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Abstract

A longstanding challenge in biology is accurately analyzing images acquired using microscopy. Recently, machine learning (ML)
approaches have facilitated detailed quantification of images that were refractile to traditional computation methods. Here, we detail
a method for measuring pigments in the complex-mosaic adult Drosophila eye using high-resolution photographs and the pixel clas-
sifier ilastik [1]. We compare our results to analyses focused on pigment biochemistry and subjective interpretation, demonstrating
general overlap, while highlighting the inverse relationship between accuracy and high-throughput capability of each approach.
Notably, no coding experience is necessary for image analysis and pigment quantification. When considering time, resolution, and

accuracy, our view is that ML-based image analysis is the preferred method.
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Introduction

In Drosophila melanogaster, the white gene resides at the distal end
of the X chromosome in euchromatin and encodes an ABC-type
guanine transporter responsible for the import of drosopterines
and ommochromes that pigment the eyes [2] (Fig. 1A). A muta-
tion in white results in the white eye phenotype due to lack of pig-
ment import to developing ommatidia [3] (Fig. 1B). The first
example of eye variegation in Drosophila was recovered by
Hermann Muller during an X-ray mutagenesis screen in 1930 [4].
He recovered an inversion in which the euchromatic white* was
juxtaposed with pericentric heterochromatin resulting in
Position Effect Variegation (PEV, Fig. 1C) [5]. An abnormal bound-
ary between heterochromatin and euchromatin generally exhib-
its PEV, whereby heterochromatin spreads into the nearby gene
and deactivates expression in some cells but not others. PEV is
best demonstrated with cell-autonomous phenotypes that can be
viewed with large cell numbers in essentially two dimensions—
the Drosophila eye is a textbook example with ideal features for
studying PEV [6-9] (Fig. 1D).

In addition to chromosome rearrangements, transposon
movement into heterochromatin may produce mosaic gene ex-
pression because any genes within the transposon are subject to
PEV [10, 11]. The observed patterns of mosaic expression are
unique depending on the heterochromatin causing the PEV [12].
Generally, Y and pericentric heterochromatin cause patched (or
sectored/clonal) inactivation while telomeric and chromosome 4
heterochromatin cause salt-and-pepper variegation. (The latter
two types are also resistant to enhancer and suppressor modi-
fiers.) These patterns may reflect the developmental timing of

inactivation and maintenance in different heterochromatin types
[13, 14], but the topic remains an active area of research [15].

Mutant alleles which either enhance or suppress the variega-
tion phenotype have generated considerable insight into how
chromatin states are defined and maintained. By 1969, two
mutations had been discovered which altered the PEV phenotype
[16, 17]. Since then, ~500 dominant second-site mutations have
been identified in ~150 genes by genetic screening, and ~30
genes have been studied in detail [18] (reviewed in the literature
[6-8, 12]). Mutations changing the eye from variegating to white
are enhancers of variegation, E(var), and contribute to euchroma-
tin formation and active gene expression (i.e. when an E(var) is
dysfunctional, heterochromatin predominates and white* is inac-
tivated). Alternatively, mutants turning the eye from variegating
to red are suppressors of variegation and normally contribute to
heterochromatin formation (e.g. HP1 = Su(var)2-5) [19].

When paired with a suppressor or enhancer mutation, the
shift in eye color is often dramatic, nearly complete, and there is
little need for accurate quantification [18] (Fig. 1 D vs E&F).
However, some modifiers have more subtle effects on eye color
and require higher-resolution photos and improved accuracy for
quantification methods. Furthermore, even within a PEV express-
ing stock isolate eyes can be highly variable, and a broad pheno-
typic range of eye color may occur in a single vial (Fig. 2). This
highlights the critical need for improved techniques related to
data generation, analysis, and interpretation. Researchers have
recently developed computational methods to quantify high-
resolution images of fly eyes [20, 21], focusing on the ommatidia
organization that results from a tightly regulated developmental
process. However, these methods do not measure Drosophila
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Figure 1. A: Wildtype (white™) eye from C(1)DX stock; B: white mutant from white

1118

stock; C: illustration of X chromosome rearrangement forming In

(1)w™ chromosome, with the centromere (black circle), heterochromatin (thicker grey bar), and euchromatin (thin black line). A break in
heterochromatin occurs, followed by an inversion bringing the euchromatic tip near pericentric heterochromatin; D: PEV eye from In(1)w™ stock; E:

enhancement of variegation; and F: suppression of variegation.

Figure 2. Phenotypic variation within a single vial of the In(1)w™ stock. Eyes are from 16 isogenic male siblings.

ocular pigment, which is required for PEV screens and other anal-
yses (e.g. FLP-induced mitotic recombination screens [22, 23] and
RNAI controls [24]).

There are three methods currently used to quantify ocular
pigment (or proxies) in Drosophila: RT-qPCR for the white gene
[25], image grayscale conversion [26], and pigment extraction [26,
27]. While RT-gPCR quantification of white transcription does not
directly assay the ocular pigment phenotype, it enables absolute
quantification and the ability to assay timepoints pre-pupation
when pigment is first imported. Challenges associated with this
method include complex experimental designs, the potential for
relatively low reproducibility because each amplification cycle
contributes to the data, and the inability to assess single cells.
Grayscale conversion and measurement in imageJ [28] enable rel-
atively fast and accurate quantification. However, this process
typically involves low-resolution images for 8-bit conversion,
providing less information and introducing error due to lighting
shifts and shadows. Finally, quantification of chemically

extracted pigments using a spectrophotometer has been widely
used [2, 25-27], including by us here. Extraction of ocular pig-
ments in acidified ethanol typically requires a pool of 5-25 (or
more) Drosophila heads per absorbance reading, although this
could be plausibly optimized for single flies or even individual
eyes in the future. Pigments can be easily extracted and quanti-
fied, making this a useful approach for over 80 years [27].

To our knowledge, researchers have not developed computa-
tional software to specifically quantify Drosophila eye pigment
from images. Here, we present a guide for using the freely avail-
able ML software ‘ilastik” in conjunction with Fiji (image]) to
quantify eye pigments, which provides a straightforward and
easily accessible approach for quantification. We utilize pixel
classification wherein the ilastik user first imports images to the
software for training. Training consists of the user identifying
classes (or labels), followed by labeling using a mouse and cursor.
This applies label-specific brush strokes directly to the image,
with no coding experience required. ilastik classifies pixels using

GzZoz udy 2| uo 1sanb Aq 599G616//200¥edq/L/01/e|o1e/Spoylewolq/wod dno-olwsepede//:sdiy woly papeojumod



an output of image filters (pixel color, intensity, edge-ness, and
texture), and a Random Forest with 100 trees as a classifier [1]. A
Random Forest [29] is preferred over non-linear classifiers since
it has minimal parameters and is more robust. By training the
pixel classification tool within ilastik on 10 high-resolution
images, ilastik generates probability maps for hundreds of previ-
ously unseen and untrained images, which can be used to quan-
tify pigment areas in image]. We compare the results of ilastik
quantification to qualitative binning of flies into red/white cate-
gories and to results obtained through quantification of chemi-
cally extracted pigments demonstrating ilastik quantification is
consistent with observations gained using historic methods on
modern instruments (pigment extraction + nanodrop).

Materials and methods
Fly crosses

Fly stocks were maintained at room temperature on standard fly
food. Young males were mated with virgin females at 26°C for
24 hours. Adult offspring eclosed by day 10 and were imaged on
day 14 (Fig. 3).

Microscopy and imaging

Image stacks were taken on an Olympus BH2 upright microscope
with 10x objective and Sony DSLR mirrorless camera. Flies were
dissected and imaged 4days after eclosing (Supplementary Fig.
1). One eye was imaged per fly. Image acquisition was manual
(with shutter remote) including Z-step size for a series of 9-17
images per eye. The image series was then stacked together in
HeliconFocus to produce a singular pseudo-3D image file with
most ommatidia in focus.

Image analysis—training ilastik

Ten images were imported to ilastik for pixel classification train-
ing. Labels were created for red, white, and hair pixels. Each
training image was manually painted with the mouse and cursor
to assign pixels to respective labels, taking extra care to adjust
the software prediction when pixel classes were incorrectly pre-
dicted (Fig. 4, and Supplementary Fig. 2). After training, predic-
tion maps (three-channel HDFS files) were batch exported for all
eye images (267 total in our dataset).

Image analysis—measurements in image]J

HDFS files were individually imported to image] (Supplementary
Fig. 3, import macro available). The “threshold” tool was used to
threshold the prediction map for each label at a minimum score
of 0.5, eliminating low-scoring data. This step generated a binary
image that we used to measure the area fraction for each label
(Fig. 5, threshold macro available). Using the “oval brush
selection” tool, a region of interest (ROI) was identified that
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included only ommatidia. Using the “measure” tool, the area was
calculated for each channel or pixel class. We plot the normal-
ized area fractions for the red label of each image in Fig. 6B (de-
tailed in protocol section). We have successfully carried out the
methods described here using a 2020 Macbook Air, with 8GB of
RAM and an Apple M1 chip.

Pigment extraction and absorbance
for comparison

Fly heads were removed with forceps and placed in a 1.5ml
Eppendorf tube (25 heads/tube) with 100l acidified ethanol (pH=2)
for 72hours. After 72hours, 2l of extract was used to measure ab-
sorbance at 485 nm on a Nanodrop spectrophotometer.

Results

A key strength of ML-based image analysis is the power to distin-
guish subtle eye pigment differences within individuals and between
closely related stocks. This analysis also avoids investigator bias and
enables multiple individuals to contribute to the same data set.

A typical observation when working with PEV flies is that they
naturally acquire suppressor mutations that revert the eye color
to wildtype. Due to the accumulation of multiple trans-acting
suppressor mutations [26], geneticists select for variegation en-
hancement (whiter eyes) every few generations to maintain their
stocks. Thus, PEV stocks tend to have different levels of variega-
tion without selective inbreeding. We examined eyes from two
isolated Drosophila melanogaster PEV stocks carrying the same
chromosome rearrangement In(1)w™* A&B, starved In(1)w™ flies,
and white eyes from the w''*® stock. Starved flies were aged be-
yond 3weeks and have severely enhanced variegation due to
malnutrition and developmental delays [30]. w'''® flies were
used as a control.

We followed the above approach (protocol available, S1), in-
cluding quantification using the three methods listed in Fig. 3.
Importantly, our results for genotype comparisons maintain con-
gruency between the methods: In(1)w™*-A is more red than In(1)
w™*-B for binning (P =.0268), imaging (P =.00193), and extraction
(P=.03005). In(1)w™*-starved is also more red than w'**® using im-
aging (P <.00001). Each method has inherent strengths and weak-
nesses. The binning strategy (Fig. 6A) is rapid and high
throughput, since whole flies are scored based on human inter-
pretation of eye pigment. In this method, flies are grouped into
three categories, bins of <33% red, 33-66% red, and >66% red.
Individual data points represent the number of >66% red males
counted in a single day. This approach is largely subjective and
the least accurate of the three strategies. Adding bins to this
method will increase precision at the expense of throughput or
assay time, although coarse bins may preclude statistical analysis as
is the case for In(1)w™*-starved versus w'**® (Fig. 6A). Image analysis

1] Score all eyes qualitatively

| w3 Photograph eyes and analyze images

3] Extract pigments and measure absorbance

Figure 3. Rearing PEV flies for ommatidia imaging. Temperature and mating times are chosen to optimize offspring emergence on day 10 and to ensure
flies are the same age during imaging. F; progeny are scored on day 10, sons are saved in a new vial and aged 4 more days to allow for white expression
and pigment import. Only males are assayed because In(1)w™ is the stock X chromosome.
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Figure 4. ilastik training. A: control panel for ilastik GUI, B: training ilastik to identify white ommatidia; C: training ilastik to identify pigmented

ommatidia; D: Live Update shows how the entire image will be classified.
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Figure 5. Examples of binary masks generated after thresholding HDF5
files to a minimum of 0.5 in imageJ. White = positive pixel for that label.
Black = negative pixel for that label. White eyes have no ommatidia that
are positive in the red channel and all are positive in the white channel.
Starved eyes have several red-positive cells, and the well-fed PEV lines
have many red ommatidia. ilastik can make predictions of entire raw
images (top two rows) or image cutouts (bottom two rows).

(Fig. 6B) is the most accurate method, as it examines individual eyes
and can detect minute changes in pigment between ommatidia. It is
also the slowest, and most labor intensive since it involves photogra-
phy, image preparation, software training, and computing. Pigment
extraction (Fig. 6C) is quantitative, fast, and high throughput, but
variation among individuals is undetectable due to the pooled ap-
proach. Pooling also requires many more individual flies, requiring
stock expansion to achieve adequate sample sizes.

Discussion

Our results demonstrate that ilastik provides a useful and acces-
sible method for quantification of eye pigmentation. While differ-
ences between genotypes acquired by binning flies and
extracting/measuring pigments align with results of our method,

ilastik is quantitative and enables analysis of individual-level
variation. The method we outline can be immediately leveraged
by the community for PEV quantification. We discuss relevant
considerations, constraints, and benefits of this method below.

The results of ML-based approaches like ilastik depend on the
quality and quantity of images in the training set [1]. Ultimately, users
must define the adequate number of training images for their project
given their processing ability and research focus. The number of
Images required for a training set is not fixed and depends on image
complexity and the desired classification accuracy. We trained the
pixel classifier on a set of 10 images for this work, which was adequate
for our needs (Supplementary Fig. 4). Accuracy of pixel classification
has two variables: the number of photos and the number of teaching
stroke pixels. Increasing photo numbers will improve errors caused by
lighting reflections and shadow differences, and increasing strokes
can improve and potentially correct predictions. Therefore, it is best
to choose strokes carefully to train the software based on the predic-
tion errors observed. As noted by the ilastik developers, ensuring that
training images represent the complete range of features in the data
set is more important than the inclusion of a large numbers of
images. For our data, quantification improved as training images were
added but the returns diminished after approximately seven to eight
images, with us approaching computing limits on a typical machine
at ~10 images. Clear tradeoffs exist between computing power and
training strength with larger training sets—and many large-brushed
training strokes—requiring more computing power.

Computing relative areas of a pseudo-3d image is challenging
since the ommatidia at the boundaries of the eye have signifi-
cantly less surface area in the image. An ideal solution is to as-
sign each ommatidia a datapoint which can be accomplished
with instance segmentation. If each ommatidia is a discrete ob-
ject, those RGB data can then be exported independently, result-
ing in quantification focused on cell counts rather than surface
area. We investigated this concept in ilastik using a control eye
and assigning labels to “cell” and “cell boundary” during pixel
classification. We then importing the HDF5 file to ilastik for ob-
ject classification (Supplementary Fig. 5). While we have not fully
applied this method to work for PEV images, it highlights that the
accuracy of using ML to quantify complex phenotypes depends
on the user-defined question, data quality, and the end-goal.

ML-based image analysis provides several benefits over alterna-
tive methods. First, researchers can tailor the process to their avail-
able resources, while maintaining reproducible and consistent
results of individual-level variation not possible using other methods.
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Figure 6. Results for three eye pigment quantification methods. P-values are from Mann-Whitney U tests: P; = comparison of stocks A & B, P, =
comparison of stocks starved & w'''® A: qualitative binning of whole flies into bins of <33%red, 33-66%red, and >66%red, N = red flies/total, P; =.0268,
P, = NA (coarse binning precludes statistical analysis); B: results from ilastik-based image analysis, N = individual eye images, P; =.00193, P, <.00001;
C: distribution of absorbance values after pigment extraction N = vials with 25 heads each (N*2*25 = # of eyes) P; =.03005, P, = NA (pooling requires

many more flies for sampling to enable statistical analysis).

Second, classification of pixels in ommatidia that are either orange
or pink (or reducing errors such as hairs or reflections) is possible by
adding additional labels. Analysis can be applied to other Drosophila
screens that require red: white quantification in the eye such as FLP/
FRT mitotic recombination assays. Finally, similar ilastik-based pixel
classification workflows could be implemented to quantify many
other complex mosaic phenotypes such as GFP in living tissues, yel-
low on cuticles, mosaic patches of multiple-wing-hairs, etc [15, 31].
While other ML-based approaches could be leveraged for these anal-
yses [32, 33], ilastik is accessible to non-experts with no previous cod-
ing proficiency and is designed for interactive training with manual
user guiding of the classifier. ilastik also estimates which region of
the raw data requires processing at any given moment, reducing
RAM requirements and allowing everyday computers to handle large
datasets. Comparing the results of ilastik to coding-based ML
approaches [33]—with emphasis on the sensitivity of results to the
quality and quantity of data in the training set given computational
constraints—is an obvious direction for future work.

We recommend using multiple methods to determine PEV lev-
els in any given variegating stock. When considering resolution,
and accuracy, our view is that ML-based imaging is a preferred
method, and ilastik is an accessible option for users. We hope
this protocol is useful to the community.
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