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Collaborative and Distributed Bayesian
Optimization via Consensus

Xubo Yue™, Yang Liu™, Albert S. Berahas

Abstract— Optimal design is a critical yet challenging task
within many applications. This challenge arises from the need
for extensive trial and error, often done through simulations
or running field experiments. Fortunately, sequential optimal
design, also referred to as Bayesian optimization when using
surrogates with a Bayesian flavor, has played a key role in
accelerating the design process through efficient sequential sam-
pling strategies. However, a key opportunity exists nowadays.
The increased connectivity of edge devices sets forth a new
collaborative paradigm for Bayesian optimization. A paradigm
whereby different clients collaboratively borrow strength from
each other by effectively distributing their experimentation
efforts to improve and fast-track their optimal design process.
To this end, we bring the notion of consensus to Bayesian
optimization, where clients agree (i.e., reach a consensus) on their
next-to-sample designs. Our approach provides a generic and
flexible framework that can incorporate different collaboration
mechanisms. In lieu of this, we propose transitional collaborative
mechanisms where clients initially rely more on each other
to maneuver through the early stages with scant data, then,
at the late stages, focus on their own objectives to get client-
specific solutions. Theoretically, we show the sub-linear growth
in regret for our proposed framework. Empirically, through
simulated datasets and a real-world collaborative sensor design
experiment, we show that our framework can effectively accel-
erate and improve the optimal design process and benefit all
participants.

Note to Practitioners—The proposed algorithm allows multiple
clients to collaboratively distribute their trial-and-error efforts
to fast-track and improve the optimal design process. In the
algorithm, each client performs a test locally and then shares
the results with an orchestrator. Using the information from
all clients, the orchestrator then finds the best new experiment
that each client should undertake and sends those back for the
next round of experiments. Through this process, all clients can
leverage each other’s strengths and optimize their designs with
far fewer experiments than each client operating in isolation.
This is confirmed through many simulation examples, along with
a real-life sensor design experiment where multiple collaborating
agents seqeuntially coordinate their experimentation efforts. The
goal is to rapidly discover the biosensor design and measurement

Received 5 November 2024; accepted 7 January 2025. Date of publication
13 January 2025; date of current version 11 April 2025. This article was
recommended for publication by Associate Editor X. Zhang and Editor X. Xie
upon evaluation of the reviewers’ comments. This work was supported in
part by NSF CAREER under Award 2144147 and Award CBET-2144310.
(Corresponding author: Raed Al Kontar.)

Xubo Yue is with the Department of Mechanical and Industrial Engineering,
Northeastern University, Boston, MA 02115 USA.

Yang Liu and Blake N. Johnson are with the Grado Department of Industrial
and Systems Engineering, Virginia Tech, Blacksburg, VA 24061 USA.

Albert S. Berahas and Raed Al Kontar are with the Department of Industrial
& Operations Engineering, University of Michigan, Ann Arbor, MI 48109
USA (e-mail: alkontar@umich.edu).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TASE.2025.3529349, provided by the authors.

Digital Object Identifier 10.1109/TASE.2025.3529349

, Blake N. Johnson*, and Raed Al Kontar

format parameters that find the maximum amount of captured
target analyte.

Index Terms— Optimal design, collaborative Bayesian opti-
mization, consensus, sensor design.

I. INTRODUCTION

HE success of many real-world applications critically

depends on trial and error. Often the goal is to manipulate
a set of variables, called designs, to achieve a desired response.
For instance, material scientists perform time-consuming and
expensive experiments to determine optimal compositions [1]
(i.e., the portion of all ingredients) that produce a material
with desired properties. Similarly, additive manufacturers must
calibrate many design parameters, including laser power, beam
diameter, and hatching pattern through trial & error [2] so
that their product matches its intended shape. Those studies,
whether through experimentation or simulations like finite
element models, consume resources (e.g., time and budget)
that can significantly limit progress.

Fortunately, sequential design has played a key role in
accelerating the design process [3], [4]. In the engineering
and statistical literature, sequential design can be categorized
into two types [5]: (i) sequential design for exploration, that
aims to explore a response surface, (ii) sequential design for
optimization, that aims to find designs that optimize a target
response. Our work focuses on sequential design for opti-
mization, known as sequential optimal design. This field has
also been coined more recently as Bayesian optimization (BO)
when using surrogates with a Bayesian flavor (e.g., Gaussian
processes - GPs). Hereon, we will use the term Bayesian
optimization since, without loss of generality, we exploit GPs
in the process.

Rather than running exhaustive brute-force experiments
over a dense grid, BO employs a sequential strategy to
conduct experiments and observe new samples. It first fits
a surrogate that estimates the design-response relationship
from existing data. Afterward, a utility, also known as acqui-
sition, function [6] is defined to hint at the benefits of
sampling/experimenting at new design points. Based on this
utility metric, the next-to-sample design point is selected.
The procedure is sequentially iterated over several rounds till
budget constraints or exit conditions are met. Needless to say,
sequential optimal design/BO has been extensively studied [7],
[8] and has found success in a wide variety of disciplines
across physics, chemistry, mechanical engineering [9], [10],
amongst many others.

In lieu of the aforementioned successes, this work aims to
bring BO to a collaborative paradigm. The main question we
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ask is: How can multiple clients collaborate to improve and
fast-track their design processes? With today’s advances in
computation and communication power at edge devices [11],
it has become more plausible for potentially dispersed clients
to share information, distribute trial and error efforts, and
fast-track the design process so that all participants gain
benefit. Here, collaborating clients can be scientists, robots,
multiple finite element simulations, etc.

However, to enable collaboration, key challenges exist. The
first challenge is how to distribute the sequential optimization
process. While BO has been extensively studied in the past
decades, few literature exists on collaborative BO; see Sec. 111
for related work. The second challenge is heterogeneity.
Despite trying to optimize similar processes, clients may oper-
ate under different external factors and conditions. As such,
retaining client-specific optimal solutions is of importance.
The third challenge is privacy. To encourage participation,
a collaborative process should refrain from sharing client-
specific outcomes.

In an effort to address the opportunity and stated challenges
above, we summarize our contributions below:

. Bayesian optimization via Consensus: We bring the
notion of “consensus” to BO where clients perform
experiments locally and agree (i.e., reach a consensus) on
their individualized next-to-sample designs. Our approach
provides a generic and flexible framework that can
incorporate different collaboration mechanisms. It hinges
upon a consensus matrix that evolves with iterations and
flexibly determines the next-to-sample designs across all
clients.

o Regret minimization: We show that, under some mild
conditions, with a high probability, the cumulative regret
for each client has a sublinear growth rate. This implies
that our collaborative algorithm can bring clients within
regions of optimal designs.

o The power of collaboration for optimal sensor design:
We perform an experiment for accelerated optimization
of sensor design through collaborative finite element
analysis (FEA) workflows. The experiment showcases
the ability of collaboration to significantly outperform its
non-collaborative counterpart.

II. MOTIVATION

Our work is motivated by optimal sensor design. Biosensors
are critical bioanalytical technologies that enable the selec-
tive detection of target analytes and have broad applications
ranging from medical diagnostics, bioprocess monitoring [12],
health monitoring [13], food and water safety, and environ-
mental monitoring [14]. The ability to obtain timely and
accurate data enables more precise control over processes,
improved patient outcomes, and enhanced safety.

A biosensor is defined as a device that is based on
an integrated biorecognition element and transducer [15].
There are two main categories of biosensors: (1) device-
based biosensors, and (2) methods-based biosensors (e.g.,
nanobiosensors) [16]. Device-based biosensors are often inte-
grated with microfluidics and exhibit form factors that can
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be physically integrated with and removed from processes
(e.g., thin-film, dip-stick) and preserve the characteristics
of the sample to be analyzed. Alternatively, methods-based
biosensors based on solutions and suspensions of function-
alized particles provide detection by mixing with a sample,
and thus, are relatively destructive with respect to the sam-
ple. Thus, device-based biosensors are commonly used in a
“flow-and-measure” or “dip-and-measure” format. In contrast,
methods-based biosensors, such as nanobiosensors, are typi-
cally used in a “mix-and-measure” format.

While biosensors have been created for sensitive and
selective detection of many target analytes ranging from
small molecules, proteins, nucleic acids, cells, biomarkers,
and pathogens, there remains a need to further optimize
biosensor design (e.g., form factor, functionalization) and
performance (e.g., sensitivity, measurement confidence, and
speed) to meet the constraints and requirements of indus-
trial and commercial applications [17]. Current thrust areas
in biosensor design and performance optimization can be
categorized as driven by experimentation, simulation, data
analytics, or combinations thereof [18], [19]. For example,
high-throughput experimentation, sensor arrays, FEA, and
data-driven biosensing have been leveraged to improve the
understanding, design, and performance of biosensors, par-
ticularly device-based biosensors whose design, utility, and
performance are often linked to the characteristics of exper-
imental measurement formats, such as microfluidic channel
design, flow field parameters (e.g., flow rate), and other
parameters of the measurement format (e.g., sample injection
time). However, it remains a challenge to optimize biosensor
performance, particularly in maximizing the amount of target
analyte detected, given the high-dimensionality of the design
space associated with biosensor design, functionalization (e.g.,
concentration of immobilized biorecognition elements), and
measurement format parameters. In particular, there remains
a need to establish closed-loop self-driving workflows for
engineering high-performance biosensors, such as by opti-
mizing the biosensor design, functionalization protocols, and
measurement formats that synergize with experimentation,
simulation, and machine learning. Given the current limitation,
our central hypothesis is:

Hypothesis: Collaboration can accelerate the pace of opti-
mal sensor design and yield optimal design with minimal
resource expenditures.

Fig. 1 provides a microcosm of our collaborative solution,
which we have tested in Sec. VI. Our closed-loop experiment
features multiple collaborating agents (FEA simulations) that
perform biosensor design. Then they will coordinate to decide
on their next simulations. Our goal is to rapidly discover the
biosensor design and measurement format parameters that find
the maximum amount of captured target analyte.

III. RELATED WORK
A. Historical Context

Optimal design has a rich history, initially focusing on fixed-
sample designs, where the best option was chosen from a
set. After World War II, adaptive designs emerged to improve
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Fig. 1. Tllustration of closed-loop biosensor and measurement format design
optimization driven by consensus BO-driven simulation.

experimental efficiency. Early milestones include Friedman’s
sequential designs for military applications [20] and Box’s
adaptive experiments at Imperial Chemical Industries [21]
aimed at enhancing chemical yields. These methods demon-
strated that updating designs based on outcomes could greatly
improve performance, laying the groundwork for modern BO.
Later, Robbins and Bellman [22], [23] formalized sequen-
tial decision-making in uncertain environments, followed by
Chernoff’s [24] work on dynamic adjustments. Seminal contri-
butions by Sacks and Ylvisaker [25] further advanced BO by
proposing design selection through utility optimization with
surrogate models, ushering in ongoing developments in BO
today.

B. Recent Development

Recent advances in BO include but are not limited to:
(i) Alternative surrogate models: instead of using GP sur-
rogates, [26], [27] suggest using Deep GPs as an alternative.
This credits to many desirable advantages of Deep GPs, such
as flexibility to non-stationarity and robustness in handling
abrupt regime changes in the training data. Besides deep GPs,
Bayesian neural networks [28], [29] have also been widely
adopted as surrogates. (ii) Multi-objective BO: where the
goal is to simultaneously optimize multiple, often competing,
responses [30], [31]. Here surrogates that simultaneously learn
the multiple outputs, such as the Multi-output GP [32], are
often exploited and developed. (iii) Multi-fidelity BO: when
data is collected across multiple fidelities, it becomes crucial
to choose the fidelity to use when running an experiment.
Along this line, [33], [34] have developed various sequential
strategies to tackle this challenge. (iv) New utility functions:
developing new utility functions remains one of the most active
areas in optimal design. Along this line, recent literature has
investigated look-ahead utilities that chose a design based on
its utility over a rolling future horizon [35], [36].

C. Collaborative BO

Though BO has caught major attention over the past century,
to our knowledge, little literature exists on collaborative BO.
Perhaps the two closest fields are batch sequential design (or
batch BO) and federated BO. In batch BO, multiple designs
are chosen from a common surrogate and utility. These designs
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are then distributed across multiple compute nodes to be
evaluated in parallel [37], [38], [39]. Unfortunately, batch
BO is designed for parallel computing, where it focuses on
optimizing a single objective using a single surrogate learned
from a centralized dataset. Therefore, it cannot handle cases
where data comes from diverse and potentially heterogeneous
sources, nor does it preserve privacy. All data needs to be
agglomerated in one place to learn the surrogate and optimize
the utility. In a similar fashion, federated BO [40], [41] tries
to distribute experiments decided from a single objective.
However, they do so while preserving privacy. For instance,
[40] share function realizations of the posterior belief using
random Fourier features to learn the common surrogate. A key
limitation in the current federated BO (FedBO) literature is
its restriction to Thompson Sampling, overlooking the diverse
family of utilities that define unique search heuristics to
balance exploration and exploitation. Different strategies yield
varying performance across tasks; there is no single utility that
fits all, but one needs to pick the right utility for their own
tasks.

IV. THE COLLABORATIVE BO FRAMEWORK
A. Setting the Stage

We start by describing our problem setting and introducing
notation. Assume there are K > 2 clients, and each client
has a budget of T experiments across 7 iterations. Denote
by t € {0,1...,T — 1} the iteration index. Clients can
communicate with each other either via a central orchestrator
or direct communication (See Sec. IV-B).

Each client £k € [K] = {l,...K} has an initial dataset
D,EO) = {X,(CO) , y,((o)} with N,EO) observations, where X;O) =
{xr.1, ...,xk’N£o>} isa D x N,EO) design matrix that contains

the initials designs x;. € R” and y,((()) = k1o s Yy yo)T 18

an N,fo) x 1 vector that contains the corresponding observed
responses. The goal of each client is to find a set of
client-specific optimal designs

x; = argmax fi(x),
xeXCRP

where X is a subset in RP, and f; RP — R is the
true unknown, and continuous, design function each client
aims to optimize. Clearly, using first or second-order opti-
mization algorithms is not feasible since f; is a black-box.
To observe fi(-) at a new design point x}** one needs to
run an experiment and observe yi(x;°"), that is possibly a
noisy representation of fi (x}*V); yx = fx + €, where ¢ is
an additive noise. Therefore, the goal is to carefully decide on
the next-to-sample design x}¥ so that an optimal design is
reached with the fewest experiments possible.

To do so, at any time #, BO resorts to a utility function U,
U (yr(x); D,(f)) : RP — R, that quantifies the benefits gained
if one were to conduct an experiment at a new D-dimensional
design, x""™ [30], [42].

In a non-collaborative environment, each client k& chooses
the next-to-sample design by maximizing their own utility.
However, since the utility is dependent on the response y,
one cannot calculate the utility except at previously observed
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designs. Here BO resorts to a surrogate y, that estimates y (x)
for any x € R? using the dataset D,ﬁ’). Such surrogates are
often probabilistic (e.g., GP [43]) and are capable of providing
a predictive distribution Pik (x)|Df Over Vi (x). Equipped by the
surrogate, client k£, now chooses the next-to-sample design by
maximizing the expected utility

x,((t)neW = arg;nax EPGHDL’) [U()?k(x); D,Et))]. (D

Hereon, for notation brevity, we write the expected utility
in (1) as Eyk\Df)[U(j’k(x))]' It is also worth noting that
expectation in (1) with respect to y, is sometimes replaced
with f « where y;, = f « + €k, depending on the type of utility
function. See utility functions in Sec. IV-D for some examples.

B. Collaborative BO via Consensus

Now in a collaborative framework, given an arbitrary
t, we aim to allow clients to collaboratively decide on
x"""}K A natural idea is to maximize utility across all

clients. This translates to the following problem:

max E; [Eﬁk\Di” [U G« (xk))]]

{xk]/{{:l

K
= max > pu[Egpp[VGE0] ], @)
{xidie, =1

where p; is some weight coefficient for client k& with
Z,f;l pr = 1. Without loss of generality, hereon we assume
Pk = % As shown, the key difference of (1) from (2) is taking
the expectation E; over all participants. However, in itself, (2)
does not allow entities to borrow strength from each other as
it can be fully decoupled across the K entities.

In order to enable collaboration and distribute experiments
across the K clients, we bring the notion of “consensus” [44],
[45] to BO. In the context of BO, consensus allows clients
to agree (reach a consensus) on their individualized next-
to-sample designs through a consensus matrix. Specifically,
we modify (2) to

=[x = argmax[]E);k‘Dzn[U(ffk(xk))]]
Xk
and x,(f)new = [(W(t) ® ID)x(Ct)]k, (3)

where [-]; represents the k™ block of a vector, x(cf) =
0T x0T x@TTT is concatenation of the designs

across all clients, W® is a consensus matrix of size K x K,
0) o 0)

Wy Wiy Wik

(t) (t) ()

WO — Wy Wy o0 Wiy
(1) (1) (1)

Wgp Wgy 0 Wgg

Ip is a D x D identity matrix, and ® denotes the Kronecker
product operation, i.e., WO I p results in a matrix of size
DK x DK. The matrix W is a symmetric, doubly stochastic
matrix (i.e., >, w! =3 w] =1 for j, k € [K]) with non-
negative elements.
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The new objective (3) has several interesting features. For
the sake of compactness, unless necessary, we drop the super-
script ¢ in the subsequent discussion. First, the formulation
presented in (3) is indeed reminiscent of recent optimization
approaches coined as consensus optimization. To see this,
notice that a doubly stochastic matrix W has the property
that (W ® Ip)xc = x¢ if and only if x; = x; for all
k, j € [K] [46]. As such, if we enforce (W ® I p)xc = x¢ as
a constraint, we can solve

K

1 A
max g 2 (B, [V O]
subject to xy =x;, Vk,je€[K]. 4)

The equality constraint (often referred to as the consensus
constraint) is imposed to enforce that local copies at every
client are equal. That said, our formulation and setting have
several distinguishing features that differentiate it from con-
sensus optimization. The differences pertain to the goals of
the two approaches and are related to the consensus matrix
W. In consensus optimization, the goal is for all clients to
eventually agree on a common decision variable. However,
in our collaborative BO paradigm, we do not want all clients
to make the same decisions. Rather, we want clients to borrow
strength from each other while at the same time allowing
for personalized (per client) solutions. Even when clients
are homogeneous, enforcing the constraint will significantly
reduce exploration as everyone runs an experiment at the same
location. Therefore, we do not explicitly enforce the consensus
constraint. Instead, we allow W to play an aggregation role
that decides on the next-to-sample designs x\"™" given the
current utility maximizers x (C’ ). More importantly, W is time-
varying and, in the limit, converges to the identity matrix (see
Sec. IV-C for more details and examples of the consensus
matrices used). This allows clients to borrow strength in
the initial stages of the optimization, yet, eventually, make
personalized decisions.

Second, the consensus matrix W is doubly stochastic.
By the Birkhoff-von Neumann theorem [47], any doubly
stochastic matrix can be expressed as a convex combination
of multiple permutation matrices. Mathematically, there exists
L non-negative scalars {’71}1L=1 such that Z]L:l nm = 1 and
W= ZZL:I n P;. For example,

02 03 05 0O 1 0 100
wW=]06 02 02|=02/0 0 1(4+02|0 10
02 05 03 I 0 0 001
0O 1 O 0 0 1
+01|1 0 O0|4+05(1 0 O0f,
0 0 1 0 1 O

where each permutation matrix P; can be viewed as an
allocator that assigns one design solution to one client. In this
example, we can see that

0O 1 0 X1 X2
(Pi@Ip)xc=[|0 0 1|QIp||x2|=]x3
1 0 O X3 X1
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This implies that the first allocator assigns the solution from
client 1 to client 2, and so forth. This is an interesting
phenomenon that is related to batch BO, where a batch of
candidate design points is selected, and then multiple exper-
iments run in parallel, each corresponding to one candidate
solution. Now, instead of sticking to one allocation strategy,
the consensus approach can be viewed as a weighted average
of all possible assignments, where the designed consensus
matrix dictates the weights, hence the impact of clients on
each other.

Third, over the course of the optimization, the consensus
step (W ® Ip)xc naturally yields K solutions to all clients
(i.e., one for each) so that clients can explore and exploit the
solution space independently and in a distributed manner. For
example, suppose D = 1 and consider a consensus matrix
W o= 0.7 03

03 0.7
7. The consensus step will yield Wxe = (5.6,6.4)T such
that client 1 will take solution 5.6, and client 2 will take
solution 6.4.

Fourth, from the previous example, it can be seen that the
consensus matrix W controls how much one client will affect
the design choices for other clients. As a result, the matrix
W adds a layer of flexibility in optimizing (3) and allows
for heterogeneous clients. More specifically, in Sec. IV-C,
we will show two approaches to design W at each iteration
t such that W® — I. The intuition is as follows. In the early
stages, client k may not have enough observations to obtain
a high-quality surrogate model and therefore needs to borrow
information from other clients. In the late stages, as client k
accumulates sufficient data and can construct a high-quality
local surrogate model, it will focus more on its local design
problem to find client-specific optimal design points.

Finally, the consensus constraint provides a naturally dis-
tributed approach to solve (3) sequentially. To see this, recall
that each client can run 7 experiments across T iterations and
the initial dataset is D,EO). Then a natural algorithm would take
the following form: At iteration + € {0,...,T — 1}, given
xg), all clients calculate x,(:)“ew = [(W?D g ID)x(Ct)]k. Now,
each client k conducts an experiment at x\""*", and augments
its dataset with the new observation. Each client then fits
a surrogate (e.g., GP) using the current dataset D,(:H) and
accordingly constructs the utility function U (34 (x)). Then the
clients maximize their local utility maxy, Eg, pesn [UGrx)]

and two local solutions x; = 5,x, =

to obtain a new candidate solution x,({’H). Finally, all clients
send their solutions to each other or a central orchestrator, and
the process repeats.

Algorithm 1 summarizes our Collaborative Bayesian Opti-
mization via Consensus (CBOC) framework. Fig. 2 presents
a flowchart illustrating the collaborative BO. A detailed
complexity analysis can be found in Appendix 1 (see the
Supplementary Material). Overall, compared to standard BO,
the computational complexity of CBOC remains nearly iden-
tical. Notably, our collaborative framework enjoys some nice
theoretical properties (See Sec. IV-E).

It is worthwhile noting that the collaborative process can be
done in a centralized or decentralized manner where clients
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Algorithm 1 CBOC: Collaborative BO via Consensus

Data: T iterations, K number of clients, initial data
{Déo)},le, initial consensus matrix W@ initial
designs to share {x"}K_,

fort =0,1,---T — 1 do

fork=1,--- ,K do

Consensus: client k computes the consensus

point x{"" = [(W® & I p)x{ It

Experiment: client k conducts experiment using

x""Y and observes y; (x\""")

Data Augmentation: client k augments dataset

by ,DI(CI+1) — D/it) U {xl({t)new’ Ve (xl(ct)new)}

Surrogate Modeling: client k updates its

surrogate model

Optimization: client k£ finds their local utility

maximizer
! N
= g, B, 0 [UG1 1)

shares this candidate sample
end

Update W@ (Sec. IV-C))

Collect initial data
Observe output and ]

Update surrogate P_ 1
| P 8 il augment local dataset

[ Optimize E?k\D,‘f’” [U Gk (xi))] ]
l Conduct experiment

[ Send candidate sample ]

end

Client k € [K]

[ Consensus to generate next-to-sample designs {xitn)new}k ]
iClient 1 iClient2| .4

Fig. 2. Flowchart of CBOC.

share x,(:) either with a central orchestrator or with each other
directly.

C. Designing the Consensus Matrix

From Algorithm 1, it can be seen that one of the key
components in (3) is the consensus matrix W. In essence,
as we have discussed earlier, the consensus matrix W controls
how much one client will affect the design choices for other
clients. Therefore, one needs to carefully design the consensus
matrix.

In this section, we propose two approaches for designing
the consensus matrix. The first approach assumes one does
not have any prior information on different clients and uni-
formly adjusts all entries in W at each iteration ¢. The
second approach carefully modifies the weights for each client
based on the “leader”, where the “leader” is defined as the
client that has observed the best improvement (e.g., the most
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Fig. 3. Illustration of the collaborative process. Colors represent client-spe-
cific black-box functions.

significant improvement in the utility). Below, we will detail
both approaches.

1) Uniform Transitional Matrix: We propose to assign
equal weights to all clients at iteration 0 and then gradually
decay off-diagonal elements

x|

L
K

- X=

wo —

N[ e

1

K K
For simplicity, we assume all clients are connected. In practice,
if clients i and j are not connected, we can set w;; = wj; =
0 and reweigh the other components of the W matrix to ensure
it is doubly stochastic.

As the optimization progresses, we gradually increase diag-
onal elements wy; to 1 and decrease the off-diagonal elements
wy, for k # j to 0. For example, if we adjust weights linearly,
then

K-t _ L __L
TK TK TK
WD = w® | : : S 6!

TK T TK TK

Ultimately, W will converge to the identity matrix I. The
intuition behind this design is illustrated in Fig. 3. In this
figure, each colored line represents a black-box design function
for a client. In the early stages, client k does not have enough
observations to obtain a high-quality utility and therefore
needs to borrow more information from other clients. As client
k has more data in the late stages, it will focus more on its
own design problem to find client-specific optimal designs.

Note that W® — I, is mandatory if clients have some
heterogeneity. To see this, assume all clients have recovered
their optimal design xj, then if W # I, the consensus step
will always move the experiment away from x;.

2) Leader-Driven Matrix: Another approach is to adjust the
weights of W dynamically based on the “leader”, i.e., the
client that observed the best improvement. As a result, all
other clients will follow the leader and explore the region that
potentially contains the best solutions. Initially, we create two
matrices WEO) and W, and assign equal weights to all entries
of both matrices. Matrix W, will be used as a baseline, and
is updated using (5). Matrix W, will be modified based on
W and by incorporating the leader information. The purpose
of using W is to ensure that W, still converges to I so that
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every single client will eventually focus on their own design
objective.

At iteration 7, each client k shares a pair (x,(:), S,E’)), where
Sk is a reward that quantifies the gained benefit at client k. As a
simple example, we could set S,ﬁ') = max E&kIDi’) [U(&k(xk))].
‘We then sort S,gt) and find k*® = argmaxk{S(’), S('), e, S;(t)},
and treat client k*¥ as a leader at the current iteration.
In essence, client k*® can hint to others that the neighbor-
hood of x]((’f(,) is an area of potential improvement. To do
so, during the consensus step, for the non-lead clients k #
k*®, we decrease their weights by ﬁ and increase their

off-diagonal weights with the leader k*® by £=1. To this end,
we adjust blocks of Wg) as follows:

[Wg)]ik*m,k*m = [Wgt)]#k*(”vk*m + K—_l’
TK
[Wg)]k*m,#k*m = [Wgt)]k*“’vik*m + KT—;{I’
(W] e per = (W ] s e — %’
[Wg)]k*m,k»«m = [Wgt)]k*(”v"*(') B %’

where [Wg)]#j represents all elements that are in the j
column but not in the i’ row of W(Zl). Interestingly, the weight
[Wg)] o =0 shrinks to maintain double stochasticity. Such an
assignment allows the leader k**) to explore new regions.

Here we also suggest two heuristics: (i) To avoid the
situation where the same client is selected in succession (this
will cause the same client to keep exploring rather than
exploiting), we propose to select the second largest index from
{Sl(t+l), SZ(HI), o S;<r+])} if k*@ = [*¢+D_(ii) In the extreme
case where [WY]j-0 40 is negative, set [W ] 40 to zero
and reweigh other components accordingly.

To see an example, consider a scenario where D = 1, K =
3 and T = 10. We initialize both Wﬁo) and Wg)) as

O _ wO _
Wl _WZ -

W= W= W=
W= W= W=
W= W= W=

Suppose each client received (x (10), 1), (xgo) ,5), (xgo), 4). Then
we adjust W;O) as

1 2

1 1 1 1

o 373% 373 3%
1,2 1_4 1,2
W2 - 3+30 3 30 3+30
1 1 1 2 1 1

373 3T3% 3%

In this example, client 2 observed that sampling at xéo) yields
the highest benefits, and therefore we put more weight on
client 2. As a result, clients 1 and 3 will explore towards xéo).
On the other hand, we decrease [W;O)]z’z to make sure that

client 2 does not over-explore the region that contains xg)).

D. Contextualization Under a Specific Surrogate and Ultility

Now, given the generic framework presented in IV-B
and IV-C, we will contextualize Algorithm 1 and provide
a concrete example. The iteration index ¢ is dropped for
simplicity unless necessary.
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1) Gaussian Process Surrogate: At each iteration, we place
a GP prior on the surrogate f;. We model the additive
noise term ¢ as independent and identically distributed (i.i.d.)
noise that follows a normal distribution with zero mean
and v} variance. Now, given a new input location x'**, the
posterior predictive distribution of f;(x'®!) ~ P

Fexey D =
N (e (x4 D), o (x4 Dy)), where

we (x4 D) = K (x'°, Xk)(K(Xk, X))+ Ulzl)ilyk’
O_kz(xtest; Dk) — K(xt“‘, xtesl)
— K(x", X) (K (Xy, Xp)

+021) T K (X, X, (6)

and K(-,-) : RP x R? — R is a covariance matrix whose
entries are determined by some kernel function /C(-, -). Simi-
larly, Py o is derived by simply adding V7 to o (x').

2) Utility Function: Given the GP surrogate, one can build
a utility function that measures the benefits of conducting an
experiment using a set of new design points. One common
example is the expected improvement (EI) utility expressed
as [48]

Ef'uDL" [U(fk (x))]
= B pp [ (Fe@) = 5]
=51 @) =0 (x; D)o (2" (x))

+ (1 @ D) = 3 e ),

where at = max(a, 0), y,’:(’) = max y,(f) is the current best

response, ¢(-) (or ®(-)) is a probability density function

(PDF) (or cumulative distribution function (CDF)) of a stan-

. 0 u @D =y
dard normal random variable, and z,’(x) = ROy
oy (x;Dy7) |

Here note that the expectation is taken with respect to f
rather than y,. Another example is the knowledge gradi-
ent (KG) [37] defined as By po[U(Gk(x)] = kG (x) =

s, pp [u::“)(x; DY U fx, &k(x)})] — maxy ()’ (' D)),

where uz(r)(x;D,(f) U {x, 9x(x)}) is the maximum of the
updated posterior mean of the GP surrogate by taking one
more sample at location (x, x(x)). KG can be interpreted as
finding the new sampling location x that potentially increases
the maximum updated posterior mean. Hereon, in the remain-
der of this paper, we drop Dy in uy, o for the sake of
compactness.

E. Theoretical Analysis

Despite its immense success, BO theory is still in its infancy
due to many fundamental challenges. First and foremost, the
black-box nature of f; renders theory hard to derive due to
the lack of known structure. Second, we still have a limited
understanding of the properties, such as Lipschitz continuity,
concavity, or smoothness, of many commonly employed utility
functions. For example, even the EI utility in general is
not Lipschitz continuous or concave. Third, despite recent
advances in laying the theoretical foundations for understand-
ing the generalization error bounds of GPs [49], [50], bridging
the gap between these bounds and errors incurred in the utility
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function remains an open problem and a rather challenging
one.

To circumvent these open problems while providing a the-
oretical proof of concept, we derive some theoretical insights
that are confined to the ET utility in conjunction with a smooth
GP kernel and a homogeneity assumption. While we believe
that our results extend beyond these settings, we leave this
analysis as an enticing challenge for future research.

We focus on regret defined as r,il) = fi(x}) — fx (x,(f)“ew)
for client k at iteration 7. Intuitively, regret measures the
gap between the design function evaluated at the optimal
solution x; and the one evaluated at the consensus solution
x,(f)"ew, at iteration ¢. By definition, r,E’) = 0 if CBOC recovers
the global optimal solution. Our theoretical guarantee studies
cumulative regret, more specifically, Ry r = o

rT=1 Tie -
By definition, ET{’(x) = Efkmg)[(fk(x)—y:(’))*] >
0,Vx € RP. Therefore, we define a small positive constant
k such that when EI,(J) (x) < «, client k stops its algorithm at
iteration . This stopping criterion is only used for theoretical
development. In practice, we will run our algorithm for 7
iterations or until all budgets are exhausted.

Below, we present our main Theorem and the sketch of our
proof. Detailed information and all supporting Lemmas and
required assumptions can be found in Appendices 1-2 (see
the Supplementary Material).

Theorem 1: (Homogeneous Clients) Suppose fi = f» =

-+ = fx, and suppose a squared exponential kernel function
[E=

2
Ki(x,x") = ujexp 2

is used for the GP surrogate,

where uy is the variance scale parameter and . is the length
parameter, and each client uses the EI utility. Without loss of
generality, assume Ky (x,x’) < 1 and the initial sample size
for each client is 2. Under some assumptions (Appendix 2)
(see the Supplementary Material), given any doubly stochastic
W with non-negative elements, for € > 0,8, € (0, T), with
probability at least (1— ’STI)T, the cumulative regret after T > 1

iterations is
T 3 D+1
Rey — Zrk(” 5 6T [(logT)* + 1+ Cg(log T)
I log(l 4 v,)

[2T(log T)P+ & ( 1 )
e’ ol ———
* log(1 + v %) * Z‘ (log(2 + 1))0-5+¢
~ OK/T x (logT)P+4),

where C = log[#].

Theorem 1 shows that the cumulative regret of Algorithm 1
has a sublinear growth rate in terms of the number of itera-
tions. This implies that as the algorithm proceeds with more
iterations, the consensus solution for client & will be close to
the optimal solution x} = --- = x}.

Theorem 1 relies on the assumption of homogeneity. When
heterogeneity is present, where at least one pair of design
functions has some differences, providing convergence results
is challenging. To our knowledge, the theory here is vacant.
Even if one were to provide a regularity assumption on the
heterogeneity, say f;’s are uniformly bounded and have opti-
mal designs restricted within a small ball, it remains an open
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problem to understand how this regularity will propagate to the
utility where we are able to understand the structural similar-
ities and differences across {EI k},le. Indeed, this stems from
the aforementioned second and third challenges in traditional
BO. That said, Theorem | may serve as a proof of concept,
showcasing that our approach will drive clients to a region that
contains optimal designs. Afterward, each client will focus on
their own objective to obtain a client-specific optimal design
(recall Fig. 3). As shown in Sec. IV-C and Sections V-VI, our
empirical results highlight the advantageous properties of our
approach under heterogeneous settings.

1) Proof Sketch: We hereby provide a proof sketch for
Theorem 1. We first decompose the regret r,i” as

r =1 fixd) =y - ﬁ(x,i”“ew)].
A B

We let A = fi(x¥) —y;" and B = y*(’)
we aim to bound terms A and B.

o Term A defines the difference between the optimal value
of the design function and the current best-observed
output value. Here, we first use a concentration inequality
from [51] to bound the difference between the mean
function p\”(-) of the GP surrogate and the truth f; ().
We then show that, with a high probability, term A is
upper bounded by the ET value evaluated at the optimal
design x} plus a scaled predictive standard deviation term.
Mathematically, with probability 1 — 4§, § € (0, 1),

fix) =i <21 (@) + /BP0 (xD),

where {,3,5’)}, is a non-decreasing sequence such that
)~ O((log £)?).

o« Term B defines the difference between the current
best-observed output value and the underlying true func-
tion f;(-) evaluated at the consensus solution. To proceed,
we further expand B as

B = y*(t) f (x(t)new
yZ(l) )(x(t)new) +/’L(t)( (t)new) filx (r)new).

We then bound B using a similar strategy in bounding
term A and obtain

BfO’k(t)(x/(:)new)(T( Z(r)(xl(ct)new))

fr (x,i') 1%y, Next,

— 1@ @) + ﬂ,ﬁ”),

where 7(z,”(x)) = 2" )Pz (¥) + & (2" ().
Our next goal is to show that the summation of r.”
over T iterations (i.e., the cumulative regret) is bounded.
Here, note that there are two key components that
appear in A and B: ak’)() and t(-). First, we ana-
lyze the behavior of the cumulative predictive variance
ZLI ok2 ®(.). We show that, with a squared exponential ker-

nel, 37 o7 (x""Y) < mgTO((IOgT)DH) Second,

we show that 7(— z(’)(x(t)"ew)) < 1+ 4/C, where C =
log[ 5.z]- After some algebraic manipulation, we obtain the
upper bound stated in Theorem 1. O

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 22, 2025

V. SIMULATION STUDIES

In this section, we validate CBOC on several simulation
datasets. We consider a range of simulation functions from
the Virtual Library of Simulation Experiments [52] as the
underlying black-box design functions for the clients. Our
goal is to showcase the benefit of collaboration in finding
client-specific optimal designs.

We set the number of iterations for each testing function
to T = 20D. At iteration 0, W@ is initialized as a uniform
matrix where each entry has a weight equal to % We use the
uniform transitional approach (CBOC-U) or the leader-driven
approach (CBOC-L) to adjust W at every iteration ¢. The
initial dataset for each client {D,({O)},f=1 contains 5D randomly
chosen design points. The performance of each client is
evaluated using a Gap metric Gy [35] defined as

HO) _ x(T)
Gr = 2 0) _ « |’
| Vi Yk|

where y; +0) (or y*(T)) is the best observed response at iteration
0 (or T), and y; = fi(x}) is the true optimal response.
A larger G implies better performance. If the optimal solution
is recovered (i.e., y* " = vi), then Gy = 1. We compare
CBOC using the EI utility with the following benchmark
models: (1) Individual: each client £ conducts BO without
collaboration; (2) FedBO: the state-of-the-art federated BO
algorithm that builds upon Thompson sampling [41]. For both
benchmarks, we collect 5D initial samples and conduct exper-
iments for 20D iterations; (3) CentralBO: the centralized
BO setup involves K clients, with each client starting with
5D initial points and running for 20D iterations. During
each iteration, all clients send their local data to a central
server, where a global surrogate model is fitted. However, the
expected utility is evaluated only on the local data at each
client. Our code is available at this GitHub link.

A. Testing Function 1: Levy-D

Levy-D is an D-dimensional function in the form of

f(x) = sin*(rer)
D—1
+ Z(wd — D1 + 10sin®*(rwy + 1)]
d=1
+ (wp — 1)*[1 + sin’*Qrwp)],

where wy;, = 1 + dx4—71,‘v’d € [D] and x =
("x,....,% ..., Px)T e [—10,10]°. We first consider the
homogeneous scenario where fj(x) = --- = fx(x) = f(x).

We focus on maximizing the design function — fi(x) (i.e.,
minimizing f(x)), Yk € [K]. In Table I, we report the average
Gap across K = 5 clients over 30 independent runs, defined
as follows:

where G is the Gap metric for client k at the i-th run.
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TABLE I

THE AVERAGE GAP ACROSS K = 5 CLIENTS OVER 30 INDEPENDENT
RUNS UNDER A HOMOGENEOUS SETTING. WE REPORT STANDARD
DEVIATIONS OVER 30 RUNS IN BRACKETS

CBOC-L
0.993(£0.002)
0.987(£0.003)
0.969(£0.010)

FedBO
0.990(£0.002)
0.951(£0.006)
0.038(£0.009)

CentralBO
0.982(F£0.001)
0.989(£0.003)
0.973(£0.002)

Individual
0.931(£0.004)
0.926(£0.007)
0.925(£0.013)

Functions
Levy-2
Levy-4
Levy-8

TABLE I

THE AVERAGE GAP ACROSS K = 10 CLIENTS OVER 30 INDEPENDENT
RUNS UNDER A HETEROGENEOUS SETTING

Functions
Levy-2
Levy-4
Levy-8

CBOC-L
0.990(£0.001)
0.984(F0.002)
0.949(F£0.008)

Individual
0.942(F0.005)
0.933(F£0.012)
0.917(%£0.008)

FedBO
0.958(£0.003)
0.940(F£0.009)
0.903(£0.011)

CentralBO
0.982(F£0.001)
0.989(£0.003)
0.973(£0.002)

Second, we consider the heterogeneous scenario where each
client has a different underlying truth. To do so, for each client
k, we transform the Levy function f(x) to

fi(x) = a; f(x + vec(az)) +az.

where a; ~ Uniform(0.5, 1), as, a3 ~ N(0, 1), and vec(a3)
is a D-dimensional vector whose elements are all equal to
az. This transformation will shift and re-scale the original
function, creating heterogeneous functional forms. The homo-
geneous scenario can be viewed as a special case when
a; = 1,a, = a3 = 0. We set K = 10. Other settings remain
unchanged. Results are shown in Table II.

From Tables I-II, we can derive two key insights.
First, collaborative methods yield superior performance than
non-collaborative competitors through higher average Gap
metrics. This evidences the importance of collaboration in
improving the optimal design process. Second, CBOC out-
performs all benchmarks. This credits to CBOC’s ability to
address heterogeneity through a flexible consensus framework
that allows clients to collaboratively explore and exploit the
design space and eventually obtain client-specific solutions.

B. An Illustrative Example

To visualize the performance of our method, we provide
an illustration using the Levy-2 function, K = 2, and the
same heterogeneity structure as in Sec. V-A. Specifically, the
two design functions are set to fij(x) = f(x + vec(l)) +
1, f2(x) = 2f(x 4+ vec(2)) + 2. Here, each client starts with
five two-dimensional designs, and then both CBOC-L and
Individual are run for 7 = 40. Fig. 4 demonstrates the
landscape of the original Levy-2 function and shows contour
plots of fi, f>. The selected design points for each client are
marked as red for CRBOC-L and green for Individual, and
the iteration indices are labeled next to those points. We did
not label all points for better visualization.

From Fig. 4, we can see that through collaboration CBOC—-L
samples more frequently near optimal regions, as evident by
the larger number of red points close to the optimal. This
allows CBOC-L to reach the region that contains the optimal
design (white-most region) for both clients in 25 iterations.
On the other hand, Individual required around 38 itera-
tions for client 1, while for client 2, even at T = 40, the
optimal region was still not explored yet. This again highlights
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Client 1 Client 2
® Selected design points from CBOC-L

o ® Selected design points from Individual

Input 2

Original Levy Function

Input 1 Input 1

Fig. 4. Contour plot of fi, f> and selected design points. The x-axis shows
the first design input (i.e., 'x), and the y-axis shows the second design input
(e, Xx).

TABLE III

THE AVERAGE GAP ACROSS K CLIENTS OVER 30 INDEPENDENT RUNS
UNDER A HETEROGENEOUS SETTING

Functions CBOC-L CBOC-U Individual FedBO

K =5 0.475(F£0.053)  0.462(£0.052) _ 0.350(F0.055)  0.370(£0.047)
K = 10 0.516(F0.049) _ 0.501(£0.029) _ 0.364(F£0.035) _ 0.422(£0.040)
K =15 _ 0.577(F0.083) _ 0.553(£0.036) _ 0.356(£0.022) _ 0.496(£0.053)
K =20 0.592(F0.086)  0.572(£0.015) _ 0.335(F£0.028) _ 0.535(£0.051)

Functions CentralBO

K =5 0.346(£0.061)
= 10 0.350(£0.039)
= 15 0.373(£0.042)
=20 0.347(£0.033)

i

the benefit of collaboration. More importantly, Fig. 4 high-
lights the ability of our method to operate under heterogeneity
as both clients were able to reach their distinct optimal design
neighborhood, and they do so much faster than operating in
isolation.

C. Testing Function 2: Shekel-10

Shekel-10 is a four-dimensional (D = 4) with 10 local
minima. It has the functional form:

10 7 4 -1
f@) ==\ D (= Fa)’ + &
i=1 \d=1
We defer the specification of Fy; and & to Appendix 4 (see
the Supplementary Material).

Similar to the heterogeneous scenario in Sec. V-A, for each
client k, we transform the Shekel-10 function f(x) to fi(x) =
ay f(x + vec(az)) + a», where a; ~ Uniform(0.5,1) and
a ~ N(0,2),a; ~ N(0,1). We test all benchmarks using
K = 5,10, 15 and 20 clients.

Table III shows that CBOC outperforms both the
non-collaborative method and state-of-the-art FedBO. Inter-
estingly, we observe that the performance of CBOC improves
as more clients participate in the collaboration process. For
example, the average Gap for CBOC when K = 5 is 0.475.
As we increase K to 20, the average Gap becomes 0.592.
Fig. 5 plots the evolution of the average Gap with respect
to iterations. This result further demonstrates the benefits of
collaboration.

D. Other Testing Functions

Finally, we test our methods on three other functions:
Branin, Ackley-D, and Harmann-6. We use K = 10.
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Fig. 5. The evolution of the average Gap with respect to iterations and
collaborators.

TABLE IV

THE AVERAGE GAP ACROSS K = 10 CLIENTS OVER 30 INDEPENDENT
RUNS UNDER A HETEROGENEOUS SETTING

Functions
Branin
Ackley-5
Hartmann-6

CBOC-L
0.992(F0.000)
0.656(F0.057) 0.641(F0.053)
0.968(F£0.005) 0.959(£0.002)

Functions CentralBO
Branin 0.967(£0.002)
Ackley-5 0.513(40.004)
Hartmann-6 0.940(£0.005)

CBOC-U
0.990(40.001)

FedBO
0.986(£0.001)
0.632(£0.041)
0.955(£0.003)

Individual
0.975(£0.001)
0.501(£0.039)
0.941(£0.001)

Experimental details and function specifications are deferred
to the appendix (see the Supplementary Material).

Similar to our previous analysis, Table IV shows the supe-
riority of our approach.

VI. CASE STUDY

A case study on consensus BO-driven closed-loop biosen-
sor design optimization was performed (see Fig. 6). The
closed-loop workflow was based on simulation (FEA) guided
by a decentralized computing process for collaboration (i.e.,
consensus BO). Given the demand for device-based biosensors
for industrial process analytical technology (e.g., for biopro-
cess monitoring and control) and health monitoring (e.g., via
wearable sensors), the case study was focused on closed-loop
optimization of a device-based biosensor. Specifically, our case
study focused on optimizing a device-based biosensor with a
milli-scale transducer used in a continuous flow format, which
is consistent with several types of device-based biosensors,
including electrochemical, mechanical, and electromechanical
biosensors.

Biosensor performance, specifically, transient binding of
the target analyte, was calculated using commercially avail-
able FEA software (COMSOL Multiphysics, COMSOL). The
transient fractional surface coverage of the bound target ana-
Iyte on the biosensor surface was calculated by numerical
solution of a coupled convection-diffusion-reaction model in
2D using a time-dependent study. The convection-diffusion-
reaction model was constructed by coupling laminar flow
and transport of diluted species physics with a surface reac-
tion. The computational domain consisted of a 6 x 1 mm?
(Iength x width) rectangular fluidic channel that encompassed
the domain x € [—3,3] mm and y € [0,1] mm. The
biosensor surface (i.e., surface 1) on which the binding reac-
tion between immobilized biorecognition elements and target
analyte occurred encompassed the domain x € [0, 1] mm at
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y = 0. The computational domain contained five addi-
tional surfaces on which boundary and initial conditions were
applied. The coupled partial differential equations associated
with the convection-diffusion-reaction model were solved sub-
ject to the following boundary and initial conditions:

For laminar flow physics:

o Surface 2 (inlet): normal inflow velocity = ujy,.

« Surface 3 (outlet): static pressure = 0 Pa.

o Surfaces 1 and 4-6 (top and bottom walls, including the
sensing surface): no slip.

Here, no slip represents a traditional no slip boundary condi-
tion. The fluid properties were defined by water and obtained
from the FEA software’s material library. The initial velocity
and pressure fields were zero.

For transport of diluted species physics:

o Surface 1: Jy . = —rags + Tdes-
o Surface 2: ¢ = ¢y.

o Surface 3: Jo. =n- D;Vg;.

o Suraces 4-6: no flux.

In the above equations, Jy. is the mass flux, rys = konccy
is the adsorption (binding) rate of the target analyte, ¢ is
the concentration of the target analyte in solution, ¢, is the
concentration of immobilized biorecognition element, rges =
kogrcy is the desorption rate, ¢} is the concentration of occupied
sites, ¢g = ¢inGP(t), ¢iy = 1 nM is the concentration of the
target analyte in the injected sample, GP(¢) is a time-dependent
Gaussian pulse function with integral normalization and inte-
gral value of unity, and no flux represents a traditional no
flux boundary condition. The following values of transport
properties and rate constants were used in the simulation: D; =
1x 10~ m?%/s is the diffusivity of the target analyte in solution,
the binding (forward) rate constant (k,,) = 1 x 10 M~1s7!,
and the unbinding (reverse) rate constant (kof) = 1 X 1073 s,
The initial concentration field was zero.
For surface reaction chemistry:

o Surface 1: reaction rate = rags — Fdes-
o Surfaces 2-6: no reaction.

The following surface properties were used: p, = density of
surface sites and site occupancy number = 1. The surface
diffusion of the bound target analyte was assumed to be zero.
The initial concentration of bound target was zero.

The convection-diffusion-reaction model was discretized
and solved subject to the aforementioned boundary and ini-
tial conditions using a physics-controlled adaptive mesh that
contained 373004 (plus 351428 degrees of freedom) in the
final mesh for a given combination of inputs [x;, X, x3] =
[ttin, o5, GPgq], where GPyq is the standard deviation of the
Gaussian pulse associated with the injected sample. The
specific values of uj,, ps, GPyg examined were selected by
traditional BO and the consensus BO model, which are
referred to as “non-collaborative” and “collaborative” learning,
respectively.

The simulation’s output of interest (i.e., the quantity to be
optimized) was the maximum fractional surface coverage of
the bound target analyte (fy.x) during the transient binding
response, which is a fundamental characteristic of biosensor
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without
Collaboration

Client # Output

Design
Parameter

A case study on consensus BO-driven closed-loop optimization for biosensor design was performed, focusing on optimizing a milli-scale

transducer-based device biosensor in a continuous flow format. The case study involved two groups: a non-collaborative group and a collaborative group, each
consisting of three clients. Selected design points from collaborative groups were shared to each other to run the CBOC algorithm.

function that is associated with the performance characteristics
of sensitivity, detection limit, dynamic range, and speed.

The objective of this case study was to discover (i.e., learn)
the biosensor design and measurement format parameters that
maximize O« (i.e., the maximum amount of captured target
analyte). An optimal solution (i.e., design) was sought within
the design space of x; € [1 x 107, 1 x 1072] m/s, x; € [1.8 x
1078,3.3 x 107%] mol/m?, and x3 € [0.5, 3] min. The range
and limits of the design space were selected based on practical
values used in previous biosensing studies [53], [54], [55],
[56]. In summary, the objective of this case study was to learn
the optimal combination of uj,, p;, GPyg that maximized the
amount of captured target analyte and to compare the learning
performance achieved by traditional BO performed by a group
of independent clients that do not share information with that
achieved by collaborative learning performed by a group of
clients that share information and make decisions for next-to-
test values using consensus BO.

The case study involved two groups: a non-collaborative
group and a collaborative group, each consisting of three
clients. The clients are distributed across diverse experimen-
tal settings to establish a heterogeneous environment. The
non-collaborative group used conventional centralized BO
algorithms, where each client solves its own problem and there
is no communication among clients. In contrast, the collab-
orative group utilized the CBOC algorithm (Algorithm 1) to
collaboratively find optimal solutions. For CBOC, we adopted
the leader-driven matrix mentioned in Sec. IV-C. Fig. 7 shows
the trend of biosensor performance, specifically maximum
amount of captured target species, throughout the iterative
closed-loop workflow. As shown in Fig. 7, the self-driving
workflow driven by consensus BO was capable of learning an
optimized biosensor design and measurement format parame-
ter selection after ten rounds of experimentation as evidenced

—=— Collaborative Learning
—e— Independent Learning

Max Surface Coverage (10%)
N

0o 2 4 6 8 10
# lterations

Fig. 7. Trend in the biosensor’s maximum fractional surface coverage (i.e.,
the maximum amount of captured target analyte) vs. iteration number (i.e.,
sequential rounds of simulation) via BO without and with collaboration after
ten iterations.

by the trend of 6y,. Additionally, the average biosensor
performance was higher and exhibited lower variance in the
collaborative group relative to the non-collaborative group,
which highlights the value of leveraging collaboration in
closed-loop high-throughput experimentation.

This case study serves as a proof-of-concept showcasing
that collaboration in optimal design can reap benefits for
the participating entities. We envision that the underlying
principles and methodologies demonstrated can extend to
different biosensor types and varied applications, though with
some domain-specific considerations. Our collaborative frame-
work supports various BO methods, allowing customization
for different biosensors, such as electrochemical, optical,
and mass-sensitive types, by adjusting calibration parameters
to match unique response profiles. It can also be adapted
for diverse applications, including environmental monitoring,
healthcare diagnostics, and food safety - for instance, detecting
pollutants, identifying biomarkers, or finding food contami-
nants. While additional calibration may be needed for each
use case to address sample complexity and analyte specifics,
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this flexible framework could significantly accelerate biosensor
deployment across these fields.

VII. DISCUSSION AND CONCLUSION

In this paper, we propose a collaborative Bayesian opti-
mization framework built upon a consensus mechanism. Our
experiments on simulated data and a real-world sensor design
case study show that collaboration through our proposed
framework can accelerate and improve the optimal design
process. Specifically, CBOC achieves up to a 28% (and 35%)
improvement in the GAP metric on complex 4-dimensional
functions, comparing to the federated BO (and individual
non-collaborative BO). In real-world sensor discovery data,
CBOC enhances the maximum captured target analyte by
approximately 50% (see Fig. 7).

Collaborative BO is still in its infancy stage, and few prior
studies exist along this line. Indeed, there are many avenues of
potential improvement. These avenues include: (i) extending
the consensus framework to multi-objective and multi-fidelity
settings, (ii) developing a resource-aware approach that allows
some clients to perform more or fewer experiments depending
on their resources, (iii) understanding the theoretical condi-
tions needed for the collaborative design to outperform its
non-collaborative counterpart. If successful, this may lead to
targeted algorithms that exploit these conditions to improve
performance. We hope this research inspires future work along
these avenues and beyond.
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