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Collaborative and Distributed Bayesian
Optimization via Consensus

Xubo Yue , Yang Liu , Albert S. Berahas , Blake N. Johnson , and Raed Al Kontar

Abstract— Optimal design is a critical yet challenging task
within many applications. This challenge arises from the need
for extensive trial and error, often done through simulations
or running field experiments. Fortunately, sequential optimal
design, also referred to as Bayesian optimization when using
surrogates with a Bayesian flavor, has played a key role in
accelerating the design process through efficient sequential sam-
pling strategies. However, a key opportunity exists nowadays.
The increased connectivity of edge devices sets forth a new
collaborative paradigm for Bayesian optimization. A paradigm
whereby different clients collaboratively borrow strength from
each other by effectively distributing their experimentation
efforts to improve and fast-track their optimal design process.
To this end, we bring the notion of consensus to Bayesian
optimization, where clients agree (i.e., reach a consensus) on their
next-to-sample designs. Our approach provides a generic and
flexible framework that can incorporate different collaboration
mechanisms. In lieu of this, we propose transitional collaborative
mechanisms where clients initially rely more on each other
to maneuver through the early stages with scant data, then,
at the late stages, focus on their own objectives to get client-
specific solutions. Theoretically, we show the sub-linear growth
in regret for our proposed framework. Empirically, through
simulated datasets and a real-world collaborative sensor design
experiment, we show that our framework can effectively accel-
erate and improve the optimal design process and benefit all
participants.

Note to Practitioners—The proposed algorithm allows multiple
clients to collaboratively distribute their trial-and-error efforts
to fast-track and improve the optimal design process. In the
algorithm, each client performs a test locally and then shares
the results with an orchestrator. Using the information from
all clients, the orchestrator then finds the best new experiment
that each client should undertake and sends those back for the
next round of experiments. Through this process, all clients can
leverage each other’s strengths and optimize their designs with
far fewer experiments than each client operating in isolation.
This is confirmed through many simulation examples, along with
a real-life sensor design experiment where multiple collaborating
agents seqeuntially coordinate their experimentation efforts. The
goal is to rapidly discover the biosensor design and measurement
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format parameters that find the maximum amount of captured
target analyte.

Index Terms— Optimal design, collaborative Bayesian opti-
mization, consensus, sensor design.

I. INTRODUCTION

THE success of many real-world applications critically

depends on trial and error. Often the goal is to manipulate

a set of variables, called designs, to achieve a desired response.

For instance, material scientists perform time-consuming and

expensive experiments to determine optimal compositions [1]

(i.e., the portion of all ingredients) that produce a material

with desired properties. Similarly, additive manufacturers must

calibrate many design parameters, including laser power, beam

diameter, and hatching pattern through trial & error [2] so

that their product matches its intended shape. Those studies,

whether through experimentation or simulations like finite

element models, consume resources (e.g., time and budget)

that can significantly limit progress.

Fortunately, sequential design has played a key role in

accelerating the design process [3], [4]. In the engineering

and statistical literature, sequential design can be categorized

into two types [5]: (i) sequential design for exploration, that

aims to explore a response surface, (ii) sequential design for
optimization, that aims to find designs that optimize a target

response. Our work focuses on sequential design for opti-

mization, known as sequential optimal design. This field has

also been coined more recently as Bayesian optimization (BO)

when using surrogates with a Bayesian flavor (e.g., Gaussian

processes - GPs). Hereon, we will use the term Bayesian

optimization since, without loss of generality, we exploit GPs

in the process.

Rather than running exhaustive brute-force experiments

over a dense grid, BO employs a sequential strategy to

conduct experiments and observe new samples. It first fits

a surrogate that estimates the design-response relationship

from existing data. Afterward, a utility, also known as acqui-

sition, function [6] is defined to hint at the benefits of

sampling/experimenting at new design points. Based on this

utility metric, the next-to-sample design point is selected.

The procedure is sequentially iterated over several rounds till

budget constraints or exit conditions are met. Needless to say,

sequential optimal design/BO has been extensively studied [7],

[8] and has found success in a wide variety of disciplines

across physics, chemistry, mechanical engineering [9], [10],

amongst many others.

In lieu of the aforementioned successes, this work aims to

bring BO to a collaborative paradigm. The main question we
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ask is: How can multiple clients collaborate to improve and
fast-track their design processes? With today’s advances in

computation and communication power at edge devices [11],

it has become more plausible for potentially dispersed clients

to share information, distribute trial and error efforts, and

fast-track the design process so that all participants gain

benefit. Here, collaborating clients can be scientists, robots,

multiple finite element simulations, etc.

However, to enable collaboration, key challenges exist. The

first challenge is how to distribute the sequential optimization

process. While BO has been extensively studied in the past

decades, few literature exists on collaborative BO; see Sec. III

for related work. The second challenge is heterogeneity.

Despite trying to optimize similar processes, clients may oper-

ate under different external factors and conditions. As such,

retaining client-specific optimal solutions is of importance.

The third challenge is privacy. To encourage participation,

a collaborative process should refrain from sharing client-

specific outcomes.

In an effort to address the opportunity and stated challenges

above, we summarize our contributions below:

• Bayesian optimization via Consensus: We bring the

notion of “consensus” to BO where clients perform

experiments locally and agree (i.e., reach a consensus) on

their individualized next-to-sample designs. Our approach

provides a generic and flexible framework that can

incorporate different collaboration mechanisms. It hinges

upon a consensus matrix that evolves with iterations and

flexibly determines the next-to-sample designs across all

clients.

• Regret minimization: We show that, under some mild

conditions, with a high probability, the cumulative regret

for each client has a sublinear growth rate. This implies

that our collaborative algorithm can bring clients within

regions of optimal designs.

• The power of collaboration for optimal sensor design:
We perform an experiment for accelerated optimization

of sensor design through collaborative finite element

analysis (FEA) workflows. The experiment showcases

the ability of collaboration to significantly outperform its

non-collaborative counterpart.

II. MOTIVATION

Our work is motivated by optimal sensor design. Biosensors

are critical bioanalytical technologies that enable the selec-

tive detection of target analytes and have broad applications

ranging from medical diagnostics, bioprocess monitoring [12],

health monitoring [13], food and water safety, and environ-

mental monitoring [14]. The ability to obtain timely and

accurate data enables more precise control over processes,

improved patient outcomes, and enhanced safety.

A biosensor is defined as a device that is based on

an integrated biorecognition element and transducer [15].

There are two main categories of biosensors: (1) device-

based biosensors, and (2) methods-based biosensors (e.g.,

nanobiosensors) [16]. Device-based biosensors are often inte-

grated with microfluidics and exhibit form factors that can

be physically integrated with and removed from processes

(e.g., thin-film, dip-stick) and preserve the characteristics

of the sample to be analyzed. Alternatively, methods-based

biosensors based on solutions and suspensions of function-

alized particles provide detection by mixing with a sample,

and thus, are relatively destructive with respect to the sam-

ple. Thus, device-based biosensors are commonly used in a

“flow-and-measure” or “dip-and-measure” format. In contrast,

methods-based biosensors, such as nanobiosensors, are typi-

cally used in a “mix-and-measure” format.

While biosensors have been created for sensitive and

selective detection of many target analytes ranging from

small molecules, proteins, nucleic acids, cells, biomarkers,

and pathogens, there remains a need to further optimize

biosensor design (e.g., form factor, functionalization) and

performance (e.g., sensitivity, measurement confidence, and

speed) to meet the constraints and requirements of indus-

trial and commercial applications [17]. Current thrust areas

in biosensor design and performance optimization can be

categorized as driven by experimentation, simulation, data

analytics, or combinations thereof [18], [19]. For example,

high-throughput experimentation, sensor arrays, FEA, and

data-driven biosensing have been leveraged to improve the

understanding, design, and performance of biosensors, par-

ticularly device-based biosensors whose design, utility, and

performance are often linked to the characteristics of exper-

imental measurement formats, such as microfluidic channel

design, flow field parameters (e.g., flow rate), and other

parameters of the measurement format (e.g., sample injection

time). However, it remains a challenge to optimize biosensor

performance, particularly in maximizing the amount of target

analyte detected, given the high-dimensionality of the design

space associated with biosensor design, functionalization (e.g.,

concentration of immobilized biorecognition elements), and

measurement format parameters. In particular, there remains

a need to establish closed-loop self-driving workflows for

engineering high-performance biosensors, such as by opti-

mizing the biosensor design, functionalization protocols, and

measurement formats that synergize with experimentation,

simulation, and machine learning. Given the current limitation,

our central hypothesis is:

Hypothesis: Collaboration can accelerate the pace of opti-
mal sensor design and yield optimal design with minimal
resource expenditures.

Fig. 1 provides a microcosm of our collaborative solution,

which we have tested in Sec. VI. Our closed-loop experiment

features multiple collaborating agents (FEA simulations) that

perform biosensor design. Then they will coordinate to decide

on their next simulations. Our goal is to rapidly discover the

biosensor design and measurement format parameters that find

the maximum amount of captured target analyte.

III. RELATED WORK

A. Historical Context

Optimal design has a rich history, initially focusing on fixed-

sample designs, where the best option was chosen from a

set. After World War II, adaptive designs emerged to improve
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Fig. 1. Illustration of closed-loop biosensor and measurement format design
optimization driven by consensus BO-driven simulation.

experimental efficiency. Early milestones include Friedman’s

sequential designs for military applications [20] and Box’s

adaptive experiments at Imperial Chemical Industries [21]

aimed at enhancing chemical yields. These methods demon-

strated that updating designs based on outcomes could greatly

improve performance, laying the groundwork for modern BO.

Later, Robbins and Bellman [22], [23] formalized sequen-

tial decision-making in uncertain environments, followed by

Chernoff’s [24] work on dynamic adjustments. Seminal contri-

butions by Sacks and Ylvisaker [25] further advanced BO by

proposing design selection through utility optimization with

surrogate models, ushering in ongoing developments in BO

today.

B. Recent Development

Recent advances in BO include but are not limited to:

(i) Alternative surrogate models: instead of using GP sur-

rogates, [26], [27] suggest using Deep GPs as an alternative.

This credits to many desirable advantages of Deep GPs, such

as flexibility to non-stationarity and robustness in handling

abrupt regime changes in the training data. Besides deep GPs,

Bayesian neural networks [28], [29] have also been widely

adopted as surrogates. (ii) Multi-objective BO: where the

goal is to simultaneously optimize multiple, often competing,

responses [30], [31]. Here surrogates that simultaneously learn

the multiple outputs, such as the Multi-output GP [32], are

often exploited and developed. (iii) Multi-fidelity BO: when

data is collected across multiple fidelities, it becomes crucial

to choose the fidelity to use when running an experiment.

Along this line, [33], [34] have developed various sequential

strategies to tackle this challenge. (iv) New utility functions:
developing new utility functions remains one of the most active

areas in optimal design. Along this line, recent literature has

investigated look-ahead utilities that chose a design based on

its utility over a rolling future horizon [35], [36].

C. Collaborative BO

Though BO has caught major attention over the past century,

to our knowledge, little literature exists on collaborative BO.

Perhaps the two closest fields are batch sequential design (or

batch BO) and federated BO. In batch BO, multiple designs

are chosen from a common surrogate and utility. These designs

are then distributed across multiple compute nodes to be

evaluated in parallel [37], [38], [39]. Unfortunately, batch

BO is designed for parallel computing, where it focuses on

optimizing a single objective using a single surrogate learned

from a centralized dataset. Therefore, it cannot handle cases

where data comes from diverse and potentially heterogeneous

sources, nor does it preserve privacy. All data needs to be

agglomerated in one place to learn the surrogate and optimize

the utility. In a similar fashion, federated BO [40], [41] tries

to distribute experiments decided from a single objective.

However, they do so while preserving privacy. For instance,

[40] share function realizations of the posterior belief using

random Fourier features to learn the common surrogate. A key

limitation in the current federated BO (FedBO) literature is

its restriction to Thompson Sampling, overlooking the diverse

family of utilities that define unique search heuristics to

balance exploration and exploitation. Different strategies yield

varying performance across tasks; there is no single utility that

fits all, but one needs to pick the right utility for their own

tasks.

IV. THE COLLABORATIVE BO FRAMEWORK

A. Setting the Stage

We start by describing our problem setting and introducing

notation. Assume there are K ≥ 2 clients, and each client

has a budget of T experiments across T iterations. Denote

by t ∈ {0, 1 . . . , T − 1} the iteration index. Clients can

communicate with each other either via a central orchestrator

or direct communication (See Sec. IV-B).

Each client k ∈ [K ] := {1, . . . K } has an initial dataset

D(0)
k = {X (0)

k , y(0)
k } with N (0)

k observations, where X (0)
k =

{xk,1, . . . , xk,N (0)
k

} is a D × N (0)
k design matrix that contains

the initials designs xk,· ∈ R
D and y(0)

k = (yk,1, . . . , yk,N (0)
k

)ᵀ is

an N (0)
k × 1 vector that contains the corresponding observed

responses. The goal of each client is to find a set of

client-specific optimal designs

x∗
k = argmax

x∈X⊆RD
fk(x) ,

where X is a subset in R
D , and fk : R

D → R is the

true unknown, and continuous, design function each client

aims to optimize. Clearly, using first or second-order opti-

mization algorithms is not feasible since fk is a black-box.

To observe fk(·) at a new design point xnew
k one needs to

run an experiment and observe yk(xnew
k ), that is possibly a

noisy representation of fk(xnew
k ); yk = fk + εk , where εk is

an additive noise. Therefore, the goal is to carefully decide on

the next-to-sample design xnew
k so that an optimal design is

reached with the fewest experiments possible.

To do so, at any time t , BO resorts to a utility function U ,

U (yk(x);D(t)
k ) : R

D → R, that quantifies the benefits gained

if one were to conduct an experiment at a new D-dimensional

design, x(t)new
k [30], [42].

In a non-collaborative environment, each client k chooses

the next-to-sample design by maximizing their own utility.

However, since the utility is dependent on the response yk ,

one cannot calculate the utility except at previously observed
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designs. Here BO resorts to a surrogate ŷk that estimates ŷk(x)

for any x ∈ R
D using the dataset D(t)

k . Such surrogates are

often probabilistic (e.g., GP [43]) and are capable of providing

a predictive distribution Pŷk (x)|D(t)
k

over ŷk(x). Equipped by the

surrogate, client k, now chooses the next-to-sample design by

maximizing the expected utility

x(t)new
k = argmax

x
EP

ŷk |D(t)
k

[
U (ŷk(x);D(t)

k )
]
. (1)

Hereon, for notation brevity, we write the expected utility

in (1) as Eŷk |D(t)
k

[
U (ŷk(x))

]
. It is also worth noting that

expectation in (1) with respect to ŷk is sometimes replaced

with f̂ k where ŷk = f̂ k + εk , depending on the type of utility

function. See utility functions in Sec. IV-D for some examples.

B. Collaborative BO via Consensus

Now in a collaborative framework, given an arbitrary

t , we aim to allow clients to collaboratively decide on

{x(t)new
k }K

k=1. A natural idea is to maximize utility across all

clients. This translates to the following problem:
max
{xk }K

k=1

Ek

[
Eŷk |D(t)

k

[
U (ŷk(xk))

]]

= max
{xk }K

k=1

K∑
k=1

pk

[
Eŷk |D(t)

k

[
U (ŷk(xk))

]]
, (2)

where pk is some weight coefficient for client k with∑K
k=1 pk = 1. Without loss of generality, hereon we assume

pk = 1
K . As shown, the key difference of (1) from (2) is taking

the expectation Ek over all participants. However, in itself, (2)

does not allow entities to borrow strength from each other as

it can be fully decoupled across the K entities.

In order to enable collaboration and distribute experiments

across the K clients, we bring the notion of “consensus” [44],

[45] to BO. In the context of BO, consensus allows clients

to agree (reach a consensus) on their individualized next-

to-sample designs through a consensus matrix. Specifically,

we modify (2) to

x(t)
k = [x(t)

C ]k = argmax
xk

[
Eŷk |D(t)

k

[
U (ŷk(xk))

]]
and x(t)new

k =
[
(W (t) ⊗ I D)x(t)

C
]

k
, (3)

where [·]k represents the kth block of a vector, x(t)
C =

[x(t)�
1 , x(t)�

2 , · · · , x(t)�
K ]� is concatenation of the designs

across all clients, W (t) is a consensus matrix of size K × K ,

W (t) =

⎡
⎢⎢⎢⎢⎣

w
(t)
11 w

(t)
12 · · · w

(t)
1K

w
(t)
21 w

(t)
22 · · · w

(t)
2K

...
...

. . .
...

w
(t)
K 1 w

(t)
K 2 · · · w

(t)
K K

⎤
⎥⎥⎥⎥⎦,

I D is a D × D identity matrix, and ⊗ denotes the Kronecker

product operation, i.e., W (t) ⊗ I D results in a matrix of size

DK × DK . The matrix W (t) is a symmetric, doubly stochastic

matrix (i.e.,
∑

k w
(t)
k j =∑ j w

(t)
k j = 1 for j, k ∈ [K ]) with non-

negative elements.

The new objective (3) has several interesting features. For

the sake of compactness, unless necessary, we drop the super-

script t in the subsequent discussion. First, the formulation

presented in (3) is indeed reminiscent of recent optimization

approaches coined as consensus optimization. To see this,

notice that a doubly stochastic matrix W has the property

that (W ⊗ I D)xC = xC if and only if xk = x j for all

k, j ∈ [K ] [46]. As such, if we enforce (W ⊗ I D)xC = xC as

a constraint, we can solve

max
xk

1

K

K∑
k=1

[
Eŷk |Dk

[
U (ŷk(xk))

]]
subject to xk = x j , ∀k, j ∈ [K ]. (4)

The equality constraint (often referred to as the consensus

constraint) is imposed to enforce that local copies at every

client are equal. That said, our formulation and setting have

several distinguishing features that differentiate it from con-

sensus optimization. The differences pertain to the goals of

the two approaches and are related to the consensus matrix

W . In consensus optimization, the goal is for all clients to

eventually agree on a common decision variable. However,

in our collaborative BO paradigm, we do not want all clients

to make the same decisions. Rather, we want clients to borrow

strength from each other while at the same time allowing

for personalized (per client) solutions. Even when clients

are homogeneous, enforcing the constraint will significantly

reduce exploration as everyone runs an experiment at the same

location. Therefore, we do not explicitly enforce the consensus

constraint. Instead, we allow W to play an aggregation role

that decides on the next-to-sample designs x(t)new
k given the

current utility maximizers x(t)
C . More importantly, W (t) is time-

varying and, in the limit, converges to the identity matrix (see

Sec. IV-C for more details and examples of the consensus

matrices used). This allows clients to borrow strength in

the initial stages of the optimization, yet, eventually, make

personalized decisions.

Second, the consensus matrix W is doubly stochastic.

By the Birkhoff–von Neumann theorem [47], any doubly

stochastic matrix can be expressed as a convex combination

of multiple permutation matrices. Mathematically, there exists

L non-negative scalars {ηl}L
l=1 such that

∑L
l=1 ηl = 1 and

W =∑L
l=1 ηl P l . For example,

W =
⎡
⎣0.2 0.3 0.5

0.6 0.2 0.2

0.2 0.5 0.3

⎤
⎦ = 0.2

⎡
⎣0 1 0

0 0 1

1 0 0

⎤
⎦+0.2

⎡
⎣1 0 0

0 1 0

0 0 1

⎤
⎦

+ 0.1

⎡
⎣0 1 0

1 0 0

0 0 1

⎤
⎦+ 0.5

⎡
⎣0 0 1

1 0 0

0 1 0

⎤
⎦,

where each permutation matrix P l can be viewed as an

allocator that assigns one design solution to one client. In this

example, we can see that

(P1 ⊗ I D)xC =
⎛
⎝
⎡
⎣0 1 0

0 0 1

1 0 0

⎤
⎦⊗ I D

⎞
⎠
⎡
⎣x1

x2

x3

⎤
⎦ =

⎡
⎣x2

x3

x1

⎤
⎦.
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This implies that the first allocator assigns the solution from

client 1 to client 2, and so forth. This is an interesting

phenomenon that is related to batch BO, where a batch of

candidate design points is selected, and then multiple exper-

iments run in parallel, each corresponding to one candidate

solution. Now, instead of sticking to one allocation strategy,

the consensus approach can be viewed as a weighted average

of all possible assignments, where the designed consensus

matrix dictates the weights, hence the impact of clients on

each other.

Third, over the course of the optimization, the consensus

step (W ⊗ I D)xC naturally yields K solutions to all clients

(i.e., one for each) so that clients can explore and exploit the

solution space independently and in a distributed manner. For

example, suppose D = 1 and consider a consensus matrix

W =
[

0.7 0.3

0.3 0.7

]
and two local solutions x1 = 5, x2 =

7. The consensus step will yield W xC = (5.6, 6.4)ᵀ such

that client 1 will take solution 5.6, and client 2 will take

solution 6.4.

Fourth, from the previous example, it can be seen that the

consensus matrix W controls how much one client will affect

the design choices for other clients. As a result, the matrix

W adds a layer of flexibility in optimizing (3) and allows

for heterogeneous clients. More specifically, in Sec. IV-C,

we will show two approaches to design W (t) at each iteration

t such that W (t) → I . The intuition is as follows. In the early

stages, client k may not have enough observations to obtain

a high-quality surrogate model and therefore needs to borrow

information from other clients. In the late stages, as client k
accumulates sufficient data and can construct a high-quality

local surrogate model, it will focus more on its local design

problem to find client-specific optimal design points.

Finally, the consensus constraint provides a naturally dis-

tributed approach to solve (3) sequentially. To see this, recall

that each client can run T experiments across T iterations and

the initial dataset is D(0)
k . Then a natural algorithm would take

the following form: At iteration t ∈ {0, . . . , T − 1}, given

x(t)
C , all clients calculate x(t)new

k = [(W (t) ⊗ I D)x(t)
C ]k . Now,

each client k conducts an experiment at x(t)new
k , and augments

its dataset with the new observation. Each client then fits

a surrogate (e.g., GP) using the current dataset D(t+1)
k and

accordingly constructs the utility function U (ŷk(xk)). Then the

clients maximize their local utility maxxk Eŷk |D(t+1)
k

[
U (ŷk(xk))

]
to obtain a new candidate solution x(t+1)

k . Finally, all clients

send their solutions to each other or a central orchestrator, and

the process repeats.

Algorithm 1 summarizes our Collaborative Bayesian Opti-

mization via Consensus (CBOC) framework. Fig. 2 presents

a flowchart illustrating the collaborative BO. A detailed

complexity analysis can be found in Appendix 1 (see the

Supplementary Material). Overall, compared to standard BO,

the computational complexity of CBOC remains nearly iden-

tical. Notably, our collaborative framework enjoys some nice

theoretical properties (See Sec. IV-E).

It is worthwhile noting that the collaborative process can be

done in a centralized or decentralized manner where clients

Algorithm 1 CBOC: Collaborative BO via Consensus

Data: T iterations, K number of clients, initial data

{D(0)
k }K

k=1, initial consensus matrix W (0), initial

designs to share {x(0)
k }K

k=1

for t = 0, 1, · · · T − 1 do
for k = 1, · · · , K do

Consensus: client k computes the consensus

point x(t)new
k = [(W (t) ⊗ I D)x(t)

C ]k

Experiment: client k conducts experiment using

x(t)new
k and observes yk(x(t)new

k )

Data Augmentation: client k augments dataset

by D(t+1)
k = D(t)

k ∪ {x(t)new
k , yk(x(t)new

k )}
Surrogate Modeling: client k updates its

surrogate model

Optimization: client k finds their local utility

maximizer

x(t+1)
k = argmaxxk

Eŷk |D(t+1)
k

[
U (ŷk(xk))

]
and

shares this candidate sample
end
Update W (t) (Sec. IV-C))

end

Fig. 2. Flowchart of CBOC.

share x(t)
k either with a central orchestrator or with each other

directly.

C. Designing the Consensus Matrix
From Algorithm 1, it can be seen that one of the key

components in (3) is the consensus matrix W . In essence,

as we have discussed earlier, the consensus matrix W controls

how much one client will affect the design choices for other

clients. Therefore, one needs to carefully design the consensus

matrix.

In this section, we propose two approaches for designing

the consensus matrix. The first approach assumes one does

not have any prior information on different clients and uni-

formly adjusts all entries in W (t) at each iteration t . The

second approach carefully modifies the weights for each client

based on the “leader”, where the “leader” is defined as the

client that has observed the best improvement (e.g., the most
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Fig. 3. Illustration of the collaborative process. Colors represent client-spe-
cific black-box functions.

significant improvement in the utility). Below, we will detail

both approaches.

1) Uniform Transitional Matrix: We propose to assign

equal weights to all clients at iteration 0 and then gradually

decay off-diagonal elements

W (0) =
⎡
⎢⎣

1
K

1
K . . . 1

K
...

...
...

...
1
K

1
K . . . 1

K

⎤
⎥⎦.

For simplicity, we assume all clients are connected. In practice,

if clients i and j are not connected, we can set wi j = w j i =
0 and reweigh the other components of the W matrix to ensure

it is doubly stochastic.

As the optimization progresses, we gradually increase diag-

onal elements wkk to 1 and decrease the off-diagonal elements

wk j for k �= j to 0. For example, if we adjust weights linearly,

then

W (t+1) = W (t) +
⎡
⎢⎣

K−1
T K − 1

T K . . . − 1
T K

...
...

...
...

− 1
T K − 1

T K . . . K−1
T K

⎤
⎥⎦. (5)

Ultimately, W (t) will converge to the identity matrix I . The

intuition behind this design is illustrated in Fig. 3. In this

figure, each colored line represents a black-box design function

for a client. In the early stages, client k does not have enough

observations to obtain a high-quality utility and therefore

needs to borrow more information from other clients. As client

k has more data in the late stages, it will focus more on its

own design problem to find client-specific optimal designs.

Note that W (t) → I , is mandatory if clients have some

heterogeneity. To see this, assume all clients have recovered

their optimal design x∗
k , then if W �= I , the consensus step

will always move the experiment away from x∗
k .

2) Leader-Driven Matrix: Another approach is to adjust the

weights of W dynamically based on the “leader”, i.e., the

client that observed the best improvement. As a result, all

other clients will follow the leader and explore the region that

potentially contains the best solutions. Initially, we create two

matrices W (0)
1 and W (0)

2 , and assign equal weights to all entries

of both matrices. Matrix W 1 will be used as a baseline, and

is updated using (5). Matrix W 2 will be modified based on

W 1 and by incorporating the leader information. The purpose

of using W 1 is to ensure that W 2 still converges to I so that

every single client will eventually focus on their own design

objective.

At iteration t , each client k shares a pair (x(t)
k , S(t)

k ), where

Sk is a reward that quantifies the gained benefit at client k. As a

simple example, we could set S(t)
k = max Eŷk |D(t)

k

[
U (ŷk(xk))

]
.

We then sort S(t)
k and find k∗(t) = argmaxk{S(t)

1 , S(t)
2 , . . . , S(t)

K },
and treat client k∗(t) as a leader at the current iteration.

In essence, client k∗(t) can hint to others that the neighbor-

hood of x(t)
k∗(t) is an area of potential improvement. To do

so, during the consensus step, for the non-lead clients k �=
k∗(t), we decrease their weights by 1

T K and increase their

off-diagonal weights with the leader k∗(t) by K−1
T K . To this end,

we adjust blocks of W (t)
2 as follows:

[W (t)
2 ]�=k∗(t),k∗(t) = [W (t)

1 ]�=k∗(t),k∗(t) + K − 1

T K
,

[W (t)
2 ]k∗(t),�=k∗(t) = [W (t)

1 ]k∗(t),�=k∗(t) + K − 1

T K
,

[W (t)
2 ]�=k∗(t),�=k∗(t) = [W (t)

1 ]�=k∗(t),�=k∗(t) − 1

T K
,

[W (t)
2 ]k∗(t),k∗(t) = [W (t)

1 ]k∗(t),k∗(t) − (K − 1)2

T K
,

where [W (t)
2 ]�=i, j represents all elements that are in the j th

column but not in the i th row of W (t)
2 . Interestingly, the weight

[W (t)
2 ]k∗(t),k∗(t) shrinks to maintain double stochasticity. Such an

assignment allows the leader k∗(t) to explore new regions.

Here we also suggest two heuristics: (i) To avoid the

situation where the same client is selected in succession (this

will cause the same client to keep exploring rather than

exploiting), we propose to select the second largest index from

{S(t+1)
1 , S(t+1)

2 , . . . , S(t+1)
K } if k∗(t) = k∗(t+1). (ii) In the extreme

case where [W (t)
2 ]k∗(t),k∗(t) is negative, set [W (t)

2 ]k∗(t),k∗(t) to zero

and reweigh other components accordingly.

To see an example, consider a scenario where D = 1, K =
3 and T = 10. We initialize both W (0)

1 and W (0)
2 as

W (0)
1 = W (0)

2 =
⎡
⎢⎣

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

⎤
⎥⎦.

Suppose each client received (x(0)
1 , 1), (x(0)

2 , 5), (x(0)
3 , 4). Then

we adjust W (0)
2 as

W (0)
2 =

⎡
⎢⎣

1
3

− 1
30

1
3

+ 2
30

1
3

− 1
30

1
3

+ 2
30

1
3

− 4
30

1
3

+ 2
30

1
3

− 1
30

1
3

+ 2
30

1
3

− 1
30

⎤
⎥⎦.

In this example, client 2 observed that sampling at x(0)
2 yields

the highest benefits, and therefore we put more weight on

client 2. As a result, clients 1 and 3 will explore towards x(0)
2 .

On the other hand, we decrease [W (0)
2 ]2,2 to make sure that

client 2 does not over-explore the region that contains x(0)
2 .

D. Contextualization Under a Specific Surrogate and Utility

Now, given the generic framework presented in IV-B

and IV-C, we will contextualize Algorithm 1 and provide

a concrete example. The iteration index t is dropped for

simplicity unless necessary.
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1) Gaussian Process Surrogate: At each iteration, we place

a GP prior on the surrogate f̂ k . We model the additive

noise term εk as independent and identically distributed (i.i.d.)

noise that follows a normal distribution with zero mean

and v2
k variance. Now, given a new input location xtest, the

posterior predictive distribution of f̂ k(xtest) ∼ P f̂ k (xtest)|D(t)
k

:=
N (μk(xtest;Dk), σ

2
k (xtest;Dk)), where

μk(xtest;Dk) = K (xtest, Xk)
(
K (Xk, Xk) + v2

k I
)−1 yk,

σ 2
k (xtest;Dk) = K (xtest, xtest)

− K (xtest, Xk)(K (Xk, Xk)

+v2
k I
)−1 K (Xk, xtest), (6)

and K (·, ·) : R
D × R

D → R is a covariance matrix whose

entries are determined by some kernel function K(·, ·). Simi-

larly, Pŷk |D(t)
k

is derived by simply adding v2
k to σ 2

k (xtest).

2) Utility Function: Given the GP surrogate, one can build

a utility function that measures the benefits of conducting an

experiment using a set of new design points. One common

example is the expected improvement (EI) utility expressed

as [48]

E f̂ k |D(t)
k

[
U ( f̂ k(x))

]
= E f̂ k |D(t)

k

[
( f̂ k(x) − y∗(t)

k )+
]

= EI(t)
k (x) = σ

(t)
k (x;D(t)

k )φ(z(t)
k (x))

+ (μ
(t)
k (x;D(t)

k ) − y∗(t)
k )�(z(t)

k (x)),

where a+ = max(a, 0), y∗(t)
k = max y(t)

k is the current best

response, φ(·) (or �(·)) is a probability density function

(PDF) (or cumulative distribution function (CDF)) of a stan-

dard normal random variable, and z(t)
k (x) = μ

(t)
k (x;D(t)

k )−y∗(t)
k

σ
(t)
k (x;D(t)

k )
.

Here note that the expectation is taken with respect to f̂ k

rather than ŷk . Another example is the knowledge gradi-

ent (KG) [37] defined as Eŷk |D(t)
k

[
U (ŷk(x))

] = KG(t)
k (x) =

Eŷk |D(t)
k

[
μ

∗(t)
k (x;D(t)

k ∪ {x, ŷk(x)})
]

− maxx′(μ
(t)
k (x′;D(t)

k )),

where μ
∗(t)
k (x;D(t)

k ∪ {x, ŷk(x)}) is the maximum of the

updated posterior mean of the GP surrogate by taking one

more sample at location (x, ŷk(x)). KG can be interpreted as

finding the new sampling location x that potentially increases

the maximum updated posterior mean. Hereon, in the remain-

der of this paper, we drop Dk in μk, σk for the sake of

compactness.

E. Theoretical Analysis

Despite its immense success, BO theory is still in its infancy

due to many fundamental challenges. First and foremost, the

black-box nature of fk renders theory hard to derive due to

the lack of known structure. Second, we still have a limited

understanding of the properties, such as Lipschitz continuity,

concavity, or smoothness, of many commonly employed utility

functions. For example, even the EI utility in general is

not Lipschitz continuous or concave. Third, despite recent

advances in laying the theoretical foundations for understand-

ing the generalization error bounds of GPs [49], [50], bridging

the gap between these bounds and errors incurred in the utility

function remains an open problem and a rather challenging

one.

To circumvent these open problems while providing a the-

oretical proof of concept, we derive some theoretical insights

that are confined to the EI utility in conjunction with a smooth

GP kernel and a homogeneity assumption. While we believe

that our results extend beyond these settings, we leave this

analysis as an enticing challenge for future research.

We focus on regret defined as r (t)
k = fk(x∗

k) − fk(x(t)new
k )

for client k at iteration t . Intuitively, regret measures the

gap between the design function evaluated at the optimal

solution x∗
k and the one evaluated at the consensus solution

x(t)new
k , at iteration t . By definition, r (t)

k = 0 if CBOC recovers

the global optimal solution. Our theoretical guarantee studies

cumulative regret, more specifically, Rk,T =∑T
t=1 r (t)

k .

By definition, EI(t)
k (x) = E f̂ k |D(t)

k

[
( f̂ k(x) − y∗(t)

k )+
]

≥
0, ∀x ∈ R

D . Therefore, we define a small positive constant

κ such that when EI(t)
k (x) < κ , client k stops its algorithm at

iteration t . This stopping criterion is only used for theoretical

development. In practice, we will run our algorithm for T
iterations or until all budgets are exhausted.

Below, we present our main Theorem and the sketch of our

proof. Detailed information and all supporting Lemmas and

required assumptions can be found in Appendices 1-2 (see

the Supplementary Material).

Theorem 1: (Homogeneous Clients) Suppose f1 = f2 =
· · · = fK , and suppose a squared exponential kernel function

Kk(x, x′) = u2
k exp

(‖x−x′‖2

2�2
k

)
is used for the GP surrogate,

where uk is the variance scale parameter and �k is the length
parameter, and each client uses the EI utility. Without loss of
generality, assume Kk(x, x′) ≤ 1 and the initial sample size
for each client is 2. Under some assumptions (Appendix 2)
(see the Supplementary Material), given any doubly stochastic
W (t) with non-negative elements, for ε > 0, δ1 ∈ (0, T ), with
probability at least (1− δ1

T )T , the cumulative regret after T > 1

iterations is

Rk,T =
T∑

t=1

r (t)
k ≤

√
6T
[
(log T )3 + 1 + C

]
(log T )D+1

log(1 + v−2
k )

+
√

2T (log T )D+4

log(1 + v−2
k )

+
T∑

t=1

O
(

1

(log(2 + t))0.5+ε

)
∼ O(

√
T × (log T )D+4),

where C = log[ 1
2πκ2 ].

Theorem 1 shows that the cumulative regret of Algorithm 1

has a sublinear growth rate in terms of the number of itera-

tions. This implies that as the algorithm proceeds with more

iterations, the consensus solution for client k will be close to

the optimal solution x∗
1 = · · · = x∗

k .

Theorem 1 relies on the assumption of homogeneity. When

heterogeneity is present, where at least one pair of design

functions has some differences, providing convergence results

is challenging. To our knowledge, the theory here is vacant.

Even if one were to provide a regularity assumption on the

heterogeneity, say fk’s are uniformly bounded and have opti-

mal designs restricted within a small ball, it remains an open
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problem to understand how this regularity will propagate to the

utility where we are able to understand the structural similar-

ities and differences across {EIk}K
k=1. Indeed, this stems from

the aforementioned second and third challenges in traditional

BO. That said, Theorem 1 may serve as a proof of concept,

showcasing that our approach will drive clients to a region that

contains optimal designs. Afterward, each client will focus on

their own objective to obtain a client-specific optimal design

(recall Fig. 3). As shown in Sec. IV-C and Sections V-VI, our

empirical results highlight the advantageous properties of our

approach under heterogeneous settings.
1) Proof Sketch: We hereby provide a proof sketch for

Theorem 1. We first decompose the regret r (t)
k as

r (t)
k =

{
fk(x∗

k) − y∗(t)
k︸ ︷︷ ︸

A

+ y∗(t)
k − fk(x(t)new

k )︸ ︷︷ ︸
B

}
.

We let A = fk(x∗
k) − y∗(t)

k and B = y∗(t)
k − fk(x(t)new

k ). Next,

we aim to bound terms A and B.

• Term A defines the difference between the optimal value

of the design function and the current best-observed

output value. Here, we first use a concentration inequality

from [51] to bound the difference between the mean

function μ
(t)
k (·) of the GP surrogate and the truth fk(·).

We then show that, with a high probability, term A is

upper bounded by the EI value evaluated at the optimal

design x∗
k plus a scaled predictive standard deviation term.

Mathematically, with probability 1 − δ, δ ∈ (0, 1),

fk(x∗
k) − y∗(t)

k ≤ EI(t)
k (x∗

k) +
√

β
(t)
k σ

(t)
k (x∗

k),

where {β(t)
k }t is a non-decreasing sequence such that

β
(t)
k ∼ O((log t

δ
)3).

• Term B defines the difference between the current

best-observed output value and the underlying true func-

tion fk(·) evaluated at the consensus solution. To proceed,

we further expand B as

B = y∗(t)
k − fk(x(t)new

k )

= y∗(t)
k − μ

(t)
k (x(t)new

k ) + μ
(t)
k (x(t)new

k ) − fk(x(t)new
k ).

We then bound B using a similar strategy in bounding

term A and obtain

B ≤ σ
(t)
k (x(t)new

k )

(
τ(−z(t)

k (x(t)new
k ))

− τ(z(t)
k (x(t)new

k )) +
√

β
(t)
k

)
,

where τ(z(t)
k (x)) := z(t)

k (x)�(z(t)
k (x)) + φ(z(t)

k (x)).

Our next goal is to show that the summation of r (t)
k

over T iterations (i.e., the cumulative regret) is bounded.

Here, note that there are two key components that

appear in A and B: σ
(t)
k (·) and τ(·). First, we ana-

lyze the behavior of the cumulative predictive variance∑T
t=1 σ

2(t)
k (·). We show that, with a squared exponential ker-

nel,
∑T

t=1 σ
2(t)
k (x(t)new

k ) ≤ 2

log(1+v−2
k )

O((log T )D+1). Second,

we show that τ(−z(t)
k (x(t)new

k )) ≤ 1 + √
C , where C =

log[ 1
2πκ2 ]. After some algebraic manipulation, we obtain the

upper bound stated in Theorem 1. �

V. SIMULATION STUDIES

In this section, we validate CBOC on several simulation

datasets. We consider a range of simulation functions from

the Virtual Library of Simulation Experiments [52] as the

underlying black-box design functions for the clients. Our

goal is to showcase the benefit of collaboration in finding

client-specific optimal designs.

We set the number of iterations for each testing function

to T = 20D. At iteration 0, W (0) is initialized as a uniform

matrix where each entry has a weight equal to 1
K . We use the

uniform transitional approach (CBOC-U) or the leader-driven

approach (CBOC-L) to adjust W (t) at every iteration t . The

initial dataset for each client {D(0)
k }K

k=1 contains 5D randomly

chosen design points. The performance of each client is

evaluated using a Gap metric Gk [35] defined as

Gk = |y∗(0)
k − y∗(T )

k |
|y∗(0)

k − y∗
k | ,

where y∗(0)
k (or y∗(T )

k ) is the best observed response at iteration

0 (or T ), and y∗
k = fk(x∗

k) is the true optimal response.

A larger Gk implies better performance. If the optimal solution

is recovered (i.e., y∗(T )
k = y∗

k ), then Gk = 1. We compare

CBOC using the EI utility with the following benchmark

models: (1) Individual: each client k conducts BO without

collaboration; (2) FedBO: the state-of-the-art federated BO

algorithm that builds upon Thompson sampling [41]. For both

benchmarks, we collect 5D initial samples and conduct exper-

iments for 20D iterations; (3) CentralBO: the centralized

BO setup involves K clients, with each client starting with

5D initial points and running for 20D iterations. During

each iteration, all clients send their local data to a central

server, where a global surrogate model is fitted. However, the

expected utility is evaluated only on the local data at each

client. Our code is available at this GitHub link.

A. Testing Function 1: Levy-D

Levy-D is an D-dimensional function in the form of

f (x) = sin2(πω1)

+
D−1∑
d=1

(ωd − 1)2[1 + 10 sin2(πωd + 1)]

+ (ωD − 1)2[1 + sin2(2πωD)],

where ωd = 1 + xd −1

4
, ∀d ∈ [D] and x =

( x1 , . . . , xd . . . , xD )ᵀ ∈ [−10, 10]D . We first consider the

homogeneous scenario where f1(x) = · · · = fK (x) = f (x).

We focus on maximizing the design function − fk(x) (i.e.,

minimizing fk(x)), ∀k ∈ [K ]. In Table I, we report the average

Gap across K = 5 clients over 30 independent runs, defined

as follows:

Ḡ = 1

30

30∑
i=1

1

K

K∑
k=1

G(i)
k ,

where G(i)
k is the Gap metric for client k at the i-th run.
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TABLE I

THE AVERAGE GAP ACROSS K = 5 CLIENTS OVER 30 INDEPENDENT

RUNS UNDER A HOMOGENEOUS SETTING. WE REPORT STANDARD

DEVIATIONS OVER 30 RUNS IN BRACKETS

TABLE II

THE AVERAGE GAP ACROSS K = 10 CLIENTS OVER 30 INDEPENDENT

RUNS UNDER A HETEROGENEOUS SETTING

Second, we consider the heterogeneous scenario where each

client has a different underlying truth. To do so, for each client

k, we transform the Levy function f (x) to

fk(x) = a1 f (x + vec(a3)) + a2 ,

where a1 ∼ Uniform(0.5, 1), a2, a3 ∼ N (0, 1), and vec(a3)

is a D-dimensional vector whose elements are all equal to

a3. This transformation will shift and re-scale the original

function, creating heterogeneous functional forms. The homo-

geneous scenario can be viewed as a special case when

a1 = 1, a2 = a3 = 0. We set K = 10. Other settings remain

unchanged. Results are shown in Table II.

From Tables I-II, we can derive two key insights.

First, collaborative methods yield superior performance than

non-collaborative competitors through higher average Gap

metrics. This evidences the importance of collaboration in

improving the optimal design process. Second, CBOC out-

performs all benchmarks. This credits to CBOC’s ability to

address heterogeneity through a flexible consensus framework

that allows clients to collaboratively explore and exploit the

design space and eventually obtain client-specific solutions.

B. An Illustrative Example

To visualize the performance of our method, we provide

an illustration using the Levy-2 function, K = 2, and the

same heterogeneity structure as in Sec. V-A. Specifically, the

two design functions are set to f1(x) = f (x + vec(1)) +
1, f2(x) = 2 f (x + vec(2)) + 2. Here, each client starts with

five two-dimensional designs, and then both CBOC-L and

Individual are run for T = 40. Fig. 4 demonstrates the

landscape of the original Levy-2 function and shows contour

plots of f1, f2. The selected design points for each client are

marked as red for CBOC-L and green for Individual, and

the iteration indices are labeled next to those points. We did

not label all points for better visualization.

From Fig. 4, we can see that through collaboration CBOC-L
samples more frequently near optimal regions, as evident by

the larger number of red points close to the optimal. This

allows CBOC-L to reach the region that contains the optimal

design (white-most region) for both clients in 25 iterations.

On the other hand, Individual required around 38 itera-

tions for client 1, while for client 2, even at T = 40, the

optimal region was still not explored yet. This again highlights

Fig. 4. Contour plot of f1, f2 and selected design points. The x-axis shows
the first design input (i.e., x1 ), and the y-axis shows the second design input
(i.e., x2 ).

TABLE III

THE AVERAGE GAP ACROSS K CLIENTS OVER 30 INDEPENDENT RUNS

UNDER A HETEROGENEOUS SETTING

the benefit of collaboration. More importantly, Fig. 4 high-
lights the ability of our method to operate under heterogeneity
as both clients were able to reach their distinct optimal design
neighborhood, and they do so much faster than operating in
isolation.

C. Testing Function 2: Shekel-10

Shekel-10 is a four-dimensional (D = 4) with 10 local

minima. It has the functional form:

f (x) = −
10∑

i=1

(
4∑

d=1

( xd − Fdi )
2 + ξi

)−1

.

We defer the specification of Fdi and ξi to Appendix 4 (see

the Supplementary Material).

Similar to the heterogeneous scenario in Sec. V-A, for each

client k, we transform the Shekel-10 function f (x) to fk(x) =
a1 f (x + vec(a3)) + a2, where a1 ∼ Uniform(0.5, 1) and

a2 ∼ N (0, 2), a3 ∼ N (0, 1). We test all benchmarks using

K = 5, 10, 15 and 20 clients.

Table III shows that CBOC outperforms both the

non-collaborative method and state-of-the-art FedBO. Inter-

estingly, we observe that the performance of CBOC improves

as more clients participate in the collaboration process. For

example, the average Gap for CBOC when K = 5 is 0.475.

As we increase K to 20, the average Gap becomes 0.592.

Fig. 5 plots the evolution of the average Gap with respect

to iterations. This result further demonstrates the benefits of

collaboration.

D. Other Testing Functions

Finally, we test our methods on three other functions:

Branin, Ackley-D, and Harmann-6. We use K = 10.
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Fig. 5. The evolution of the average Gap with respect to iterations and
collaborators.

TABLE IV

THE AVERAGE GAP ACROSS K = 10 CLIENTS OVER 30 INDEPENDENT

RUNS UNDER A HETEROGENEOUS SETTING

Experimental details and function specifications are deferred

to the appendix (see the Supplementary Material).

Similar to our previous analysis, Table IV shows the supe-

riority of our approach.

VI. CASE STUDY

A case study on consensus BO-driven closed-loop biosen-

sor design optimization was performed (see Fig. 6). The

closed-loop workflow was based on simulation (FEA) guided

by a decentralized computing process for collaboration (i.e.,

consensus BO). Given the demand for device-based biosensors

for industrial process analytical technology (e.g., for biopro-

cess monitoring and control) and health monitoring (e.g., via

wearable sensors), the case study was focused on closed-loop

optimization of a device-based biosensor. Specifically, our case

study focused on optimizing a device-based biosensor with a

milli-scale transducer used in a continuous flow format, which

is consistent with several types of device-based biosensors,

including electrochemical, mechanical, and electromechanical

biosensors.

Biosensor performance, specifically, transient binding of

the target analyte, was calculated using commercially avail-

able FEA software (COMSOL Multiphysics, COMSOL). The

transient fractional surface coverage of the bound target ana-

lyte on the biosensor surface was calculated by numerical

solution of a coupled convection-diffusion-reaction model in

2D using a time-dependent study. The convection-diffusion-

reaction model was constructed by coupling laminar flow

and transport of diluted species physics with a surface reac-

tion. The computational domain consisted of a 6 × 1 mm2

(length × width) rectangular fluidic channel that encompassed

the domain x ∈ [−3, 3] mm and y ∈ [0, 1] mm. The

biosensor surface (i.e., surface 1) on which the binding reac-

tion between immobilized biorecognition elements and target

analyte occurred encompassed the domain x ∈ [0, 1] mm at

y = 0. The computational domain contained five addi-

tional surfaces on which boundary and initial conditions were

applied. The coupled partial differential equations associated

with the convection-diffusion-reaction model were solved sub-

ject to the following boundary and initial conditions:

For laminar flow physics:

• Surface 2 (inlet): normal inflow velocity = uin.

• Surface 3 (outlet): static pressure = 0 Pa.

• Surfaces 1 and 4-6 (top and bottom walls, including the

sensing surface): no slip.

Here, no slip represents a traditional no slip boundary condi-

tion. The fluid properties were defined by water and obtained

from the FEA software’s material library. The initial velocity

and pressure fields were zero.

For transport of diluted species physics:

• Surface 1: J0,c = −rads + rdes.

• Surface 2: c = c0.

• Surface 3: J0,c = n · Di∇ci .

• Suraces 4-6: no flux.

In the above equations, J0,c is the mass flux, rads = konccs

is the adsorption (binding) rate of the target analyte, c is

the concentration of the target analyte in solution, cs is the

concentration of immobilized biorecognition element, rdes =
koffc∗

s is the desorption rate, c∗
s is the concentration of occupied

sites, c0 = cinGP(t), cin = 1 nM is the concentration of the

target analyte in the injected sample, GP(t) is a time-dependent

Gaussian pulse function with integral normalization and inte-

gral value of unity, and no flux represents a traditional no

flux boundary condition. The following values of transport

properties and rate constants were used in the simulation: Di =
1×10−11 m2/s is the diffusivity of the target analyte in solution,

the binding (forward) rate constant (kon) = 1 × 106 M−1s−1,

and the unbinding (reverse) rate constant (koff) = 1×10−3 s−1.

The initial concentration field was zero.

For surface reaction chemistry:

• Surface 1: reaction rate = rads − rdes.

• Surfaces 2-6: no reaction.

The following surface properties were used: ρs = density of

surface sites and site occupancy number = 1. The surface

diffusion of the bound target analyte was assumed to be zero.

The initial concentration of bound target was zero.

The convection-diffusion-reaction model was discretized

and solved subject to the aforementioned boundary and ini-

tial conditions using a physics-controlled adaptive mesh that

contained 373004 (plus 351428 degrees of freedom) in the

final mesh for a given combination of inputs [x1, x2, x3] =
[uin, ρs, GPstd], where GPstd is the standard deviation of the

Gaussian pulse associated with the injected sample. The

specific values of uin, ρs, GPstd examined were selected by

traditional BO and the consensus BO model, which are

referred to as “non-collaborative” and “collaborative” learning,

respectively.

The simulation’s output of interest (i.e., the quantity to be

optimized) was the maximum fractional surface coverage of

the bound target analyte (θmax) during the transient binding

response, which is a fundamental characteristic of biosensor
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Fig. 6. A case study on consensus BO-driven closed-loop optimization for biosensor design was performed, focusing on optimizing a milli-scale
transducer-based device biosensor in a continuous flow format. The case study involved two groups: a non-collaborative group and a collaborative group, each
consisting of three clients. Selected design points from collaborative groups were shared to each other to run the CBOC algorithm.

function that is associated with the performance characteristics

of sensitivity, detection limit, dynamic range, and speed.

The objective of this case study was to discover (i.e., learn)

the biosensor design and measurement format parameters that

maximize θmax (i.e., the maximum amount of captured target

analyte). An optimal solution (i.e., design) was sought within

the design space of x1 ∈ [1×10−4, 1×10−2] m/s, x2 ∈ [1.8×
10−8, 3.3 × 10−8] mol/m2, and x3 ∈ [0.5, 3] min. The range

and limits of the design space were selected based on practical

values used in previous biosensing studies [53], [54], [55],

[56]. In summary, the objective of this case study was to learn

the optimal combination of uin, ρs, GPstd that maximized the

amount of captured target analyte and to compare the learning

performance achieved by traditional BO performed by a group

of independent clients that do not share information with that

achieved by collaborative learning performed by a group of

clients that share information and make decisions for next-to-

test values using consensus BO.

The case study involved two groups: a non-collaborative

group and a collaborative group, each consisting of three

clients. The clients are distributed across diverse experimen-

tal settings to establish a heterogeneous environment. The

non-collaborative group used conventional centralized BO

algorithms, where each client solves its own problem and there

is no communication among clients. In contrast, the collab-

orative group utilized the CBOC algorithm (Algorithm 1) to

collaboratively find optimal solutions. For CBOC, we adopted

the leader-driven matrix mentioned in Sec. IV-C. Fig. 7 shows

the trend of biosensor performance, specifically maximum

amount of captured target species, throughout the iterative

closed-loop workflow. As shown in Fig. 7, the self-driving

workflow driven by consensus BO was capable of learning an

optimized biosensor design and measurement format parame-

ter selection after ten rounds of experimentation as evidenced

Fig. 7. Trend in the biosensor’s maximum fractional surface coverage (i.e.,
the maximum amount of captured target analyte) vs. iteration number (i.e.,
sequential rounds of simulation) via BO without and with collaboration after
ten iterations.

by the trend of θmax. Additionally, the average biosensor

performance was higher and exhibited lower variance in the

collaborative group relative to the non-collaborative group,

which highlights the value of leveraging collaboration in

closed-loop high-throughput experimentation.

This case study serves as a proof-of-concept showcasing

that collaboration in optimal design can reap benefits for

the participating entities. We envision that the underlying

principles and methodologies demonstrated can extend to

different biosensor types and varied applications, though with

some domain-specific considerations. Our collaborative frame-

work supports various BO methods, allowing customization

for different biosensors, such as electrochemical, optical,

and mass-sensitive types, by adjusting calibration parameters

to match unique response profiles. It can also be adapted

for diverse applications, including environmental monitoring,

healthcare diagnostics, and food safety - for instance, detecting

pollutants, identifying biomarkers, or finding food contami-

nants. While additional calibration may be needed for each

use case to address sample complexity and analyte specifics,
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this flexible framework could significantly accelerate biosensor

deployment across these fields.

VII. DISCUSSION AND CONCLUSION

In this paper, we propose a collaborative Bayesian opti-

mization framework built upon a consensus mechanism. Our

experiments on simulated data and a real-world sensor design

case study show that collaboration through our proposed

framework can accelerate and improve the optimal design

process. Specifically, CBOC achieves up to a 28% (and 35%)

improvement in the GAP metric on complex 4-dimensional

functions, comparing to the federated BO (and individual

non-collaborative BO). In real-world sensor discovery data,

CBOC enhances the maximum captured target analyte by

approximately 50% (see Fig. 7).

Collaborative BO is still in its infancy stage, and few prior

studies exist along this line. Indeed, there are many avenues of

potential improvement. These avenues include: (i) extending

the consensus framework to multi-objective and multi-fidelity

settings, (ii) developing a resource-aware approach that allows

some clients to perform more or fewer experiments depending

on their resources, (iii) understanding the theoretical condi-

tions needed for the collaborative design to outperform its

non-collaborative counterpart. If successful, this may lead to

targeted algorithms that exploit these conditions to improve

performance. We hope this research inspires future work along

these avenues and beyond.
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