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ABSTRACT

The increase in the computational power of edge devices has opened a new paradigm for collaborative
analytics whereby agents borrow strength from each other to improve their learning capabilities. This work
focuses on collaborative Bayesian optimization (BO), in which agents work together to efficiently optimize
black-box functions without the need for sensitive data exchange. Our idea revolves around introducing
a class of constrained Gaussian process surrogates, enabling agents to borrow informative designs from
high-performing collaborators to enhance and expedite their optimization process. Our approach presents
the first general-purpose collaborative BO framework that is compatible with any Gaussian process kernel
and most of the known acquisition functions. Despite the simplicity of our approach, we demonstrate
that it offers elegant theoretical guarantees and significantly outperforms state-of-the-art methods, espe-
cially when agents have heterogeneous black-box functions. Through various simulations and a real-life
experiment in additive manufacturing, we showcase the advantageous properties of our approach and the
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benefits derived from collaboration.

1. Introduction

Bayesian optimization (BO) is a long-established yet promi-
nent method for optimizing black-box functions. Abstractly,
numerous real-world problems can be framed as finding the best
outcome by manipulating a set of variables called designs. Often,
the relationship between the outcome and designs is unknown,
and hence, obtaining optimal designs can only be achieved
via trial and error. For instance, clinical trials often manipu-
late medication dosages to uncover the most effective and safe
treatment options. Likewise, manufacturers tweak production
process parameters to minimize product defects. This involves
selecting and testing a sequence of designs and observing their
occasionally noisy outcomes, referred to as responses in the quest
for the best design. Since these experiments are often expensive
and the search regions are continuous, an exhaustive search is
rarely plausible. BO is a family of methods within sequential
optimal design (Friedman and Savage 1947) that wisely allocates
alimited number of experiments through a sequential process. Its
objective is to identify the best response with the fewest trials.
A typical BO algorithm first constructs a posterior belief of
the underlying black-box function using a surrogate, then deter-
mines the next design to observe (i.e., do a trial) by optimiz-
ing a user-specified utility function, known as the acquisition
function (AF), that quantifies the benefits of experimenting at
a new design. Upon observing a response from the selected
design, BO then updates its posterior belief and selects a new
design. The process is repeated until the experimentation budget
is exhausted or some exit condition is met. Needless to say, BO
has found success in a wide variety of science and engineering

disciplines, including but not limited to chemistry (Shields et al.
2021), physics (Duris et al. 2020), biology (Gonzalez et al
2015), material science (Attia et al. 2020) and mechanical design
(Gongora et al. 2020), amongst many others.

Traditionally, BO has assumed that all experimental designs
are sequentially determined and observed by a single agent.
However, in practice, resources (e.g., funding, materials, sub-
jects, computational power) for conducting experiments are
often distributed among different agents. Instead of each agent
conducting their sequential experiments in isolation, collabo-
ration between agents can potentially expedite the process and
help individuals find better designs within limited resource bud-
gets. For instance, consider a group of 3D-printing workshops
fabricating a material. The printing time of this material depends
on a set of process parameters specified by users, which is a
typical BO scenario. The goal of collaboration is to enable all
the workshops to borrow strength from each other to fast-
track and improve the optimal design process of their process
parameters.

Unfortunately, collaboration comes with its unique chal-
lenges. First, collaborators could be heterogeneous, meaning
that knowledge borrowed from others might not always be
helpful, or, in some cases may even be misleading. In the pre-
vious example, optimal process parameters may differ among
workshops due to varying operational environments. Second,
in many real-world settings, such as healthcare or security, the
direct sharing of raw data is restricted due to privacy concerns,
communication burdens, intellectual property protection, or
regulations (Kontar et al. 2021).
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Contributions:. This work aims to address the exact challenge
above. Our contribution can be summarized as follows:

(a) Algorithm: We propose the first general-purpose collabora-
tive BO framework that is compatible with most existing AFs
and is provably robust to heterogeneity across collaborative
agents. At a high level, our approach hinges upon defin-
ing a constrained Gaussian process (CGP) where an agent
exploits designs from strongly performing collaborators to
tweak their surrogates toward potential regions of improve-
ment.

(b) Compatibility: We present an easy-to-implement approach
to applying our method under three well-known categories
of AFs. Our approach also works for synchronous and asyn-
chronous settings, with or without a central server.

(c) Theory: We prove, regardless of heterogeneity, that the regret
of our approach is sub-linear under a specific class of AFs.

(d) Practical performance: Empirically, we demonstrate that our
approach can significantly outperform the state-of-the-art
in optimality gap and instantaneous regret. As a proof of
concept, we apply our algorithm to a 3D printing process
parameter selection problem to highlight the value of col-
laboration.

2. Related Work

BO is a branch of sequential design problems (Gramacy 2020)
that aims to optimize black-box functions. The methodological
philosophy of BO has a rich history. Hotelling (1941) first pro-
posed using a surrogate model to estimate the maximum of a
black-box function. However, their method picks all the design
points to experiment on in one shot, which was considered
inefficient by Friedman and Savage (1947) as they argued that
experiments should be more focused on exploring near-optimal
regions. As such, Friedman and Savage (1947) introduced a
sequential design approach instead, where the new design points
were determined iteratively using a cyclic coordinate descent
heuristic. Yet, the coordinate descent heuristic fails to be a global
optimization scheme since it can get stuck in local-optimal
solutions. Various heuristics were proposed afterward until the
Bayesian heuristic (Raiffa and Schlaifer 1961) took dominance
in the field. The Bayesian heuristic picks experiments by maxi-
mizing a user-specified utility function, which was later referred
to as the acquisition function (AF). Finally, with all the afore-
mentioned building blocks, the BO framework was formalized
by Kushner (1963), where they used a Gaussian Process (GP)
surrogate and the probability of improvement (PI) AE

Since then, the modern BO paradigm has used a surrogate
model to characterize the posterior belief of a black-box func-
tion and then chooses designs sequentially by maximizing an
AFE The surrogate model has been predominantly a GP, but
the choice of AF has a wide variety and remains one of the
most active and impactful research fields in BO. Famous AF’s
include Thompson sampling (TS; Thompson 1933), expected
improvement (EI; Jones, Schonlau, and Welch 1998), probability
of improvement (PI; Kushner 1963), upper confidence bound
(UCB; Srinivas et al. 2009), knowledge gradient (KG; Wu and
Frazier 2016), Noisy Expected Improvement (NEI; Letham et al.
2019), max-value entropy search (MES; Wang and Jegelka 2017),
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etc. Besides research on designing new and improved AFs (Wu
and Frazier 2016; Wang and Jegelka 2017; Letham et al. 2019),
recent advances in BO include scaling BO methods to high-
dimensional input via subspace projections (Moriconi, Deisen-
roth, and Sesh Kumar 2020), extending BO to multi-objective
(Daulton et al. 2022) and multi-fidelity settings (Irshad, Karsch,
and Dopp 2021), amongst others.

Despite many advances, BO was only recently extended to a
collaborative setting under the notion of federated BO (FBO;
Dai, Low, and Jaillet 2020, 2021). This literature was inspired
by the surge of computational and data-collecting power at the
edge, which has set forth a new paradigm of collaborative yet
privacy-preserving learning coined as federated learning (Kon-
tar et al. 2021). Indeed, FBO shares commonalities with earlier
literature on batch BO (Azimi, Fern, and Fern 2010; Duan et al.
2017; Hunt 2020). However, batch BO focuses on optimizing a
single objective using one surrogate learned from a centralized
dataset. In contrast, in FBO, data comes from potentially hetero-
geneous agents, and each aims to optimize their own function;
as such, there may be no surrogate that fits all. The other related
but different line of literature is on Transfer BO (Bai et al. 2023)
where data from relevant tasks is used to accelerate current tasks.
Although Transfer BO method deals with heterogeneity in the
system, they assume data of every agent is available to every
other agent in the system. Unlike batch BO or transfer BO, in
our setting, data is generated locally across multiple agents and
is unavailable (nor should it be shared) centrally.

To the best of our knowledge, the first FBO approach (Dai,
Low, and Jaillet 2020) proposed federated Thompson sampling
(FTS), which was later extended to FTS with distributed explo-
ration (FTSDE; Dai, Low, and Jaillet 2021). The key idea is to
share function realizations of the posterior belief using random
Fourier features and then dwindle collaboration as more data is
collected. More importantly, this work highlighted the ability of
agents to benefit from collaboration without sharing raw data.

One major limitation of existing literature in FBO is that they
restrict the choice of AF to only TS, leaving along the rich litera-
ture in AFs. The family of AFs defines their searching heuristics,
which mainly involve balancing exploration and exploitation.
Different strategies yield different performances across different
tasks. It is also common for BO studies to design AFs for specific
practical tasks. In short, there is no single AF that fits all, but
one needs to pick the right AF for their own tasks. To this end,
this work embraces the variety in AFs by envisioning a new
perspective for collaboration that enables agents to tweak their
surrogates toward potential regions of improvement through a
constrained Gaussian Process.

3. Setup and Notation

Consider a group of N agents indexed by n where each agent
aims to optimize their black-box function f, : X ¢ RP? — R.
In many applications, the functions f,,¥n € [N] share com-
monalities across agents but may feature some idiosyncrasy as
agents operate possibly under different conditions or locations.
Without loss of generality, we consider a maximization problem
throughout this article. For each agent #, the goal is to find an
optimal design that maximizes their own black-box function,
that is, % € argmax,_, f.(x). BO is a family of algorithms
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that solves this problem by sequential experimentation. Again,
without the loss of generality, we assume the experiments are
performed one by one iteratively to simplify notations. There-
fore, at every round t € [T], each agent n decides on the
next design x, .y to sample and then runs an experiment to
observe the response value f, (x,,+1). Realistically, agents can
only obtain a noisy version of the true function, y,(xp¢11) =
Jfu(Xnts1) + Enpr1, Where g, 44 denotes observational noise.

To this end, BO selects designs at each round ¢ by optimizing
an AF a(-;-). Specifically in our problem, agents select their
own next design by optimizing their own AE The AF takes
two inputs, namely a design and a posterior belief. It quanti-
fies the benefits one would gain (according to one’s posterior
belief) if an experiment is conducted at the given design point.
To characterize the posterior belief, BO resorts to building a
surrogate model F,; at round £ that estimates the function and
quantifies the uncertainty in f, based on a currently available
dataset Dy, ¢ i= {(Xn,1, Yn,1)5 - - - » (Xt V) } at time £,

With that, BO selects x,; to be arg max, y-o/(x; F). Pre-
dominantly, since Kushner (1963), F,,; has been modeled as a
posterior belief characterized by a GP, due to a GP’s elegant
formulation and natural uncertainty quantification. A GP is
defined by a positive-definite kernel k,, (-, -) that imposes a prior
belief on the black-box function, which is later conditioned on
the observed data D,; to obtain the posterior belief. Hereon,
and for ease of later development, we denote the posterior belief
Fot £ GP(D,:). Now, to set the notation, for agent n at
time t, define k,¢(x) = [kn(%,Xn,1),- -, kn(x,X+)]T and the
Gram matrix Kyt = [knt(Xn,1)s - - - > knt(Xne)] . By @ GP(Dyy)
construction, we have that:

kn,t(x)

Yot o K?!J + ifI
[fn (x)] & (“’ [ kng T Koy (5, x)D’

where y, . = [yn1,-.->)nt]T and A: is a nugget effect that
provides regularization and alleviates numerical problems for
GPs (Matheron 1963). By marginalizing all the possible func-
tion realizations, we get the agent’s posterior belief f,,(x)| Dy ¢ ~
N (pnt (%), 0,7, (x)), where

Pt () = Kng )T K + D)y,
024(x) = Kn(%, %) — kg ()T (Kot + AeD) " ke (%).

4. Methodology

As discussed above, an agent’s choice of the design point to
sample is based on their posterior belief in f,. Yet, here lies
the key opportunity enabled by collaboration: Can agents share
information that allows them to improve and fast-track their
optimal design process by guiding their posterior beliefs toward
better designs? Importantly, the answer to this question should
meet two critical constraints. The first is designing for het-
erogeneity. Even if raw observations were shared, agents could
not simply update their surrogates by augmenting their local
datasets with data from other agents, as the underlying functions
may be heterogeneous across agents. The second constraint is
privacy. Privacy concerns may prohibit the direct sharing of raw
observations among agents. Indeed, for agents to participate in a
collaborative process, it may be imperative to preserve their raw
data.

To address the aforementioned challenges, we propose a nat-
ural idea to share some key statistics E,,; in lieu, where E,; is
extra information received by agent n from other agents n’ ¢
[N \ n] at round £. The key challenge lies in defining E, ; and
determining how it should be effectively employed. For instance,
when F,,; is specified as a GP, conditioning on anything other
than data points breaks the closed-form posterior of the GP. The
following sections aim to address two critical questions: (i) What
should be included in E,, ;? (ii) Given E,, s, how can we update the
posterior belief F, ;|E, ; and, consequently, the AF?

4.1. Collaboration by Sharing Constraints

As mentioned in the literature review, one fundamental design
philosophy of BO is to allocate designs to near-optimal regions
(Friedman and Savage 1947). Since we believe the black-box
functions may have commonalities across agents, they may share
similar near-optimal regions. Naturally, agents can distributively
explore the search space and collectively locate the near-optimal
region. As soon as agents locate the near-optimal regions, the
problem is largely simplified to finding a personalized solution
for each agent within the region.

Following this rationale, we design E, ; to entail information
about the near-optimal regions. We let E,, ; be a set of synthetic
designs shared from other agents n’ € [N \ n] to agent n, such
that every borrowed design x;i € E,; satisfies the constraint

i (x':,,r) > kn, for a constant «,, ¢ picked by agent n. Therefore,
any design in E, ; points out to a region that has a value of at least
kn,t. In this article, we let k,, s be the maximum posterior mean
of agent n (see Figure 1). That is

Kng = MAX Hon,t ().

Therefore, every design x;,i € E,; points out a potential
design with a better response compared to agent #’s current best,
that is, max, pn¢(x), according to their posterior belief.

Now, notice that even if all agents have the same f = f, Vn,
the shared information f' (x:,r) > Kns may still be incorrect as
agent n’ only has a posterior belief F,; ; and not the true f. Since
observations are noisy and the surrogate models are never exact,
one can never guarantee that the shared information is correct,
but we can foster the integrity of the information received by
others by being conservative. Therefore, we restrict other agents
n' to share a design x;ﬁ,t to E,; only if their lower confidence

bound (LCB) at x; , is greater than k., +:
.ru'n’,t(x) — Nt dﬂ’,r(x) > Knptos (1)

where 7, is a user-specified confidence level. In other words,
agent n’ believes ,u.,,:,t(x;, ) = Kngt with high confidence.

To highlight this idea, a simple illustration is provided in
Figure 1. Agent n’ will share a design x:',,t from the shaded region
such that its lower confidence bound is greater than «,,; chosen
by agent n. Clearly, there may be many, or none, x:,,t that satisfy
(1).

In this article, we assume that each agent contributes at most
one design in E, ;. To do so, agent n’ needs to find a design for
agent n such that (1) is satisfied. Our choice for such design to

share (when it exists) is the LCB maximizer x; ; (see Figure 1):

x;,t € argmax, .y {Hm’,r(x) B Un’,t(x)]’
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Figure 1. Agent n’ chooses to share a design x$ from the shaded region where the lower confidence bound is greater than x chosen by agent n (subscript t is dropped

here).

Critically, two observations can be made for agent n"’s LCB
maximizer, x;, - First, if there exists any x satisfying inequality
(1), then x;t must also satisfy (1). Hence, to solve the feasibility
problem posed by inequality (1), it suffices to find the maximum
LCB (ptw (x:',,t) — N Owg (x:,_r)) from agent n’ and compare it
with k. Second, the maximum posterior mean of agent n’ is
promised to be greater than that of agent n (i.e., kyt > Kkng),
meaning agent n’ takes the lead in the optimization process, so
we call agent n’ a leader of agent n. Therefore, letting A,; C
[N \ n] be the set of all the leaders of agent n at round ¢, the
shared information E,,; is given by

E, = {x:',,t 1 € Aygl-

Recall that for agent n to obtain E,, the agent only needs to
compare ks with the maximum LCB from agents n’ € [N \ n].
If the maximum LCB from agent »’ satisfies

P"n’,t(x::’r) — Mt Oy (x_;,t) = Knt» (2)

then x7;

¢ joins the set E,,; and is borrowed by agent n. This is
a rather simple comparison that can be done privately in either
a centralized or decentralized manner. We provide more details
on this comparison in Section 4.4.3.

Hereon, after finding E,, ;, agent n presumes that for all x:’, LI

E,.+, there holds f,,(x;t) > kns Even with our conservative
choice of E,;, this may still not hold because of unknown het-
erogeneity and surrogate estimation error. Nonetheless, as will
become clear shortly, agent n will hedge against this heterogene-
ity through a rejection sampling scheme. Such a scheme will lead
to provable convergence (and strong empirical performance) no
matter how heterogeneous clients are.

4.2. Learning the AF with the Shared Constraints

A natural way to exploit the shared information E,, ; is for agent
n to condition their surrogate on it. In our case, because E,;
encompasses a set of constraints, the updated posterior belief

F;::t £ g‘p(Dn,t) |En,ts (3}

becomes a constrained Gaussian Process (CGP). With the extra
information E,,;, we expect the updated posterior belief GP to

better guide the AF in the search for optimal designs. Unfortu-
nately, being a CGP, the updated posterior renders the calcula-
tion of most existing BO AFs intractable. For instance, EI will
lose its closed form after conditioning on E,, ;.

Nevertheless, although CGP itself does not have a closed-
form posterior, we can still draw function realization from it and
approximate the conditioned AFs using Monte Carlo methods.
We demonstrate how this applies to three primary classes of AFs.

4.2.1. Acquisition Functions that Sample Function
Realizations

We start by introducing how to learn the AF by drawing samples
from F;},. Thompson Sampling (TS; Thompson 1933) isa typical
AF in this class that selects design points by drawing sample(s)
from the posterior belief of optimal designs. Formally, when the
posterior belief is given as Fj’ .» the AF for TS can be simply
denoted as

a(Fy) = gues(x), (4)

where {g,, 1 s}sc[s] are function realizations drawn from Fj’ ¢ The
subscript s here denotes the sample index within a batch of sam-
ples. Therefore, after drawing g, the next design to observe
for agent n is simply the AF maximizer arg max,_ya(x; F,) =
arg Max, . yn,t,s(X)-

The challenge is drawing g, ~ F, . Letting p(-) be a prob-
ability density function, we have that g+ ~ p(fut|Pns Ent)
which is not trivial as the distribution is no longer Gaussian after
conditioning on E,, ;. To this end, we introduce a set of ancillary
variables:

D}, = () o fulx) ) : X, € Eng}. (5)

Dj;t denotes agent n’s unknown ground truth data at E,, ;.
This simple trick allows us to obtain samples {g:s}s[s]
by sampling from the joint distribution (f,,,t,D:,r) ~
P(fuss D:tﬂ)",,, E, ) instead. More specifically, we have that:

P(fn,ta D,:ttlpﬂ,h En,t) — P(fn,rlDﬂ,h En,h D;:t) : P(D;; IDﬂ,h En,t)
— P(fn,tan,ts D;:r) 5 P(D;:tlpﬂ,h En,t)
0.8 P(fn,tipn,t, D:};) ‘P(En,tiD::r) 'P(D;tplpﬂ,t) H

Fantasy Model Rejection  Fantasy Samples
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where the second equality is because D}, is a sufficient statistic
for E,, s, and the last line is by Bayes’ theorem. This decomposi-
tion outlines that the sampling of a function realization g, ¢ s can
be realized in three steps using rejection sampling.

Namely, in the first step, we can take S;,, samples from
the posterior p(D;f;|Dy,,¢) given by the model GP(D,;). Within
each sample s, we denote the sampled response at x;,r as
Snt ,s(x:',,t). Since we only need responses at g, ; (xi‘,}t), the sam-
ples can be easily taken from the GP predictive distribution. As
a second step, and since an agent presumes all x € E, ; satisfies
fu(X) > Kkny, we retain g, ¢ only if

gn,t,s(x;,t) > Knt> Vx::,t S En,t- (6)

We note that any accepted g, + ; should satisfy all constraints
posed by E, ;. As such, for each (accepted) sample index s, we
now have a new dataset consisting of the retained samples

rxt,s tantaEnt)
where S, £ {(x“, P (xﬂ,,t)) : x",,t Ell (7)

The retained samples S, reflect the “imagination” of the
unknown truth D}, given all the information agent n has (i.e.,
D, and E, ;). Hence, we call such a retained dataset S,t s asa
fantasy dataset. For a fantasy dataset Sj: t5» ONe can construct a

new GP

called a fantasy model . We denote the predictive mean and stan-
dard deviation function of the fantasy model M s as p;; . (x)
and o, ”(x) respectively. Note that M,, ¢ ; is distinguished from
F+ The CGP F+ can be treated as an infinite Gaussian mixture
model (Rasmussen 1999), where a fantasy model M,,; is just a
component of it.

With this relationship in mind, we are now ready to sample
a function realization. Denote the set of fantasy models con-
structed by agent n in round t as M. One can first sample
a fantasy model M, ;s € M, and then sample a function
realization g, ; ; from it, which gives our desired result. We have
provided a visual of the process in Figure 2 in Section 4.3.

4.2.2. Acquisition Functions in Direct Expectation Form
Many famous AFs can be written in the form of expectations
over function realizations. Examples include EI, NEI, PL, KG, etc.
Formally, when the surrogate function is specified as F,, ,, there
exists function a : R — R such that

(% Ffp) = By [4@@)]. ©)

For example, if & is specified as EL then a is the improvement
function, a(f(x)) = max{{f(x) — y;>*},0} where y73* is the
maximum observed response for agent n. As previously men-
tioned, a(x; F: ;) does not have a closed-form solution as the

Mpts =GP Dy U ,,,s) (8) surrogate P: ¢ is a CGP. However, under a minor regularity
S i i Fantasy Sample 1 Fantasy Sample 2
True Function Mrrogte:indal 5 sF

Observations

\'-‘/D
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AChusen Design
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Borrowed Design
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L
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Figure 2. lllustration of CGP-UCB. Subscripts n and t are dropped.
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condition, Lemma 1 (proved in the supplementary material)
gives us a way to approximate it efficiently.

Lemma 1. Assuming Epy,, . [a(x; My5)] exists, if there exists a
such that a(x; Fj:t) = Eg”Eﬂ [a(g(x))], then

o (x; P;:t) = EM,,,;,, [0'.’ (x; Mn,t,s)] . (10)

Lemma 1 simply states that cr(x; FI ;) can be approximated by

taking the expectation over the fantasy models M, ; ; described

earlier. Now, given S, := | Myt =< Sraw » the AF can be
approximated empirically by Monte Carlo:

7]
L

,

a(xFly) =By, [a(s M, )] = a(x; M, ). (11)

1
Sn,t

I
I|
A

In most cases where AF is differentiable, we can get gradients
%a(x; M,;5). AslongasE || f—xa(x; M, 5)|] exists, we have

Sn,f 3

1
[ R E —a(x; M. i
] Sn,!‘ —1 axa ( n‘i,S)

a d
aa(x; F;::t) =E I:’aa(xE M, 15)

4.2.3. Acquisition Functions with Implicit Expectation

In cases where the AF cannot be written in an expectation form,
we may still be able to approximate our CGP AFs (Wilson et al.
2017) since many statistics are defined in their expectation form
(e.g., mean, variance, entropy, etc.). Upper Confidence Bound
(UCB; Srinivas et al. 2009) is a typical example in this category.
It selects the surrogate UCB as the AF and its maximizer as
the next design to observe. Clearly, the UCB AF requires the
standard deviation. Although standard deviation itself cannot
be written in the form of (9), the square of it (i.e., variance)
can be approximated using Monte Carlo. Property 2 (proved in
supplementary material) simplifies this procedure.

Property 2 (Fixed Covariance). For any fantasy model M, ,, we

can define its predictive standard deviation as o,, = o‘j,' s

Property 2 simply states that the predictive variance at any
design point x is the same across all the fantasy models M, ;,
so we can simplify the notation by dropping the s subscript.
Now, denote the sample mean and variance of the predictive
mean (across different fantasy models) respectively as i (-)
and g{,'}(‘), that is,

Snf
i (%) = — Zﬂ,,;,s(x)
Sn,r
g o -;wj,r,s(x)—ﬁn,t(x)ﬁ (12)

By the law of total variance, the CGP-UCB can be approxima-

ted by
(% Fh) = wlh(x0) + By o (02 + g.F (%),

where f; is a user-defined hyper-parameter.

(13)
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4.3. Hlustration

To contextualize our approach, we start with an illustrative
example that highlights the benefits of collaboration by sharing
constraints. Our illustration uses UCB as the AE.

Figure 2(a) shows the result of the chosen design point at
round t from agent n w1thout collaboration. In Figure 2(b),
the agent n borrows x , from its leader and then samples
S,‘f . (D5 Driss ,,;) by rejecting with respect to «x,t.
Here, two fantasy datasets 8: ;1 and S, , are illustrated from
which two fantasy models M,,;; = GP(D,; U S}, ) and
Mptn := GP(D,y ustH .t.2) are created in Figure 2(c). As shown
in Figure 2(c), by incorporating the fantasy datasets Sﬂ 15 the
surrogates around the borrowed point x;,i are pushed upwards.
In turn, this leads to a higher upper confidence bound where
the next chosen design point is by far closer to the true optimal.
This illustrative example highlights the benefits of conditioning
on E,; to guide an agent’s sampling decision toward better
solutions.

Notice that in Figure 2(d), another borrowed design (call it
X M3 ) in E,; is discarded by agent n since none of the S,y

samples satisfy the constraint in (6) for both designs x . and

x“,_t. Namely, #s € [Syaw] such that ont ,s(xn,,t) > :cn,t,Vxﬂ,,t c
E,.+. In such cases, without taking more raw samples, agent n
simply drops x:,,,r from E,;, since none of the samples will
be accepted otherwise. By doing so, agent n discards shared
knowledge that significantly contradicts their posterior belief.
The benefit of discarding these borrowed designs is further
highlighted in Section 4.4.1. Note that although we plot only one
borrowed sample for a neat presentation, [g, ¢ s (x;t)]x; cEyy AT€

sampled jointly from a multivariate normal distribution when
there are multiple borrowed points.

4.4, Practical Guidance

4.4.1. Automatic Design Selection by Rejection Sampling

As shown in Section 4.3, some borrowed designs may be dis-
carded by agent n if none of the samples satisfy constraint
(6). This is an intrinsic advantage of our model that hedges
against heterogeneity. In practice, due to heterogeneity across
clients and various other reasons (e.g., randomness, misspeci-
fied hyperparameters, bad surrogates, etc.), we may encounter

cases where some borrowed design points xi’,t € E,; violate

constraints f, (x;,i) > Knt, Which end up having agent n
conditioning on wrong information.

However, with rejection sampling, if E,; conflicts agent
n’s surrogate F,;, then most of the S, samples taken from
P(D;f| D) will be rejected. We take advantage of this property
and set a minimum number Squorum Of required samples for
the rejection sampling. When the number of retained samples is
less than Squorum for a borrowed design x5, 12 We discard it from
E,.+. An example is shown in Figure 2(d). Therefore, all designs
in E,; should satisfy the minimum sample requirement. This
way, we automatically delete the subset of borrowed designs that
conflict with agent n’s current surrogate F,, ;. As shown in our
theory, due to the ability to reject borrowed misleading design
points, all the fantasy datasets generated within a finite S,
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enjoy concentration around the posterior mean ji,¢(-). This
allows the algorithm to converge regardless of the heterogeneity
level.

4.4.2. Scaling with Grouping Dynamics

Most of the calculations within our approach are done locally by
each agent. Cross-calculations are done to establish the compar-
ison in (2), and accordingly decide which designs to share. In a
decentralized setting, pairwise comparisons between all agents
can be costly. Also, more Monte Carlo samples are needed when
the number of borrowed designs is large, as an accepted fantasy
dataset should satisfy the constraints in (6).

To aid the scalability of our algorithm, we introduce a random
grouping dynamic and conclude our algorithm in Algorithm 1.
In each round, agents are evenly and randomly assigned into
subgroups denoted as G, such that the number of agents in
the groups does not exceed Npax. For simplicity, we denote the
number of groups as Ngroup = [N/Npax]. The algorithm is
run in parallel for the groups. First, each agent fits their own
G'P using their local dataset D,, ;. With the fitted GP, agents find
x:,t 1 by maximizing the LCB. Next, agents communicate with
each other to compare their «,; with the maximum LCB from
other agents in the group and accordingly share the designs.
Finally, each agent constructs multiple fantasy models M,
and determines the next sample point by maximizing the AF

a(x Fly).

forroundt=0,...,T do
Randomly and evenly partition agents into Ngroup
subgroups;
for subgroup indexm = 1,.. ., Ngroup in parallel do
for agent n € G, in parallel do
Fit a the Gaussian process model GP(D,, );
Find the LCB maximizer
X € Argmax, iy 1 (%) — e - O 4 ()5
end
for agent pair n,n’ € Gy, in parallel do
if pow 1 (X5) — Mt - Ow 4(X5) > Kne then
| Agent n’ send x;; , to agent n;
end
end
for agent n € Gy in parallel do
Construct a set of fantasy models M, s;
Maximize the acquisition function
Xnt41 € argmax a(x; FFp);
Observe the response y, 141 at X, ¢y 1 and
augment current dataset.

end
end

end
Algorithm 1: Collaborative BO via Constrained GPs

4.4.3. Cross-Communication and Synchronization

As mentioned in Section 4.1, determining whether a design
x;,r qualifies to join E,,; involves comparing ,u,,r,r(x;t) g
O t (x: ;) with «,, ;. This can be done in either a centralized or
decentralized manner, per the need of the practical application.

Centralized. If a trusted central server is available (as assumed
by previous work (Dai, Low, and Jaillet 2021)), each agent only
needs to share with the central server three pieces of informa-
tion, namely the LCB maximizer x;} ,, the value of the maximum
LCB iy s x:,,t) — Nt O g xj,t), and k,, ¢, which totals an upload
cost of D + 2 scalars. Upon collecting these quantities from the
agents, the server then constructs E,; and sends it to agent n,
which totals a download cost of at most DNy scalars. This fea-
tures much less communication burden compared to previous
work (Dai, Low, and Jaillet 2021), which requires uploading and
downloading a random Fourier feature vector.

Decentralized. Our method also works if there is no trusted
central server, as the comparison can be easily done privately
without raw data exchange. The secure comparison of two
quantities is known as Yao’s Millionaires problem (Yao 1982),
which is one of the first studied and the most basic problems in
secure multiparty computation (MPC, see details in section 1 of
supplementary material). As such, this comparison can be done
without sharing «,,; or p4, ¢ (xi’,,t) — Nt Oy (x:',,r), and the only
information agent » can receive is E,, s.

Synchronization. Our method can be readily used in syn-
chronous or asynchronous settings. Algorithm 1 is a syn-
chronous algorithm where agents run a single experiment and
then make comparisons in parallel to proceed to the next steps.
However, our method is also applicable in offline and asyn-
chronous settings. For instance, agent n can borrow a design
from another agent n’, condition on it, and proceed to find its
next experiment without requiring agent »’ to do the same.

We indeed envision such an asynchronous setting to be valu-
able when exploiting historical databases. For example, manu-
facturers may have different production schedules, but a manu-
facturer n can learn from others anytime since all it needs is to
borrow some designs within E, ;. A borrowed design can also
be recommended by a human expert who confidently believes a
certain design is good. Our methodology in such settings.

4.4.4. Space Filling Initialization

Often, in BO a good initialization can significantly improve the
acquisition of better and faster solutions. To this end, we pro-
pose a sampling heuristic for initialization called Collaborative
Latin Hypercube Sampling (CLHS). CLHS is a collaborative
extension of the famous space-filling heuristic Latin Hypercube
Sampling (LHS; McKay, Beckman, and Conover 1979). We defer
the details of our initialization to section 3 in the supplementary
material.

4.5. Flexibility on Selecting Synthetic Designs

As we will soon see in Section 5, due to the power of rejection
sampling explained in Section 4.4.1, our theoretical analysis
does not rely on any assumptions on the relationship between
the different black box functions f,, nor the way how an agent
proposes x;,. This makes our framework highly flexible in
selecting xj;,r, especially since understanding or defining het-
erogeneity for black-box functions is very challenging. In fact,
regardless of how an agent selects a synthetic design x;/,, our



theoretical results hold the same due to the rejection sampling
scheme.

Although we gave a simple example of borrowing the LCB
maximizers that are larger than one’s posterior mean, one might
opt for other choices due to practical considerations. In this
section, we present two examples of possible alternations. Note
that none of the following alternations change our theoretical
analysis.

Differences on Scaling. Recall that as shown in 2, agent n’
shares a design x;, . with agent n only if its LCB 1,y (x:',, Qe
Ow t (x;ﬁ,t) is greater than «,, ;. One implicit hope here (although
not used in our theory) is that we expect the location where
others have a high objective value will also give us a high objec-
tive value. When collaboration happens in practice, we usually
expect functions f,, to have a similar scale on the response, so it
is reasonable to borrow design based on the comparison above.

Yet, if one believes that the functions have different scales,
then there is a simple fix whereby Agent n’ shares x':,,t with
agent n without the comparison in 2. In other words, every
agent n shares their x;/, with everyone else in their group. Still,
one can rely on the rejection sampling mechanism to let agents
determine which shared points they should use for conditioning.
Additional experiments on this method can be found in the
supplementary material.

Enhancing Privacy. Recall that one of our goals is to keep
the raw data D, visible to only agent n. Although we do not
share any information on the response, there might be a privacy
concern about sharing synthetic designs. We acknowledge that,
because the key idea of collaboration in this article is to share
informative synthetic designs, we are not aiming for Shannon’s
perfect secrecy by definition. That said, there are many simple
methods to achieve differential privacy. As we have discussed in
Section 4.1, all one needs to do is just to propose a near-optimal
location guiding others toward the optimal regions. The easiest,
perhaps, is adding Laplacian noise to the LCB maximizer, which
guarantees differential privacy. Indeed, one can choose different
sharing strategies under our framework as long as the shared
point indicates a potential region of improvement. Moreover,
agents can follow their own rules to propose xj:t. Such a decision
can be application and client-specific.

5. Theoretical Analysis

We start by acknowledging that theory in BO is still underde-
veloped. Similar to previous work on federated BO (Dai, Low,
and Jaillet 2020), our proof is also based on the framework of
the recent theoretical advance in BO (Chowdhury and Gopalan
2017). However, a key feature of our proof is that we relax the
assumption of Dai, Low, and Jaillet (2020) that heterogeneity is
upper-bounded.

Now, for theoretical development, we set up some assump-
tions and notations.

Assumption 1. For every agent n, f,, belongs to the Reproducing
kernel Hilbert space (RKHS) of real-valued functions associated
with known kernel k,, where the RKHS norm is bounded by B.
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Assumption 2. Noises e, are R-sub-Gaussian with respect to
canonical filtration F;_;. Without the loss of generality, assume
A<R<landk,(x,x) <1lforallx c X.

This assumption is without the loss of generality because data
points can be otherwise normalized to achieve the assumption.

Now to build the notation used in our theorems, we define
the set of observed design points at time ¢ as

Xn,:r = {xn,la e ,xn,t}-

The corresponding responses at Xy ¢ are denoted as y, ., =
Szt + €nze where f , is the true underlying responses and &,
are the corresponding noises. We also denote the maximum
information gain at time ¢ as

Yei= Xl,,rjgxx Iy n,:r§f n,:t)’

where 7 denotes mutual information, and the maximum is with
respect to all the possible sequences of observations X, ..

The key challenge in our proof is that our fantasy model
M, is created from both real and fantasy datasets. A major
step in proving most convergence bounds in BO is to control
the mean prediction error of the surrogate model. Although
the deviation of real data points is limited by the sub-Gaussian
Assumption 2, there is no natural restriction on the deviation of
a fantasy dataset since we do not assume a known structure or
upper bound on the potential heterogeneity across agents.

Fortunately, thanks to the automatic design selection scheme
discussed in Section 4.4.1, we know that every sampled response
in the fantasy dataset comes from the predictive distribution of
F,¢. By the generalization bound on the F,;, we can control
the maximum deviation of these responses with respect to the
ground truth using the Chernoff bound. Since we only have
a finite number of borrowed designs Ny, and the deviation
of every point in the fantasy datasets is upper-bounded, the
estimation error of any M, is limited. Therefore, we are able
to obtain the bound on the generalization error of the fantasy
models in Theorem 3.

Note that in order to keep generality, we do not assume how
E, ; is generated, so this theorem holds even if borrowed design
x € E,; do not satisfy constraints f,(x) > xnt.

Theorem 3 (Generalization Bound for Fantasy Models). Under
Assumptions 1 and 2, letting =1+ %, for arbitrary § € (0,1)
and T € N, with a probability of at least 1 — §/T, for any agent
n and any sample index s, we have

“‘L;!l—,t,s(x) _fn(x)! = \/ENmaxQn,tU:}(x):

where Qp; =

V2In(4S ., NT/3).

Theorem 4 bounds the mean prediction error of fantasy
model M,, s ; using its standard deviation. It implies that fantasy
model M, is accurate with high probability wherever the
predicted standard deviation is small.

With the help of Theorem 3, we can anchor the instantaneous
regret on the mean prediction error, which is bounded by the
predictive variance. Hence, as we have more observations, the
predictive variance decays, and the regret will also decay as

B + R/2(y:+1+In(4NT/8)) +
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desired. Now we prove the regret bound for CGP with upper
confidence bound (CGP-UCB) in Theorem 4. We use O to omit
the logarithmic dependency on T.

One of the desired theoretical properties of BO methods is
the asymptotic optimality. For agent n, denote the instantaneous
regret at time £ as

Tnt = lfn(x:) _fn(xn,t)iy (14)
and the cumulative regret up to time T as
i
RH,T — Z Tnt. (15)
t=1

To show the asymptotic optimality, it suffices to show that the
cumulative regret R, T grows sublinearly with T, which implies
that ]-imt—)oofﬂ (xn,t) — frl (xﬁ).

Theorem 4 (Regret Bound for CGP-UCB). Under all the assump-
tions and conditions in Theorem 3, letting 8; = ﬁNmaxQﬂ,;,
for any § € (0,1), with a probability of at least 1 — §, for any
agent in the system, the cumulative regret R, ; of CGP-UCB is
upper bounded by

Ryr = é(}’Tﬁ)-

Having a cumulative regret bounded by @ (wﬁ ) is stan-

dard with UCB acquisition functions. Here, yr is determined
by the type of kernel k,,. If, for example, the kernel is a Squared
Exponential Kernel, then yr = O(log(T')D+1) (Srinivas et al.
2009). As such, the cumulative regret grows with O(J/T), so the
instantaneous regret is asymptotically zero. We want to highlight
that this result is without any assumptions on the heterogeneity
level, meaning the regret of our algorithm will converge even if
the borrowed points are provided adversarially.

6. Experiments

6.1. Comparison of Collaborative and Non-collaborative
BO methods

We start by comparing the performance of eight different meth-
ods for a group of N = 16 collaborating agents. The compared
methods are (i) CGP-NEI (i.e., our method + NEI), (ii) CGP-
UCSB (i.e., our method + UCB), (iii) CGP-TS (i.e., our method
+ TS), (iv) FTSDE (Dai, Low, and Jaillet 2021), (v) FTS (Dai,
Low, and Jaillet 2020), (vi) non-collaborative NEI (Letham et al.
2019), (vii) non-collaborative UCB (Srinivas et al. 2009), and
(viii) non-collaborative TS (Thompson 1933). We emphasize
that both FTSDE and FTS are limited to only TS, and are incom-
patible with other AFs like NEL The choice of hyperparame-
ters for FTSDE and FTS follows the guidelines in the original
paper. The Matern-5/2 kernel is used for all the experiments
for a fair comparison. We set Npax = 4, Sraw = 10°, and
Squorum = 5. Notice that Ny, depends on the communication
budget, while S.., and Squorum depend on the computation
budget.

We test four famous synthetic functions of different dimen-
sions (Balandat et al. 2020). The search spaces are set to be

hypercubes denoted as [1b, ub]P, where 1b and ub denote
lower bound and upper bound, respectively. The tested func-
tions are (i) 5-dimensional function Ackley-5 - X =
[—32.768,32.768]°, (ii) 6-dimensional function Hartmann-6
- X = [0,1]° (iii) 8-dimensional function Cosine-8 -
X = [-1,1]3, and (iv) 20-dimensional function Levy-20 -
X = [—10,10]?°. To mimic real-world settings, we introduce
heterogeneity. Specifically, we set the function f, by shifting the
standard test function f by v, where ¥, is uniformly drawn
from a ball centered at 0 with a radius of 0.05|ub — 1b|, that is,

) =f(x+¥,),
where ¥, ~ Uniform(B (0.05|ub — 1b]) )

Observational noise is set as £, ¢ ~ A(0, 0. 1%). We also set n; =
2 and B; = 2 for LCB and UCB.

We start by sampling initial designs for each client in the ini-
tialization stage to make sure the number of training data is more
than the number of learnable hyperparameters in the GP. We
sample 10 initial designs for Ackley-5, Hartmann-6, and
Cosine-8, while 25 for Levy-20. We use CLHS to choose
the initialization for all the methods except for FTSDE since it
has its own designated initialization scheme that is incompatible
with CLHS. Each method on each test function is replicated 5
times. The optimality gap is defined as

N
_ 1
e = Z(f”(x:) — fa(arg max, p,(x))).

n=1

This metric measures the solution quality if the system stops
after t rounds. It typically applies to offline settings like simu-
lations where only the quality of the final solution is concerned
but not the tested designs. Instantaneous regret is defined as

1 N
Iy == ﬁ g(fn,r)-

This metric measures the solution quality at each round ¢. It
typically applies to settings like business operations where the
reward of all the tested designs is important.

The results, in logarithmic scales, are shown in Figure 3.
The solid lines represent the means of the five replications. The
upper bound of the shaded region denotes the maximum value
of the five replications, and the lower bound denotes the mini-
mum value. From the figures, we find interesting insights. First,
collaborative methods provide a clear improvement over their
non-collaborative counterparts. Second, our CGP approaches
show consistent superior performance across the benchmarks.
Third, we notice the importance of adaptability to different AFs.
For example, even non-collaborative UCB and NEI outperform
FTSDE and LTS on Ackley5 and Cosine8 functions, result-
ing in an even more significant competitive edge of CGP-UCB
and CGP-NEI over FTSDE. Additionally, the results showcase
significant variations in both the optimality gap and instanta-
neous regret. AFs with a higher emphasis on exploration tend
to display a smaller optimality gap, whereas those prioritizing
exploitation tend to exhibit smaller instantaneous regret. For
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Figure 3. Optimality gap (left) and instantaneous regret (right) of four test functions.

example, one can observe that UCB features more exploitation
than exploration compared to TS, which gives it a smaller
instantaneous regret and makes it a better option for online
implementations. As mentioned in Section 2, the selection of
AFs is application-specific. Our experiment echoes this state-
ment and highlights the importance of collaborative methods
to be compatible with a large variety of AFs, which is a key
contribution of this work.
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6.2. The Power of Collaboration

We also test the benefits gained from more collaborators.
We use the Levy-20 function with a UCB AF for N <
{1,4, 16,64,256} collaborating agents. Other settings are kept
the same as before. The results from our CGP-UCB approach
are shown in Figure 4. From the figure, one can directly observe
that both optimality gaps and instantaneous regrets decay faster
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Figure 4. The power of collaboration.
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Figure 5. EHD inkjet printing setup.

as the number of collaborators increases. Yet this power of
collaboration has a diminishing marginal rate of return.

7. Electrohydrodynamic Inkjet Printing

In addition to the numerical studies above, we conducted a
limited-budget case study. Our goal is to showcase the benefits
of collaboration for the process parameter tuning of a 3D print-
ing process. The process used, known as Electrohydrodynamic
(EHD) inkjet printing, is a patterning method using electric
fields to generate fluid flows that deliver materials to a substrate.
The printing system (shown in Figure 5) consists of an ink reser-
voir, a printhead, a substrate, a grounding plate, a power supply,
and a three-axis (XYZ) stage. The ink reservoir is a container
that holds the ink to be printed. The printhead contains a nozzle
and a conducting electrode, which connects the power supply
and the metal nozzle. The grounding plate is a conducting plate
used as the counter electrode, known as the ground electrode.
In the printing process, a high-voltage signal is applied between
the nozzle and the ground electrode, creating a strong electric
field, and forming a conical shape at the tip of the nozzle. When
the electric field is strong enough, the conical shape will break
up, and droplets will be emitted from the tip of the cone shape.
The nozzle is attached to the Z axis, which is able to move up
and down, and the X-Y stages provide movement in the X-Y
directions during the printing. In this experiment, a 75mm x

Levy20

1 mm
P iniha

- Silver electrode

2 mm

~

+— (lass substrate

Figure 6. Silver electrode.

25mm x 1mm glass substrate, a 100 m glass nozzle, and a pulse
voltage signal were used.

In this case study, a silver electrode was fabricated, which
consists of two 1mm-by-1mm solid pads at two sides and a
bridge with a 2 mm length and 0.2 mm width in the center, as
shown in Figure 6. Our goal was to find the best set of process
parameters that minimize the production time for fabricating a
single silver electrode.

The production time of a designed pattern is influenced
by factors such as the flow rate of ink deposition, the pattern
design, and the printing speed. These, in turn, are affected by
a combination of parameters, including voltage potential, duty
ratio, pulse frequency, nozzle size, stand-off distance, plotting
speed, and ink properties. In a typical optimization process, the
system and the ink are usually not changed, so the geometry
parameters (nozzle size, stand-off distance) and the ink proper-
ties are usually determined ahead of the parameter optimization
process. Hence, the four process parameters to be optimized in
this case study are voltage potential, pulse frequency, duty ratio,
and plotting speed.

7.1. Experimental Setting

The production time is defined as the time to complete a single
electrode printing in this case study. The feasible range of pro-
cess parameters (A’) was established based on previous printing
tests on the same printing system.

Voltage is one of the most effective factors in controlling the
droplet size. However, it must exceed the onset voltage to initiate
printing and stay below a certain threshold to prevent unstable
jetting status, such as multi-jet status. The duty ratio and the
frequency of the pulse signal contribute to both droplet size and
jetting frequency. They need to be carefully selected to match the
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plotting speed to achieve solid, continuous traces. If the plotting
speed is too low or high, the printed trace will become separate
dots or bulge lines. Thus, the feasible region X’ was determined
with voltage ranging from 2000 to 3000V, duty ratio from 20 to
30, frequency from 10 to 100Hz, and plotting speed from 0.4
mm/s to 2 mm/s.

Our experiment featured both collaborative and non-
collaborative groups, each consisting of N = 3 trained agents
conducting the experiment. Due to budget constraints, the
agents ran the experiments over T = 5 rounds, with the first
round serving as an initialization round. In this round, each
agent selected five designs using CLHS. To ensure a fair com-
parison, both the collaborative and non-collaborative groups
shared the same set of initial designs. In each experiment, agents
tested the quality of the printing parameters by conducting
experiments with their chosen printing settings and recording
the production time. Each experiment took approximately 70
min to complete, including the setup time and nozzle prepa-
ration. We used the NEI AF for both groups and set 5, = 0
and Npax = 3 (since we only had three participants). Note
that our experiment’s objective was to showcase the benefits
of collaboration. We did not impose heterogeneity across the
agents due to budget constraints.

7.2. Experimental Results

The comparison between collaborative and non-collaborative
methods is depicted in Figure 7. Given the real-world nature of
this experiment, the ground truth is not available. Therefore, we
present the following two statistics: (i) Average production time
of the best observed design at round t across the three agents:
1ypax 4 lymax 4 lymax, and (ii) Average production time of the
current design observed at round £: % Y+ % Yot % y3,+. These
two metrics are designed to respectively resemble the optimality
gap and instantaneous regret. We also provide a visualization in
Figure 8 to highlight the chosen design points across the four
process parameters and their respective production time. The
numbers in the dots denote the corresponding round they are
selected. Note that for better visualization, we only plot the best
design (with the shortest time) across the 5 initialized points for
each agent.

Based on Figure 7, we observe that our collaborative
approach yielded significantly superior results compared to the
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non-collaborative counterpart in terms of both the best design
and current design. Indeed, after five rounds, the collaborative
group had an average best design that resulted in around 15%
reduced production time compared to the best design from the
non-collaborative group.

Furthermore, based on Figure 8, we observe that the collab-
orative group helped each other narrow down the exploration
space to regions with smaller production times, where most
of the testing happened (see the concentration of blue dots),
whereas the non-collaborative group spent a lot of time in areas
that yielded much larger production times.

8. Conclusion

In this study, we propose the first general-purpose framework
for Collaborative BO using CGP, a method that significantly
expedites the trial-and-error process for black-box optimization
under collaboration. In comparison to existing methods, our
approach offers flexibility by allowing the use of a large class of
acquisition functions and can effectively handle heterogeneity
across the participating agents.

Given the relative infancy of the collaborative trial and error
field, we envision that many future questions pose promis-
ing directions for future work. On the privacy side, one may
enhance privacy by perturbing the shared designs x;tt with
some disturbance, such as Laplacian noise. The tradeoff is that
potentially fewer designs will be accepted by other agents, and
those accepted will be less informative. Additionally, it may be
worthwhile to sequentially understand the nature of the het-
erogeneity across agents and design techniques that adapt the
shared designs accordingly.

Supplementary Materials

The supplementary materials contain (i) an explanation of evaluating com-
parison functions with Secure Multiparty Computation (MPC), (ii) proof
of Theorems, (iii) a description of Collaborative Latin Hypercube Design
(CLHS), (iv) an extended discussion on scaling, and (vi) the code for
replicating experiments in this article. The experiments are implemented
in Python using BoTorch (Balandat et al. 2020) with CUDA support.
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