) The I'module V is tensor indecomposable.
(iv) The I'module V is not tensor induced.
(v) The determinant det(I'|V) is finite.

One knows [KT5, Lemma 1.6] that (I', V') satisfies condition (S+) if and only if for G the Zariski
closure of ®(T") in GL(V), the pair (G, V) satisfies condition (S+). Condition (S+) is a slightly
strengthening of condition (S) introduced in [GT2], and roughly speaking, corresponds to As-
chbacher’s class S of maximal subgroups of classical groups [Asch].

The importance of condition (S+) is this, cf. [KT5, Lemma 1.1].

Lemma 1.1. Suppose G < GL(V) is a Zariski closed subgroup, dim(V') > 1, and (G,V') satisfies
condition (S+). Then we have three possibiliites:

(a) The identity component G° is a simple algebraic group, and V|geo is irreducible.

(b) G is finite, and almost quasisimple, i.e. there is a finite non-abelian simple group S such
that S < G/Z(G) < Aut(S).

(¢) G is finite and it is an “extraspecial normalizer” (in characteristic r), that is, dim(V') = r”
for a prime r, and G contains a normal r-subgroup R = Z(R)E, where E is an extraspecial
r-group E of order r'+?" acting irreducibly on V, and either R = E or Z(R) = Cj.

The application to hypergeometric sheaves is this. In a given characteristic p, we are given
a prime £ # p and a (geometrically irreducible) Q-hypergeometric sheaf H of type (D, m) with
D > m >0 on G, /F),, definable over some finite extension k/IF,. We view H as a representation
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71 (G /F,) — GLp(Qy). If this pair satisfies condition (S+), we say that H satisfies condition
(S+).

In previous papers [KT5] and [KTS8|, we showed that all primitive H of rank D > 1 satisfy
condition (S+) with the possible exception of ranks 4,8,9. This paper gives the complete
analysis of these exceptional cases. The inverse problem of which of the pairs (G,V) satisfying
(S+) can actually occur as geometric monodromy groups of ¢-adic hypergeometric sheaves is the
subject of several recent papers, see e.g. [KRLT3|, [KRLT4], [KT1], [KT2], [KT3], [KT4], [KT5],
[KT6], [KT7], [KT8], [Lee].

As defined above, the notion of (S+) for a geometrically irreducible hypergeometric sheaf H
requires, in addition to being tensor indecomposable and not tensor induced, being primitive. By
[KT5, 2.3], Kloosterman sheaves of any rank are tensor indecomposable; their being primitive or
not is irrelevant. By [KRLT3, 10.4]), hypergeometric sheaves of any type (D, m) with D > m > 0
and D # 4 are tensor indecomposable; their being primitive or not is irrelevant. [For D = 4, tensor
indecomposability is more complicated, and can fail.] Whether or not a given hypergeometric sheaf
is primitive can be visibly determined by its shape, see [KRLT3, Proposition 1.2].

The main result of the paper is summarized in the table below, in which we consider only
primitive hypergeometric sheaves of a given type (D, m) in a given characteristic p. We specify for
each listed type and characteristic whether all are (S+), or whether there exist some which, despite
being primitive, are not (S+).

type (D, m) | all are (S+) in characteristic | some are not (S+) in characteristic
4,0 p=2 p>2
(4,1) p>2 p=2
(4,2) p=2 p>2
(4,3) p>2 p=2
3,0) P> 2 p=2
(8,1) all p
(8,2) p=23 pP=9
(8,3) all p
(8,4) all p
(8,5) all p
(8,6) all p
®.7) all p
(9,0) all p
(9,1) p£3 p=3
9,2) all p
(97 3) p=2,3 p=>5
(9,4) all p
(9,5) all p
(9,6) all p
9,7) all p
(9,8) all p

TABLE 1. (S+) for primitive hypergeometric sheaves in ranks 4, 8,9
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2. REVIEW OF KNOWN RESULTS IN RANK 4
Lemma 2.1. In characteristic p = 2, any primitive Kloosterman sheaf Kl of rank 4 has (S+).

Proof. By [KT5, proof of 2.3], all Kloosterman sheaves are tensor indecomposable for I(co0). Suppose
Kl is 2-tensor induced. Then the map of I(co) to Sg is trivial on P(c0) (because w = 4 > 2), while
the group I(oc0)/P(00) has odd pro-order. So Kl is tensor decomposable for I(co), contradiction. [

Lemma 2.2. In odd characteristic p, there exist primitive Kloosterman sheaves KCl of rank 4 which
are tensor induced. More precisely, choose a character x of order r > 5, p{r. Then the (primitive)
Kloosterman sheaf

ICZ’IZJ (X? Xv ]17 Xquad)
18 2-tensor induced.

Proof. This is an instance of [Ka3, 6.3]. O

Lemma 2.3. In characteristic p = 2, there exist primitive hypergeometric sheaves H of type (4,1)
which are tensor decomposable. More precisely, choose two odd primes r,s, a character x of order
r and a character p of order s. Then the (primitive) hypergeometric sheaf

Hypy (Xp, X Xp, Xp : 1)

s tensor decomposable.
Proof. This is an instance of [Ka3, 5.2]. O
Lemma 2.4. In odd characteristic p, every hypergeometric sheaf of type (4,1) has (S+).

Proof. By [KRLT3, 10.4], any such # is tensor decomposable on I(c0). If it were 2-tensor induced,
the map of I(c0) to So would be trivial on P(c0). The image of a generator of I(cc)/P(oc0) is a
three cycle (if it were trivial, H would be tensor decomposed for I(c0)). Then [2]*H would be tensor
decomposable for I(co). But [2]*Wildy is totally wild and I(oco)-irreducible (all its slopes are 2/3),
contradicting [KRLT3, 10.4]. O

Lemma 2.5. In characteristic p = 2, every hypergeometric sheaf H of type (4,2) has (S+).
Proof. This is an instance of [KT5, 3.3]. O

Lemma 2.6. In any odd characteristic p, there are primitive hypergeometric sheaves H of type (4,2)
which are 2-tensor induced. More precisely, choose two odd primes r,s, ptrs. Choose characters
a of order r and B of order s. Then the (primitive) hypergeometric sheaf

Hypy(a, B, both square roots of af; 1, af)
s 2-tensor induced.

Proof. This is an instance of [Ka3, 6.5]. O

Lemma 2.7. In characteristic p = 2, there exist primitive hypergeometric sheaves H of type (4,3)
which are not (S+).

Proof. Consider the (primitive) hypergeometric sheaf Hyp,(Char(5) \ {1};1,1,1). By [Ka2, 8.8.1
and 8.8.2], it is orthogonally self-dual. Its Ggeom is not finite, because its “downstairs” characters,

all 1, are not pairwise distinct. By [KT8, 4.1.5], it follows that Gge,y,, = SO(4). Therefore H cannot
be (S+), because its Gigeoy, is N0t a simple algebraic group. O

Lemma 2.8. In characteristic p = 3, primitive hypergeometric sheaves H of type (4,3) satisfy
(S+).
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Proof. Since p = 3 and w = 1, the image Q of P(00) in G := Ggeom of H is generated by a single
element h which is a complex reflection of order 3. If Gy denotes the normal closure of @ in G, then
G/G) is cyclic of order coprime to 3 by [KT5, Theorem 4.7].

First we show that G is irreducible in the underlying representation V. As Gy <G, G permutes
the m isotypic components of V|g,. But G is assumed to be primitive, so m = 1. This means
that if (g is an irreducible constituent of the character of the representation V|g,, then ¢ is G-
invariant. But G/G) is cyclic, so ¢g extends to an irreducible character 6 of G. As ¢ lies above ¢y,
by Gallagher’s theorem [Is, (6.17)], ¢ = O for some irreducible character A of G/Gp. In this case,
A1) =1 and ¢|g, = Oc, = o, which means Gy is irreducible.

Suppose that Gy is an irreducible, but imprimitive subgroup of GL(V') that is generated by
complex reflections of order 3. Such a group, by [ST], has index r for some r € Z>1 in C,, 1Sy for
some m € Zx>y divisible by 3r: Go = A %S4, where

4
A= {diag(eal,...,e‘“) | a; € Z, T|Zal},
=1

€ € C* has order m, and S4 consists of permutational 4 x 4-matrices. The group G contains exactly
3% complex reflections of order 3, each conjugate in Gy to diag(e™/?,1,1, 1) or diag(e=™/3,1,1, 1).
All these elements are contained in the normal subgroup A of Gy, so they do not generate Gg, a
contradiction.

The remaining possibility is that Gy is irreducible and primitive. Then the classification theorem
of [ST] implies that the primitive complex reflection group Gy in dimension 4 must be 3 x Sp,(3)
in one of its 4-dimensional reflection representations, for which it is easy to verify (S+) for Gy and
hence for G as well. O

Lemma 2.9. In characteristic p > 5, all primitive hypergeometric sheaves H of type (4,3) have
(S+).

Proof. This is [KT8, 4.1.1]. O

3. PREVIOUSLY KNOWN CASES OF TENSOR INDUCTION IN RANKS 8 AND 9

Lemma 3.1. In characteristic p > 5, there exist hypergeometric sheaves of type (8,2) which are
3-tensor induced. More precisely, the tensor induction

(3]« Kly (Char(3) \ Char(1))
18 geometrically isomorphic to a multiplicative translate of
Hypy(Char(9) ~\ Char(1); Char(4) ~\ Char(2)).

Proof. This is the special case of [Ka2, 10.6.11] with its x1, x2 taken to be the the two characters
of order 3. ]

Lemma 3.2. In characteristic p > 5, there exist hypergeometric sheaves of type (9,3) which are
2-tensor induced. More precisely, choose a prime r > 7,r # p, and a character x of order r. Then
the tensor induction

[2]®*ICZ¢(X’ X27 X73)
s geometrically isomorphic to a multiplicative translate of

Hypw(x,x2, X3, both square roots of each of x*,x ™2, x~!; Char(3)).

Proof. This is the special case of [Ka2, 10.6.9] with its x1, x2, x3 taken to be the the three characters
2 -3
Xo XX T O
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Remark 3.3. In both Lemmas 3.1 and 3.2, the indicated examples of tensor induced sheaves can
be checked to be primitive.

4. KLOOSTERMAN SHEAVES OF RANK 8 IN CHARACTERISTIC p = 2

In Lemma 3.1, the “downstairs” characters are the two characters of order 4, which make no
sense in characteristic p = 2. So we simply erase them.

Theorem 4.1. In characteristic p = 2, the Kloosterman sheaf KCly,(Char(9) N\ Char(1)) is 3-tensor
induced. More precisely, the tensor induced local system

(3] KCly (Char(3) ~ Char(1))

18 geometrically isomorphic to
Kly(Char(9) ~ Char(1)).

Proof. The argument is not conceptual, but rather by means of a Magma calculation. First we recall
from [KRLT2, Lemma 1.2] some descent results.The sheaf KCl,,(Char(3) ~\ Char(1)) has a descent to
Gy /F4, given by the pure of weight zero lisse sheaf A whose trace function is given as follows: for
k/F,4 a finite extension, and ¢ € k*,

-1
Trace(Froby | A) = Sdes(k/Fa Z (23t + ).
x€k

Let us denote

A(t, k) := Trace(Froby ;| .A).
The sheaf Kly(Char(9) ~\ Char(1)) has a descent to G,,/F4, given by the pure of weight zero lisse
sheaf B whose trace function is given as follows: for k/F, a finite extension, and ¢t € k*,

—1
Trace(Frobt7k|B) = m Z wk(il?g/t + .I')
€k

Let us denote
B(t, k) := Trace(Froby j|B).
[In both cases, we consider these descents to live on G,,/F4 rather than on G,,/F2 in order both to

have integer traces and to be pure of weight zero.]
It suffices to show that the Kummer pullback [3]*(B) and the triple tensor product

C:= [t Ct*(A)
CEps

are are geometrically isomorphic. Indeed, once we have this, we argue as follows. The tensor
induction [3|g4.A is a descent through ]3] of sC, , cf, [Ka2, 10.3.5]. Because B has all slopes 1/8,
its pullback [3]*(B) has all slopes 3/8, so is geometrically irreducible (indeed I(oo)irreducible).
Therefore C is geometrically irreducible. A fortiori, its descent [3]g..4 is geometrically irreducible.
Thus both B and [3]g«A are geometrically irreducible, and their [3]* pullbacks are geometrically
isomorphic. Therefore for some Kummer sheaf £, with p? = 1, we have a geometric isomorphism of
[3]exA with £,2B. By [Ka2, 10.6.9], the I(0)-representation of [3]g..A is precisely Char(9)~ Char(1).
Since B itself has Char(9) ~\ Char(1) as its 1(0)-representation, then both B and £, ® B have this
I(0)-representation, and hence p = 1.

We now prove that [3]*(B) and C are geometrically isomorphic. Because [3]*(B) is geometrically
irreducible and of the same rank (8) as C, it suffices to show there is a nonzero hom (as local
systems on G, /F4 from [3]*(B) to C; any such map is an isomorphism. Up to scalars there is at
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most one isomorphism, as the “ratio” of two is an automorphism of [3]*(B); as [3]*(B) is geometrcally
irreducible, its only endomorphisms are scalars. Thus the hom group

HZ (G /Ty, [3](B)Y ®C)
either vanishes, or has dimenion one. As B is self-dual [Ka2, 8.8.1], this hom group is also
HZ (G /Ty, [3](B) ©C).

We next calculate the Euler-Poincaré characteristic of [3]*(B) ® C. The first factor [3]*(B) has all
slopes 3/8. The second factor has all slopes < 1/2, simply because A and each of its multiplicative
translates has all slopes 1/2. Therefore [3]*(B) ® C has all slopes < 1/2, and rank 64. Thus
Swane ([3]*(B) ®C) < 32 (and [3]*(B) ®C) is tame at 0). For any lisse sheaf F on G,,, which is tame
at 0, the Euler-Poincaré formula gives

he(Gm/Fy, F) = h2(Gp /Fy, F) = Swanse(F),
So either
h%(G,, /Ty, [3]*(B) ® C) = 1 and hl(G,,/Fy4, [3]*(B) @ C) < 33,
or
h2(G /Ty, [3]*(B) ® C) = 0 and hl(G,,/Fy, [3]*(B) @ C) < 32.
We next calculate the Euler-Poincaré characteristic of [3]*(B) ® [3]*(B)Y. Here all slopes are at
most 3/8, so
Swan. ([3]*(B) @ [3]*(B)Y) < 64 x (3/8) = 24.
Here the h2 = 1, and for any finite extension Fy/F4, the eigenvalue of Frobg, on this H, 2is q. Thus

hl < 25. By Deligne’s fundamental result [De, 3.3.1], the H! is mixed of weight < 1. So by the
Lefschetz trace formula, for any finite extension F,/Fy4, the estimate

0= 3 (Trace(Frobyg, [3]*(8)))?| < 254
teFy
Suppose now that [3]*(B) and C are not geometrically isomorphic. We obtain a contradiction as
follows. The H2 of [3]*(B) ® C vanishes, and for any finite extension F,/F; we have the estimate
‘ 3 ﬁace(Frobt,Fq\[3]*(8))Trace(Frobt,Fq|C)\ <324,
teFy

A Magma calculation shows that [3]*(B) and C have the same traces at all points of G, (Fys).
Thus the sum
>~ Trace(Froby g, |[3]*(B)) Trace(Froby g, |C)
teF g
ie equal to the sum
Z Trace(Froby | [3]*(B))>.
teF g

This first sum has absolute value < 32 x 26 = 2048, while the second sum is within 25 x 26 = 1600 of
g = 45 = 4048. So the first sum is at most 2048, while the second sum is at least 2448, the desired
contradiction. O

Remark 4.2. In any characteristic p # 3, the Kloosterman sheaf Kl (Char(9)~Char(1)) is primitive.
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5. HYPERGEOMETRIC SHEAVES OF TYPE (9,1) IN CHARACTERISTIC p = 3

In Lemma 3.2, the “downstairs” characters are Char(3), of which only 1 makes sense in charac-
teristic p = 3. So we erase the others.

Theorem 5.1. In characteristic p = 3, pick an prime r > 7, and fix a character x of order r. Then
either the hypergeometric sheaf

’Hyp¢(x,x2, x 3, both square roots of each of X3, x 72, x }; 1)
or the hypergeometric sheaf
Hypy (X, XZ, )(3, both square roots of each of X3, X*Q, Xfl; Xquad)

with Xquad the quadratic chacter, is 2-tensor induced. More precisely, a multiplicative translate of
one of them is the tensor induced local system

2]+ KLy (0 X2 X 72).

Proof. All Kloosterman sheaves Kly(p1, p2, p3) with pi1p2p3 = 1 yield isomorphic I(co)-represen-
tations, cf. [Ka2, 8.6.4], call it Wilds. Because p = 3, Wilds is P(oo)-irreducible. The dual of
Kly(p1, p2, p3) is ICZE(E, P2, p3), which is in turn geometrically isomorphic to [t — —t]*Kly (p1, P2, P3)-
Looking at the I(oo)-representations, we find an isomorphism

Wildg/ = [t — —t]*Wilds.
Let us denote

A= Ky (x, X% x72), € 1= Kl 06 X% x72) @ [t e ="Kl (O X x77),
and
B = Hyp¢(x,xz, x 3, both square roots of each of 3, x 2, x 1 1).

By [Ka2, 10.6.5(2(1)], [2]g«A and B have the same I(0)-representations as each other.

What about their I(co)-representations? By [Ka2, 10.3.5], the I(oco)-representation of C =
21" [2lex(A) is

Wilds ® [t = —t]Wildz = Wilds @ Wildy =1 @ EndO(Wildg).

Because Wilds is P(o0o)-irreducible, the space of P(oco)-invariants in Wildg@Wildy is one-dimensional.
Thus End’(Wilds) is totally wild. The slopes of End’(Wilds) are < 1/3, and its rank is 8. By the
integrality of Swan conductors, we have Swans, (End®(Wilds)) < 2. Recalling that

Swang ([2]*[2]ex(A)) = Swans (1 @ End®(Wilds)) = Swan., (End®(Wild3)),

Thus the I(co)-representation of [2]*[2]z(.A) is the direct sum of a totally wild part of rank 8, with
1. Therefore the I(oco)-representation of [2]g(A) is the direct sum of a totally wild part of rank 8,
and either 1 or xquad- Thus Swans([2]g«(A) > 1, while Swan ([2]*[2]@«(A)) < 2. Therefore

Swanoo ([2] s (A) = 1, Swaneo([2]*[2]ex(A)) = 2.

Thus the semisimplification of [2]g.(A) is either the direct sum of a Kloosterman sheaf of rank
8 with one of 1, xquad, Or it is a multiplicative translate of one of the asserted hypergeometrics.
As neither 1 nor yquad is among the characters occurring in the I(0)-representation of [2]g.(A), it
must be the latter.

Remark 5.2. In Theorem 5.1, each of the specified local systems of type (9,1) can be checked to
be primitive.
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6. THE CASE p =2

Theorem 6.1. In characteristic p = 2, no primitive, geometrically irreducible hypergeometric sheaf
H of type (8, m) with 8 > m > 0 is tensor induced. In the case (8, m) with 6 > m > 0, primitivity
s not needed.

Proof. Consider first the case (8,7). If Ggeom is infinite, we are done by [KT8, 4.1.5]. Suppose
Glgeom is finite and primitive. Since p = 2 and w = 1, the image @ of P(c0) in Ggeom is generated
by a single element h which is a (true) reflection; let Gy denote the normal closure of @ in Ggeom.
Then Ggeom/Go is cyclic of odd order by [KT5, Theorem 4.7]. Moreover, as shown in the proof of
[KTS8, Theorem 4.2.3], Gy is either Sg in its deleted permutation representation, or it is the Weyl
group W (Eg) in its reflection representation. In both of these cases, one know that (S+) holds.
Indeed, the quasisimple subgroup G(()OO) (which is either Ag or 2 - Qg(?)) acts irreducibly in the
representation in question, but has no proper subgroup of index < 8 and no nontrivial irreducible

projective representation of degree < 8, see [Atlas], and hence (S+) already holds for G(()OO).

Consider next the case of an H of type (8, m) with 6 > m > 0, and the map of Ggeom to Sz
arising if H is 3-tensor induced. The image of P(o0) is either trivial or it is a 2-group inside Ss.

Suppose first that the image of P(co0) is nontrivial. Then up to conjugation it is the cyclic
group generated by the transposition (1,2). But the image of I(c0) normalizes the image of P(o0).
Therefore the image of I(c0) is again the cyclic group generated by (1,2). In this case, H is tensor
decomposable as an I(oo)-representation, a contradiction by [KRLT3, 10.4].

Suppose next that the image of P(c0) is trivial. In this case, the map to Sz factors through the
group I(o0)/P(0), a pro-cyclic group of odd pro-order. So either the image of I(c0) is trivial, or
is the cyclic group generated by a 3-cycle. If the image is trivial, then H is tensor decomposable as
an I(oo)-representation, contradiction. If the image is nontrivial, then the Kummer pullback [3]*H
is tensor decomposable. If w := 8 — m, the dimension of the wild part Wildy of H, is prime to 3,
then [3]*Wildy, is still I(oco)-irreducible and totally wild (all slopes 3/w), and again a contradiction
by [KRLT3, 10.4].

This 3 { m consideration leaves only the cases when H has type (8,5) or (8,2).

Let us treat first the case of (8,2). Here the wild part Wildy has rank 6, so is the Kummer
direct image [3],Wildz of a totally wild I(oco)-representatiomn of rank 2 with both slopes 1/2. Then
[3]*Wildy, is

[3]*Wildg, = [3]*[3],Wildy = €D [t — Ct]*Wild,.
CEp3

At this point, we invoke the following lemma.

Lemma 6.2. Let p be a prime, q a (possibly trivial) power p® of p for some e > 0. Let Wild, be
an irreducible I(oo)-representation of dimension q with Swans(Wild,) = 1. Then Wild, is P(00)-

irreducible, and for any X # 1 in IFT,X, Wild, is not P(o00)-isomorphic to [t — Xt]*Wild,.

Proof. In the case ¢ = 1, Wildy is of the form £, ® L4, for some Kummer sheaf £, and some

ac pr. So in this case the assertion amounts to the observation that

Ly(az) @ Lraz) = Loa(1-Na)

is nontrivial on P(00).
Suppose now that ¢ > 1. By [Kal, 8.6.3(2)], for any A\ # 1 in EX, we have

det(Wild,) = det([t — At]*Wild,).
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That Wild, is P(co)-irreducible is [Kal, 1.14.2]. We now argue by contradiction. Suppose that for
some A # 1 in IETPX, we have a P(00)-isomorphism Wild, = [t — At]*Wild,. Because P(00) <1 I(00),
it follows that for some Kummer sheaf £,, we have an I(oco)-isomorphism
L, ® Wild, = [t — At]*Wild,,.
Comparing determinants, we see that det(£, ® Wild,) = det(Wild,). But
det(L, ® Wildg) = L, ® det(Wild,).

Therefore det(Wildy) = £, ® det(Wild,), and hence p? = 1. Being in characteristic p, this forces
p = 1. Thus we find an I(co)-isomorphism Wild, = [t — At]*Wild,, contradicting [Ka2, 8.6.3(1)]. O

We now return to H of type (8,2) in characteristic p = 2. We argue by contradiction. If
H is 3-tensor induced, then [3]*H is tensor decomposable, and hence [KRLT3, 10.1, 10.4] linearly
tensor decomposable, as I(oco)-representation. Then [3]*H is linearly tensor decomposable as P(c0)-
representation. This representation is

2.1+ @[t — ¢t Wild,.
CEps
The key point is that we have three pairwise nonisomorphic irreducible P(oco)-representations of
dimension 2, along with a two dimensional trivial representation.
Suppose that there exist two dimensional representations A, B,C of P(co) such that

ARBRC=2-1+ (Pt — Ct]*Wilds.
CEP3
It cannot be the case that each of A, B,C is the direct sum of two linear characters, for then their
tensor product is the sum of eight linear characters. So at least one of them, say A, is P(c0)-
irreducible. Write D := B® C. Then A ® D has a two dimensional space of P(oo)-invariants. In
other words, A" occurs with multiplicity 2 in D. But D has rank 4, while A has rank 2, so we must
have D = 24Y. But then A ® D = 2End(A) has all multiplicities even. This is a contradiction,
since Wildy occurs with multiplicity one.
We now turn to the case of an H of type (8,5). Here the P(oo)-representation of [3]*H is

5-14+a+5+7,

with «, 8,~ being three distinct nontrivial linear characters of P(c0). Suppose this is A ® B ® C.
In any of the factors is P(co)-irreducible, say A, then exactly as in the (8,2) case the dimension of
the space of P(oco)-invariants is the multiplicity of A" in B ® C. But this multiplicity is at most 2
(rather than 5). So each of A, B,C is the sum of two linear characters, say

(A+B)(S+T)(X+Y).
Among the 8 linear characters we get by multiplying out, precisely 5 are trivial. Write
D:=(S+T)(X+Y).

If A ® D contains 4 trivial characters, then D is 4AY, and all multiplicities are multiples of 4, a
contradiction. If A® D contains just one trivial character, then B ® D contains 4 trivial characters,
again a contradiction. At the expense of interchanging A and B, we may assume that

A ® D contains 3 trivial characters, B ® D contains 2 trivial characters.

Thus among the four characters of D, namely SX,SY,TX,TY, precisely 3 are AV, and precisely
2 are BY. At the expense of interchanging S and T, and of interchanging X and Y, we may
assume that each of SX,SY,TX is AY. Then SX = SY and hence X =Y. But then D has even
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multiplicities, hence also A ® D has even multiplicities, a contradiction. This completes the (8,5)
case, and, with it, the proof of Theorem 6.1. ]

Theorem 6.3. In characteristic p = 2, no geometrically irreducible hypergeometric sheaf H of type
(9,m) with 9 > m > 0 is tensor induced.

Proof. The case of Kloosterman sheaves of rank 9 is done in [KT5, 3.4]. The case (9, 8) is done by
combining [KT8, 4.2.3] and [KT8, 4.1.5]. For H of type (9, m) with 7 > m > 0, we argue as follows.
In these cases, the dimension w := 9 —m of the wild part is > 2. So if H were 2-tensor induced, the
resulting map of I(oco0) to Sg would be trivial on P(c0), and the image of a generator of I(0c0)/P(c0)
would be a transposition, cf. [KT5, 3.2(ii)]. But I(co0)/P(oc0) has pro-order prime to p = 2. So H
is tensor decomposable, contradicting [KRLT3, 10.1, 10.4]. O

7. THE CASE p =3

Theorem 7.1. In characteristic p = 3, no geometrically irreducible hypergeometric sheaf H of type
(8, m) with 8 > m >0, is tensor induced.

Proof. The case of Kloosterman sheaves of rank 8 is done in [KT5, 3.4]. The case of type (8,7)
is done in [KT8, 4.4.1]. Suppose now that H has type (8,m) with 6 > m > 0. In these cases,
‘H is tensor indecomposable by [KT5, Lemma 2.4]. By way of contradiction, assume # is 3-tensor
induced.

Consider the case m < 6, so that the dimension w := 8 — m of the wild part is > 3. Then the
resulting map of I(c0) to S would be trivial on P(c0), and the image of a generator of I(c0)/P(c0)
would be a 3-cycle, cf. [KT5, 3.2(ii)]. But I(c0)/P(c0) has pro-order prime to p = 3. So H is tensor
decomposable, a contradiction.

Suppose finally that m = 6. Then the wild part has dimension 2, and so the image @ of P(o0)
in Ggeom is generated by an element h of order 3 which acts in the underlying representation V'
as diag((3,(3,1,1,1,1,1,1). In particular, h has trace 5. Suppose h permutes the 3 tensor factors
V1, Vo, V3 of V nontrivially. Without any loss of generality, we may assume that

h:Vi—=Vy— V3 — V.

Then the arguments in the proof of [GT3, Lemma 2.25] show that Trace(h) = 2. More precisely, if
(el,el) is a basis of Vi, then (e} ® e? ®ed |1 <1i,j,k <2)is a basis of V, where

h:el s e? el el

for i = 1,2. Now observe that h permutes the indicated 8 basis vectors of V, fixing exactly two of
them: el ® €2 ® e} and el ® €2 ® €3. Hence Trace(h) = 2.

Since the element h has trace 5 on V| we conclude that h acts trivially on {V;, V5, V3}. Thus @
acts trivially on {V1, Vs, V3}. This closed condition also holds for every conjugate of @ in Ggeom.
Hence it holds for the Zariski closure Gg of the normal closure of () in Ggeom. In other words, Gg
acts trivially on {Vi, V2, V3}. On the other hand, G/Gy is a finite cyclic group of order coprime
to 3 by [KT5, Theorem 4.7]. It follows that G cannot permute Vi, Vs, V3 transitively, again a
contradiction. g

Theorem 7.2. In characteristic p = 3, no hypergeometric sheaf H of type (9, m) with 9 > m >0
and m # 1 is tensor induced.

Proof. The case of (9, 8) is done in [KT8, 4.1.1]. It remains to treat the types (9, m) with 7 > m > 0.
In these cases, the dimension w := 9 —m of the wild part is > 2. So if H were 2-tensor induced, the
resulting map of I(oco0) to Sg would be trivial on P(c0), and the image of a generator of 1(c0)/P(c0)
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would be a transposition, cf. [KT5, 3.2(ii)]. Therefore [2]*H would be tensor decomposed, and
hence linearly tensor decomposed.

If w is odd, the [2]*Wildy is totally wild and I(oo)-irreducible, contradicting [KRLT3, 10.1, 10.4].

It remains to treat the types (9,7),(9,5), (9,3). The case (9,3) is done in [KT5, 3.6].

For (9,5) and (9,7), we argue as we did in the p = 2 treatment of the case of (8,5). Consider
first an H of type (9,5). The P(oo)-representation of [4]*H is

5-1+a+B+7y+0,

with «a, 8,7, ¢ being four distinct nontrivial linear characters of P(o0). Suppose this is A ® B. We
cannot have A an irreducible P(oo)-representation, otherwise the dimension of the invariants in
A ® B is the multiplicity of A" in B, which is at most 1 (rather than 5).

As irreducible representations of P(oco) are either linear or of dimension > p = 3, each of A, B is
the sum of three linear characters, say

(A+B+C)(X +Y + 2).

Then of the nine characters we get by multiplying out, precisely 5 are trivial. We cannot have
A(X +Y + Z) = 31, otherwise each of X,Y,Z is AV and all multiplicties would be divisible by 3.
Similarly for B(X +Y + Z) and C(X + Y + Z). At the expense of reordering A, B,C, we may
assume that each of A(X +Y + Z) and B(X + Y + Z) contains precisely two trivial characters,
and C(X 4+ Y + Z) contains precisely one trivial character. At the expense of reordering X,Y, Z,
we may assume that X =Y = AY. Precisely two of X,Y, Z are BY, so at least one of X,Y is equal
to BYee. Therefore AY = BV, i.e., A= B. Then

AB=(2A+C)2AY +2)=4-1+2AZ +20AY +CZ.

But C(X +Y +Z) = C(2AY + Z) contains 1 precisely once, so we must have CZ = 1. Then A® B
is 5-1+4+2AZ + 2CAY, contradicting the fact that each of «a, 3,v,d occurs with multiplicity one.
Thus [4]*H, and a fortiori [4]*H is tensor indecomposable for P(oc0),

In the case of an H of type (9,7), the P(oo)-representation of [2]*H is

5-14a+p,

with «, 5 two distinct nontrivial linear characters of P(co0). Exactly as in the (9,5) case, each of
A, B is the sum of three linear characters, say

(A+B+C)(X +Y + 2).

None of A(X+Y +2Z)B(X+Y +Z)C(X+Y +Z) can be 3-1. So each contains at most two trivial
characters, giving at most 6 trivial characters (rather than 7). Thus [2]*H is tensor indecomposable
for P(o0), O

8. THE CASE p > 5

Theorem 8.1. In character p > 5, no geometrically irreducible hypergeometric sheaf of type (8, m)
with 8 > m >0, m # 2, is tensor induced.

Proof. The case of Kloosterman sheaves of rank 8 is done in [KT5, 1.7]. If H of type (8, m) with
8 > m > 0 is tensor induced, the map of I(co) to Sg must be trivial on the p-group P(co) (because
p > 5), and the image of a generator of I(00)/P(0c0) must be a three cycle (if it were trivial, H would
be tensor decomposable for I(c0), contradicting [KRLT'3, 10.4]). Then [3]*H is tensor decomposable,
hence linearly tensor decomposable, for I(c0), and a fortiori for P(c0). If the dimension w =8 —m
of the wild part is prime to 3, then [3]*Wildy is totally wild and I(oo)-irreducible, contradicting
[KRLT3, 10.4]. It remains to treat the case (8,5). Here we repeat verbatim the p = 2 discussion of
the (8,5) case. O
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Theorem 8.2. In character p > 5, no geometrically irreducible hypergeometric sheaf of type (9, m)
with 9 > m >0, m # 3, is tensor induced.

Proof. The case of Kloosterman sheaves of rank 9 is done in [KT5, 1.7]. If H of type (9,m)
with 9 > m > 0 is tensor induced, the map of I(co) to So must be trivial on the p-group P(oo)
(because p is odd), and the image of a generator of I(c0)/P(c0) must be a transposition (if it were
trivial, H would be tensor decomposable for I(c0), contradicting [KRLT3, 10.4]). Then [2]*H is
tensor decomposable, hence linearly tensor decomposable, for I(c0), and a fortiori for P(c0). If the
dimension w = 9 — m of the wild part is odd, then [2]*Wildy is totally wild and I(oco)-irreducible,
contradicting [KRLT3, 10.4].

Thus it remains to treat the cases (9,7),(9,5),(9,1). The case (9,1) is done by [KT5, 1.9]. The
cases of (9,7) and (9,5) are done exactly as they were in the p = 3 case. O
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