HYPERGEOMETRIC SHEAVES AND FINITE GENERAL LINEAR GROUPS
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ABSTRACT. We find all irreducible hypergeometric sheaves whose geometric monodromy group is
finite, almost quasisimple and has the projective special linear group PSL,(¢) with n > 3 as a
composition factor. We use the classification of semisimple elements with specific spectra in irre-
ducible Weil representations to prove that if an irreducible hypergeometric sheaf has such geometric
monodromy group, then it must be of certain form. Then we extend results of Katz and Tiep on a
prototypical family of such sheaves to full generality to show that these hypergeometric sheaves do

have such geometric monodromy groups, and that they have some connection to a construction of
Abhyankar.
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Introduction. Let p be a prime and let ¢ be a power of p. A conjecture of Abhyankar [1],
proved by Harbater [3], says that the finite quotient groups of the étale fundamental group of the
multiplicative group G,, := A'\ {0} over F, are precisely the finite groups G such that G/O (G)
is cyclic, where OPI(G) is the subgroup generated by all Sylow p-subgroups of G. Since this proof is
nonconstructive, one might want to realize each of these groups in a faithful complex representation
as the monodromy group of an explicitly written Qy-local system over G,,.

Hypergeometric sheaves are the simplest rigid local systems over G,,, in the sense that they have
the sum of Swan conductors equal to 1, which is the lowest possible nonzero value. Katz, Rojas-Leon
and Tiep [13], [15], [12] used hypergeometric sheaves to realize many quotient groups of 7§ (G,,/F,).
In [14], Katz and Tiep studied the converse direction: they showed that if the geometric monodromy
group of a hypergeometric sheaves satisfying a mild condition (S+) is finite, then it is either almost
quasisimple or an “extraspecial normalizer”. For the almost quasisimple case, they also gave a list
of all possible pairs (S,V) of finite simple groups S and their complex representations V' which
can occur as the unique nonabelian simple factor of the geometric monodromy group of irreducible
hypergeometric sheaves, cf. [14, Section 10].
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In this paper, we return to the original viewpoint of constructing local systems that realize
given finite groups as their monodromy groups. We focus on one of the five “generic” families of
finite almost quasisimple groups listed in [14, Section 10], namely those with the unique nonabelian
composition factor PSL,, (IF,) with n > 3. Katz and Tiep [13] found some examples of hypergeometric
sheaves realizing some of these groups. However, whether these are the only hypergeometric sheaves
realizing these groups, and the analogous statements for other families of finite almost quasisimple
groups, were not known. Here we give the first result in this direction: we give a complete list of
irreducible hypergeometric sheaves for groups “coming from” PSL,,(FF,).

The main results of this paper, namely Theorem 4.1, Theorem 4.2 and Corollary 5.10, says that
for n > 3, the irreducible hypergeometric sheaves whose geometric monodromy group is finite almost
quasisimple having PSL,,(F,) as the unique nonabelian composition factor are precisely those of the
form

" =1 0ty char( L L b R
Hypy (Char( g 10X ); Char( 10X ) U Char( 1 X ) ® Ly
or
qn_l qm_l qnfm_l
Hypy (Char( | )\ {1}; Char( ) )u (Char(q_il) \{1}) ® L,

where ¢ is a multiplicative character of ), of finite order, x is that of order precisely ¢ — 1, v is a
nontrivial additive character of IF,,, and m, b, c are integers satisfying certain conditions.

In section 1, we fix notations and review some known facts about irreducible hypergeometric
sheaves and their monodromy groups, which will be needed in the subsequent sections. In section 2,
we set up some notations regarding the Weil representations of GL,(F,), and make some observa-
tions which will be used in subsequent sections. Section 3 studies the action of certain p-subgroups
of GL,(F,) on the irreducible Weil modules. Together with some facts we review in section 1,
the results of section 2 and 3 completely determine the possible local monodromies at 0 and oo
of the hypergeometric sheaves we want to study. However, the local pictures at these two points
are studied separately, so we need to determine which pairs of them can actually arise as local
monodromy of a hypergeometric sheaf with the desired geometric monodromy group. In section 4,
we use two new ideas to achieve this: the use of determinant sheaves of irreducible hypergeometric
sheaves to find a connection between the local monodromies at 0 and oo, and some new techniques
to find counterexamples for certain inequality called the “V-test”. Thanks to these, we obtain short
lists Theorem 4.1 and Theorem 4.2 of candidate hypergeometric sheaves. In section 5, we prove
that these sheaves do have the desired geometric monodromy groups. This is done by extending
the method used in [13] to study a smaller family of hypergeometric sheaves. This family in [13]
also had some connection to a work of Abhyankar [2]. We briefly discuss a generalization of this
connection to the sheaves in Theorem 4.1 and Theorem 4.2 in the final section.

Acknowledgments. I would like to thank my Ph. D. advisor, Professor Pham Huu Tiep, for
raising this problem and his devoted support and guidance. I would also thank Professor Nicholas
Katz for helpful discussions. I gratefully acknowledge the support of NSF (grants DMS-1840702
and DMS-2200850).

1. PRELIMINARY RESULTS AND THE BASIC SET-UP

Let E be the algebraic closure of the finite field of characteristic p. Fix another prime ¢ # p, and
let Q; be the algebraic closure of the field of ¢-adic numbers. Throughout this paper, we will not
distinguish between the C-representations and Q-representations of finite groups. Let K be a finite
subfield of IFT,. We will understand lisse Qg-local systems over G,,/K as continuous representations
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of the étale fundamental group 7% (G,,/K). The Zariski closures of the image of 7¢*(G,,,/K) and
the subgroup 7™ (G,,) := 7¢*(G,,/F,) under this representation are called the arithmetic and
geometric monodromy group, often denoted by Garith and Ggeom, respectively, of this sheaf.

To study the monodromy of lisse Qg-sheaves over G,,, we need to look at their local monodromy
at 0 and oo, that is, the restrictions to the inertia subgroups 1(0) and I(co) of 7§*(G,,). The inertia
subgroup I(0) has a normal pro-p-subgroup, namely the wild inertia subgroup P(0). The quotient
I(0)/P(0) is a pro-cyclic group of pro-order prime to p. Fix an element 7o of I(0) of pro-order
prime to p, such that 7o P(0) is a topological generator of 1(0)/P(0). Similarly, fix o € I(c0) of
pro-order prime to p such that v, P(c0) is a topological generator of I(co)/P(c0).

Let v : F, — @X be a nontrivial additive character. Given D multiplicative characters

X1y---,XD : KX — Q;" and m multiplicative characters p1, ..., pm : KX — Q;”, where D > m > 0,
one can define the hypergeometric sheaf of type (D, m):

Hypy (X1, - s XDiP1y - -5 Pm)-

We will assume that {x1,...,xp}N{p1,-..,pm} = 0. Under this assumption, this is lisse on G, /K,
geometrically irreducible, has rank D, and pure of weight D 4+ m — 1. For the details of these facts
and other basic theory of hypergeometric sheaves, see [6, Chapter 8|.

The characters x1, ..., xp are called the “upstairs characters” of this hypergeometric sheaf. The
local monodromy at 0 of this sheaf is tame, and given by the direct sum of Jordan blocks of the
Kummer sheaves £,, defined by the upstairs characters. In particular, the characters x1,...,xp

must be pairwise distinct whenever the geometric monodromy group is finite, and in this case the
local monodromy is just the direct sum @fi 1 £y, Since it is tame, we can view it as a continuous
representation of 1(0)/P(0) = (y0P(0)). In particular, the image of vy will completely determine
this representation (up to isomorphism).

The “downstairs characters” pq, ..., pm have a similar but slightly different property. The hyper-
geometric sheaf Hypy(x1,...,XD;P1,---,Pm) is not tame at 0o, so the local monodromy at co can
be written as a direct sum Tame & Wild. Here, Tame is a tame representation of rank m determined
by the downstairs characters in the same way as how the upstairs characters determine the local
monodromy at 0. In addition to that, we have a totally wild part Wild of dimension D —m and
Swan conductor 1. Hence, to determine the downstairs character, looking at the image of v,, alone
is insufficient; we should also look at the image of P(oc0) and use the following result.

Proposition 1.1. [14, Proposition 4.10] [12, Proposition 5.9] Let H be an irreducible hypergeometric
sheaf of type (D, m) with D > m > 0. If D —m = p®Wy for some integer a > 0 and p t Wy, then
we have the following:

(1) Wild |p(oo) s a direct sum of Wo multiplicative translates of P|poo) by piw,, where P is an
irreducible I(oo)-representation of dimension p* and Swan conductor 1.
(ii) Yoo cyclically permutes these Wy irreducible constituents of Wild | p(oo) -
(iii) If a = 0, then the image of P(c0) is isomorphic to the additive group of the finite field
Fp(up—m).
(iv) Ifa > 0, then there exists a root of unity ( whose order is prime to p, such that the spectrum
of Yo on each irreducible constituents of Wild |P(oc) 8 ¢+ (past1 \ {1})-

If an irreducible hypergeometric sheaf is not primitive, then it is either Kummer induced or
Belyi induced, and both cases can be easily recognized from the upstairs and downstairs characters,
cf. [10, Proposition 1.2]. If we restrict ourselves to the primitive cases, then [16, Theorem 5.2.9]
and [14, Lemma 1.1] tells us that if our hypergeometric sheaf is of type (D, m) with D > m and
D # 4,8,9, and if the geometric monodromy group Ggeom Of this sheaf is finite, then Ggeom is
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either almost quasisimple or an “extraspecial normalizer”. Moreover, if D is not a prime power
and not 1, then Ggeom is almost quasisimple, and the unique nonabelian composition factor and its
representation are as listed in [14, Section 10].

In this paper, we study the sheaves which realize [14, Section 10, case (b)]: the irreducible
(but not necessarily primitive) hypergeometric sheaves whose geometric monodromy groups are
finite, almost quasisimple with unique nonabelian composition factor PSL,(F,), n > 3. Such
hypergeometric sheaves are known to exist, and one construction can be found in [13]. Most of such
hypergeometric sheaves are known to satisfy several nice properties. We will need some of these
properties, which we list below for convenience.

Proposition 1.2. [6, Proposition 8.15.2] [14, Theorem 6.6(ii), Theorem 8.1, Corollary 8.4] [16, The-
orem 3.1.10] Let Hypy(X1,---sXD;P1s---»Pm) be an irreducible hypergeometric sheaf over G, /K
for some finite field K. Suppose that the geometric monodromy group G is finite, almost quasisimple

with unique nonabelian composition factor PSL, (F,) for an integer n > 3 and a power q of a prime
p. Then:

(a) The upstairs and downstairs characters are pairwise distinct.

(b) The characteristic of K is p, unless (n,q) is one of (3,2),(4,2),(3,4) and D < 10.

(c) Suppose that (n,q) # (3,4). Then the quasisimple layer E(G) of G is a quotient of SLy(Fy).
Moreover, the monodromy representation as a representation of E(G) is an irreducible Weil
representation of this quotient of SLy(Fy).

(d) If (n,q) # (3,2),(3,3),(3,4), then the image gy of Yo under the map 7' (Gp) — G —
G/Z(G) C Aut(PSL,(Fy)) lies in PGL,(F,). If in addition D —m > 2, then G/Z(G) =
PGL,(F,).

When D —m =1, [14, Corollary 8.4] (which is the second part of Proposition 1.2(d)) does not
apply, since it relies on [14, Theorem 4.1] which requires D —m > 2. However, we can at least prove
the following weaker version.

Proposition 1.3. Let H be a hypergeometric sheaf as in Proposition 1.2, and let G = Ggeom be
the geometric monodromy group of this. Assume that the conclusion of Proposition 1.2(c) holds.
Suppose that D —m =1 and (n,q) # (3,2),(3,3),(3,4). Let goo € G be the image of Yoo € I(0) in
G, and let oo € G/Z(G) be its image. Then Joo € PGL,(Fy).

Proof. The spectrum of g, on H is the union of the spectrum on Tame and that on Wild. The
spectrum on Tame corresponds to the upstairs characters, so in particular g, has at least m = D—1
distinct eigenvalues. Since the restriction of the monodromy representation is an irreducible Weil

representation of SL,,(F,), D is either % or qqn__ll. Therefore, the order of g, is at least qqn__ll -2,
Now we can apply the first part of the proof of [14, Theorem 8.1]. O

Instead of excluding all the exceptional pairs of (n, ¢) in Proposition 1.2 and Proposition 1.3, we
want to include those hypergeometric sheaves which satisfies the conclusions of the above proposi-
tions. Therefore, we will study the hypergeometric sheaves H with the geometric monodromy group
G which satisfies the following conditions:

H is irreducible and lisse on G,,,/K for a finite extension K/F,,.

G is finite, almost quasisimple with unique composition factor PSL,(F,) for some
(%) integer n > 3 and a power ¢ of p.

The images of 70, Voo under the map 7 (G,,) = G — G/Z(G) are in PGL,,(F,).

The quasisimple layer E(G) is a quotient of SLy,(F,), and the restriction of the

monodromy representation of H to E(G) is an irreducible Weil representation.
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By Proposition 1.2 and Proposition 1.3, except when (n,q) = (3,2), (3,3), (3,4), (4,2), the last two
conditions in (%) and that K has characteristic p are redundant, and (x) is equivalent to:

‘H is irreducible and lisse on G,,/K for a finite field K.
G is finite, almost quasisimple with unique composition factor PSL,,(F,) for some
integer n > 3 and a power q of p.

Remark 1.4. In the situation of (%), let go,goc be the images of 7p,7s in G under the mon-
odromy representation, and let gp,goo be their images in G/Z(G) < Aut(PSL,(F,)), so that
90, oo € PGL,,(F,). The monodromy representation gives a projective representation of PSL,, (F,) =
E(G)/Z(E(G)), which comes from an irreducible Weil representation of SL, (F,). Hence, if we take
the restriction of the monodromy representation to the subgroup (FE(G),go,ds0) of G, then this
gives a projective representation of the subgroup (E(G)/Z(E(G)),d0,90) < PGL,(F,). This can
be lifted to an irreducible Weil representation of the corresponding subgroup H of GL,(FF,). There-
fore, the spectrum of 79 on H is just a root of unity times the spectrum of an inverse image
ho € H < GL,(FF,) of go on this irreducible Weil representation. The same statement holds for .,
with another root of unity.

2. WEIL REPRESENTATIONS OF FINITE GENERAL LINEAR GROUPS

Suppose that we have a hypergeometric sheaf H with the geometric monodromy group G which
satisfies (x). The discussions in section 1, including Proposition 1.1 and Proposition 1.2, tells us that
the spectrum of 9 on H cannot have an eigenvalue with multiplicity larger than 1, and the spectrum
of 75, on each of Tame and Wild also have the same property. As we saw in Remark 1.4, these spectra
are just a root of unity times the spectra of some elements of GL,(F,;) on some irreducible Weil
representation. In this section, we classify the elements of GL,,(F,;) whose eigenvalues on some
irreducible Weil module have multiplicity at most 2.

Fix a generator a of the cyclic group F, and a primitive (¢ — 1)th root of unity A € Q. Let
n be a multiplicative character of F, that maps a to A. Consider the natural (left) permutation
action of GL,(F;) on Fy. The corresponding C GLy,(F,)-module is called the total Weil module.
We will denote this by Weil. It has a standard basis {e, | v € Fy}, and each g € GL,(F,) acts by

€y > €gy. For each 0 # v € Fy and each j =0,...,q — 2, define o) = Zg;g A Ye,i,. Then

-2
(o)) = Z)\*” (a).eqyiy Z/\ e i1y = AN = NMol),

Q
|
I\
<

s
I
)
<.
Il
=)

In particular, the element ol € Z(GL,(F,)) has an eigenvalue A on Weil, and v\ is an eigenvector
associated to this eigenvalue. Note that (av)( 7) = Mvl), so if we choose one nonzero v from each
one-dimensional subspace of Fy', then the vU)’s for those v together with eg form a basis of Weil.

Let Weil; = C(v\7) | 0 £ v € ;). Then we get the direct sum decomposition
qg—1
Weil = Ceo & @) Weil; .
=0

The submodules Weil; have dimension q , and the restriction of Weil; to Z(GLy,(F,)) is precisely

;_—17]3 ; recall that n is the linear Character which maps o to A. Moreover, Weil; is irreducible unless

j = 0, in which case Weilp = 1 & Weilj. The C GL,(F,)-modules Weil; and Weilj, together with
their tensor products with linear characters of GL,(F,), are called the irreducible Weil modules.
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Fix an element g of GL,(F;). To study the spectrum of the action of g on Weil;, it is convenient
to make the following definitions. For a nonzero vector v € Fy \ {0}, let s, be the smallest positive
integer which satisfies g°*v = a'v for some integer t, and let t, be this t. For two nonzero vectors
v,w € Fy\ {0}, we will say v ~y w if w = Bg"v for some j € 7 and some nonnegative integer r,
that is, if v and w lie in the same (g, Z(GL,(IF;)))-orbit. This defines an equivalence relation on
Iy \ {0}. Also, let V(g;v) and Weil;(g;v) denote the g-cyclic subspaces of Fy and Weil; generated

by v and v\9), respectively. Then we can easily see the following properties.

Sv

Lemma 2.1. Let v,w € Fy \ {0}.
(1) v ~4 w if and only if Weil;(g;v) = Weil;(g;w). Moreover, if v ¢y w, then Weil;(g;v) N

Weil;(g; w) = 0.
(2) Weil; is the direct sum of subspaces of the form Weil;(g;v), one for each equivalence class
of ~g.

(3) sy and t, only depends on the ~4-equivalence class of v.
(4) The eigenvalues of the action of g on Weil;(g;v) are the s,th roots of \'J.

Proof. For (4), let £ € C be a number such that £ = X. The vector > ;" Leiigi (@) € Weil; i(g;v)
then satisfies

sv—1 Sy—1 Sp—1
g- <Z g—zjg%_v(ﬂ> Zi wgz-H Zf i— 1)]g @) + & sv—l)] sv ()
1=0

=1
su—l
= Z§ i—1)j g ’U +fj (Z)\ (k+tje k+tv>
i=1 k=0
Sp—1 Sp—1

_ Zg =i gi 1) 4 gipd) = ¢ Z £ gt y0)
=0

Therefore, this vector is an eigenvector of the action of g on Weil;(g;v) with eigenvalue &J. Since we
can choose s, distinct {’s and dim Weil;(g; v) = s,, these vectors form an eigenbasis of the action
of g on this cyclic subspace.

O

Lemma 2.1 implies that on each Weil;(g; v), the action of g has no repeated eigenvalues. Repeated
eigenvalues can only occur by appearing in more than one g-cyclic subspaces; this is equivalent to
saying that there exists v o6y w € F \ {0} such that a s,th root of A*7 is also a s, th root of A7,
One important situation where this happens is the following.

Lemma 2.2. If v,w € Fy \ {0} satisfy v € V(g;w) (or equivalently V(g;v) € V(g;w)), then
Sy divides Sy, and ty(sw/sy) = ty mod g — 1. Consequently, the spectrum of the action of g on
Weil;(g; v) is included in the spectrum of the action of g on Weil;(g; w).

Proof. Since g*» acts on V(g;w) as a scalar multiplication by o', g**v = a'wv. By the definition
of s,, it must divide s,,, and afvv = g%vv = gS“(SM/S”)v = at*(5w/50)y Since o has order ¢ — 1, it
follows that t,(sy/s,) = t,w mod g — 1. Also, the set of s,th roots of A'»J includes the set of s,th
roots of A»Jth roots. By Lemma 2.1, they are precisely the spectra of the action of g on Weil ; (g; w)
and Weil;(g;v), respectively. O

Now we focus on the situation where the action of g on Weil; has no eigenvalue of multiplicity
larger than 2. The next result is an immediate consequence of Lemma 2.2.
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Corollary 2.3. Suppose that the action of g on Weil; has no eigenvalue of multiplicity larger than
2. Then

(a) There are no u,v,w € Fy\{0} in distinct ~4-equivalence classes such that V(g;u)NV (g;v) 2
V(g;w). In particular, all g-cyclic subspaces are either minimal or maximal.

(b) If V(g;v) is minimal among the g-cyclic subspaces of Fy, then V(g;v) \ {0} is the union of
at most two ~4-equivalence classes.

(¢) If a g-cyclic subspace W is a union of {0} and exactly two ~4-equivalence classes, then it
intersects V (g;v) trivially for allv € Fy \ W. In particular, it is both minimal and mazimal
amonyg the g-cyclic subspaces of Fy. Also, the two ~g4-equivalence classes in W have the
same s and t.

The condition of having no eigenvalues of multiplicity larger than 2 not only limits the number
of ~4-equivalence classes with “compatible” s and ¢, but also says something about those with ss
and ts which do not directly give common eigenvalues.

Lemma 2.4. Suppose that the action of g on Weil; has no ez’genvalue of multiplicity larger than 2.

Suppose that v,w € Fy \ {0} are such that gcds’{siw%) = ool SUUSw mod q — 1. Then

(a) V(g;v) and V(g;w) are minimal but not mazimal. In particular, V(g;v) N V(g;w) = 0,
dim V' (g;w) _q

sv—il, and sy = ——

q

(b) (V(g;v) + V(g;w)) \ (V(g;v) UV(g;w)) is a single ~q4-equivalence class, and it generates
V(giv) @ V(g;w).

(c) IfueV(gv)aV(igw)\(V(gv)UV(g;w)), then s, = . and t, = 0.

(d) dim V' (g;v) is relatively prime to dim V (g; w), and t, dim V (g; w)—t,, dim V' (g; v) is relatively
prime to q — 1.

(qdim V(g;v)il)(qdim V(g;w) 71)

Proof. Note that if V(g;v) N V(g;w) # 0, then by Corollary 2.3(a), one of V(g;v) and V(g;w)
contains the other. If V(g;v) C V(g; w), then by Lemma 2.2, % = ty(Sw/Sv) = tw %
mod ¢ — 1, which contradicts our assumption. Similarly we cannot have V(g;w) C V(g;v), so
V(giv)NV(g;w) =0.

Let u € V(g;v)+V(g;w)\ (V(g;v)UV(g;w)). Then we can write u = u,, + u,, for some (unique)
uy € V(g;v) \ {0} and u,, € V(g;w) \ {0}. Hence,

ty Sw

Sy —SwW Sqp —3V __tusw
u — ang(svaSw)u = g Y ged(sv,sw) Uy + g wng(SvaSw)uw — ang(Sv:Sw) (UU + uw)

lem(Sw,Sw)

g

ty—Sw by — S0 __tysw
= Y ged(sv,sw) Uy —|— o Wged(sv,sw) Uy — ang(Sv,Sw) (Uv + uw)

tw

Su tysw
= (a ged(sv,sw) — oy gcd(sv,sw) )uw c V(g,u) N V(g,w)

By assumption, this is nonzero, so V(g;u) NV (g;w) # 0. Since u ¢ V(g;w), by Corollary 2.3(a),
V(g;w) € V(g;u), and similarly V(g;v) C V(g;u). Therefore V(g;v) & V(g;w) C V(gyu) =
V(g uy + uyw) € V(g;v) + V(g;w) = V(g;v) @ V(g;w), so the equality holds. Moreover, by
Corollary 2.3(a), V(g;u) is generated as a g-cyclic subspace by only one ~g4-equivalence class,
so V(g;u) \ (V(g;v) UV (g;w)) is a single ~g-equivalence class.

Corollary 2.3(a) also tells us that both V(g;v) and V(g; w) are minimal g-cyclic subspaces, and
since they are also not maximal, by Corollary 2.3(c) both V(g;v) \ {0} and V(g;w) \ {0} are single

. . . dim V(g:v) _ im V (giw) _
~g-equivalence classes, so in particular s, = qqﬁ% and s, = qjl L Also,
B qdimV(g;u) -1 7 (qdimV(g;v) _ 1)(qdimV(g;w) _ 1) 7
Sy = — Sy — Sy = = (¢ — 1)sysu-

q—1 q—1
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qdimV(g;v)71 qdimV(g;w)71

On the other hand, g% =g <1 acts as a’v on V(g;v), and g = g a-1 acts as alv
’ qdimV(g;w)_l . . ' qdimV(g;v)_l
on V(g;w). Hence, g*** acts as a’” a-1 =t dmVgw) on V(g;v) and as o' a1 =

atw dimVgv) on V(g;w). Since s, = (¢ — 1)s,5, is the smallest integer s such that ¢° acts on
V(g;u) as a scalar (which is at+), it follows that the order of atvdmV(giw)—twdimV(gv) jg exactly
q — 1. Therefore t, dim V(g; w) — t,, dim V' (g;v) is relatively prime to ¢ — 1, and ¢, = 0.

Since ¢®*(9=1 acts trivially on V (g; v) and g®(@=1) acts trivially on V (g; w), so glom(se(@—1).swle=1)) —
gla=Dlem(sv.5u) gets trivially on V(g;u). Since t,, = 0, g°* = g4~ Dsvsw ig the smallest power of ¢ act-
qdlm:igl;v)fl is
, or equivalently, dim V'(g;v) is relatively prime to dim V' (g; w).

O

ing trivially on V(g;u), we must have lem(s,, Sy) = SySyw. This just means that s, =
relatively prime to s, = qdim‘;(_ig;lw)_l
Proposition 2.5. If the action of g on Weil; has no eigenvalue of multiplicity larger than 2, then
Fy is g-cyclic.

Proof. Suppose that we have two nonzero vectors v, w € Fy such that V(g; w) is a maximal g-cyclic
subspace of IFy and V' (g;v) € V(g;w) (so in particular V(g;w) # Fy). By the previous results and

vlw wity
gcds(sv,sw) gcds(sv,sw
Let a,b be integers such that as, — bs, = gcd(sy, sw), and let & € C be a ged(sy, Sy )th root of

Aate=btw)j Then

the maximality of V' (g; w), we must have V(g;v)NV(g;w) = 0 and = y mod ¢ —1.

s atysyj—btwsvi -atysy—btys .
fs” = gng(Sv’Sw)ng(Sgwsw) = )\ ’écs<sv,‘5:‘;)v = >\‘7 glédi()\s'uﬁju)w = )\t”]
and
ng(S s ) Sw atyswi—btwswi jatwsvfbtwsw bod
é‘sw :g VW ged(sv,sw) = )\ ged(sv,sw) = )\ ged(sv,sw) = A w].

Therefore, the spectra of the actions of g on both Weil;(g; v) and Weil;(g; w) contain £. In particular,
if V(g; v) is not maximal among the g-cyclic subspaces of Fy/, then § must have multiplicity at least 3
as an eigenvalue of the action of g on Weil;. This is impossible by assumption, so V' (g; v) is maximal.
Also, both V(g;v) and V(g;w) are generated as g-cyclic subspaces by unique ~g4-equivalence class.
This is true for all such pairs v, w, so it follows that every g-cyclic subspace is maximal (so they are

also all minimal) and generated by unique ~g-equivalence class. Consequently, V(g;v) \ {0} is the

dim V(g;v) _q dim V(g;w) _1

~g-equivalence class containing v, so in particular s, = 4 1 . Similarly, s, = £ 1
If dimV(g;v) = dim V (g; w), then s, = s, and
Syt Sl
tw v = v =t, mod g — 1.

ged(sy, sw)  ged(Sy, Sw)
Therefore, two ~g-equivalence classes generating g-cyclic subspaces of Fy of same dimension gives
subspaces of Weil; on which the actions of g have the same spectra. In particular, there are at most
two g-cyclic subspaces of Fy of the same dimension. Since the g-cyclic subspaces intersect trivially,
we can also see that there is at most one g-cyclic subspace of dimension larger than n/2.
If there is some u € Fy \ {0} with dim V' (g;u) = 1, then s, = 1 and

oty Suty
Spty = acd(50, 50) = acd(sy, 50) =t, mod ¢g—1
for any v € IFj \ {0}. In particular, the spectrum of the action of g on Weil;(g; u) is contained in the
spectrum of the action of g on Weil;(g;v). Therefore, there are at most two ~g-equivalence classes,
so there are two g-cyclic subspaces of Fy, and both of them are proper (otherwise one of them is not
maximal). This is impossible, since no nontrivial vector space is a union of two proper subspaces,

while the union of all g-cyclic subspaces is Fy.
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Therefore, there is no g-cyclic subspace of dimension 1, and the number of elements in the union
of all g-cyclic subspaces of Fy cannot exceed

Ln/2] ln/2)+1 _ 2
n—1 i 1) — n—1 q —4q
¢ 42 ; (¢ —D=¢""+27—

—2|n/2] < q¢" (n>3).

Since the union of all g-cyclic subspaces of Fy is Fy, this is impossible. Therefore, no such pair v, w
exist, so there is only one maximal g-cyclic subspace of Fy, and it must be Fy itself.
O

In the case of j = 0, we can also have some situations where the multiplicity of 1 as an eigenvalue
of the action of g on Weily is 3, and all other eigenvalues have multiplicity at most 2. Fortunately,
this situation is not very complicated, since when j = 0, Lemma 2.1 shows that the action of g on
Weily(g; v) always has 1 as an eigenvalue regardless of the choice of v.

Proposition 2.6. Suppose that the action of g on Weily has no eigenvalue of multiplicity larger
than 2 except for the eigenvalue 1 which has multiplicity exactly 3. Then there are exactly 3 distinct
~g-equivalence classes in Fy \ {0}, and at least one of them generates Fy. Moreover, if the three
nontrivial g-cyclic subspaces of Fy form a chain, then the smallest g-cyclic subspace has dimension
1.

Proof. By the discussion above, the multiplicity of the eigenvalue 1 is precisely the number of distinct
~g-equivalence classes of Fy \ {0}. Let u,v,w be representatives of these equivalence classes.

If V(g;u) € V(g;v) € V(g;w), then by Lemma 2.2, the eigenvalues of the action of g on
Weilg(g; u) has multiplicity 3 as eigenvalues of the action on Weily. Since 1 is the only such eigenvalue,
it follows that

qdim V(giu) _ 1

1 = 5, = dim Weily(g; u) =1
q—
so that dim V' (g;u) = 1. Also, V(g;w) is the union of all g-cyclic subspaces of Fy, so V(g;w) = Fy.
If Fy is not g-cyclic, then V(g;u), V(g;v), V(g; w) are all proper, and Fy = V(g;u) UV (g;v) U
V(g;w). Since ¢" > ¢" 7' + (¢"2 — 1) + (¢" 2 — 1), at least two of the g-cyclic subspaces must
have dimension n — 1. If these two intersect trivially, then n — 1 < n/2, which is impossible since
n > 3. Hence, these two must intersect nontrivially, and the intersection must contain another
g-cyclic subspace, so we have only two maximal g-cyclic subspaces. Since Fy is not a union of two
proper subspaces, this is impossible. Therefore, Fy is g-cyclic. O

By combining the previous three results, we get the main result of this section.

Theorem 2.7. Suppose that either j > 0 and the action of g on Weil; has no eigenvalue of mul-
tiplicity larger than 2, or the action of g on Weily has no eigenvalue of multiplicity larger than 2
other than 1 which has multiplicity at most 3. Then g is one of the following.

-1
1

(a) g = af, where o, is a generator of ]F:;n such that oy’ = «, viewed as an element of

GL,,(F,) via some embedding GL1(Fyn) — GLy(Fy), and a is an integer relatively prime to
|an|/(q —1)=(¢"—1)/(¢—1). The spectrum of the action of g on Weil; is the %th roots
of A%,

(b) The squares of the elements described in (a), when (¢" —1)/(q — 1) is even.

(c) g =ab, ®at_,,. Here, m is a positive integer relatively prime to n, and cn, and o, _m

"=
q—1

, and b(n —m) — em must be relatively prime to q — 1. The spectrum of the action

are as in (c). b is an integer relatively prime to L cisan integer relatively prime to
qnf'm_l

q—1
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m

171 th roots of A\J, and the (qul)q(#th

of g on Weil; is the q:;:ll th roots of A\, the qn;

roots of unity.
b
(d) g= (aén och ) for some positive integer m dividing n. Here, cu, and cu,—m are defined
n—m
in the same way oy, is defined in (a), and we view them as elements of GLy,(F,) via some
embedding GL1(Fgm) ® GL1(Fyn-m) < GL1p(Fy) © GLy—im(Fy) < GL(F,). b is an integer

. . m— . . . . n_m— —
relatively prime to qq_ll, c is an integer relatively prime to 4 T Loand ¢ = b™ mod

q—1. X is a nonzero m x (n —m) matriz. The spectrum of the action of g on Weil; is the
qm:ll th roots of X and the =9"th roots of \ .

q q—1
a X X3
() j=0,andg=1{ 0 afn_l Xos |. Here, m is an integer larger than 1 such that m — 1
0 0 os
divides n—1. -1 and ap—p, are as in (c). a,b, c are integers such that b is relatively prime
to qm_lfl, c is relatively prime to qn;infl, c=b"" mod q—1, and b= a(m—1) mod q—1.

qg—1
X192 is a nonzero 1 x (m — 1) matriz, and X13, X23 are 1 x (n —m) and (m — 1) x (n —m)

matrices, respectively, such that at least one of them is nonzero. The spectrum of g on Weilgy

is the @th roots of unity, the qn:(im th roots of unity, and an additional 1.
q q

@ X
(f) j =0, q is even, and g = <CE] b ) Here, a1 is as in (c), a is an integer, and b
n—1
s an integer relatively prime to qn;;l. The spectrum of the action of h on Weily is the
Q%Z:f) th roots of 1, each of them having multiplicity 2 except for the eigenvalue 1 which has
multiplicity 3.
. , o X . . . )
(g) =0, q is odd, and g = 0 o2 ) Here, ay—1 is as in (c), a is an integer, and b
n—1
is an integer relatively prime to qn;jfl. The spectrum of the action of h on Weily is the
2q(2:(11) th roots of 1, each of them having multiplicity 2 except for the eigenvalue 1 which has

multiplicity 3.

Remark 2.8. In cases (d), (e), (f) and (g), the converse for these cases may or may not hold, i.e.
there might be some elements of GL,,(F,) which satisfy the conditions of one of these cases and
still have some eigenvalues of multiplicity larger than 2. To make the converse true, we might need
more conditions for the submatrices on the upper right corners. However, we will only be interested
about the cases where g has order prime to p, which are precisely the cases (a), (b) and (c). For
these cases, the converse holds.

proof of Theorem 2.7. By Proposition 2.5 and Proposition 2.6, we always have one ~g-equivalence
class which generates Fy. If there is no proper g-cyclic subspace of [y, then by Corollary 2.3, there
are at most 2 distinct ~g-equivalence classes in Iy \ {0}. If j = 0 and there are some proper g-cyclic
subspaces, then there are at most 3 distinct ~g-equivalence classes in Fy \ {0} by Proposition 2.6.

The same is true when j > 0; to see this, note that if u,v,w € Fy \ {0} are such that v %,
w, V(g;v),V(g;w) are both proper, V(g;u) = Fy, and gcds(;ilfsw) = gcds(?j:fsw) mod ¢ — 1, then
Weil(g; v), Weilj(g; w) and Weil;(g;u) have common eigenvalue by the proof of Proposition 2.5
together with Lemma 2.2. This is impossible, so if there is a pair of distinct ~g-equivalence classes
generating proper g-cyclic subspaces, then they satisfy the condition of Lemma 2.4. In particular,
the direct sum of these two proper g-cyclic subspaces is also a g-cyclic subspace of Fy. Since we
have no eigenvalue of multiplicity 2, while the g-cyclic space I contains this direct sum, Lemma 2.2
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shows that the direct sum must be Fy, and there are exactly 3 equivalence classes. If there is at
most one ~g-equivalence class generating proper g-cyclic subspace, then by Corollary 2.3 there are
at most two equivalence classes generating Fy', so we still have at most 3 distinct equivalence classes.
Moreover, when j > 0 and there are 3 distinct equivalence classes, then by Corollary 2.3, only one

of them generates Fy. Therefore, we have the following possibilities.

(a) There is exactly one ~g-equivalence class, which is just Fy \ {0}.
(b) There are exactly two ~g-equivalence classes, and both of them generates Fy.
¢) There are exactly three ~ -equivalence classes, only one of them generates F”, and the two
g q
proper g-cyclic subspaces generated by other classes intersect trivially.
d) There are exactly two ~,-equivalence classes, and only one of them generates F7.
g q
(e) j =0, there are exactly three ~ g -equivalence classes, exactly one of them generates Fy, and
the g-cyclic subspaces of Fy form a chain.
f) 7 =0, there are exactly three ~,-equivalence classes, and exactly two of them generates F7.
g q

We start with case (a). In this case, let v be any nonzero vector in Fy. Then since V(g;v) = Fy,

the vectors v, gv, g%v, ..., ¢" 'v form an ordered basis of Fy, and the matrix of g with respect to
this basis takes the form
0 0O 0 —5o
1 00 0 -5
010 0 —p
(%) 9=10 0 1 0 —fs
0 0O 1 —Bh1
where B, ..., B, € F, are the numbers such that g"v = —Bgv — - — B,_19" tv. Let f(t) € F,[t]

be the characteristic polynomial of the above matrix:
F@) =t"+ Buat™ "+ + Bo.

Suppose that f(t) = fi(t)f2(t) for some nonconstant polynomials fi(t), f2(t) € Fy[t]. Then the
set {f1(9)v, gfi(9)v,..., g8 f1(g)v} is linearly dependent, because fa(g)fi(g)v = f(g)v =0is a
linear combination of them. In particular, V(g; f1(g)v) is a proper g-cyclic subspace, which cannot
exist in case (a). Therefore f(t) is irreducible, so it is also the minimal polynomial of g.

Since g* = a1 on V(g;v) = Fy, the order of g divides (¢ — 1)s, = ¢" — 1. Tt follows that f(t)
divides the polynomial ¢4"~1 — 1 € F[t]. Therefore, the roots of f(t) lies in Fy, and we can write
one of them as aj, for some positive integer a. The action of o, by left multiplication on Fy, viewed
as an Fg-vector space, has minimal and characteristic polynomial f(t). Therefore, with respect to
some basis, it can be represented by the matrix (x), so we can say ¢ = af under a good choice

of embedding GL;(Fyn) — GL,(F,). If a is not relatively prime to q;

11, then the image of af in

PGL,(FF,) has order strictly less than q;:f = s,. However, we know that this is the order of ¢ in
PGL,(F,). Therefore a is relatively prime to %.

For case (b), by Corollary 2.3(c), if v and w are representatives of the ~4-equivalence classes, then
qtjjll
of ¢ divides the polynomial ¢(¢"~1)/2 — 1, so that g = a?a for some a relatively prime to %, again
under a good choice of embedding GL1(Fyn) < GL,,(Fy).

For (c), let v,w € Fy \ {0} be such that V'(g;v) and V(g;w) are proper. Since they are minimal
qdim V(g;'u)_l
q—1

is even and s, = Sy = %. The argument in (a) shows that the characteristic polynomial

qdim V(g;w)_l . . . .
and s, = +——=. As we discussed earlier in this

g-cyclic subspaces, we have s, = 1
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proof, v and w satisfy the condition of Lemma 2.4, that is, = ds(gil:’sw) Z o ds(zf:’sw) mod ¢ — 1. In

particular, Fy = V(g;v)®V (g; w), and dim V (g; v) is relatively prime to dim V' (g; w). By arguing as
in (a), we can see that g = o, @&af_,, under some choice of embedding GL1 (Fgm) & GL1 (Fyn-m) <

GL,(F,), where m = dim V' (g;v), b = t, is relatively prime to q::ll, and ¢ = t,, is relatively prime
to ©-"=L  The conditions about m, b, c and the statement about the spectrum follows from the

q—1
conclusions of Lemma 2.4 together with Lemma 2.1.
In case (d), let v,w € Fy \ {0} be vectors such that V(g;v) = Fy # V(g;w). Then V(g;w) is a
minimal g-cyclic subspace, so we can argue as in (a) to see that the action of g on V(g;w) is given
by al,, qm:ll. Also, the action of

n ) . . . c .
g on Iy /V(g;w) has only one ~g-equivalence class, so it can be viewed as aj,_,, for some integer

where m = dim V' (g;w), and b is an integer relatively prime to

n—m b X
c relatively prime to 4 q_l_l. Therefore, g = <a6” of > X is nonzero, since if X = 0, then
n—m

the lower right diagonal block gives rise to a proper g-cyclic subspace not equal to V(g; w), which
cannot exist by assumption. Also, since s, = q;n__ll, Sp = q(;__ll — 8y = qnq:‘{m, and V(g;w) C V(g;v),
Lemma 2.2 shows that s,, divides s, and t,(sy/sw) = t, mod ¢ — 1, or equivalently, m divides n
and ¢ = b* ™ mod ¢q — 1.

In case (e), let u,v,w € Fy \ {0} be the representatives of the ~j-equivalence classes, so
that V(g;w) C V(g;v) € V(g;u). By Proposition 2.6, dimV(g;w) = 1, so the action of g
on V(g;w) is just a scalar a®. By arguing as in case (c), we can see that the action of g on
Fy/V(g;v) and V(g;v)/V(g;w) are given by af,_,, and ab | for m = dim V(g;v) and some in-

n—m

tegers b, ¢ satisfying the conditions similar to those in (c¢). Therefore, with respect to some basis,
at X2 Xiz D¢

g=120 ozfn_l Xo3 |. The submatrices X5 and < X13> are nonzero since otherwise there will
0o 0 a5, 23

be nontrivial proper g-cyclic subspaces other than V' (g;v) and V (g; w).

Finally, for case (f), let u,v,w € Fy \ {0} be representatives of the equivalence classes, so that
V(giu) = V(g;v) = Fy 2 V(g;w) and u 744 v. We again have dim V(g;w) = 1 by Lemma 2.2
and the fact that 1 is the only eigenvalue that can have multiplicity 3. Also, the action of g¢
on Fp/V(g;w) is as in case (a) or (b). If it is as in case (a), then with respect to some basis,

a
a X : . . . n—1 .
9= ( ), where a = t,,, b is an integer relatively prime to qu, and X is some nonzero

0 aj_y
matrix. Also, if 7 is the image of u in Fy/V(g;w), then sz = % (for the action of g on

Fy/V(g;w)) divides sy, since g*u = g5«u is a scalar multiple of u. Note that Lemma 2.2, s, = sy,

n n—1_
SO Sy = (u Sw)/2 = (¢""—1)q Therefore, ¢ is even in this case.

q-1 2(g—-1)
¢ X
If the action of g on Fy /V(g; w) is as in case (b), then by (b) ¢ must be odd and g = (Oé 2b ) ,
n—1
where a = t,,, b is an integer relatively prime to %, and X is some nonzero matrix. ]

Remark 2.9. Before other parts of this paper were completed, Katz and Tiep [16, Proposition
10.3.6] found another proof of Theorem 2.7 for p’-elements (cases (a), (b) and (c)). Compared to
the proof given here, their proof has an advantage of being much shorter, but it cannot be extended
to cover elements of order divisible by p.
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3. THE AcTIiON OF WILD INERTIA SUBGROUP

Let ‘H be an irreducible hypergeometric sheaf with the geometric monodromy group G = Ggeom
which satisfies (x). The goal of this section is to completely determine the possible sets of upstairs
characters and downstairs characters H can have. Equivalently, we want to find all possible spectra
of the action of v9 on H and the action of v, on Tame and Wild. In Proposition 3.1, we will see
that Theorem 2.7 already gives the answer for 7g, but for v, it only gives the possible spectra of
the action on H = Tame ® Wild. To see how these spectra splits into the spectra on Tame and Wild,
we will need to see how the action of 74, interacts with the action of P(c0).

Let go and g be the images of vy and 7 in G. Let go and goo be the images of gy and geo
in G/Z(G). By (%), 90,90 € PGL,(F,). We can choose representatives hg and hs of go and goo,
respectively, in GL,(F;). Since 7y and 7+ have pro-order prime to p, both hy and hs also have
order prime to p. As explained in Remark 1.4, the spectrum of g is a root of unity times the
spectrum of hg on an irreducible Weil representation, and the same holds for v, and he.

Proposition 3.1. (1) hg is an element described in Theorem 2.7(a).
(2) If dimWild > 1, then hoo is an element described in Theorem 2.7(c).
(3) If dimWild = 1, then hoo is an element described in Theorem 2.7(a).

Proof. Since the upstairs characters are pairwise distinct, the action of 79 on H has simple spec-
trum. Hence, the action of hg on H also has simple spectrum. Among the elements described in
Theorem 2.7, (a) is the only case with simple spectrum. For ho, we know that the downstairs
characters are pairwise distinct, so the action on Tame has simple spectrum. By Proposition 1.1,
the action on Wild also has simple spectrum. Therefore, ho, must be as in Theorem 2.7. If in ad-
dition dim Wild > 1, then we will see in Lemma 3.2(c) below that ho, stabilizes a nontrivial proper
subspace of IFy;. Only (c) of Theorem 2.7 has this property.

If dim Wild = 1, then hy has at most one eigenvalue with multiplicity 2 on an irreducible Weil
representation, and all other eigenvalues have multiplicity 1. The elements in Theorem 2.7(b) and
(c) have more than one eigenvalues with multiplicity 2 on every irreducible Weil representation, so
hso must be as in Theorem 2.7(a). O

For the rest of this section, assume that dim Wild > 1, so that G/Z(G) = PGL,(F,) by Propo-
sition 1.2(d). For the exceptional cases (n,q) = (3,2),(3,3),(3,4) where we cannot directly ap-
ply Proposition 1.2(d), we still have this property since Proposition 3.1(1) and the assumption
dim Wild > 1 are sufficient to make the proof of [14, Corollary 8.4] valid. Let J and @ be the images
of I(00) and P(c0), respectively, in G. Let J and @ be their image in PGL,(F,) = G/Z(G). Let
J be the preimage of J in GL,,(F,), and let R be a Sylow p-subgroup of the preimage of @ in J.
Since P(00) is a pro-p-group, @ and @ are p-groups.

Lemma 3.2. (a) R is a nontrivial normal Sylow p-subgroup of J, and R= Q.
(b) The subspace (FZ)R of points fized by R is nontrivial and proper.
(¢) There is a nontrivial proper hoo-stable subspace of Fy-

Proof. (a) Since P(o0) is a normal subgroup of I(oco) such that I(co)/P(oco) has pro-order prime
to p, @ is a normal Sylow subgroup of J. Also, since the wild part of H is nontrivial, () cannot
be trivial. In fact, Q@ € Z(Ggeom) by [12], so @ is a nontrivial normal Sylow subgroup of J. Since
1Z(GL,(F,))| = ¢ — 1 is relatively prime to p, it follows that |J|, = ||, = |Q|.

Let Q be the preimage of Q in J. Then |Q| = (¢ — 1)|Q|, so |R| = |Q|, = |Q|. Therefore, R
is a nontrivial Sylow p-subgroup of J, and the quotient map GL,(F;) — PGL,(IF;) restricts to an
isomorphism R — Q. To see that R is normal in .J, note that Q = RZ(GL,(F,)). Since Z(GLy(F,))
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normalizes R, R is the normal Sylow p-subgroup of Q. In particular, R is characteristic in Q, which
is a normal subgroup of J since Q is normal in J. Therefore, R is normal in J.

(b) The subgroup of upper triangular matrices with 1’s on the diagonal is a Sylow p-subgroup
of GL,(F,), and it is obvious that every nontrivial subgroup of this Sylow p-subgroup has this
property. Since R is a nontrivial p-subgroup of GL,,(F,), it is conjugate to a nontrivial subgroup of
this Sylow p-subgroup, so it also has this property.

(c) Ifu e (FZ)R, then for any 7 € R, we have Theott = hoo(hslTheo)u = hoou since hylrhe, €

R = R. Therefore hoo(IFg)R = (FQ)R- -

This completes the proof of Proposition 3.1(b), so hs is as in Theorem 2.7(c). To see which
part of the spectrum of hy, comes from the tame part, we will use Proposition 1.1 and compare
it to certain CR-submodules of irreducible Weil modules Weil; which we introduce in the next
proposition. To see how these submodules interact with ho, it is enough to work with a larger
elementary abelian p-group containing R. For our hs, choose v, w € Fy \ {0} and b,c,m € Z as in
Theorem 2.7(c), so that in the notation of section 2,

hoo = by, @ S, € GL(V (hoo; v)) @ GL(V (hoo; w)) C GL,(Fy).
By exchanging v and w if necessary, we can assume that (F?)® =V (hs;v). Define

E = {r € GL,(F,) | r acts trivially on both V(he;v) and Fy/V (hoo;v)}
I X

Note that F is an elementary abelian p-group containing R, and that h., normalizes F.

Proposition 3.3. Each of the restrictions to (heo, E) of Weily and Weil;, j =1,...,q — 2, has a

(qm—1)q(zj—m—1) -dimensional submodule induced by a nontrivial irreducible CE-module.

Proof. Let v,w,b,c,m be as above. We may view V (hso;v) as an additive elementary abelian p-
group of order ¢. For each irreducible C-character ¢ € Irr(V (hoo;v)) and each y € V(hoo; w) \ {0},
define

Yoj = @)@+ e Weil;.
2€V (hoo;v)

Note that the map E — V(heo;v) given by r — ry — y is a surjective group homomorphism: if
r,7’ € E, then they fix V(hoo;v) = (F2)¥ pointwise, and r'y — y € V (oo, v), 50

rry—y=rr'y—ry+ry—y=r(ry—y)+ry—y=('y—y)+ (ry —y).

Therefore, r + p(ry — y)~! is a one-dimensional C-representation of E, and non-isomorphic pairs
of ¢ give non-isomorphic pairs of representations of E. Also, for each r € E, we have

rygg=r Y e@@+yP =Y e@r@+y)? = > e@ @+ ry—y +yV

2€V (hooiv) €V (hooiv) 2€V (hoo;v)
= Y pla-y-)et+tP =ety-—y" D e@)(@+yP =y —y)
2€V (hoo;v) 2€V (hoo;v)

Hence, Cy, ; is a CE-module on which E acts by the representation described above.
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For each positive integer d, we have

Wi = Y w@)@+yV =Y p@)(hi(x+y)?

€V (hoo;v) €V (hoo;v)
= Y @z ol =Y el )@ +ail, )Y = (0ly) e
€V (hoo3v) €V (hoo;v)
which makes sense because ¢ o a;;?? : x — ¢(a; %) is an irreducible character of V(hso;v). Of

course, ¢ o a;;’? is nontrivial if and only if ¢ is nontrivial. Therefore, ho, permutes the set of

(g™ 1)(!1" m-1 )

1 pairwise non-isomorphic one-dimensional CE-modules

{Cypj |y € Vihoo;w) \ {0}, ¢ € Irr(V (hoo; v)) \ {1}}.

Note that they are all nontrivial, so when j = 0, we can view them as submodules of Weil}, (recall
that Weilp is a direct sum of a trivial module and the irreducible module Weily.) Also, since
Irr(V (hoo; v)) is linearly independent, so are the vectors v, ;.

I claim that this action of hy has only one orbit, so that it cyclically permutes these modules.
Fix y € V(hoo;w) \ {0} and ¢ € Irr(V(hoo;v)) \ {1}. Let d be the size of the orbit containing
Cyy,,j- It is the smallest positive integer such that hgoyw ji= (a%d mY) ;€ Cyyp,j. If we write

@O,
this as a linear combination of the usual ba81s vectors of the form ul/ ), U 6 Fy \ {0}, then the

coefficient of y@) is nonzero if and only if all oy € F,y. Since y, ; has nonzero coefficient for
y9) and 0 # hd VYo € Cyyj, the coefficient is 1ndeed nonzero, and a¢?  y € F qy. Recall that

n—m_4

q—1
n—m

q

n—m__|

q—1

a =« is the lowest power of ay,_,, contained in F,. Since c¢ is relatively prime to %

n—m__ .. .
we must have d = d’ qq_ill for some positive integer d’. Hence

n—m_
d d d —bd' NG
hitios = (Ot mW)ogrvt; = (1Y) ymom = D> plam T z)(@+aly)VY)
oo T 2€V (hootw)
» —bd/ 1 —ed/ 1 , y
d — — d
= \dJ Z olam . T 2)(am x+y)(J) — Ay I e € Cyy,j.
2EV (hooiv) Potm - g
, —bd’iq *1+cd’q — .
Therefore, d' must satisfy ¢ o am, = ¢, or equivalently,
_pr "= Lyed! g -1
am = ' x—x €kery for all ¥ € V(hoo;v).
, , —bd T ed!
Since ker ¢ is a proper subgroup of V' (hso;v), the linear transformation o, —1:

L L —bd! T ed T
V(hoo;v) = ker ¢ C V(hoo; v) is not invertible. Therefore, 1 is an eigenvalue of o, ¢ e

as an element of GLy,(F,). Since ay, is a generator of Fyin, the eigenvalues of ay, € GLy, () are
i VEE UL VY

some primitive ¢"™ — 1th roots of unity. Therefore, ¢ — 1 must divide (

q—1
Recall that b(q"*qul)zc(qm—l) is relatively prime to ¢ — 1. It follows that d’ = d”(¢ — 1) for some
positive integer d”, (_b(qn_m;i)frc(qm_l))qifll = —bd//(q::r_l) + Cd”q;n:ll. We

m—1
q—1

is relatlvely prime to both b and qnifbl_l, ) qm__ll divides d”. Therefore,

m m e (@m-1)(@" 7" -1
= L2 d = (¢ —1)d" is divisible by % On the other hand, hee  © =1,
so d is exactly this number. Therefore, hoo cyclically permutes the d one-dimensional CE-modules

also know that %
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Cyp,j with y € V(hoo;w) \ {0} and ¢ € Irr(V (hoo;v)) \ {1}. The direct sum of them is therefore a
C(hoo, F)-module induced by one of these submodules. O

Theorem 3.4. dim Wild = (qm_l)q(_#_l), and the spectrum of the action of Yo on Wild is the

(dim Wild)th roots of some number. The eigenvalues of the action of voo on Tame have multiplicity
1, and they are precisely the eigenvalues of the action of Voo on H with multiplicity 2.

Proof. Recall that H and an irreducible Weil module W of GL,,(F,) give the same projective repre-
sentation of PGL,,(F,). Since R is abelian, the irreducible representations of R are one-dimensional.
By Proposition 1.1, dim Wild cannot be divisible by p, so Wild is a direct sum of dim Wild one-
dimensional P(oo)-representations cyclically permuted by 7. In particular, the spectrum of the
action of v, on Wild is the set of (dim Wild)th roots of some number.

By Proposition 3.3, we know that there is a W—dimensional CJ-submodule of W
induced by a one-dimensional CR-submodule. Since this one-dimensional submodule must be con-

tained in either Tame or Wild, so is the induced submodule. In particular, either Tame or Wild
(@"=1)(¢"~™-1)
qg—1

. On the other hand, the spectrum of the action of vo, on H

(which is just a root of unity times the spectrum of the action of hs, on W) has q::ll + % —0j,0
eigenvalues of multiplicity 2, and each of them must appear exactly once on both Tame and
(@"=1)(¢"~™—1)
q—1

. . . m_ y
—0;,0- Moreover, these eigenvalues are some root of unity times the qq_ll th roots of A%/

has dimension at least

Wild. Therefore, one of Tame and Wild has dimension and the other has dimension

qm_l qn—m_l
q—1 + q—1

m

and the qn; 1_1th roots of X. By the observation in the previous paragraph, they all have the same

(dim Wild)th power. In particular, dim Wild is divisible by lcm(q;n:ll, qn;:nfl) = (qm‘aﬁ’f);m‘”, S0

dimWild > 251 4+ € =L Therefore dim Wild = "= "=1, .

4. CANDIDATE HYPERGEOMETRIC SHEAVES

In the previous two sections, we found a complete list of possible spectra of 79 on H and that
of 75 on Tame and Wild. In this section, we will show that only a small number of pairs of these
spectra for 79 and 7., can occur together as the spectra of 79 and v, on H.

Let H = Hypy(x1,---,XD;P1,---,pp—w) be a hypergeometric sheaf with the wild part Wild
at oo of dimension W and the geometric monodromy group G, and suppose that (x) holds. The
geometric determinant of # is given in [6, Lemma 8.11.6] as

L
L

H'D—lXi iftw > 1,
M2, @ Ly = Kiy(IT2, xi) it W =1.

Here, EHZQ v is the Kummer sheaf defined by the multiplicative character Hfi 1 Xi, and Ly is
the Artin-Schreier sheaf defined by the additive character . In the next proposition, we use this
determinant to see how the upstairs and downstairs characters are related.

We first treat the cases where D = %. Note that the irreducible Weil representations of these
dimensions are imprimitive, so the corresponding sheaves will also be imprimitive. It turns out that
they must be Belyi induced.

For a positive integer N and a multiplicative character y, we define

(4.1) det(H) = {

Char(N, x) := {multiplicative characters ¢ of F, with oV =}
If x =1, we will also write Char(NN) instead of Char(N,1).
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Theorem 4.1. Let H and G be as above, and suppose that D = %. Then H must be of the form

m n—m _ |

H Char ¢ X (b“) Char(Z AU Char(l——=
ypy (o (q 1 )i (q_ X7)Ue (q_1

%)
n—m

1. -1
XU Char(quv X7)) ® Ly

for some nontrivial additive character i of F,,, some multiplicative character ¢ of a finite extension
of Fy, an integer 1 < j < q—2, integers m, b, c as in Theorem 2. 7(0) and a multiplicative character x

%Hyp¢(Char(qq __ 1 x(Ote)y, Char(qq __

of )X of order q—1. Moreover, we can assume that b% cqq = =1 and ged(L— = ,Wllc))
1.

Proof. Let K be a finite extension of IF, over which all upstairs characters x; and downstairs
characters p; are defined, that is, # K — 1 is divisible by the orders of all x; and p;. Let ¥ be a
multiplicative character of order #K — 1 of K, so that every upstairs and downstairs character is
a power of ¥. Let © : n¢/(G,,,/K) — Q; be the monodromy representation of the Kummer sheaf
Ly. Then both ©(v) and ©(7s) are primitive (#K — 1)th roots of unity, so we can fix an integer
r relatively prime to #K — 1 such that ©(y) = O(7s0)". The same relation holds (with the same
r) for the values at vy and 7, of the monodromy representations of the Kummer sheaves for all
powers of 1.

To apply the results of the previous section, we first prove that W = dim Wild > 1. So suppose
that W = 1. By (4.1), the geometric determinant of # is EH > 0 ® L. Note that v has order

p while both 79 and v+ have pro-order prime to p. Also, since each of y; is a power of ¥, so is
Hi:l Xi- Therefore, for the images go, goo € G < GLp(Qy) of Y0, Voo, We have

det go = (det goo )"

Since H satisfies (x) and D = q”—l , the restriction of H to E(G) comes from Weil; for some
j€{l,...,q —2}. By Proposition 3 1 and Theorem 2.7, the eigenvalues of gy and g are given by

{uc | C% = A%} and {v( | qu%ll = A}, respectively,

where a, b are integers relatively prime to % n— and u,v € Q@ are some roots of unity. From the
above equality of determinants, we get

n_q . =1 . q"—1 q"—1 .
pt A9 = (v T A so that {(1€)" | ¢ T = {u¢ | ¢ =AY}

Note that the set on the left-hand side contains the rth powers of values at ., which are equal to the
values at 7p, of the monodromy representations of Kummer sheaves obtained from the downstairs
characters. The set on the right-hand side is precisely the set obtained similarly from the upstairs
characters. Therefore, the set of downstairs characters is contained in the set of upstairs characters,
which is impossible by Proposition 1.2(a). Therefore W > 1.

Now we can apply Proposition 1.2, Proposition 3.1 and Theorem 3.4 to find the possible spectra
of g and g, as well as the possible sets of upstairs and downstairs characters: the spectra must
be

q"—1 .
{ug | ¢t =A%}
and
(@"-1)(g""™-1)

(¢ ¢ = Y L{ue | ¢ = A L | ¢ e = 1),
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and the sets of upstairs and downstairs characters are

n __ m n—m _ |

1 _ -1 . .
1 Char(—,x™) and i Char( = x) U p Char(*-— = x¥),

respectively, for some integers a, b, ¢, m satisfying the conditions in Theorem 2.7 and some roots of

unity p,v € @X and the corresponding multiplicative characters 7, ¢ of some finite extension of
F,. By computing det go = (det goo)" as above, we can see that

-1
77 q—1 a] — C)O q 1 (b+C)

so that the upstairs characters can be written as

n

nChar(q
q

: " —1
) = o Char(*——
—XY) = adq_lw

(b+c)j)_

Therefore H must be of the form
m n—m _ q

H Char a X (HC) Char(L—— ) U Char(l——=
ypy (e (q 1 " (q__ x™7) U Char( p—

X))

By [6, 8.2.14] this is geometrically isomorphic to
1 nmme_ 1
XU Char(qu, X7)) @ Ly.
Let d be a positive integer such that ¢ — 1 is not divisible by the dth power of any prime. Since
m is relatively prime to n, we can choose integers e, z,y such that
qn—m -1 qm -1

e(n —m) = ¢ mod n?, and z -y =1
q—1 qg—1

n_1 . mo__
Hypw(Char(qu, X+ Char(qq —

. n—m__ m_ . . . .
Since b4 1 1_ cqqf Lis relatively prime to ¢ — 1, we can also choose integers z,w such that

1
n-m _ | m _ 1
z(bq p! )—w(g—1)=1.
qg—1 q—1

Let b’ = 2(b— eqm_ll) (g—Daw, 1= z(c—el— _1) (¢g—1Dyw, j' :== (b(n—m)—cm)j, and ¢’ :=

ox One can easily check that in the above expression of H, replacing the parameters (b, ¢, j, ¢)
with (0/,¢,5',¢") does not change the set of upstalrs and downstairs characters, and these new

; rq""m—1 rq"—1 _ q—1 — q—1 —
parameters satisfy b 1 =1 and ged(L— ) ,m) = ged(n, ng(qil’cie(nim))) =

1. U

The sheaves of rank <
test”, which is a crlterlon determlmng whether the geometric monodromy group of an irreducible
hypergeometric sheaf is finite or not, based on an inequality involving the upstairs and downstairs
characters and Kubert’s V function. For details and the proof of this test, see [7, Section 13]
and [6, Section 8.16]. We shall also use the basic properties [7, Section 13, p. 206] of the function
V', without explicit mention, to simplify expressions involving V.

1 require more work. In particular, we will need to use the so-called “V-

Theorem 4.2. Let H and G be as in the beginning of this section, so that (x) holds. Suppose that

D= %. Then H must be of the form

m n—m

—\ {1 Char( =) U p(Char( )\ (1)

Hypy (¢ (Char(q

n

%Hypw((:har(qq

n—m

DU (Char(E—T )\ (1) o £

_ ‘ qm —
— )\{]l},Char( -
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for some nontrivial additive character i of F,,, some multiplicative character ¢ of a finite extension
of Fq, and an integer m satisfying the conditions in Theorem 2.7(c).

Proof. (1) We first prove that W > 1.

Choose K, 19 @ and r as in the proof of Theorem 4.1. We can assume that #K — 1 is also
divisible by £———=. As before, the elements gy and g., must be as in Theorem 2.7(a). However,

Theorem 2.7 debcrlbes the spectrum of Weily = Q; ® Weilj,, while H gives Weil. Therefore, the
spectra of gy and g can be written as

[u¢ | ¢ = 1,¢ £ 1y and (¢ | 7 = 1,¢ #£1)

for some roots of unity p,v € @X of order not divisible by p. Now from the equality det gg =
(det goo)", We get

" —q @"=ar "1

pa—t =y a1 or equivalently (ur~") a1 =1.

Therefore, H must be geometrically isomorphic to

’I’L TL

(4.2) Hyp¢(T(Char( - ) \ {1}); Char(

)\{]1 p}) ®

for some nontrivial multiplicative character 7 of order dividing q"q_ll L some 1 +#pe Char(4 = 11)
and some multiplicative character ¢. Here, 7 is nontrivial since H is 1rreduc1ble so that the upstairs
and downstairs characters must be disjoint.

I claim that the hypergeometric sheaf (4.2) does not satisfy (*). More specifically, I will show that
the geometric monodromy group is not finite. For the sheaf (4.2), the V-test, after a simplification,
says that the geometric monodromy group is finite if and only if for every integer N relatively prime
to #K — 1 and for every x € Q/Z whose denominator is not divisible by p, the following inequality

holds:

(4.3)

A—2)V(Nt) + V(Nt — Ns N
v<Nt+Ax>+V(—A:c>+§z( WL VN D) 4 v (Nt +a)+ Vi-a >+v<_78_x)
where A = q ,and t € n 1 1Z\le the number such that 9*#K-1) =7 and s € {1,...,A—1}

1)

is the number such that 95% = p.
Suppose that (4.3) holds for all pairs (N, z). Recall from [7, Section 13] that for any = € Q/Z\ Z,
we have V(z) + V(—z) = 1, and for any x € Z we have V( ) 0. Note that for every N

relatively prime to #K — 1 (which is divisible by both A and ¢ = 1 by the choice of K), if we let
r = —Nt+ % for an integer u not divisible by A, then we have Nt—{—Am =—(A—1)Nt+u € Z but
Az, Nt,Nt — N5, Nt +z,z, N5 — x are not integers, so that the sum of (4.3) for the pairs (N, )
and (—N, —z) becomes the inequality 1 > 4 — 3. Therefore the equality holds in (4.3) for each of
these pairs:

V(Nt) — V(Nt — &%) u u Ns+wu, 3
1 _V(Z)+V(Nt—z)+V(Nt— 1 )—5
The explicit formula [7, Theorem 13.4] of the function V tells us that the right-hand side of the

equality lies in m% On the other hand, the left-hand side lies in (—, 425). Since

n >3, we have A—1 = _q > (p—1)n(n—1)log, q, so that MZO(—A% ) = {0}.
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Therefore, the equality forces that

Ns U U Ns+u 3
V(Nt) =V(Nt = —) VW= ) FV(INE - ——) = 5.

These are true for all integers N relatively prime to #K — 1, so (4.3) implies

,and V(

3 N
(43)  V(Nt+Av)+ V(=Az) + 5 > V(N + V(Nt +2) + V(=) + V(—f —2)
for all pairs (N, z).
The equality in (4.3’) holds not only for x = —Nt + % for u € Z \ AZ, but also for x = % for
u € Z with u # 0, —Ns mod A by the same reason. For x = —Nt+ % and —% with v # 0, Ns mod
A, these become

so that
(4.5) vve - NSy V(U_ANS).

Take the sum of (4.5) for v € {1,..., A — 1} except for Ns mod A, and use the fact V(Nt) =
V (Nt — &) we saw above to get:

VNt = Z22) = V(==).

On the other hand, choose u = Ns + pf for either f = 0 or 1, so that Ns + p/ # 0 mod A. Then
from (4.5) we get

2 v’ u+ Ns u—Ns IN's Ns

- =2V() = VNt - )+ V( t- =) =v(-=0).
Similarly 2 > V(£), so we must have 2 > V(—2£) + V(&) = 1. Therefore, either n = 4 and
V(J\AS) =1/2,orn=3and 1/3 < V(%) <2/3.

gyt _ n(n—2) _
Suppose that n = 3. Let N =1,¢ =t(¢g+1) € {1,...,¢}, and = = (q+tq;_)§;1(q2(_ql)2_l) e

— / ,_
%. Then

V() =V(t)+V(gt)=V(#t)+V({H —t) =1,
(q—thg+t' -1 q—t -1 1

Vi(z) =V( -1 ):V(qgli_l)—i_v(qz;_l):iv
o a=E+ (P -Dg+ (' -1), 3
V(Az) = V( A1 )= 1
V(t+ Az) = V((q_t/)giﬂlﬂ_ D, _ i,
=D+ (gt -1 3
V(it+z)=V( I )—1.

Therefore (4.3') for (N,z) becomes 2 > 2 4+ V(=5 — x), which forces x + § € Z. However, this

would imply V(%) = V(—z) = 2, but we saw above that 3 < V(&) < 2. Therefore n # 3.
Finally, suppose that n = 4. If u € Z with v #Z 0,—Ns,—2Ns,—3Ns mod A, then by the

same argument used in (4.4) and (4.5) with o = —Nt + 4%, —vtNs ' N¢ 4 wtls Ny 4 wt2Ns o
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—%fvs,weget
U u+2Ns u+ 3Ns U u—+ Ns
V(Z)_V(Nt_T)_V(T)andV(Nt_Z)_V< T ).
Suppose that d := ged(3s, A) > 1. Then we can set u =1,14+ 3Ns,1+6Ns,... to get
11 d4d, 14 (A—d)
tev =Vt - oy T

so that
41

1+zd 1 A—d
ZV =V(E) +

Therefore, 2d = 4dV(é) + A, so we must have 2d > A. Since d divides A, we get d = A, so that
A divides 3s. Therefore A is divisible by 3, and s = A/3 or 24/3. By (4.4), (4.5) and the above
observations, we get

S VAV = ) VN T SV V(G 4 V(G 4 2 = V()

+ 1.

Therefore 2 = V(3) =V 3(2:1) , so we must have ¢ = 2. Now one can manually check that for
2 A qg*—1

g = 2 and n = 4, the inequality (4.3') fails for all possible pairs of ¢ and s; for instance one can
choose (N,x) = (1, 15) for s =5 and all ¢, and (N, z) = (1, 15) for s =10 and all ¢.

If d =1, then A is not divisible by 3, and s is relatlvely prime to A. Hence either g =3 or ¢ =1
mod 3, so A =1 mod 3. Then as above we get

v v @)ooy D B
L (- PRI P
V<(2A;11—1)s): ((2A:1—4)8): :V((SA;?))S).

Moreover, since V( ) = % must be one of the values, the top and bottom rows are either i or %.

However V((2AT+1) V(%) = 5 as we discussed below (4.5), so this case cannot happen. This

completes the proof that W > 1
(2) Now we consider the sheaves with W > 1.
As in Theorem 4.1, H must be geometrically isomorphic to

n m o n—m

gt —1 , q 1
My (r(Char(L =)\ {1): Char( T U (Char(" )\ (1)) &

11_ L and some multiplicative character .
We want to show that H must be of this form with 7 = 1. If m =n — 1 or 1, then we can replace

7 with 1 and ¢ with @7 without changing the sheaf itself, since the set of downstairs characters

Char(qn;; 1
Suppose that 1 <m < n —1 and 7 # 1. We may replace m with n — m without changing the

sheaf, so assume that n/2 < m < n — 1. The V-test for this sheaf (with ¢ = 1) is
(4.6) V(Nt+ Az)+V(—Bz)+ V(-Cz) > V(Nt + x) + V(—x)

for some multiplicative character 7 of order dividing <

1) remains the same when multiplied by 7~
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for the pairs (N, x), where A = - 711, B = 11, C = qn;nl L and t e n . 1Z \ Z is the number

corresponding to 7. Note that A = B + Cq™ q =B¢"""+C. Suppose that this holds for all pairs
(N, z).

Let 2 = £ and N = ¢/ for f =0,1,...,m — 1. Then (4.6) for (N, z) becomes
C 1 n—m—1
4. Tt 2> Vight+ =)+ — =
(4.7) Vg +B)_V(q +tg)t—
On the other hand, by the basic properties of V',
C 1 Cc—-1 1 n—m-—1
Vig't+ =) <Vi(gt 1% Vight+ 5) + ——.
(@'t+5) Vgt + 5)+V(e5—) =Vit+ 5) + —

Therefore, the equality must hold.
n—1 n—
Lett' € {1,...,4 q,l_l —1} be the number such that t' = tq

— mod qn;1_1 Leta; € {1,...,p—

—1
1 .
1} be the base p digits of /(¢ — 1), that is, the unique numbers such that Z(n Dlogya=1 a;pt =

t'(g—1). Now from (4.7) (with f = 0) and the formula for the function V' (cf. [8, Sections 2 and 4] and
[9, Discussion above Theorem 2.9]), one can see that if b; € {0,...,p—1},0 <i < (n—1)mlog,q—1
are the base p digits of

(n—1)m _q (n—1)log, g—1 q(n—l)m 1 (n—1)mlog, g—1

qqn_li__l( Z aip’) + (g — 1)(1’“7—1 = Z bip',

=0 i=0
then for each 7 =0,...,n — 2, we must have

b(jm—i—l)logpq == b(jm+n—m) log, ¢—1 = 0.
It follows that either
® o ="' = Q(n—m)log, q—1 = 0, or
® Qlog,q = " = G(n—m)log, g1 = P — 1 and at least one of ao, ... ; Glog,, q—1 is nonzero.
Note that if we choose a larger power of p as N, then it “circularly shifts” the base p digits of t'(¢—1).
Hence, the above argument for different values of f shows that either ag = -+ = a(,_ 1)log, g—1 = 0

Or ag =+ = G(p—1)log, g1 = P — L. But then /(¢ — 1) =0 or g 11_ which contradicts our choice

of t. Therefore (4.7) cannot hold for (N,z) = (¢/, %) for some f, and hence (4.6) fails for this
pair, contradicting our assumption. This proves that if 1 < m < n — 1 and H has finite geometric
monodromy group, then 7 = 1. O

Remark 4.3. Note that in (4.6), if 7 = 1, then ¢t = 0 and the inequality becomes
V(Az)+V(=Bz) +V(-Czx) > 1
for x ¢ Z. Since V(Ax)+V(—Bx)+V(—Cz) > V(Az)+V(—Bx—q"Cx) = V(Ax)+V(—Az) =1

this inequality holds. Therefore, the sheaves in Theorem 4.2 do have finite geometric monodromy
groups.

By Theorem 4.1 and Theorem 4.2, we are left with a small family of hypergeometric sheaves. Is it
possible to further reduce this family? First, taking tensor product by a Kummer sheaf £, wouldn’t
make much difference on the geometric monodromy group, so we can’t remove this. Indeed, if G
is the geometric monodromy group of the hypergeometric sheaf without ®L, and G’ is that of the
tensor product, then (G, Z) = (G', Z) as subgroups of GLp(Qy), where Z is the central subgroup
of GLp(Qy) of order equal to the order of . In particular, if G is finite almost quasisimple, then
G’ is also finite almost quasisimple with the same nonabelian composition factor.
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It is also impossible to put any additional restriction on n and ¢ (recall that we do assume that
n > 3). For all pairs (¢,n) the sheaves we obtain from Theorem 4.1 and Theorem 4.2 by setting
m = 1 and ¢ = 1 were already studied by Katz and Tiep [13]. All of them do have the desired
geometric monodromy groups in irreducible Weil representations, cf. [13, Corollary 8.2]. Since we
already have some restrictions on m, further reduction is not likely at this point. It turns out that
this is indeed the case, as we will see in the next section.

5. COMPUTING THE GEOMETRIC MONODROMY GROUPS

Although the sheaves in Theorem 4.1 and Theorem 4.2 survived our attempts to remove the
non-examples of (x), we still need to show that these sheaves do have such geometric monodromy
groups. The method we will use to compute these monodromy groups is based on the arguments
in [13], which discusses the sheaves in Theorem 4.1 and Theorem 4.2 with m =1 and ¢ = 1.

The plan is as follows. We first form a directed sum of appropriately chosen sheaves from
Theorem 4.1 and Theorem 4.2. This direct sum will have a “nice” trace function, which becomes
even nicer if we take a Kummer pullback. Then we can use results in [13] to see that the monodromy
representation must be the restriction of the total Weil representation of GL,,(F,) to some subgroup
containing SL,,(F,). We use this fact to prove that the geometric monodromy group of the original
direct sum before taking pullback is a quotient of GL,,(F,), and that the monodromy representation
is a direct sum of certain irreducible Weil representations.

For the rest of this section, let n,q, x,v be defined as in the previous section. Fix b,c,m € 7Z
and a multiplicative character ¢ which satisfy the conditions in Theorem 4.1, namely

(i)1<m<n-—1,
(ii) bC' —cB =1 (so that n and m, or equivalently qn;nf

1 qm"—1 .
and are coprime to each other),

1 q—1
and
—1
(iii) ged(A, m) =1,
where as in the proof of Theorem 4.2, we set
n_1 m_q n—m _ |
A=1 ,B:ziq 7(]::7(1
q—1 q—1 q—1

Consider the following irreducible hypergeometric sheaves as in Theorem 4.1:
H; = Hypy(Char(A, x+)7); Char(B, x*) U Char(C, x¥)) for j =1,...,q — 2
and one from Theorem 4.2:
Ho := Hypy(Char(4) \ {1}; Char(B) U (Char(C) \ {1})).
We first compute the trace functions of these sheaves.

Proposition 5.1. Hg is geometrically isomorphic to the lisse Qq-sheaf Gy over Gy, /Fy, which is
pure of weight 0 and whose trace function at each point u € K* of each finite extension K/F is
given by

we KX -1+ |{ve K* | u bl 4 ud"y=0" =1}

Proof. Hy is, by definition, the multiplicative ! convolution of three Kloosterman sheaves Kl (Char(A)\
{1}), inv* Ki;;(Char(B)), and inv* Klz(Char(C) \ {1}). By [11, Lemma 1.1 and 1.2], Ho is geomet-

rically isomorphic to the lisse Qg-sheaf over G,,, pure of weight 4, whose trace function at u € K*
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is given by the convolution

Z (- Z Vi (Az — i;&)) Z Vi (—By) (_ Z bre(t2C — Cz))

rs,te K> TeK zeK
rst=u Yy’ =s

t _
z,ze K,y te KX

where the equality follows from the fact that A = B = C = 1 mod ¢. Since 1 is nontrivial and
irreducible, we have ), ¢k (x) = 0. Using this, we can rewrite the above number as

DR R R SR G )

r,ze K, ye KX te K*
= 3 ykle—y-2) (—1 £ prlt(—2aty P 4 z0>>)
r,2e€ K, ye KX teK u
- > <wf<<—y— 2y wm) +(#K) Y vr(r—y—2)
zeK,ye K% zeK z,2€K,ye K*
oA =uyB 2C

=#K)(-1+ Y tx@-y-2)).
Vishr I
rr=uy- z

There is a bijection between the sets {(z,y,2) | z,y,2 € KX, 24 = uyP2¢} and K* x K* given by
(z,y,2) — (z, 200" =027
(z, zuv™ %, 29" w0 P) — (2, 0).

By applying this change of variables, we can rewrite the above expression as

(#K)(—1+ Z ¢K(ﬂs—$ucv_c—xqmu—b03))

z,vEKX

SH)1+ DY ke (1wt O — B
veEKX ze KX

=#K)(-1+ > (-1)+ > (#K))
veEK X veK*

1—ucd " p=Ca™ _y—byB=(
—(#K) (=14 |{v e K* | u P 44" y=C7" = 1})).

Now apply a Tate twist (2) to obtain a lisse Qg-sheaf Gy on G,,/F, pure of weight 0 and geomet-
rically isomorphic to Hg, whose trace function is given by

ue K* = —1+|{ve KX |u P +u v 0" =1}|.

By a similar argument and [5, 5.6.2], we get the following:
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Proposition 5.2. H; is geometrically isomorphic to the lisse Qp-sheaf G; on Gy, /Fy, which is pure
of weight 0 and whose trace function at each point uw € K* of each finite extension K/F, is given

by

ue K> — Z xx (v7).

veK X
m m
u bpB 4yt p=Ca" =1

Corollary 5.3. The sheaves H;, 0 < j < g — 2, have finite geometric monodromy groups.

Proof. By Proposition 5.1 and Proposition 5.2, they are geometrically isomorphic to the sheaves G,
which are pure of weight 0 and whose trace functions have algebraic integer values. By [6, Theorem
8.14.4], their geometric monodromy groups are finite. O

Let W be the direct sum of the sheaves Gy in Proposition 5.1 and G; in Proposition 5.2:
q—2
W =g
=0

Proposition 5.4. W is geometrically isomorphic to the lisse Qq-sheaf whose trace function is given
by

we KX =2+ [{we K | wPw?" —u* " w?" = w}|.
In particular, the values of this trace function is —2 plus either 1 or a power of q.

Proof. The trace function of W is given by the sum of trace functions of G; computed in Proposi-
tion 5.1 and Proposition 5.2:

N
N

we K*— -1+ Z xx (V7).

veKX
m m
ubyBpycd y=Ca T =1

<.
Il
o

The sum Z?;g xrx () is g — 1 if Normg g, (v) = 1, that is, if v is a ¢ — 1th power in K*; it is 0

otherwise. Also, if v is a ¢ — 1th power in K, then it has exactly ¢ — 1 distinct ¢ — 1th roots in
K>, since F; C K has all ¢ — 1 distinct ¢ — 1th roots of unity. Therefore, the trace becomes

— 1+ > (g—1)

" m veK X
ucl y=Ca +ubeB:1,NormK/[Fq (v)=1

=1+ (¢g—1){ve K" |u P +u"p%" = 1, Normp, (v) = 1}|
= 1w e KX | utw@ DB |yt a0 Z 1y,
=—1+H{weK* |1+ ubted™ - (a=1A = ubw*(qfl)B}\.
By mapping w to w™! we can write this as
—1+{we K*| ubw( DB _ gbted™yy(a-1A - 1}
=24 [{we K | vPw?" — a0 0w = w}|.

Note that the set {w € K | ubw?" —u?+1" " = w} forms an F,-vector subspace of K. Therefore,
its size is either 1 or a power of q. O

To apply the results in [13], we take a Kummer pullback of W.
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Proposition 5.5. The trace of [W)M)] W is

m n 71
ue K —1+ {we KX |wl" 71 — ! 1 =yt Lo }.

This is —2 plus either 1 or a power of q. Also, the trace of [gcgqi”fc)]*go 18

we KXo —1+ [{we KX | wf — wh = yssata 1},
Proof. From Proposition 5.4, we can compute the trace function of [%]*W = [gc a0 1 ) ] @

(=)< (@=1)C(bted™)
ue K* — 2+|{w€K\ug°d(q 1C>wq —u edla—Lo ! = w}

(¢—1)C m (g=1)C(b+cq™) n
_ 1t [fw e KX | ustana f" 1 g e el = 1Y),

The map w — wu = 8419 jg a bijection from K to itself, so we can rewrite the set in the above
trace function as

(¢=1)Cb _ c m_1q (¢=1)C(b+eq™) _ c n_q
{w c KX |ugcd(q—1,0) (’LU'LL gcd(q—l,C))q —1 _u scdla—1l) (wu gcd(q—LC))q = 1}

(¢g—1)(Cb—Bc) m (¢g—1)(Cb+Ccq"™ —cA) n
_{w c KX ’ u eed(a—1,0) 9 -1 _ U ged(g—1,¢) w? -1 _ 1}

—_q=1 __g=1
:{w [= KX | u gcd(qfl,c) wqm_l —u ged(g—1,c) qu_l — 1}
m n 71
:{w e K* ’wq =1 1"l = ecd(a= lc)}
Again, this set together with 0 form a F,-vector space, so its size is a power of q. The expression for

the trace of [%] Go at u € K* can be obtained using a similar argument and Proposition 5.1.
O

Corollary 5.6. Q, @ inv*[gg(;i%}*%o is geometrically isomorphic to [m] £.Qq, where

f(t) € Fylt] is the polynomial f(t) = t% —tA. Also, Q@ inv*[gg(_qi%]*w is geometrically isomor-

phic to [gcd(q;llc] F.Qq, where F(t) € F,[t] is the polynomial F(t) =t~ DB _ ¢la—1)4

Now we are ready to prove the main results of this section.

Theorem 5.7. The geometric monodromy group G = Ggeom Of [W)M)] W satisfies SL, (Fq) =
G*®) < G <1 GL,(F,). The monodromy representation of Qp @ [%} W as a representation

of G is the restriction of the permutation representation of GLy(Fy) acting on Fy \ {0}, that is,
DI Weil;.

Proof. We mimic the proof of [13, Theorem 8.1]. To use [13, Theorem 6.8], we check the conditions
for this theorem. We start with the condition (a) of [13, Theorem 6.8]. By Corollary 5.6 and [13,

Lemma 5.1], the geometric monodromy group G' = Ggeom 0f [%]*W can be embedded in S,»_1
%]*W, viewed as a representation

of G, is the restriction of the natural permutation representation of Syn_1. Also, W is geometrically

gcg(qil)lcc] Gj. We need to show that each [gc(d(qi)lc] G; is irreducible.

in a way such that the monodromy representation of Q, @ |

isomorphic to @] 0[

For j = 0, the monodromy representation of the Kummer pullback [%] Gy is the restriction
of the monodromy representation of Gy to a normal subgroup H of G such that G/ H is cyclic of order
dividing @=DC " yWe also know that by [10, Proposition 1.2], Hg is not geometrically induced.

ged(g—1,0)"
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(¢-1H)C
ged(g— lc

constituents are isomorphic to each other. Now Gallagher s theorem [4, Corollary 6.17] together
with the extendibility of invariant characters of normal subgroups with cyclic quotient [4, Corollary

11.22] shows that [%] Go is irreducible.

For j # 0, we know that the dimension of the monodromy representation of G; is A, which is

Clifford correspondence now shows that | [*Go is isotypic, that is, all of its irreducible

relatively prime to %. On the other hand, [gc(:il(qil)lc] G; is the restriction of G; to a normal

subgroup of index dividing %. By [4, Corollary 11.29], % times the dimension of

an irreducible constituent of this restriction must be divisible by A. Therefore, [g(:%]qillc] G; is
irreducible, and condition (a) of [13, Theorem 6.8] holds.
By Corollary 5.6 and [13, Lemma 5.1], the geometric monodromy group of |

gc(g(ql—)lcjc)
restriction of the natural deleted permutation representation of S4. Also, the image of vy in this
monodromy group has simple spectrum, and its order is the least common multiple of the orders
(=10 ginee (DO
ged(g—1,¢) ged(g—1,c)
relatively prime, the order of the image of vy is A. We also know that the image of P(c0) in the
geometric monodromy group is a p-subgroup of order at least ¢"~! by [14, Proposition 4.10]. Thus
we have condition (b) of [13, Theorem 6.8].

Proposition 5.5 shows that the trace plus 1 is always a power of ¢, so condition (c) is also

satisfied. [13, Theorem 6.8] now tells us that we must have

(¢=1)C

*
zed(g-1.0)) 90 can

be embedded in S4 in a way such that [ *Go, as a representation of this group, is the

of upstairs characters of Hg, possibly divided by a divisor of and A are

SL,(F,) = G 9 G < GL,(F,),

and Q; & [Wnlc)] W as a representation of G is the restriction of @q_o Weil; to G. O

Theorem 5.8. In the situation of Theorem 5.7, the geometric monodromy group G' = Ggeom of W
is isomorphic to GLy(F,)/{adI).

Proof. Let H be the geometric monodromy group of [%]*W, so that H < (g9, H) = G. By

Theorem 5.7, H is the image under the representation Weilf, & @?;f Weil; of a subgroup of GL,,(Fy)
containing SL, (F,). Let L := E(H) = SL,(F,) = [H, H| be the quasisimple layer of H. Also for
each j =0,...,q — 2, let G; be the geometric monodromy group of G,.

(1) We first prove that Z(G) = Cg(L).

Since W is the direct sum of irreducible representations G; and each of them restricts to an
irreducible representation of L, we can view G and L as subgroups of GLa_1(Q¢) ©GLA(Q,) & --®
GL4(Qy). By Schur’s Lemma, we get

Cor, @D = Ca,n () = Z(CLA1(Tr) & Z(CLAQ) © - - © Z(CLA(T).

Therefore

(2) Next, we show that G/Z(G) = PGL,(F,).
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Since L is normal in G, the restriction of the monodromy representation of each G; to L is
invariant under conjugation by elements of G. We already saw that they are precisely Weil{, and
Weil;, j =1,...,¢—2. The only automorphisms of SL,,(F,) fixing each of these representations are
the inner and diagonal automorphisms. Therefore we get

G/Z(G) = G/Cq(L) < PGL,(F,).

On the other hand, the geometric monodromy group G; is the image of G under the projection
from GL—1(Q)®GLA(Qy)®- - -dGLA(Qy) onto the jth summand. Therefore, G is a quotient of G,
and G contains the image of SL,,(F,) acting on an irreducible Weil representation. In particular, G;
is finite, almost quasisimple with unique nonabelian composition factor PSLy,(F,), so by Proposi-
tion 1.2(d), G;/Z(G;) = PGL,(F,), except for the exceptional pairs (n,q) = (3,2),(3,3),(3,4)
of Proposition 1.2(d). For (n,q) = (3,2) and (3,3), we have PGL,(F,) = PSL,(F,), so we
still get G;/Z(G;) = PGL,(F,). Since we already know that G/Z(G) < PGL,(F,), we get
G/Z(G) = PGL,(F,).

For (n,q) = (3,4), A = 21 is divisible by [FS| = ¢ —1 = 3, so by Theorem 2.7, no p'-
element (in fact, no element at all) of SL,,(IF,) has simple spectrum, which shows that G;/Z(G;) #
PSL3(F4). Therefore, G/Z(G) is also not equal to PSL3(F,). Since PGL3(F4)/ PSL3(F4) is simple
and G/Z(G) < PGL3(F,), the equality must hold.

(3) We compute the order of Z(G).

Let z € Z(G). By (1),
z = (60[,61[,...,6q_21) S GLA_l(@) @GLA(@) DB GLA(@)

for some roots of unity €; € @X, where I denotes the identity matrix of appropriate size. Thus for
each j, the trace of the action of z on G; is just (A — o ;)e;.

Let K be a finite extension of F, on which W is defined and such that [K : 4] is even, so
that Normpg g, (—1) = 1. Since G; is pure of weight 0 and its geometric monodromy group Gj is
finite, it follows that the arithmetic monodromy group G x over K of G; is also finite, and hence
the arithmetic monodromy group G of W is also finite. By Chebotarev density theorem, every
element of G comes from a Frobenius in the arithmetic fundamental group. In particular, z is the
image of the Frobenius at some u € K*.

The trace of the action of z on G;, which is (A — dg ;)¢;, is also the value at u of the trace
functions we computed in Proposition 5.1 and Proposition 5.2:

(A — (SOJ)EJ' = —50,j + Z XK(Uj)'

veK™
m m
ubp A —pCa" et =

Note that there are at most A elements v € K™ satisfying uPvA — 00" £ 4" = 0, and each
Xx (v?) is a root of unity. Therefore, the above equality forces that there are precisely A such v in
K> and that xx(v)? = ¢; for all such v. In particular, € is a (¢ — 1)th root of unity and ¢; = €]
for all j. Also, all such v has the same Normg r_(v), which is precisely the inverse image v € F of
€1 under y.
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A

Since v are the roots of the polynomial u v — v¥?" 4+ 4™ the product of all v is exactly

(—1)Aubted™ | Hence

= A H Normg p, (v) = Normg /r, (H(U))
veEK* Y
u—bpA _pCa™ yyed™ =
= NormK/Fq((—l)Aub+cqm) = Normp/r, (u)b+c

where the last equality follows from Normg /p (—1) = 1.
Let d = Wibﬂ)’ which is the order of b+ ¢ € Z/(q — 1)Z. Since v € F* has order dividing
q — 1, we have

d d(bC—cB)

=y d(b(n—m)—cm) _ Vbdnf(bJrc)dm b

= phin — NormK/]Fq(u)bd(b“) = 1.

=v
Therefore ¢; = x(v) has order dividing d, so it must be a power of A**¢. Since this holds for all
z € Z(G), we get

Z(G) < (I, )\b+CI, )\2(b+c)1’ o ’)\(q—Q)(b—i—c)I)) >~ 7,/d7Z.

Recall that the geometric determinant of H; is Exb+c if A is odd, and ﬁxb+cx2 if A is even. Also
note that if A is even, then d is also even: we know that bC'—cB = 1, so that bn — (b4 c¢)m = 1 mod
g—1. Since A is even if and only if n is even and ¢ is odd, it follows that (b+c¢)m is odd, whence d is
even. Therefore, if A is even, then we can choose a jg such that x(*t¢7 = y,. Then the geometric
determinant of Hiyj, is £,s+e. In particular, G has Z/dZ as a quotient. Since L is perfect, this
quotient map factors through G/L. Since G/Z(G) = PGL,,(F,) and |L| = | SL,(F,)| = | PGL,(F,)|,
we have |Z(G)| = |G/L|. Therefore, |Z(G)| is divisible by d. Together with the above observations,
this implies Z(G) = Z/dZ and G/L = Z/dZ.

(4) Now we prove that G = GL,(F,)/(a?I).

To prove this, we will find a surjective group homomorphism F' : GL,(F;) — G with kernel
(adT). Since we already embedded these groups into GLgn_2(Qy) in a way such that SL,(F,) = L,
we only need to extend this to GL,(F,) = (diag(a, 1,...,1)) SLy(Fy).

As we saw above, EXHC is the geometric determinant of some G;. We can view this as a one-
dimensional representation of G. Since L < [G,G], L lies in the kernel of this representation. Also,
the image of gg under this representation has order equal to the order of this representation, which
is d = |G/L|. Therefore G = (go, L).

Since goL generates G/L, goZ(G)L generates G/Z(G)L. Note that

G/Z(G)L = (G/ZL(G))/(Z(G)L/Z(G)) = PGLy(Fy)/ PSLn(Fy) = GLn(Fq)/(Z(GLA(Fy)) SLy (Fy)).
Each generator of this quotient group is of the form
diag(a’, 1,...,1)Z(GL,(F,)) SL,(F,)

for some t € Z relatively prime to ¢ — 1. Therefore, we can choose an integer ¢y relatively prime to
g — 1 and elements 2y € Z(GL,,(F,)), so € SLy(F,) such that

go = 20hoso, where hg = diag(a,1,...,1).
Let F : GL,(F;) — G be the map defined as
F(hs) = (gosy')'s = zhls for each t € Z and s € SL,(FF,).
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I claim that this map has the desired properties. First, we check the well-definedness: if ¢1,to € Z
and s1,s2 € SL,(F,) are such that htlsl = hffsQ, then diag(afo1=t2) 1, 1) = hglft? = 3231_1 €
SL,(FFy), so t; — t2 must be divisible by ¢ — 1. Then ztl 2 =1 so

F(hs1) = 28 hits1 = 282712 b2 so = 22 hi? 5o = F (R s2).

Therefore, F' is well-defined. We next check that it is a group homomorphism: for ti,t; € Z and
s1, 82 € SLy,(Fy), we have

F(h{'sihsa) = F(h{ 2 (hg ™ s1h s2)) = 20 2 RGH2 (hg 2 5102 s2)
= zO ztghtlslhffsz = Zolht1512t2h6282 = (hglsl) (h0232).
Since G' = (go, L) = (gosp ', L), every element of G' can be written in the form (gosy')’s for some

t€Z and s € L = SL,(F,). Therefore F is surjective.
Finally, we check that ker F = (a®I). If hls € ker F for t € Z and s € SL,(F,), then

(9050 1)" = (g0sg !)'ss™t = F(hfs)s ' =s1 € L.

Since G' = (gosy ', L), the element (gos, )L € G/L has order exactly d. Hence d must divide ¢, so
we may write ¢t = dt’ for some t' € Z. Then

hf)s = zo_t(goso_l)ts = zo_dt,F(hts) = zo_dtl € Z(GL,(Fy)) = (ad).

Since z§ has order dividing 71, it follows that 2, € (a®I), so that ker F < (a®I). Also,
|GLn( Al _ (¢—1)[SLn(Fg)| _q—1 d
ker F| = = = = D).
fher Fl = 15 i L =|(aD)
Therefore ker F' = (a?I), so GL,(F,)/{al) = G. O

To determine the geometric monodromy groups of the summands G;, we need to know what are
the irreducible constituents of the monodromy representation of W as a representation of GLy,(Fy).
Motivated by [15, Theorem 16.6] for SU,(IF,) and its extension [17, Theorem 1.2] to GL,(F,), we
will prove an analogous result for GL,,(F,) and use it to study this representation. By a slight abuse
of notation, we will also denote by Weil and Weil; the representations of GL,,(F,) corresponding to
these modules.

Theorem 5.9. Suppose that a complex representation ® of GL,,(F,) has the following properties:
(a) Weily = Weilj, &1 is isomorphic to a subrepresentation of ®,
(b) (I)|SLn(Fq) @ 1 = Weil ‘SLn(Fq)’ and
(c) The values of the character afforded by ® © 1 are in {1,q,¢%,...,q"}.
Then & = ?;g Weil; X for some integer e, where X := GL,(F,) det, x

a—A
AL
. . . q

one-dimensional representation of order ¢ — 1.

C* is a

Proof. For each integer V', ¢ such that b’ # ¢’ mod u let

v 0
Ty o = (ao acr_{)/> € GLl(Fq) D GLn_l(Fq) < GLn(Fq)

If ¢ — V' is divisible by , then instead define

n—1

o 0
xb/7cl = ( 0 aC/*bLHI*l S GLl(]Fq) D GLn—l(Fq) < GLn(Fq)
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: n-1_1 21 . . ... n—-1_1q
Since n > 3, we have qu > qu =q+1>q—1,s0if ¢ —1¥ is divisible by qq — then
¢ —b' 4 q—1is not. Recall that o, _; permutes all ¢"~! — 1 nonzero vectors of Fg_l cyclically, and

"1
that a,, 7' = al acts on Fg_l as a scalar. Therefore, the lower diagonal block of xy » cannot
have any eigenvector in Fg_l. It follows that the only eigenvectors of zy ~ in Fy are those of the
form (u,0) € F, & Fg_l for nonzero u € F,, and they have eigenvalue o
Lemma 2.1 tells us that the spectrum of the action of zy » on Weil; can be partitioned into
subsets, and each of this subsets is, in the notations of section 2, the set of all s,th roots of AfJ,

where v is a representative of the ~, ,  -equivalence class corresponding to this subset. The sum

of the eigenvalues in a such subset is 0 unless s, = 1, in which case the sum is simply A*/. But
sy = 1 means that v is an eigenvectors of xy ., and as we saw above, the only eigenvectors of xy
are those of the form (u,0) € F, & ngl with u # 0. Therefore, the trace of the action of xy ~ on
Weil; is AY7.

The determinant of xy . is

qn—171

o b/ leb/ o b/ leb/ — o b,—‘r /_b/ o /
det Lo = NFqnfl/Fq(an—l ) = (an—l ) = =« (c ) =af
: n—1_
if ¢ £ mod £ T L and for the other cases we also get
/ /b 4g—1 / R VI /
det Ty o = Oéb Ng n—l/]Fq(afL—l +q ) — Oéb +('=b'+q-1) _ af .
q

Thus we get X (z o) = A%
Since <I>|SLn(]Fq) ® 1 = Weill \SLH(Fq), and ® has a subrepresentation isomorphic to Weilg, we must
have

q—2 q—2
© = Weilg & € Weil; X5 = € Weil; @ X
j=1 j=0

for some integers ¢; with ig = 0. Then by the assumptions and the above calculations, for each pair
of integers b, ¢’ we get
q—2
1+ Trace ®(xy o) =1+ Z A+ ¢ {1,q9,...,4"}.
j=0
This is a sum of ¢ roots of unity, so this is actually in {1, ¢}.
For each V/',¢ € Z and j € {0,...,q — 2}, let dy ~; be the unique integer in {0,...,q — 2} such
that diy » ; = V'j + ¢/i; mod ¢ — 1. Consider the polynomial

q—2
Pyo(T) =) T € Z[T).
j=0

Then every coefficient is nonnegative, and the constant term is positive since dy ~ o = 0. Clearly
Py (1) = ¢ — 1, and for each integer r, we have Py ~(\") € {0,¢ — 1}. By [17, Theorem 3.1 and
Lemma 3.2], there exists e € Z such that i; = ej mod ¢ — 1 for all j =0,...,¢ — 2. Since X has
order ¢ — 1, we get

® = (D Weil; @ X,



32 LEE TAE YOUNG

Corollary 5.10. The monodromy representation of Gy as a representation of GL,(F,) is Weilg.
The set of monodromy representations of G; for j =1,...,q — 2 is equal to the set {Weil; X4 |
j=1,...,q9— 2}, where e is an integer such that ne + 1 has order exactly d in Z/(q — 1)Z, and X
s as in Theorem 5.9.

Proof. We know that the restriction of the monodromy representation of WW to L is the same as
the restriction of Weilf, ® @3;% Weil; to SL,,(F;). The only irreducible constituent of rank A — 1
of them are Gy and Weilj. Therefore, Gy as a representation of GL,,(F,) is Weily ®Y for some one-
dimensional representation Y of GL,,(F,) which is trivial on (a?I). Since gy has simple spectrum
on Gy, it also has simple spectrum on Weil(. By Theorem 2.7, go as an element of GL,(F,)/(a%I)
is the image of o) € GL,(IF,) for some integer a relatively prime to A. The spectrum of the action
of a% on Weilj, is the set of Ath roots of unity other than 1, which is exactly the spectrum of gg on
Go. Therefore, as a representation of GL,,(F,)/(a®I), Y contains both gy and L in the kernel. Since
G = (go, L), Y is trivial. Therefore, Q; ® W as a representation of GL,,(F q) satisfies the condition
of Theorem 5.9. By Theorem 5.9, YW must be Weil(, & @?;f Weil; @ X for some integer e, where
X is as in Theorem 5.9.

The restriction of Weil; @ X% to Z(GL,(F;)) = (aI) maps ol to N7 = \("¢+1)j_ Since the
kernel of the monodromy representation of W is (1), it follows that A("¢*1)J has order dividing d
for all j, and order exactly d for at least one j. Therefore ne+1 has order exactly din Z/(¢—1)Z. O

We finish this section with the following result on the geometric monodromy group of a Kummer
pullback of W. The proof is entirely analogous to [13, Corollary 8.4].

Corollary 5.11. Let f be a divisor of d. The geometric monodromy group Gy of the Kummer
pullback [f]*W is (SLy(F,) x (diag(a’, 1,...,1)))/(a?l).

6. ABHYANKAR’S THEOREM ON GALOIS GROUPS OF TRINOMIALS

In [13, Section 9], Katz and Tiep related their hypergeometric sheaves to Abhyankar’s result [2,
Theorem 1.2] on the Galois groups of certain polynomials. Since those sheaves are precisely the
sheaf W in the previous section with m = n — 1, b = 1 and ¢ = 0, it is natural to ask if this
connection can be generalized to other values of m.

Consider the polynomial described in [2, Theorem 1.2]:

F(T,U) :=T" ' —gU™T!" 7! 4 yU* € F (U)[T]
where n,m are integers relatively prime to each other, =,y are nonzero elements in E, and r,s
are nonnegative integers such that r(¢" — 1) # s(¢" — ¢™). Let ¢/, z € F, be numbers such that
(y)7" ! =y, 2@ D=8 =a") = =1(y/)a" =" and let Kj be a finite extension of F, such that
z,y',z € Ko. The Galois group of this polynomial over F,(U) is the geometric monodromy group
Ggeom, 4 Of the lisse Qg-sheaf A over G,, /K, whose trace at u € K* for a finite extension K of Ky
is the number of solutions of the equation
F(T,u) =TT " — 20T~ 4 yu® = 0.
If we take the [¢" — 1]* Kummer pullback, then we get a lisse sheaf over G,,/Ky whose trace at
u € K* is
{w e KX | w?" ™! — zul?" = Dryd™ =1 g (@" =15 = 0}
={w e K* | (Wuw)?" " — zul@" 7D (B ufw)?" 7 4 yuld D5 = 0}

={we KX | w1 - x(y/)fq"ﬂmur(q”fl)*S(q“qm)wqul +1 =0}
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The geometric monodromy group Ggeom 1]+.4 of this sheaf satisfies

’[qn_
Ggeom,[g—1]* A I Ggeom, A, Ggeom,A/Ggeom,[qn—1]*A is cyclic of order dividing ¢" — 1.
Let B be the lisse sheaf over K obtained by taking multiplicative translate [u — zu]*[¢" — 1]*A.

The geometric monodromy group Ggeom,s is the same as Ggeom 1]+, and the trace of B at
ue K*is

7[qn_

n

fwe KX |wi ! — a:(y’)*qmrqm(zu)“q “D=s(@ =) a1 ) = 0}
—{w e K* | wd" ™t — @ ~D=s(@"=a™)a" =1 1 — 0},

Since r(¢" — 1) — s(¢"™ — ¢™) is a nonzero multiple of ¢ — 1, B is geometrically isomorphic to the
[(r(¢"™ — 1) —s(q" — ¢™))/(q — 1)]* Kummer pullback of the lisse sheaf C over G,/ Ky whose trace
at ue K* is

Hwe KX | w! ! —udtw?" 71 1 =0}

On the other hand, if we choose integer b, ¢ such that n, m, b, ¢ satisfies the conditions of Theorem 4.1,
and use the notations from the previous section, then the [¢"]* Frobenius pullback of C has trace

Hw e K* | w? ! — a0 4" =1 4 1 = 0}
={w e K* | w?" 7! — Pa" =)= (rea™) (@™ =1),0" =1 1 1 — 0}
={w e K* | (ubTed" w)?" 1 — ub(q"—l)—(b+cqm)(qm—1)(ub+cqmw)qm— +1=0}

={w e K* | ulbrea™(@" —1),a" =1 _ b =1 a™ =1 4 1 — 0}|.

Therefore, by Proposition 5.4, [¢™]*C is geometrically isomorphic to [¢" — 1]*(Q, @ W).

Using these geometric isomorphisms, we can show that the geometric monodromy group of C is
isomorphic to that of [¢ — 1]*Q, & W, which is SLy,(F,) by Corollary 5.11. Hence, Ggeom B are also
isomorphic to SLy,(Fy), since B is geometrically isomorphic to [(r(¢" — 1) — s(¢™ — ¢™))/(¢ — 1)]*C
as we saw above. Since Ggeom,[qn—1]*.4 18 isomorphic t0 Ggeom,B, it follows that Ggeom, 4 contains a
normal subgroup SLy,(Fy), and Ggeom, 4/ SLy(Fy) is cyclic of order dividing ¢ — 1. On the other
hand, the ¢" — 1 roots of F(T,U) € F,(U)[T] together with 0 form an n-dimensional F,-vector
space. Each element of the Galois group acts Fg-linearly on this set, so the Galois group Ggeom, A is
contained in GL,(F;). Thus we get the conclusion of case (3) of [2, Theorem 1.2].
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