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Abstract—We focus on collaborative and federated black-box
optimization (BBOpt), where agents optimize their heterogeneous
black-box functions through collaborative sequential experimen-
tation. From a Bayesian optimization perspective, we address the
fundamental challenges of distributed experimentation, hetero-
geneity, and privacy within BBOpt, and propose three unifying
frameworks to tackle these issues: (i) a global framework where
experiments are centrally coordinated, (ii) a local framework
that allows agents to make decisions conditioned on shared
information, and (iii) a predictive framework that enhances local
surrogates through collaboration to improve decision-making.
We categorize existing methods within these frameworks and
highlight key open questions to unlock the full potential of
federated BBOpt. Our overarching goal is to shift federated
learning from its predominantly descriptive/predictive paradigm
to a prescriptive one, particularly in the context of BBOpt —an
inherently sequential decision-making problem.

Index Terms—Collaboration, Federated, Personalization, Pri-
vacy, Heterogeneity, Experimentation, Bayesian Optimization

I. INTRODUCTION

The tremendous increase in computational capabilities of

edge devices, along with the rapid market infiltration of

powerful AI chips, has led to explosive interest in collaborative

and distributed analytics, such as federated learning (FL),

which distributes model learning across diverse and often

heterogeneous data sources to process more of the user’s

data at its point of origin. FL addresses many of the privacy

concerns, regulatory constraints, communication costs, and

skyrocketing data volumes that have made traditional cloud-

centric computation increasingly unsustainable.

Significant progress has been made in FL. Methods have

been proposed to enable faster convergence [1, 2], address

heterogeneity in size and distribution [3, 4], improve param-

eter aggregation schemes [5], personalize across concept and

covariate shifts [6, 7], protect against adversarial attacks [8],

promote fairness [9, 10], and quantify uncertainty [11, 12],

among many others (see [13] for a detailed review). To date,

these efforts have focused mainly on predictive modeling,

where the goal is to create a global or personalized predictive

map (often a deep network) that leverages knowledge from

different sources while circumventing the need to share raw

data. In addition, recent descriptive FL literature has been

proposed to better understand the shared and unique features
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across diverse datasets. This work focuses on distributed

low-rank decomposition methods such as PCA [14], matrix

completion [15, 16], and dictionary learning [17].

Yet, a key opportunity lies in advancing FL from a pri-

marily predictive/descriptive paradigm to a prescriptive one,

which remains in its infancy. While many avenues exist for

exploration, this paper provides a vision and mathematical

framework for prescriptive FL in the context of black-box

optimization (BBOpt) —an inherently sequential decision
making problem. Needless to say, the success of many real-

world problems critically depends on trial & error, where

the goal is to manipulate a set of variables, hereon referred

to as designs, to achieve an optimal outcome. At its core,

BBOpt represents the mathematical framework for trial &

error, where the relationship between designs and outcomes

is often unknown (i.e., black-box), and optimal designs can

only be identified through sequential experimentation. Since

experiments are often expensive, and search regions can be

high-dimensional, the goal of BBOpt is to carefully decide on

the next-to-observe design(s), in order to find a good design

with the fewest trials possible.

Now, if a fleet of agents exists, federated BBOpt sets forth a

collaborative approach whereby agents sequentially distribute

their experimentation efforts to improve and fast-track their

optimal design process. If successful, federated BBOpt can

significantly reduce trial & error cost and time and benefit

all participating entities, all while circumventing the need to

share raw data to preserve privacy, security, and intellectual

property. Despite its appeal, fundamental challenges must be

first addressed to enable federated BBOpt.
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Fig. 1. Collaborative & federated black-box optimization
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• Challenge 1: How to effectively distribute experimenta-

tion across collaborating entities?

• Challenge 2: How to collaborate in the presence of

heterogeneity? Heterogeneity can be both in the black-

box function across agents, as well as in their resources

and fidelity. Here, it is worthwhile noting that if agents are

homogeneous, solutions do exist from the rich literature

on Batch BBOpt [18, 19].

• Challenge 3: How to design collaboration that respects

the privacy of all collaborating entities? This may be crit-

ical to persuade agents to join the collaborative process.

Fig. 1 provides an anecdotal example, where two chefs

collaborate to find the optimal flour, sugar and water levels

for baking the best cake. While the design-response rela-

tionships share commonalities, the chefs may have slightly

different palates, and they may only collaborate if their recipes

and outcomes remain private. Given these challenges and

the emerging nature of this field, this paper sheds light on

mathematical frameworks that enable federated BBOpt and

highlights key open questions that must be addressed to fully

unlock its potential.

II. SETTING THE STAGE

In the literature, BBOpt has been approached from multiple

angles, including Bayesian optimization (BO), derivative-free

optimization, and evolutionary algorithms. While all these

methods have the potential to be extended to federated settings,

we primarily focus on BO [20]. Notably, the few existing works

on federated BBOpt (which will be highlighted as we proceed)

mainly fall within the realm of BO.

Mathematically, the goal of BO is to find a design that

optimizes a black-box function f : Rd → R,

x∗ = argmax
x∈X⊆Rd

f(x) , (1)

that models the underlying true relationship between a design

point x ∈ R
d and the response f . Clearly, since f is unknown,

using first or second order optimization algorithms is not

feasible, as we can only observe a potentially noisy version

y(x) � f(x) + ε of f by running an experiment at x.

These experiments, whether through physical experimentation

or simulations, come with time and budget costs. As such,

one needs to carefully decide on the next-to-observe design.

To do so, BO resorts to a utility function U(x) : Rd → R [21]

that quantifies the benefits gained if one were to conduct an

experiment at design point x.

A common example is the improvement utility function

U(x) = max(f(x)− y∗, 0) [22] where y∗ is the current best

observed response. Basically, U(x) only gives utility to design

points that give a better outcome than the current best y∗.

Clearly, before doing an experiment, one cannot calculate the

utility as we do not know f(x). Yet, at some time t one can

start with a small initial dataset Dt = {(x1, y1), · · · , (xt, yt)}
with t observations. Using Dt, a surrogate model Pf̂ |Dt

that

estimates the relationship between f and x can be built to

predict the outcome at unobserved designs. With this, the next-

to-observe design at time t can be chosen as the design that

gives the best utility in expectation:

xnew
t = argmax

x
Ft � EPf̂|Dt

[U(f(x);Dt)] . (2)

Notice that expectation is taken in (2) as the surrogate Pf̂ |Dt

is usually a posterior belief. Predominantly, BO surrogates

are Gaussian processes (GP) or more recently Bayesian deep

neural networks.

III. FEDERATED FRAMEWORKS

Now, given K collaborating agents, each with their own

dataset Dk,t at some time t, we assume (for now) that each

agent has a budget of T experiments across T iterations.

Additionally, agents can communicate with each other directly

or via a central orchestrator. In this collaborative setting, our

goal is to enable agents to borrow strength from one another in

deciding on their individualized next-to-observe designs, xnew
k,t .

Next, we present three unifying frameworks that enable

federated BO, categorize the existing methods within these

frameworks, and discuss open questions associated with each.

We note that the methods introduced aim to identify the

optimal xnew
k,t while preserving privacy and are repeated for

all T iterations until the experimentation budget is exhausted.

A. Global Decisions

The first framework is one where the next experiments

xnew
k,t are dictated by a central entity that aggregates summary

statistics from all agents. Perhaps a natural start here is to

follow the building-block literature in predictive FL, where

the goal is to minimize the expected loss across all agents.

In a federated BO setting, this translates to maximizing an

average over all the agents expected utility functions Fk,t =
EPf̂k|Dk,t

[U(fk(x);Dk,t)] at each time t. That is:

max
x

K∑
k=1

pkFk,t =

K∑
k=1

pk

[
EPf̂k|Dk,t

[U(fk(x);Dk,t)]
]
, (3)

where pk is some weight given to an agent k ∈ [K], with∑
pk = 1. If this was feasible, one could use the rich literature

on global predictive FL, starting from the famous FedAvg
algorithm [23], where at each communication round r ∈ [R],
agents perform few optimization iterates on Fk,t to obtain local

candidate solutions x
c,(r)
k,t ← agent-update(Fk,t), which

are then averaged centrally to get a global design x
new,(r)
t =∑

k pkx
c,(r)
k,t . The global design then serves as an initialization

to the next optimization round, until reaching xnew
t = x

new,(R)
t .

Then all agents run the experiment at xnew
t .

However, in contrast to predictive FL, where the global

design serves as an initialization for the next round, in our

prescriptive setting, xnew
t represents the next-to-observe de-

sign. Consequently, having all agents run the same experiment

is inefficient and leads to a suboptimal use of collaborative

resources. Instead, the collaborative process should allow

agents to decide on their individualized tests xnew
k,t .
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1) Consensus: To this end, one way to rethink federated

BO is through consensus, proposed in [24], where each agent’s

next experiment xnew
k,t is a weighted combination of all agents’

(including their own) candidate solutions {xc
k,t}k∈[K]. Math-

ematically, this is

xnew
k,t =

[
(W (t) ⊗ Id)x

C
t

]
k

(4)

such that xc
k,t =

[
xC
t

]
k
= argmax

xk

Fk,t , (5)

where xC
t = [xc�

1,t, · · · ,xc�
K,t]

� is the concatenation of “candi-

date” solutions that maximize each agent’s individual expected

utility. In addition, the consensus matrix W (t) is a symmetric,

doubly stochastic matrix (i.e.,
∑

k w
(t)
kj =

∑
j w

(t)
kj = 1 for

j, k ∈ [K]) with non-negative elements w
(t)
kj ≤ 1, Id is a

d × d identity matrix, and ⊗ denotes the Kronecker product

operation, i.e., W ⊗ Id results in a dK × dK matrix.

The main idea of the formulation is intuitive. Agents first

find their own utility maximizers xc
k,t, but their actual actions

(experiments) xnew
k,t are a weighted combination of xc

k,t from

all agents in the system. The consensus matrix W (t) dictates

such weights and accordingly dictates how much one agent’s

decision will depend on others. Indeed, such an approach

has several interesting features. (i) First, the consensus step

(W (t) ⊗ ID)xC naturally yields K entity-specific designs

for agents to collaboratively explore and exploit the search

space. (ii) Second, the consensus step only requires each agent

sharing xc
k,t; hence, information sharing is reduced to sharing

designs without disclosing any agent-specific outcomes. (iii)

Third, and perhaps most importantly, the consensus matrix

W (t) can be time-varying, allowing one to dynamically adjust

the dependence of one agent’s decision on another. This

adds a critical layer of flexibility and enables to account for

heterogeneity, which will be discussed shortly. (iv) Fourth,

unlike in predictive FL (as in FedAvg), there are no iterations

over R communication rounds to find xnew
k,t . Instead, agents try

to find their local optimal solutions xc
k,t once and then send

them to the cloud.

These properties above yield a naturally distributed algo-

rithm.

Algorithm 1 Consensus iterated over T Experiments

1: Trial: Agents observe ynew
k,t−1 at xnew

k,t−1

2: Posterior update: Agents find Pf̂ |Dt
with new data

3: Optimize: Agents find xc
k,t using (5) and send to cloud

4: Consensus: Cloud finds xnew
k,t using (4) and sends to agents

A central property of consensus is the dynamic flexibility

of W (t). Such a property is not only helpful but necessary
when heterogeneity exists. Specifically, when f1 �= · · · �= fK ,

it is required for W (t) → I . To see this, consider Fig. 1

and assume the two agents have reached their optimal design.

Then, any W �= I will always cause them to move away

from their optimum. This inspires a simple framework in

(6) where the off-diagonal elements of W (t) decay linearly

to zero and diagonal elements to 1. A similar concept for

dithering collaboration is also used in [25, 26], albeit within

a different framework (introduced shortly). The intuition is

as follows: In early stages, agent k lacks enough data to

build a high-quality surrogate and therefore should leverage

information from others. As agent k gathers more data in the

later stages, they will focus more on their own objectives to

find personalized optimal designs.

W (t+1) = W (t) +

⎡
⎢⎣

K−1
TK − 1

TK . . . − 1
TK

...
...

...
...

− 1
TK − 1

TK . . . K−1
TK

⎤
⎥⎦ , (6)

It should be noted that this is just one example; many
other interesting ideas can be incorporated. For instance, one

could design W (t) for agents to be primarily influenced by

“leaders” that have much better designs that others (i.e., larger

responses), while the diagonal elements of the leading agents

are simultaneously decreased to maintain exploration. [24]

provides such examples.

2) Open Questions & Drawbacks: The consensus frame-

work raises many interesting questions: (i) Sharing xc
k,t with-

out its output may compromise privacy. While noise can be

added, xc
k,t + εt, what are the privacy-performance trade-

offs? (ii) What if agents have varying fidelities? How can we

incorporate this into W (t) and perhaps learn the fidelities in

the process? (iii) If resources vary, how can we restrict some

agents’ budgets to, say, T −T ′ experiments while maintaining

the effectiveness of consensus? (iv) Can we dynamically allow

agents to borrow more strength from similar counterparts?

Understanding heterogeneity for black-box functions is, of

course, very challenging. Also, BO is designed for maximiza-

tion, not for fully understanding the response surface in a way

that provides a measure of heterogeneity. That said, can the

observed improvements across iterations guide an agent on

which other agent(s) they should depend on more?

a) Note on theory: We conclude by noting that, while

consensus somewhat resembles predictive FL frameworks,

deriving a theoretical foundation poses a critical open question

(and perhaps a drawback). First, the black-box nature of fk
makes it difficult to derive theory. Second, despite recent ad-

vances in understanding the generalization error of GPs [27],

understanding how these errors propagate to the, often non-

concave, expected utility Fk,t remains an open and challenging

problem.

B. Conditioned Local Decisions

Global decisions dictate the next-to-observe designs to all

agents, which may hinder collaboration in certain FL settings.

Additionally, consensus requires all agents to collaborate ac-

tively and synchronously, which can be quite restrictive in

many real-life scenarios. For example, consensus does not

allow the use of good designs derived from historical data

or human expertise.

Thus, an alternative framework for federated BO is to

move decision-making locally, where an agent k makes local

decisions conditioned on information Ek,t from others agents

Authorized licensed use limited to: University of Michigan Library. Downloaded on April 17,2025 at 20:00:58 UTC from IEEE Xplore.  Restrictions apply. 
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k′ ∈ [K \ k]. Yet, what should Ek,t be ? The hope in FL is

that Ek,t is tiny in size but rich in information.
1) Sharing Near-optimal Designs: Following BO’s philoso-

phy to allocate designs near-optimal regions, and since we be-

lieve the black-box functions may have commonalities across

agents, then they may share similar near-optimal regions.

Therefore, if agents can help pinpoint each other to such

regions, the problem simplifies then to finding individualized

solutions within the region. With this rationale, one can define

Ek,t be a set of synthetic designs shared from other agents

k′ ∈ [K \ k] to agent k, such that every borrowed design

x+
k′,t ∈ Ek,t satisfies the constraint fk(x

+
k′,t) > δk,t for a

constant δn,t picked by agent k.

Along this line, [28], chose x+
k′,t ∈ Ek,t to be designs from

other agents k′ that satisfy the constraint

μk′,t(x)− ηt · σk′,t(x) > δk,t � max
x

μk,t(x) , (7)

where μk,t and σk,t for an agent k are the mean and standard

deviation of Pf̂k|Dk,t
. Therefore, every design x+

k′,t ∈ Ek,t

points out a potential design with a better response compared

to agent k’s current best, i.e., maxx μk,t(x), according to

their posterior belief. In other words, any design in Ek,t

points out to a region for potential improvement. This is

shown in Fig. 2. Critically, the comparison function in (7)

can be efficiently and privately calculated for FL using secure

multiparty computation, which is known as Yao’s Millionaires’

problem [29].

Fig. 2. Agent k′ shares a design from the shaded region with agent k

A simple choice that satisfies (7), if it exists, is agent

k′’s lower confidence bound (LCB) maximizer; x+
k′,t =

argmaxx∈X {μk′,t(x)− ηt · σk′,t(x)}. It is worthwhile noting

that designs (i) suggested by human experts or (ii) extracted

from historical knowledge can simply be placed within Ek,t.

Now, agent k presumes that for all x+
k′,t ∈ Ek,t, there holds

fk(x
+
k′,t) > δk,t. Notice that this constraint may not hold

because of heterogeneity or GP estimation error, but this can

be readily accommodated as will become clear shortly. With

Ek,t, agent k will update their posterior belief by conditioning

on Ek,t to make a local decision. The aim is to fuse one’s
private data Dk,t with the shared knowledge Ek,t that may be
pointing to regions of improvement.

Mathematically, the conditioned surrogate is given as

F+
k,t � Pf̂k|Dk,t

|Ek,t. However, note that Ek,t is not a dataset

but a set of constraints, which essentially leads to a constrained

GP . Fortunately, sampling from a constrained GP is well

studied, and one can employ basic rejection sampling (RS)

to do so. A key benefit of RS in a constrained GP is that one

can set a finite sampling size, and if no samples are accepted

at a borrowed design x+
k′,t, the design is discarded. By doing

so, agent k discards borrowed knowledge that significantly
contradicts its posterior belief. This is the key to handling

heterogeneity and demonstrating sublinear regret guarantees,

regardless of how heterogeneous the functions are.

By extracting samples from F+
k,t, the expected utility

EF+
k,t

[U(f(x);Dk,t)] can be approximated using Monte Carlo

(see [28]), and a local decision xnew
k,t is made accordingly.

2) Sharing Near-optimal Design Distributions: While not

currently proposed, an approach similar in spirit to sharing

near-optimal designs could involve sharing distributional be-

liefs over the optimal design location. Mathematically, we can

let Ek,t = {πk′}k′ , where πk′ is a density shared by agent

k′. A simple example would be πk′ = N (x+
k′,t, σ

2Id) for

some predetermined σ. Alternatively, agent k′ can use repeated

Thompson sampling to estimate their current belief about their

optimal design, given as πk′(x∗
k).

Now, instead of tweaking the surrogate as proposed in [28],

one can directly adjust the expected utility Fk,t in a manner

similar to incorporating prior knowledge into BO in πBO [30].

With this, we can redefine the local objective to be:

xnew
k,t = argmax

x

⎡
⎣Fk,t ×

(∏
k′

πk′

) β
T

⎤
⎦ (8)

The main idea here is to tweak the local objective Fk,t

using beliefs about the optimal design in πk′ . Given potential

heterogeneity, the impact of information shared by other agents

decays at a rate of β/T for some constant β. This allows an

agent to give greater weight to designs that others consider

optimal, while eventually prioritizing their own objective. Var-

ious adjustments to this approach are possible, such as taking

a weighted product of the πk′ values, with each πk′ decaying

at a different rate. Additionally, privacy can be preserved in a

federated setting by adding additive or multiplicative noise to

the shared density or its summary statistics.

With this approach, it is evident that updating the utility

directly, rather than altering the surrogate, is mathematically

simpler. However, it introduces the challenge of tuning β,

which should be a function of the similarities across fk and

fk′ ’s. Given the black-box nature of the functions, this can

be a pathological problem. In contrast, the proposed approach

of tweaking the surrogate Pf̂k|Dk,t
|Ek,t does not depend on

tuning parameters and comes with strong guarantees simply

since it enables discarding shared information that significantly

conflict with an agent k’s own posterior belief.

3) Sharing GP Features: Within the general framework

of sharing and utlizing lightweight information Ek,t for local

decisions, [26] tackled federated BO by sharing GP Random

Fourier Features (RFFs) [31]. Using RFFs, stationary kernels

(K(x,x′) = K(x − x′)) can be approximated by a set of

random features φ(x) ∈ R
D; where K(x,x′) = φ�(x)φ(x).

Therefore, the black-box function is approximated using
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Bayesian linear regression as f̂k(x) = φ�(x)wk such that

the posterior of wk assuming a prior wk ∼ N (0, ID) is

Pwk|Dk,t
= N (νk,t, σ

2Σ−1
k,t) ,

where Φk,t = [φ(xk,1), . . . ,φ(xk,t)]
� is a t×D-dimensional

matrix, Σk,t = Φ�
k,tΦk,t + σ2I , νk,t = Σ−1

t Φ�yk,[t]. Here

σ2 is the variance of ε and yk,[t] = [y1,t, · · · , yk,t]�.

With this, [26] proposed that Ek,t = {w(s)
k′ ; k′ ∈ [K \ k]},

where w
(s)
k′ ∼ Pwk′ |Dk′,t . This entails sharing the GP coef-

ficients, assuming φ is fixed across all agents. Now, agent

k will either use their own w
(s)
k with probability pt to

find xnew
k,t using the Thompson sampling utility, i.e., xnew

k,t =

argmaxx φ�(x)w(s)
k , or use a w

(s)
k′ randomly sampled from

Ek,t with probability 1 − pt to get xnew
k,t . Similar to the

consensus idea, pt → 1 so that agents eventually focus on

their own objectives. This idea was further expanded in [25]

to guarantee differential privacy in FL by sharing an averaged

coefficient Ek,t = {w̄k′⊂[K\k]}, which is clipped to bound its

L2 norm and has Gaussian noise added to it. The local process

remained the same.

4) Open Questions & Drawbacks: While sharing optimal

designs can incorporate any utility and provide theoretical

guarantees despite the heterogeneity level, RS scales poorly

with shared designs. Furthermore, sharing GP RRFs is re-

stricted to Thompson sampling and requires fixed features

across all agents. Fortunately, the conditioned local design

framework, where decisions are made at the agent level and

informed by Ek,t, is generic, allowing for various ideas to be

incorporated. Some open questions include: (i) When adding

noise to Ek,t (for RFFs and designs), what are the accuracy-

privacy trade-offs? (ii) Can we include upper confidence

bounds information when sharing designs to gauge which

shared designs have the best potential? (iii) How can non-

myopic BO literature be used to enhance collaboration? (iv)

Can we theoretically identify informative conditions for when

collaboration is helpful to develop algorithms that determine

when to stop collaborating?

C. A Predictive Solution: Improving the Surrogate

The third framework does not tackle decision-making di-

rectly but instead aims to improve the local predictive model

(i.e., the BO surrogate Pf̂k|Dk,t
) through collaboration. Local

decisions then follow the regular BO process as in (2). A

central feature of this framework is that it can potentially

be incorporated within the first two. For instance, consensus

can be achieved using surrogates learned in a federated and

collaborative manner. Here, two ideas arise:

1) Federated GP: In BO, fk is often modeled as a GP
where, fk(x) ∼ GP(0,K(·, ·;θK)) and yk = fk(x) + εk
where ε

i.i.d.∼ N (0, σ2). θ = (θK, σ2) parameterize the GP
and encode our prior belief. Naturally, θ could be learned in a

federated fashion. Here the utility function Lk,t for each agent

is the log-marginal likelihood (9). Now, in FL, the goal is to

collaboratively learn θ that maximizes the global utility

argmax
θ

K∑
k=1

pkLk,t �

K∑
k=1

pk logP(yk,[t]|Dk,t;θ) . (9)

Recently, [32] proposed FedAvg to solve (9). Unlike in

deep learning, Lk,t is a log-likelihood function featuring cor-
relations (due to the GP), which leads to stochastic gradients

being biased estimators of the full gradient. Nevertheless, [11]

shows that despite these correlations, FedAvg converges to

a critical point of (9), subject to statistical errors. A key

advantage of a federated GP is its inherent ability to person-

alize, as estimating θ is equivalent to learning a global GP
prior. Personalized predictions P(y∗k|Dk,t,x

∗; θ̂) are obtained

by conditioning on a local agent’s data Dk,t. The local data

inherently fulfill the role of personalization.

2) Federated Multi-output GP (MGP): Alternatively, one

may give more model flexibility by assuming agents have

shared θg and unique parameters θk through an MGP where

[f1(x), · · · , fK(x)]� ∼ MGP(0, cov
f
k,k′(x,x

′)) . (10)

Many options can be used to construct cov
f
k,k′(x,x′). Perhaps,

the most common approach is convolution processes [33]

fk(x) =
∑Q

q=1

∫∞
−∞ Kq,k(x−u;θk)gq(u;θ

g)du where g is a

latent GP . The key advantages is that multiple latent functions

gq allow information sharing across different agents through

different kernels Kq,k(x).
Unlike federated GPs, the global MGP utility cannot be

written as a sum of agent utilities like (9), since agents are all

correlated by construction. Despite this, [34] recently show

that, using variational inference, one can approximate the

joint MGP log-likelihood as
∑K

k=1 pkL̃k,t, where L̃k,t’s are

independent. With this, they developed a simple FedAvg-like

approach to update {{θk}, σ2,θg} simultaneously, while only

sharing θg with the orchestrator.

3) Key Open Question: A central question for integratively

learning surrogates is: What is the best way to initialize

federated BO? Should agents begin with space-filling designs,

or should they explore different space partitions? Furthermore,

how will this affect GP estimation error early on?

IV. CONCLUSION

We present a vision and unifying frameworks for collabo-

rative and federated black-box optimization from a Bayesian

optimization perspective while highlighting the many exciting

problems yet to be addressed. We conclude by noting that

many applications could benefit from this emerging literature,

including collaborative optimization of manufacturing process

parameters, material discovery, hyperparameter tuning and

clinical trials. Therefore, we believe a high-impact endeavor

would be to bring this theory to practical applications by

providing a working example where agents collaborate to

improve their decisions and benefit from collaboration, all

while preserving their privacy and intellectual property.
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