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Abstract 

A longstanding challenge in biology is accurately analyzing images acquired using microscopy. Recently, machine learning (ML) 
approaches have facilitated detailed quantification of images that were refractile to traditional computation methods. Here, we detail 
a method for measuring pigments in the complex-mosaic adult Drosophila eye using high-resolution photographs and the pixel clas
sifier ilastik [1]. We compare our results to analyses focused on pigment biochemistry and subjective interpretation, demonstrating 
general overlap, while highlighting the inverse relationship between accuracy and high-throughput capability of each approach. 
Notably, no coding experience is necessary for image analysis and pigment quantification. When considering time, resolution, and 
accuracy, our view is that ML-based image analysis is the preferred method.
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Introduction
In Drosophila melanogaster, the white gene resides at the distal end 
of the X chromosome in euchromatin and encodes an ABC-type 
guanine transporter responsible for the import of drosopterines 
and ommochromes that pigment the eyes [2] (Fig. 1A). A muta
tion in white results in the white eye phenotype due to lack of pig
ment import to developing ommatidia [3] (Fig. 1B). The first 
example of eye variegation in Drosophila was recovered by 
Hermann Muller during an X-ray mutagenesis screen in 1930 [4]. 
He recovered an inversion in which the euchromatic whiteþ was 
juxtaposed with pericentric heterochromatin resulting in 
Position Effect Variegation (PEV, Fig. 1C) [5]. An abnormal bound
ary between heterochromatin and euchromatin generally exhib
its PEV, whereby heterochromatin spreads into the nearby gene 
and deactivates expression in some cells but not others. PEV is 
best demonstrated with cell-autonomous phenotypes that can be 
viewed with large cell numbers in essentially two dimensions— 
the Drosophila eye is a textbook example with ideal features for 
studying PEV [6–9] (Fig. 1D).

In addition to chromosome rearrangements, transposon 
movement into heterochromatin may produce mosaic gene ex
pression because any genes within the transposon are subject to 
PEV [10, 11]. The observed patterns of mosaic expression are 
unique depending on the heterochromatin causing the PEV [12]. 
Generally, Y and pericentric heterochromatin cause patched (or 
sectored/clonal) inactivation while telomeric and chromosome 4 
heterochromatin cause salt-and-pepper variegation. (The latter 
two types are also resistant to enhancer and suppressor modi
fiers.) These patterns may reflect the developmental timing of 

inactivation and maintenance in different heterochromatin types 
[13, 14], but the topic remains an active area of research [15].

Mutant alleles which either enhance or suppress the variega
tion phenotype have generated considerable insight into how 
chromatin states are defined and maintained. By 1969, two 
mutations had been discovered which altered the PEV phenotype 
[16, 17]. Since then, �500 dominant second-site mutations have 
been identified in �150 genes by genetic screening, and �30 
genes have been studied in detail [18] (reviewed in the literature 
[6–8, 12]). Mutations changing the eye from variegating to white 
are enhancers of variegation, E(var), and contribute to euchroma
tin formation and active gene expression (i.e. when an E(var) is 
dysfunctional, heterochromatin predominates and whiteþ is inac
tivated). Alternatively, mutants turning the eye from variegating 
to red are suppressors of variegation and normally contribute to 
heterochromatin formation (e.g. HP1 ¼ Su(var)2-5) [19].

When paired with a suppressor or enhancer mutation, the 
shift in eye color is often dramatic, nearly complete, and there is 
little need for accurate quantification [18] (Fig. 1 D vs E&F). 
However, some modifiers have more subtle effects on eye color 
and require higher-resolution photos and improved accuracy for 
quantification methods. Furthermore, even within a PEV express
ing stock isolate eyes can be highly variable, and a broad pheno
typic range of eye color may occur in a single vial (Fig. 2). This 
highlights the critical need for improved techniques related to 
data generation, analysis, and interpretation. Researchers have 
recently developed computational methods to quantify high- 
resolution images of fly eyes [20, 21], focusing on the ommatidia 
organization that results from a tightly regulated developmental 
process. However, these methods do not measure Drosophila 
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ocular pigment, which is required for PEV screens and other anal
yses (e.g. FLP-induced mitotic recombination screens [22, 23] and 
RNAi controls [24]).

There are three methods currently used to quantify ocular 
pigment (or proxies) in Drosophila: RT-qPCR for the white gene 
[25], image grayscale conversion [26], and pigment extraction [26, 
27]. While RT-qPCR quantification of white transcription does not 
directly assay the ocular pigment phenotype, it enables absolute 
quantification and the ability to assay timepoints pre-pupation 
when pigment is first imported. Challenges associated with this 
method include complex experimental designs, the potential for 
relatively low reproducibility because each amplification cycle 
contributes to the data, and the inability to assess single cells. 
Grayscale conversion and measurement in imageJ [28] enable rel
atively fast and accurate quantification. However, this process 
typically involves low-resolution images for 8-bit conversion, 
providing less information and introducing error due to lighting 
shifts and shadows. Finally, quantification of chemically 

extracted pigments using a spectrophotometer has been widely 
used [2, 25–27], including by us here. Extraction of ocular pig
ments in acidified ethanol typically requires a pool of 5-25 (or 
more) Drosophila heads per absorbance reading, although this 
could be plausibly optimized for single flies or even individual 
eyes in the future. Pigments can be easily extracted and quanti
fied, making this a useful approach for over 80 years [27].

To our knowledge, researchers have not developed computa
tional software to specifically quantify Drosophila eye pigment 
from images. Here, we present a guide for using the freely avail
able ML software “ilastik” in conjunction with Fiji (imageJ) to 
quantify eye pigments, which provides a straightforward and 
easily accessible approach for quantification. We utilize pixel 
classification wherein the ilastik user first imports images to the 
software for training. Training consists of the user identifying 
classes (or labels), followed by labeling using a mouse and cursor. 
This applies label-specific brush strokes directly to the image, 
with no coding experience required. ilastik classifies pixels using 

Figure 1. A: Wildtype (whiteþ) eye from C(1)DX stock; B: white mutant from white1118 stock; C: illustration of X chromosome rearrangement forming In 
(1)wm4 chromosome, with the centromere (black circle), heterochromatin (thicker grey bar), and euchromatin (thin black line). A break in 
heterochromatin occurs, followed by an inversion bringing the euchromatic tip near pericentric heterochromatin; D: PEV eye from In(1)wm4 stock; E: 
enhancement of variegation; and F: suppression of variegation.

Figure 2. Phenotypic variation within a single vial of the In(1)wm4 stock. Eyes are from 16 isogenic male siblings.
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an output of image filters (pixel color, intensity, edge-ness, and 
texture), and a Random Forest with 100 trees as a classifier [1]. A 
Random Forest [29] is preferred over non-linear classifiers since 
it has minimal parameters and is more robust. By training the 
pixel classification tool within ilastik on 10 high-resolution 
images, ilastik generates probability maps for hundreds of previ
ously unseen and untrained images, which can be used to quan
tify pigment areas in imageJ. We compare the results of ilastik 
quantification to qualitative binning of flies into red/white cate
gories and to results obtained through quantification of chemi
cally extracted pigments demonstrating ilastik quantification is 
consistent with observations gained using historic methods on 
modern instruments (pigment extraction þ nanodrop).

Materials and methods
Fly crosses
Fly stocks were maintained at room temperature on standard fly 
food. Young males were mated with virgin females at 26�C for 
24 hours. Adult offspring eclosed by day 10 and were imaged on 
day 14 (Fig. 3).

Microscopy and imaging
Image stacks were taken on an Olympus BH2 upright microscope 
with 10x objective and Sony DSLR mirrorless camera. Flies were 
dissected and imaged 4 days after eclosing (Supplementary Fig. 
1). One eye was imaged per fly. Image acquisition was manual 
(with shutter remote) including Z-step size for a series of 9-17 
images per eye. The image series was then stacked together in 
HeliconFocus to produce a singular pseudo-3D image file with 
most ommatidia in focus.

Image analysis—training ilastik
Ten images were imported to ilastik for pixel classification train
ing. Labels were created for red, white, and hair pixels. Each 
training image was manually painted with the mouse and cursor 
to assign pixels to respective labels, taking extra care to adjust 
the software prediction when pixel classes were incorrectly pre
dicted (Fig. 4, and Supplementary Fig. 2). After training, predic
tion maps (three-channel HDF5 files) were batch exported for all 
eye images (267 total in our dataset).

Image analysis—measurements in imageJ
HDF5 files were individually imported to imageJ (Supplementary 
Fig. 3, import macro available). The “threshold” tool was used to 
threshold the prediction map for each label at a minimum score 
of 0.5, eliminating low-scoring data. This step generated a binary 
image that we used to measure the area fraction for each label 
(Fig. 5, threshold macro available). Using the “oval brush 
selection” tool, a region of interest (ROI) was identified that 

included only ommatidia. Using the “measure” tool, the area was 
calculated for each channel or pixel class. We plot the normal
ized area fractions for the red label of each image in Fig. 6B (de
tailed in protocol section). We have successfully carried out the 
methods described here using a 2020 Macbook Air, with 8GB of 
RAM and an Apple M1 chip.

Pigment extraction and absorbance 
for comparison
Fly heads were removed with forceps and placed in a 1.5ml 
Eppendorf tube (25 heads/tube) with 100 µl acidified ethanol (pH ¼ 2) 
for 72hours. After 72hours, 2 µl of extract was used to measure ab
sorbance at 485nm on a Nanodrop spectrophotometer.

Results
A key strength of ML-based image analysis is the power to distin
guish subtle eye pigment differences within individuals and between 
closely related stocks. This analysis also avoids investigator bias and 
enables multiple individuals to contribute to the same data set.

A typical observation when working with PEV flies is that they 
naturally acquire suppressor mutations that revert the eye color 
to wildtype. Due to the accumulation of multiple trans-acting 
suppressor mutations [26], geneticists select for variegation en
hancement (whiter eyes) every few generations to maintain their 
stocks. Thus, PEV stocks tend to have different levels of variega
tion without selective inbreeding. We examined eyes from two 
isolated Drosophila melanogaster PEV stocks carrying the same 
chromosome rearrangement In(1)wm4 A&B, starved In(1)wm4 flies, 
and white eyes from the w1118 stock. Starved flies were aged be
yond 3 weeks and have severely enhanced variegation due to 
malnutrition and developmental delays [30]. w1118 flies were 
used as a control.

We followed the above approach (protocol available, S1), in
cluding quantification using the three methods listed in Fig. 3. 
Importantly, our results for genotype comparisons maintain con
gruency between the methods: In(1)wm4-A is more red than In(1) 
wm4-B for binning (P ¼ .0268), imaging (P ¼ .00193), and extraction 
(P ¼ .03005). In(1)wm4-starved is also more red than w1118 using im
aging (P < .00001). Each method has inherent strengths and weak
nesses. The binning strategy (Fig. 6A) is rapid and high 
throughput, since whole flies are scored based on human inter
pretation of eye pigment. In this method, flies are grouped into 
three categories, bins of <33% red, 33–66% red, and >66% red. 
Individual data points represent the number of >66% red males 
counted in a single day. This approach is largely subjective and 
the least accurate of the three strategies. Adding bins to this 
method will increase precision at the expense of throughput or 
assay time, although coarse bins may preclude statistical analysis as 
is the case for In(1)wm4-starved versus w1118 (Fig. 6A). Image analysis 

Figure 3. Rearing PEV flies for ommatidia imaging. Temperature and mating times are chosen to optimize offspring emergence on day 10 and to ensure 
flies are the same age during imaging. F1 progeny are scored on day 10, sons are saved in a new vial and aged 4 more days to allow for white expression 
and pigment import. Only males are assayed because In(1)wm4 is the stock X chromosome.
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(Fig. 6B) is the most accurate method, as it examines individual eyes 
and can detect minute changes in pigment between ommatidia. It is 
also the slowest, and most labor intensive since it involves photogra
phy, image preparation, software training, and computing. Pigment 
extraction (Fig. 6C) is quantitative, fast, and high throughput, but 
variation among individuals is undetectable due to the pooled ap
proach. Pooling also requires many more individual flies, requiring 
stock expansion to achieve adequate sample sizes.

Discussion
Our results demonstrate that ilastik provides a useful and acces
sible method for quantification of eye pigmentation. While differ
ences between genotypes acquired by binning flies and 
extracting/measuring pigments align with results of our method, 

ilastik is quantitative and enables analysis of individual-level 
variation. The method we outline can be immediately leveraged 
by the community for PEV quantification. We discuss relevant 
considerations, constraints, and benefits of this method below.

The results of ML-based approaches like ilastik depend on the 
quality and quantity of images in the training set [1]. Ultimately, users 
must define the adequate number of training images for their project 
given their processing ability and research focus. The number of 
images required for a training set is not fixed and depends on image 
complexity and the desired classification accuracy. We trained the 
pixel classifier on a set of 10 images for this work, which was adequate 
for our needs (Supplementary Fig. 4). Accuracy of pixel classification 
has two variables: the number of photos and the number of teaching 
stroke pixels. Increasing photo numbers will improve errors caused by 
lighting reflections and shadow differences, and increasing strokes 
can improve and potentially correct predictions. Therefore, it is best 
to choose strokes carefully to train the software based on the predic
tion errors observed. As noted by the ilastik developers, ensuring that 
training images represent the complete range of features in the data 
set is more important than the inclusion of a large numbers of 
images. For our data, quantification improved as training images were 
added but the returns diminished after approximately seven to eight 
images, with us approaching computing limits on a typical machine 
at �10 images. Clear tradeoffs exist between computing power and 
training strength with larger training sets—and many large-brushed 
training strokes—requiring more computing power.

Computing relative areas of a pseudo-3d image is challenging 
since the ommatidia at the boundaries of the eye have signifi
cantly less surface area in the image. An ideal solution is to as
sign each ommatidia a datapoint which can be accomplished 
with instance segmentation. If each ommatidia is a discrete ob
ject, those RGB data can then be exported independently, result
ing in quantification focused on cell counts rather than surface 
area. We investigated this concept in ilastik using a control eye 
and assigning labels to “cell” and “cell boundary” during pixel 
classification. We then importing the HDF5 file to ilastik for ob
ject classification (Supplementary Fig. 5). While we have not fully 
applied this method to work for PEV images, it highlights that the 
accuracy of using ML to quantify complex phenotypes depends 
on the user-defined question, data quality, and the end-goal.

ML-based image analysis provides several benefits over alterna
tive methods. First, researchers can tailor the process to their avail
able resources, while maintaining reproducible and consistent 
results of individual-level variation not possible using other methods. 

Figure 4. ilastik training. A: control panel for ilastik GUI; B: training ilastik to identify white ommatidia; C: training ilastik to identify pigmented 
ommatidia; D: Live Update shows how the entire image will be classified.

Figure 5. Examples of binary masks generated after thresholding HDF5 
files to a minimum of 0.5 in imageJ. White ¼ positive pixel for that label. 
Black ¼ negative pixel for that label. White eyes have no ommatidia that 
are positive in the red channel and all are positive in the white channel. 
Starved eyes have several red-positive cells, and the well-fed PEV lines 
have many red ommatidia. ilastik can make predictions of entire raw 
images (top two rows) or image cutouts (bottom two rows).
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Second, classification of pixels in ommatidia that are either orange 
or pink (or reducing errors such as hairs or reflections) is possible by 
adding additional labels. Analysis can be applied to other Drosophila 
screens that require red: white quantification in the eye such as FLP/ 
FRT mitotic recombination assays. Finally, similar ilastik-based pixel 
classification workflows could be implemented to quantify many 
other complex mosaic phenotypes such as GFP in living tissues, yel
low on cuticles, mosaic patches of multiple-wing-hairs, etc [15, 31]. 
While other ML-based approaches could be leveraged for these anal
yses [32, 33], ilastik is accessible to non-experts with no previous cod
ing proficiency and is designed for interactive training with manual 
user guiding of the classifier. ilastik also estimates which region of 
the raw data requires processing at any given moment, reducing 
RAM requirements and allowing everyday computers to handle large 
datasets. Comparing the results of ilastik to coding-based ML 
approaches [33]—with emphasis on the sensitivity of results to the 
quality and quantity of data in the training set given computational 
constraints—is an obvious direction for future work.

We recommend using multiple methods to determine PEV lev
els in any given variegating stock. When considering resolution, 
and accuracy, our view is that ML-based imaging is a preferred 
method, and ilastik is an accessible option for users. We hope 
this protocol is useful to the community.
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