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Abstract—We focus on collaborative and federated black-box
optimization (BBOpt), where agents optimize their heterogeneous
black-box functions through collaborative sequential experimen-
tation. From a Bayesian optimization perspective, we address the
fundamental challenges of distributed experimentation, hetero-
geneity, and privacy within BBOpt, and propose three unifying
frameworks to tackle these issues: (i) a global framework where
experiments are centrally coordinated, (ii) a local framework
that allows agents to make decisions conditioned on shared
information, and (iii) a predictive framework that enhances local
surrogates through collaboration to improve decision-making.
We categorize existing methods within these frameworks and
highlight key open questions to unlock the full potential of
federated BBOpt. Our overarching goal is to shift federated
learning from its predominantly descriptive/predictive paradigm
to a prescriptive one, particularly in the context of BBOpt —an
inherently sequential decision-making problem.

Index Terms—Collaboration, Federated, Personalization, Pri-
vacy, Heterogeneity, Experimentation, Bayesian Optimization

I. INTRODUCTION

The tremendous increase in computational capabilities of
edge devices, along with the rapid market infiltration of
powerful Al chips, has led to explosive interest in collaborative
and distributed analytics, such as federated learning (FL),
which distributes model learning across diverse and often
heterogeneous data sources to process more of the user’s
data at its point of origin. FL addresses many of the privacy
concerns, regulatory constraints, communication costs, and
skyrocketing data volumes that have made traditional cloud-
centric computation increasingly unsustainable.

Significant progress has been made in FL. Methods have
been proposed to enable faster convergence [1, 2], address
heterogeneity in size and distribution [3, 4], improve param-
eter aggregation schemes [5], personalize across concept and
covariate shifts [6, 7], protect against adversarial attacks [8],
promote fairness [9, 10], and quantify uncertainty [11, 12],
among many others (see [13] for a detailed review). To date,
these efforts have focused mainly on predictive modeling,
where the goal is to create a global or personalized predictive
map (often a deep network) that leverages knowledge from
different sources while circumventing the need to share raw
data. In addition, recent descriptive FL literature has been
proposed to better understand the shared and unique features
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across diverse datasets. This work focuses on distributed
low-rank decomposition methods such as PCA [14], matrix
completion [15, 16], and dictionary learning [17].

Yet, a key opportunity lies in advancing FL from a pri-
marily predictive/descriptive paradigm to a prescriptive one,
which remains in its infancy. While many avenues exist for
exploration, this paper provides a vision and mathematical
framework for prescriptive FL in the context of black-box
optimization (BBOpt) —an inherently sequential decision
making problem. Needless to say, the success of many real-
world problems critically depends on trial & error, where
the goal is to manipulate a set of variables, hereon referred
to as designs, to achieve an optimal outcome. At its core,
BBOpt represents the mathematical framework for trial &
error, where the relationship between designs and outcomes
is often unknown (i.e., black-box), and optimal designs can
only be identified through sequential experimentation. Since
experiments are often expensive, and search regions can be
high-dimensional, the goal of BBOpt is to carefully decide on
the next-to-observe design(s), in order to find a good design
with the fewest trials possible.

Now, if a fleet of agents exists, federated BBOpt sets forth a
collaborative approach whereby agents sequentially distribute
their experimentation efforts to improve and fast-track their
optimal design process. If successful, federated BBOpt can
significantly reduce trial & error cost and time and benefit
all participating entities, all while circumventing the need to
share raw data to preserve privacy, security, and intellectual
property. Despite its appeal, fundamental challenges must be
first addressed to enable federated BBOpt.

1 Black-box
functions

Next cake
to bake?

TP

Response (taste)

Individualized
Optimal designs

I

Design (flour, sugar, water)

Fig. 1. Collaborative & federated black-box optimization
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o Challenge 1: How to effectively distribute experimenta-
tion across collaborating entities?

o Challenge 2: How to collaborate in the presence of
heterogeneity? Heterogeneity can be both in the black-
box function across agents, as well as in their resources
and fidelity. Here, it is worthwhile noting that if agents are
homogeneous, solutions do exist from the rich literature
on Batch BBOpt [18, 19].

o Challenge 3: How to design collaboration that respects
the privacy of all collaborating entities? This may be crit-
ical to persuade agents to join the collaborative process.

Fig. 1 provides an anecdotal example, where two chefs
collaborate to find the optimal flour, sugar and water levels
for baking the best cake. While the design-response rela-
tionships share commonalities, the chefs may have slightly
different palates, and they may only collaborate if their recipes
and outcomes remain private. Given these challenges and
the emerging nature of this field, this paper sheds light on
mathematical frameworks that enable federated BROpt and
highlights key open questions that must be addressed to fully
unlock its potential.

II. SETTING THE STAGE

In the literature, BBOpt has been approached from multiple
angles, including Bayesian optimization (BO), derivative-free
optimization, and evolutionary algorithms. While all these
methods have the potential to be extended to federated settings,
we primarily focus on BO [20]. Notably, the few existing works
on federated BBOpt (which will be highlighted as we proceed)
mainly fall within the realm of BO.

Mathematically, the goal of BO is to find a design that
optimizes a black-box function f : R — R,

x* = argmax f(x),
zEX CRY

6]

that models the underlying true relationship between a design
point € R? and the response f. Clearly, since f is unknown,
using first or second order optimization algorithms is not
feasible, as we can only observe a potentially noisy version
y(z) £ f(x) + € of f by running an experiment at x.
These experiments, whether through physical experimentation
or simulations, come with time and budget costs. As such,
one needs to carefully decide on the next-to-observe design.
To do so, BO resorts to a utility function U(x) : R — R [21]
that quantifies the benefits gained if one were to conduct an
experiment at design point x.

A common example is the improvement utility function
U(x) = max(f(x) — y*,0) [22] where y* is the current best
observed response. Basically, U (x) only gives utility to design
points that give a better outcome than the current best y*.
Clearly, before doing an experiment, one cannot calculate the
utility as we do not know f(x). Yet, at some time ¢ one can
start with a small initial dataset Dy = {(@1,y1), -, (T, 1)}
with ¢ observations. Using Dy, a surrogate model P; ., that

t
estimates the relationship between f and a can be built to
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predict the outcome at unobserved designs. With this, the next-
to-observe design at time ¢ can be chosen as the design that
gives the best utility in expectation:

new
Ly

=argmax Fy = Bp,  [U(f(x);D)]. ()
- ,

Notice that expectation is taken in (2) as the surrogate P 71D,

is usually a posterior belief. Predominantly, BO surrogates

are Gaussian processes (GP) or more recently Bayesian deep

neural networks.

III. FEDERATED FRAMEWORKS

Now, given K collaborating agents, each with their own
dataset Dy, ;, at some time ¢, we assume (for now) that each
agent has a budget of T' experiments across 7' iterations.
Additionally, agents can communicate with each other directly
or via a central orchestrator. In this collaborative setting, our
goal is to enable agents to borrow strength from one another in
deciding on their individualized next-to-observe designs, 7.

Next, we present three unifying frameworks that enable
federated BO, categorize the existing methods within these
frameworks, and discuss open questions associated with each.
We note that the methods introduced aim to identify the
optimal x}°} while preserving privacy and are repeated for
all T iterations until the experimentation budget is exhausted.

A. Global Decisions

The first framework is one where the next experiments
x;7y are dictated by a central entity that aggregates summary
statistics from all agents. Perhaps a natural start here is to
follow the building-block literature in predictive FL, where
the goal is to minimize the expected loss across all agents.
In a federated BO setting, this translates to maximizing an
average over all the agents expected utility functions Fj, ; =

Ep; o, [U(fx(x); Dy,.)] at each time ¢. That is:

K K
max Y piFig = v ey, U@ Deall], 3)
k=1 k=1 ’

where pj;, is some weight given to an agent k € [K], with
> pr = 1. If this was feasible, one could use the rich literature
on global predictive FL, starting from the famous FedAvg
algorithm [23], where at each communication round r € [R],
agents perform few optimization iterates on F}, ; to obtain local

candidate solutions wZ’(tT) < agent-update(Fj), which
' new,(r)

are then averaged centrally to get a global design x,

Dok pkm2’7(tr). The global design then serves as an initialization
to the next optimization round, until reaching @*¥ = "),
Then all agents run the experiment at x}°".

However, in contrast to predictive FL, where the global
design serves as an initialization for the next round, in our
prescriptive setting, x}" represents the next-to-observe de-
sign. Consequently, having all agents run the same experiment
is inefficient and leads to a suboptimal use of collaborative
resources. Instead, the collaborative process should allow
agents to decide on their individualized tests @7}
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1) Consensus: To this end, one way to rethink federated
BO is through consensus, proposed in [24], where each agent’s
next experiment ;% is a weighted combination of all agents’
(including their own) candidate solutions {mk,t}ke[K . Math-
ematically, this is

2y = (W o Laf | )
such that x} , = [a:tc]k =argmax Fj;, (5)
Tk
where @ = [@{],--- 2%/ ] is the concatenation of “candi-

date” solutions that maximize each agent’s individual expected
utility. In addition, the consensus matrix W® is a symmetric,
doubly stochastic matrix (i.e., ), w,c =2 w = 1 for

j,k € [K]) with non-negative elements w,g) < 1 I; is a
d x d identity matrix, and ® denotes the Kronecker product
operation, i.e., W ® I; results in a dK x dK matrix.

The main idea of the formulation is intuitive. Agents first
find their own utility maximizers xj, 0 but their actual actions
(experiments) a7y are a weighted combination of xy, , from
all agents in the system. The consensus matrix W (*) dictates
such weights and accordingly dictates how much one agent’s
decision will depend on others. Indeed, such an approach
has several interesting features. (i) First, the consensus step
(W® @ Ip)xe naturally yields K entity-specific designs
for agents to collaboratively explore and exploit the search
space. (ii) Second, the consensus step only requires each agent
sharing xj, ,; hence, information sharing is reduced to sharing
designs without disclosing any agent-specific outcomes. (iii)
Third, and perhaps most importantly, the consensus matrix
W ) can be time-varying, allowing one to dynamically adjust
the dependence of one agent’s decision on another. This
adds a critical layer of flexibility and enables to account for
heterogeneity, which will be discussed shortly. (iv) Fourth,
unlike in predictive FL (as in FedAvq), there are no iterations
over R communication rounds to find }7}'. Instead, agents try
to find their local optimal solutions a:,w once and then send
them to the cloud.

These properties above yield a naturally distributed algo-
rithm.

Algorithm 1 Consensus iterated over 7' Experiments

1. Trial: Agents observe ¥y | at &)

2: Posterior update: Agents find ]P’ 71D, with new data
3: Optimize: Agents find xj , using (5) and send to cloud
4: Consensus: Cloud finds m“ew using (4) and sends to agents

A central property of consensus is the dynamic flexibility
of W) Such a property is not only helpful but necessary
when heterogeneity exists. Specifically, when f1 # --- # fg,
it is required for W® — I. To see this, consider Fig. 1
and assume the two agents have reached their optimal design.
Then, any W # I will always cause them to move away
from their optimum. This inspires a simple framework in
(6) where the off-diagonal elements of W) decay linearly
to zero and diagonal elements to 1. A similar concept for
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dithering collaboration is also used in [25, 26], albeit within
a different framework (introduced shortly). The intuition is
as follows: In early stages, agent k lacks enough data to
build a high-quality surrogate and therefore should leverage
information from others. As agent k gathers more data in the
later stages, they will focus more on their own objectives to
find personalized optimal designs.

K-1 __1 — L

TK TK TK
Wi —w® 4 S )

S K

TK TK TK

It should be noted that this is just one example; many
other interesting ideas can be incorporated. For instance, one
could design W) for agents to be primarily influenced by
“leaders” that have much better designs that others (i.e., larger
responses), while the diagonal elements of the leading agents
are simultaneously decreased to maintain exploration. [24]
provides such examples.

2) Open Questions & Drawbacks: The consensus frame-
work raises many interesting questions: (i) Sharing xj , with-
out its output may compromise privacy. While noise can be
added, @y , + €, what are the privacy-performance trade-
offs? (ii) What if agents have varying fidelities? How can we
incorporate this into W) and perhaps learn the fidelities in
the process? (iii) If resources vary, how can we restrict some
agents’ budgets to, say, T'— T’ experiments while maintaining
the effectiveness of consensus? (iv) Can we dynamically allow
agents to borrow more strength from similar counterparts?
Understanding heterogeneity for black-box functions is, of
course, very challenging. Also, BO is designed for maximiza-
tion, not for fully understanding the response surface in a way
that provides a measure of heterogeneity. That said, can the
observed improvements across iterations guide an agent on
which other agent(s) they should depend on more?

a) Note on theory: We conclude by noting that, while
consensus somewhat resembles predictive FL frameworks,
deriving a theoretical foundation poses a critical open question
(and perhaps a drawback). First, the black-box nature of fj,
makes it difficult to derive theory. Second, despite recent ad-
vances in understanding the generalization error of GPs [27],
understanding how these errors propagate to the, often non-
concave, expected utility F}, ; remains an open and challenging
problem.

B. Conditioned Local Decisions

Global decisions dictate the next-to-observe designs to all
agents, which may hinder collaboration in certain FL settings.
Additionally, consensus requires all agents to collaborate ac-
tively and synchronously, which can be quite restrictive in
many real-life scenarios. For example, consensus does not
allow the use of good designs derived from historical data
or human expertise.

Thus, an alternative framework for federated BO is to
move decision-making locally, where an agent k£ makes local
decisions conditioned on information E}, ; from others agents
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k' € [K \ k]. Yet, what should Ej; be ? The hope in FL is
that I, is tiny in size but rich in information.

1) Sharing Near-optimal Designs: Following BO’s philoso-
phy to allocate designs near-optimal regions, and since we be-
lieve the black-box functions may have commonalities across
agents, then they may share similar near-optimal regions.
Therefore, if agents can help pinpoint each other to such
regions, the problem simplifies then to finding individualized
solutions within the region. With this rationale, one can define
Ey+ be a set of synthetic designs shared from other agents
k' € [K \ k] to agent k, such that every borrowed design
x),, € Ej; satisfies the constraint fy(x;,,) > ;¢ for a
constant On.+ picked by agent k. ’

Along this line, [28], chose :nk, € Fj, to be designs from
other agents k' that satisfy the constraint

pur () = 1 - Opr g () > Opp £ mmax,uk,t(w) ) (N

where fi1,; and oy, for an agent k are the mean and standard
deviation of IP’ . Therefore, every design a:;:, ; € Ery
points out a potent1al design with a better response compared
to agent k’s current best, i.e., maxgy fi (), according to
their posterior belief. In other words, any design in Ej ;
points out to a region for potential improvement. This is
shown in Fig. 2. Critically, the comparison function in (7)
can be efficiently and privately calculated for FL using secure
multiparty computation, which is known as Yao’s Millionaires’
problem [29].

r'
o P () — Moy (x) > 6
L

Sy

Response

f

LCB

Shared Design x;/

Fig. 2. Agent k’ shares a design from the shaded region with agent k

A simple choice that satisfies (7), if it exists, is agent
k”’s lower confidence bound (LCB) maximizer; :BZ, =
argmax,c v { i+ (€) — n¢ - o 1 () }. It is worthwhile noting
that designs (i) suggested by human experts or (ii) extracted
from historical knowledge can simply be placed within F, ;.

Now, agent k presumes that for all mz,’t € I, there holds
fk(:c,f,’t) > 0+ Notice that this constraint may not hold
because of heterogeneity or GP estimation error, but this can
be readily accommodated as will become clear shortly. With
E}. 1, agent k will update their posterior belief by conditioning
on I, to make a local decision. The aim is to fuse one’s
private data Dy, ; with the shared knowledge E}. , that may be
pointing to regions of improvement.

Mathematically, the conditioned surrogate is given as
]-'k ¢ = Pfip | E.+. However, note that Ej, ; is not a dataset
but a set of constramts which essentially leads to a constrained
GP. Fortunately, sampling from a constrained GP is well
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studied, and one can employ basic rejection sampling (RS)
to do so. A key benefit of RS in a constrained GP is that one
can set a finite sampling size, and if no samples are accepted
at a borrowed design x;, y 1> the design is discarded. By doing
so, agent k discards borrowed knowledge that significantly
contradicts its posterior belief. This is the key to handling
heterogeneity and demonstrating sublinear regret guarantees,
regardless of how heterogeneous the functions are.

By extracting samples from F,j ;. the expected utility
E F [U(f(x); Di)] can be approximated using Monte Carlo
(see [28]), and a local decision w?"}” is made accordingly.

2) Sharing Near-optimal Design Distributions: While not
currently proposed, an approach similar in spirit to sharing
near-optimal designs could involve sharing distributional be-
liefs over the optimal design location. Mathematically, we can
let By, = {m }i, where 7 is a density shared by agent
k'. A simple example would be 4 = N (x}, ,,0%14) for
some predetermined o. Alternatively, agent k' can use repeated
Thompson sampling to estimate their current belief about their
optimal design, given as 7y ().

Now, instead of tweaking the surrogate as proposed in [28],
one can directly adjust the expected utility F} ; in a manner
similar to incorporating prior knowledge into BO in 7BO [30].
With this, we can redefine the local objective to be:

]

T
w‘f:‘f = argmax Fir % (H 7rk/> 8)

Lk’

The main idea here is to tweak the local objective Fj ;
using beliefs about the optimal design in 7. Given potential
heterogeneity, the impact of information shared by other agents
decays at a rate of §/T for some constant /3. This allows an
agent to give greater weight to designs that others consider
optimal, while eventually prioritizing their own objective. Var-
ious adjustments to this approach are possible, such as taking
a weighted product of the 7 values, with each 7 decaying
at a different rate. Additionally, privacy can be preserved in a
federated setting by adding additive or multiplicative noise to
the shared density or its summary statistics.

With this approach, it is evident that updating the utility
directly, rather than altering the surrogate, is mathematically
simpler. However, it introduces the challenge of tuning [,
which should be a function of the similarities across f; and
fr’s. Given the black-box nature of the functions, this can
be a pathological problem. In contrast, the proposed approach
of tweaking the surrogate [P flek,flEkvf does not depend on
tuning parameters and comes with strong guarantees simply
since it enables discarding shared information that significantly
conflict with an agent k’s own posterior belief.

3) Sharing GP Features: Within the general framework
of sharing and utlizing lightweight information £, ; for local
decisions, [26] tackled federated BO by sharing GP Random
Fourier Features (RFFs) [31]. Using RFFs, stationary kernels
(K(z,z') = K(z — «’)) can be approximated by a set of
random features ¢(x) € RP; where K(z,2') = ¢ T (x) ().
Therefore, the black-box function is approximated using
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Bayesian linear regression as fi(x) = ¢' (x)wy, such that
the posterior of wy, assuming a prior wy ~ N (0,Ip) is

2y —1
Pwk"Dk.t = N(katﬂf Ek,t)v

where @ ; = [p(xk1), ..., P(xr)]" is atx D-dimensional
matrix, By = @, ®p ¢ + 021, vy = B, ® Ty . Here
o is the variance of € and Yy ;1) = Y16, Ykt) |

With this, [26] proposed that Ej, = {w'? k' € [K \ k]},
where w,(j) ~ Pwk"Dk’,t' This entails sharing the GP coef-
ficients, assuming ¢ is fixed across all agents. Now, agent
k will either use their own w\") with probability p; to
find @}y using the Thompson sampling utility, i.e., )7} =
arg maxg, qu(:c)wlgs), or use a w,(j) randomly sampled from
Ely+ with probability 1 — p; to get aj’y. Similar to the
consensus idea, p; — 1 so that agents eventually focus on
their own objectives. This idea was further expanded in [25]
to guarantee differential privacy in FL by sharing an averaged
coefficient Ej. ; = {Wyc[x\k}, Which is clipped to bound its
Lo norm and has Gaussian noise added to it. The local process
remained the same.

4) Open Questions & Drawbacks: While sharing optimal
designs can incorporate any utility and provide theoretical
guarantees despite the heterogeneity level, RS scales poorly
with shared designs. Furthermore, sharing GP RRFs is re-
stricted to Thompson sampling and requires fixed features
across all agents. Fortunately, the conditioned local design
framework, where decisions are made at the agent level and
informed by Fj 4, is generic, allowing for various ideas to be
incorporated. Some open questions include: (i) When adding
noise to Fy, ; (for RFFs and designs), what are the accuracy-
privacy trade-offs? (ii)) Can we include upper confidence
bounds information when sharing designs to gauge which
shared designs have the best potential? (iii) How can non-
myopic BO literature be used to enhance collaboration? (iv)
Can we theoretically identify informative conditions for when
collaboration is helpful to develop algorithms that determine
when to stop collaborating?

C. A Predictive Solution: Improving the Surrogate

The third framework does not tackle decision-making di-
rectly but instead aims to improve the local predictive model
(i.e., the BO surrogate ]P’ FolDrs ) through collaboration. Local
decisions then follow the regular BO process as in (2). A
central feature of this framework is that it can potentially
be incorporated within the first two. For instance, consensus
can be achieved using surrogates learned in a federated and
collaborative manner. Here, two ideas arise:

1) Federated GP: In BO, fj is often modeled as a GP
where, fi(xz) ~ GP(0,K(,,16x)) and yp = fi(z) + e
where € "% N(0,02). 6 = (6,0?) parameterize the GP
and encode our prior belief. Naturally, 8 could be learned in a
federated fashion. Here the utility function Ly, ; for each agent
is the log-marginal likelihood (9). Now, in FL, the goal is to
collaboratively learn 6 that maximizes the global utility
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K

argmax Z prLige =
G
K
Zpk log P(yr. 1| Dr,t:60) . (9)
k=1

Recently, [32] proposed FedAvg to solve (9). Unlike in
deep learning, Ly, ; is a log-likelihood function featuring cor-
relations (due to the GP), which leads to stochastic gradients
being biased estimators of the full gradient. Nevertheless, [11]
shows that despite these correlations, FedAvg converges to
a critical point of (9), subject to statistical errors. A key
advantage of a federated G is its inherent ability to person-
alize, as estimating 6 is equivalent to learning a global GP
prior. Personalized predictions P(y; | Dy, ¢, *; 6) are obtained
by conditioning on a local agent’s data Dy, ;. The local data
inherently fulfill the role of personalization.

2) Federated Multi-output GP (MGP): Alternatively, one
may give more model flexibility by assuming agents have
shared 69 and unique parameters 8% through an MGP where

[fi(z), - 7fK(93)}T

Many options can be used to construct covi w (@, "). Perhaps,
the most common approach is convolution processes [33]

fr(x) = Z T Kk (@ —u; 0%) g, (u; 09)du where g is a
latent GP. The key advantages is that multiple latent functions
g, allow information sharing across different agents through
different kernels /C,, 1 ().

Unlike federated GPs, the global MGP utility cannot be
written as a sum of agent utilities like (9), since agents are all
correlated by construction. Despite this, [34] recently show
that, using variational 1nference one can approximate the
joint MGP log-likelihood as Zk 1pkLk +, where Lk .’s are
independent. With this, they developed a simple FedAvg-like
approach to update {{6*}, 02,89} simultaneously, while only
sharing 69 with the orchestrator.

3) Key Open Question: A central question for integratively
learning surrogates is: What is the best way to initialize
federated BO? Should agents begin with space-filling designs,
or should they explore different space partitions? Furthermore,
how will this affect GP estimation error early on?

~ MGP(0,covi  (x,2)). (10)

IV. CONCLUSION

We present a vision and unifying frameworks for collabo-
rative and federated black-box optimization from a Bayesian
optimization perspective while highlighting the many exciting
problems yet to be addressed. We conclude by noting that
many applications could benefit from this emerging literature,
including collaborative optimization of manufacturing process
parameters, material discovery, hyperparameter tuning and
clinical trials. Therefore, we believe a high-impact endeavor
would be to bring this theory to practical applications by
providing a working example where agents collaborate to
improve their decisions and benefit from collaboration, all
while preserving their privacy and intellectual property.
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