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Abstract
In this work, the main activities of the plant photosynthesis process are discussed to yield a minimized mathematical model 
structure with photosystem II (PSII) chlorophyll a fluorescence (ChlF) as a measurable output. After experimental validation 
of the model structure, we demonstrate that the states of the photosynthetic process may be observed by using this model and 
the extended Kalman filter method. We then show a feedback control framework that can be used to alter a given photosyn-
thetic activity. The control framework is demonstrated with an example in which PSII ChlF is used as the feedback signal 
and light intensity is used as a controllable process input to regulate plastoquinone reduction. Although there are caveats, 
and further research is needed, the results lay the groundwork for further research on novel methods for optimization and 
regulation of photosynthetic activities, with a goal for sustainability.
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Introduction

Plants, algae, and cyanobacteria use solar energy to pro-
vide vital energy and food, through photosynthesis, to 
all living organisms (Shevela et al. 2019). Controlling 
photosynthetic activities is of interest in plant science 
as well as in automatic control technology. It is one of 
the major worldwide challenges to us all (Kennedy and 
Norman 2005). Greenhouse control strategies, based on 
plant photosynthesis, can reduce the waste of resources 
and maximize crop yield. It is thus important to develop a 
plant growth control strategy based on detailed knowledge 
of plant photosynthesis. To do so, a model to describe 
the major photosynthetic reactions is needed for control 
strategy development (Gopal 1996).

Specific aspects of photosynthesis of plants have 
already been modeled and simulated in different ways 
and at different levels of complexity (Lazár and Pospíšil 
1999; Zhu et al. 2005, 2013; Laisk et al. 2006; Ebenhöh 
et al. 2011; Stirbet and Govindjee 2016; Feng et al. 2018; 
Xia et al. 2018). These models have either included only 
parts of the photosynthesis process or have described it 
in excessive details. Although they have provided impor-
tant and significant understanding of the mechanism of 
photosynthesis, most have included too many variables 
and nonlinearities for control system design to optimize 
the efficiency of photosynthesis and carbohydrate produc-
tion. In addition, a cross-scale modeling method of plant 
photosynthesis was established by Wu et al. (2019), which 
is a good way to show the impact of confounding factors 
on photosynthesis yield. This kind of model is important 
for simulating photosynthetic activities and crop growth 
with multiple environmental factors by using empirical 
information. However, it is limited only to simulation and 
hard to use for plant photosynthetic activities and growth 
feedback control due to lack of sensing physiology on-time 
and control strategy.

In this work, we developed a simplified model of pho-
tosynthesis that covers the process from light absorption 
to glucose production but, by design, ignores some details 
that have minor effects on the overall kinetic behavior of 
the process. Based on the developed model, state estima-
tion (that is, estimation of the intermediate concentration 
based on the output) and control algorithms were designed 
for the regulation of photosynthetic activities by using 
chlorophyll a fluorescence (ChlF) as feedback signal. 
We know that the uniqueness of the estimates of model 
parameters will affect the applicability of the proposed 
model structure, but this can be improved in future work 
by calibration or optimization of model parameters within 
a certain range, based, e.g., on prior knowledge, or by 
experimentally measuring more variables as constraints 

in parameter estimation. We also note that model struc-
tures can be developed differently if a system is viewed 
from different angles. Further, a model structure can be 
developed at different level of complexities. A mechanism-
driven model structure can always be improved in future 
work or even compensated by a big data-driven model 
structure. Regardless of such caveats, the photosynthetic 
activity control framework proposed in this study lays the 
groundwork for finding, in the future, novel methods for 
optimization and regulation of plant growth.

Model development

Photosynthesis includes both light-dependent and light-
independent (or dark) metabolic reactions. The dark reac-
tions, leading to glucose formation, need the products of 
“light reactions,” i.e., NADPH and ATP; since many enzy-
matic reactions of the “dark” phase are in fact light regulated 
via the ferredoxin: thioredoxin reductase (FTR) system, 
Buchanan (2016) prefers to refer to the “dark reactions,” as 
“carbon reactions.” These carbon reactions take place in the 
stroma matrix of the chloroplasts, while “the light reactions” 
take place in pigment protein complexes in the thylakoid 
membrane. As pointed out by one of us (Govindjee), in the 
footnote of the Buchanan paper, the true “light reactions” 
end after the primary charge separation steps; the rest of the 
reactions (the electron transfer and protonation steps) all can 
occur in the dark. The steps preceding the carbon reactions 
include absorption of photons, excitation energy transfer, 
primary photochemistry, and linear electron flow (LEF) 
from water to NADP+, leading to oxygen evolution, and 
NADPH & ATP production. For information on the different 
aspects of this process, see Mirkovic et al. (2016), Mamedov 
et al. (2017) and Govindjee et al. (2017). In addition, there 
is cyclic electron flow (CEF) around Photosystem I (see Joët 
et al. 2002). As noted above, there is ATP synthesis, which 
uses proton motive force (membrane potential as well as pro-
ton gradient) across the thylakoid membranes (Junge 2004), 
formed as a consequence of electron flow from water to 
NADP+. We also realize that there may even be other steps, 
some neglected, and some unknown. The “dark reactions” 
include the Calvin–Benson cycle, for the fixation of carbon 
dioxide, and production of carbohydrate. For a background 
on the various steps of photosynthesis, see Rabinowitch and 
Govindjee (1969), Blankenship (2002) and Shevela et al. 
(2013, 2019). Further, there exist regulatory mechanisms for 
the smooth operation of photosynthesis; these include, e.g., 
the non-photochemical quenching (NPQ) of the excited state 
of the chlorophyll a via the xanthophyll cycle, the “state 
transitions,” as well as the activation of rubisco (Zhu et al. 
2013; Demmig-Adams et al. 2014).



215Photosynthesis Research (2020) 146:213–225	

1 3

Photosynthesis has been modeled at different levels of 
complexity. If we were to use first-order reaction kinet-
ics (Zhu et al. 2005) to describe the process, hundreds of 
equations would be involved, which, of course, would be 
theoretically more complete or accurate. However, a model 
involving too many reactions or state variables may not be 
very useful for engineering applications. It is difficult and 
time-consuming to estimate enormous number of model 
parameters from available experimental data. Moreover, 
it is quite difficult to build a control strategy based on a 
complex model structure. On the other hand, “second-order 
reaction kinetics” is an approximation for the real situation. 
Guo and Tan (2011, 2014) have shown that second-order 
reaction kinetics can successfully fit experimental data by 
simply redefining the model variables and the parameters 
used. Under this situation, the reaction rates are effective 
rates but still correspond to some known reactions, which 
can be much more easily explained than parameters in a 
neural network model structure. As a result, second-order 
reaction kinetics provide (s) a simpler approximation of the 
complex photosynthesis process. For a given system, dif-
ferent model structures may be developed if the system is 
viewed from different angles. To significantly reduce the 
number of state variables, we view the system reactions or 
the reactions in one reaction center as second-order reac-
tion kinetics, even though it is not a precise description. We 
understand that some components may not be freely mov-
able. The representation, used here, may skew the reaction 
rates from the first reaction kinetics and the reaction rates 
will have different units from the rates for the first reac-
tion kinetics. We have also simplified some reactions, which 
will make the reaction rates as effective rates to represent 
the comprehensive effect of many reactions. Scientifically, 
this will not be accurate, but this will make control strategy 
development possible in engineering. Although the second-
order representation and reaction simplification make the 
reaction rates in this work not comparable with the rates for 
the first-order reaction kinetics in the available literature, 
they do not affect the concept of the framework that can be 
used to control photosynthetic activities and plant growth 
because other model structures in future work with more 
reasonable simplification can be embedded in the framework 
for plant growth control strategy development.

Light reactions and associated electron transport

The light reactions, including electron transport, consist of steps 
beginning with light absorption all the way up to the forma-
tion of NAPDH and oxygen. After absorption of photons by the 
antenna molecules, there are three pathways for the deactiva-
tion of excited chlorophyll molecules: excitation energy transfer 
leading to photochemical reaction (in the reaction centers), heat 
loss, and fluorescence emission. In this work, we have simplified 

the description of antenna complexes, without distinguishing 
between the peripheral antenna and the core antenna. The total 
number of antenna molecules (labeled as A) per reaction center 
is taken as 300 (Zhu et al. 2005). The process of light absorption 
and antenna deactivation is expressed as follows:

where k1 represents light-capture efficiency, u represents 
light intensity, and k2 and k3 represent the initial dissipation 
rate as fluorescence and heat, respectively.

Photon energy is lost, to some extent (~ 5%), as heat or fluores-
cence, but most of it (~ 95%) is used for primary photochemistry 
(charge separation at the reaction centers) that leads to electron 
transfer and photosynthesis (Rabinowitch and Govindjee 1969; 
Blankenship 2002). Following many others (e.g., Zhu et al. 2005), 
we describe the reactions in PSII reaction centers as follows (for 
details of PSII, see chapters in Wydrzynski and Satoh (2005)):

where P680, P680*, and P680+ represent the PSII reaction 
center, its excited state, and its oxidized form; Pheo and 
Pheo− are the primary electron acceptor pheophytin of PSII, 
in the oxidized and the reduced state.

The reduction of P680+ occurs ultimately with electrons 
originating in water via several intermediates: Yz, a tyrosine, 
and the “S” states (related to Mn complexes). In the Kok–Jol-
iot cycle (Kok et al. 1970; Mar and Govindjee 1972) for water 
oxidation, these steps also involve the release of protons in 
the lumen (see, e.g., Najafpour et al. 2013). For simplicity, 
we neglect the detailed process of water oxidation here. How-
ever, the oxidation of water and the reduction of P680+ (with 
electrons originating in water) is expressed as follows. 

On the electron acceptor side of PSII, Pheo− (see Eq. 5) 
transfers its electron to QA, a plastoquinone, which is bound 
tightly on the D2 protein in PSII; this process is expressed as:

where QA
− is the reduced form of QA.

(1)A
k1∗u
−−−→ A∗

(2)A∗
k2
−→ A + fluorescence

(3)A∗
k3
−→ A + heat

(4)A∗ + P680
k4
−→
←−
k5

A + P680∗

(5)P680∗ + Pheo
k6
−→
←−
k7

P680+ + Pheo−

(6)4P680+ + 2H2O
k8
−→ 4P680 + 4H+

lumen
+ O2

(7)Pheo− + QA

k9
−−→
←−−
k10

Pheo + Q−
A
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In turn, the electron on QA
− reduces QB (another plasto-

quinone molecule, bound to the D1 protein in PSII), which 
uses two electrons (one by one), all originating ultimately 
from the oxidation of water molecules. These processes 
are described (see, e.g., Velthuys and Amesz 1974; Guo 
and Tan 2011) as:

After having received two electrons, QB
2− accepts two 

protons, one by one from the nearby amino acids, which 
ultimately obtain the protons from the stroma. A unique 
molecule of bicarbonate, bound on the non-heme iron, 
between QA and QB, is involved in the delivery of the 
second proton (Shevela et al. 2012). Once QBH2, which 
is PQH2, is formed, it diffuses into the membrane and 
is replaced by a plastoquinone (PQ) molecule from the 
membrane. Ultimately, the protons (in PQH2) end up in 
the lumen. The exchange process of PQ is represented as:

Cytochrome b6f (Cytb6f) is the PQ-plastocyanin oxi-
doreductase, which sits in-between PSII and PSI, and func-
tions to transfer electrons from PQH2 to plastocyanin (PC) 
(Cramer and Kallas 2015). Further, Cytb6f acts to release 
additional four protons in the lumen, using the Q-cycle for 
each molecule of PQH2 (Sacksteder et al. 2000; Ebenhöh 
et al. 2014). The following equation expresses the overall 
process at the Cytb6f complex:

With the help of PC-ferredoxin oxidoreductase (Photo-
system I, PSI), electrons from the reduced PC (PC−) are 
transferred to ferredoxin (Fd) (Ebenhöh et al. 2014) and 
expressed as (for details of PSI, see Golbeck 2006):

The last step in the linear electron flow (LEF) of the 
“light reactions” is the formation of NADPH, which is 
catalyzed by FNR (Ferredoxin-NADP reductase); here, 
the electrons are transferred to NADP+ from the reduced 
Fd (Ebenhöh et al. 2014; also see Stirbet and Govindjee 
2016). Considering the steps of LEF leading to the for-
mation of NADPH, which includes the oxidation of two 
molecules of water, we have the release of one molecule 

(8)Q−
A
+ QB

k11
−−→
←−−
k12

QA + Q−
B

(9)Q−
A
+ Q−

B

k13
−−→
←−−
k14

QA + Q2−
B

(10)Q2−
B

+ PQ + 2H+
stroma

k15
−−→ QB + PQH2

(11)PQH2 + 2PC + 2H+
stroma

k16
−−→
←−−
k17

PQ + 2PC− + 4H+
lumen

(12)PC− + Fd
k18
−−→
←−−
k19

PC + Fd−

of O2 and the formation of two molecules of NADPH (see 
Allen 2002; Wydrzynski and Satoh 2005). For the NADPH 
formed, the equation can be written as:

With the protons pumped into the lumen, the proton 
motive force (pmf) is built up, and then the formation of ATP 
takes place in the stroma (Junge 2004). Further, it is generally 
assumed that 14 protons are required to form three ATP mol-
ecules by the ATP synthase, with 14 c-subunits (Allen 2002). 
Just as ATP, NADPH is also formed in the stroma (Kramer 
and Evans 2011). Both the ATP and NADPH, formed as a 
result of the “light reactions,” are then used to run the carbon 
cycle, the Calvin–Benson cycle (Allen 2002). Following all 
that is known for a long time, we repeat that two molecules of 
water are oxidized to give one molecule of oxygen, and two 
molecules of NADP+ are reduced to NADPH.

For the fixation of one molecule of CO2, the system 
needs two molecules of NADPH and three molecules of 
ATP (Laisk et al. 2006). As described above, oxidation of 
two molecules of water produces four protons in the lumen; 
further, eight protons are pumped into the lumen whenever 
the Q-cycle operates (Crofts 2004). We know that the lin-
ear electron transfer alone cannot meet the demand of the 
Calvin–Benson cycle. In other words, the oxidation of two 
molecules of water are not enough to provide all the protons 
needed for ATP synthesis; two extra protons are necessary 
besides what LEF can provide. Kramer and Evans (2011) 
discussed several different mechanisms that provide these 
extra protons, which do not generate NADPH: cyclic elec-
tron flow (CEF) around PSI, the water–water cycle (WWC), 
the malate valve, and the plastoquinol oxidase. For simplic-
ity, we assume here that all extra protons come from the 
cyclic electron flow (CEF), since this has been thought to 
be the major ATP/NADPH balancing pathway (Kramer 
and Evans 2011). The most important CEF around PSI is 
assumed to involve ferredoxin-PQ reductase (FQR), which 
transfers electrons from reduced Fd (Fd−) to PQ (Ebenhöh 
et al. 2014; Finazzi and Johnson 2016; Allen 2003). Thus, 
we express the CEF as:

It has been generally accepted that 14 protons in the 
lumen are used to make three molecules of ATP in the 
stroma, using the available proton motive force. We express 
this process as:

When two molecules of water are oxidized and three mol-
ecules of ATP are formed, we have an ‘exact’ match with their 

(13)2Fd− + NADP+ + H+
stroma

k20
−−→
←−−
k21

2Fd + NADPH

(14)2Fd− + PQ + 2H+
stroma

k22
−−→ 2Fd + PQH2

(15)3ADP + 14H+
lumen

k23
−−→ 3ATP + 14H+

stroma
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consumption in the Calvin–Benson cycle (Kramer and Evans 
2011). It is generally acknowledged that it is a self-sufficient 
relationship between the ATP produced from the photoreac-
tion phase and the ATP required for carbon fixation. That is 
to say that we assume that the NAPDH and ATP used for 
carbon reactions are all from the products of the “light reac-
tions.” However, recent studies show that possible additional 
mechanisms involved will play a role in the Calvin–Benson 
cycle. For instance, other anabolic processes consume a small 
amount of ATP or additional ATP uptake would be needed 
when photosynthesis does not produce sufficient ATP for CO2 
fixation and other anabolic reactions. The plastidic ATP/ADP 
transporter translocates relatively small amounts of ATP gen-
erated in the mitochondria from cytosol to stroma (Winkler 
and Neuhaus 1999). For simplification, some detailed reac-
tions are not included in the model developd here.

For the integrity of the system, and the system’s ability to 
resist damage caused by strong light, regulatory mechanisms 
are involved.

Regulatory high‑energy quenching (qE) mechanism

When light is too strong, plants initiate a regulatory mecha-
nism, using NPQ of the excited state of chlorophyll, which 
protects and stabilizes the system (see Papageorgiou and 
Govindjee 2014; Demmig-Adams et al. 2014), while the 
excess energy is dissipated as heat (Matuszynska et  al. 
2016). Further, Chl a fluorescence data have been shown to 
reflect photosynthetic characteristics of plants and the impact 
of external conditions on them (see, e.g., Guo and Tan 2015; 
Stirbet et al. 2018). For examples of measurements and anal-
ysis of NPQ in studies that have led to models, see Ebenhöh 
et al. (2011, 2014), Matuszynska et al. (2016), and Snellen-
burg et al. (2017). Although the theory of NPQ is described 
in great details in some of these studies, models used there 
are just too complex with too many model parameters that 
are inconvenient for practical engineering use. Further, we 
have noticed inaccuracies in parameter fitting with experi-
mental data (unpublished data of the authors), and practical 
application for engineering purposes seem difficult. In view 
of the above, the disadvantage of these models is obvious. 
Thus, one of the goals of this work was to find a way to 
describe NPQ in as simple a term as possible.

The NPQ, as a photo-protection mechanism, has three 
quenching components: energy dependent (qE), state transi-
tion (from state I to state II; qT), and photoinhibition (qI) 
(Demmig-Adams et al. 2014; Ebenhöh et al. 2011). The major 
component is qE, which we will discuss in our proposed 
model structure (see below; Eqs. 16 and 17). We have left out 
qI since it involves damage of the system by high light, and 
qT, which is related to the adjustment of the relative absorp-
tion cross section of PSI and PSII, accounting, usually, for 
only a small part of total quenching (see, e.g. Ebenhöh et al. 

2011). Thus, qI and qT are neglected in our analysis here. 
Under high light conditions, qE quenching is triggered by high 
proton concentration in the lumen, and it is known to be linked 
to the xanthophyll cycle, where zeaxanthin acts as a direct 
quencher (for a time line of discoveries, see Papageorgiou and 
Govindjee 2004). Zeaxanthin is formed from de-epoxidation 
of violaxanthin (expressed as No) under the H+ gradient in 
the lumen. Thus, the H+ concentration indirectly determines 
the NPQ efficiency, and when the [H+] on the lumen side of 
the thylakoid membrane is high, the NPQ efficiency is also 
high. The interconversion of zeaxanthin and violaxanthin in 
the xanthophyll cycle can be expressed simply as:

where N is the relative concentration of zeaxanthin, with 
N + N0 being 1. Here, we assume that the transformation of 
violaxanthin to zeaxanthin, and the reverse, is linear in order 
to fit the experimental data and the actual application of the 
system. As is generally accepted, zeaxanthin increases the 
rate constant of heat dissipation (see, e.g., Zhu et al. 2013). 
Thus, we can modify Eq. (3) as follows:

The carbon reactions (or dark reactions)

The Calvin–Benson cycle (the carbon cycle) is a part of dark 
reactions in photosynthesis, and its reaction site is stroma, 
the chloroplast matrix. This cycle has three major stages: 
carboxylation of RuBP by CO2, reduction of CO2, and 
regeneration of ribulose 1,5-bisphosphate (RuBP) (see, e.g., 
Bassham 2003). Most plants integrate (and thus fix) CO2, 
by binding it to the second carbon of the 5-carbon RuBP, 
using RuBP carboxylase-oxygenase (rubisco). The COO 
group, thus formed, can be easily reduced. Further, the six-
carbon compound, thus formed, is extremely unstable and 
immediately gives two molecules of 3-phosphoglycerate, a 
three-carbon compound. The latter is then phosphorylated 
by ATP (formed by ATP synthase) to 1, 3 diphosphoglyceric 
acid (DPGA), which is then reduced by the NADPH gener-
ated through the two-light reaction, two-pigment system of 
electron transport (see above “Light reactions and associated 
electron transport” section) to triose phosphate. Later, after a 
series of biochemical reactions, one of the triose phosphate 
molecules–leaving the cycle– is used to synthesize glucose. 
In balance, six turns of the cycle produce one molecule of 
hexose. On the other hand, the cycle includes the regenera-
tion of a ribulose-1,5-diphosphate molecule, which restarts 
the cycle. The above steps are described below in details, 
with equations.

(16)N0

k24[H
+
lumen

]
−−−−−−−→
←−−−−−−−

k25

N

(17)A∗
k3{1+[N]}
−−−−−−−→ A + heat
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Carboxylation of CO2

This is a complex biochemical process that includes inter-
mediates such as 3-ketoarabinitol-1,5-bisphosphate (KABP) 
and xylulose-1,5-bisphosphate (XuBP), as well as “Rubisco 
Activation” (Portis 2003). Here, a simplistic chemical reac-
tion formula is used to approximate its representation. One 
molecule of RuBP combining with one molecule of CO2 
forms two molecules of 3-phosphoglycerate (PGA) under 
the catalytic action of Rubisco. This is shown as:

where CO2 is for the concentration of intercellular CO2; it is 
expressed as Ci, and k26 is the reaction rate constant related 
to carboxylation of RuBP.

Reduction of CO2

PGA is reduced to phosphoglyceraldehyde (PGAld) using 
ATP and NAPDH generated during the light reactions and 
the associated electron transfer (see “Light reactions and 
associated electron transport”). After all these steps, the 
photosynthetic energy storage process is over, and this last 
process is described as:

where DPGA is for diphosphoglyceraldehyde, and k27 and 
k28 are the rate constants for the chemical reactions involved 
in phosphorylation and in the reduction of carbon.

Regeneration of RuBP

In the Calvin–Benson cycle, three molecules of CO2 are 
fixed, and six molecules of PGAld are produced. Five 
PGAld molecules are used to synthesize three molecules 
of RuBP, which are then re-used to fix CO2. To make one 
hexose molecule, we need the fixation of six molecules of 
CO2 (Wang et al. 2018). Further, the fixation of one CO2 
molecule produces two molecules of PGAld; for this, two 
molecules of NADPH and three molecules of ATP, gener-
ated by the operation of two light reactions, are used. The 
regeneration of RuBP is essential for further CO2 fixation 
and, thus, for plant growth. The overall reaction for this 
regeneration is represented as:

(18)RuBP + CO2 + H2O
k26
−−→ 2PGA

(19)PGA + ATP
k27
−−→ DPGA + ADP

(20)DPGA + NADPH + H+
k28
−−→ PGAld + NADP+

(21)5PGAld + 3ATP
k29
−−→ 3RuBP + 3ADP

where k29 is the reaction rate constant for the regeneration 
of RuBP.

Carbon dioxide enters plants through stomata on the 
leaves; this process is affected by environmental factors such 
as light intensity and atmospheric CO2 concentration (Ca) 
(Farquhar et al. 1980). Earlier studies usually used steady-
state representations; further, the earlier models were very 
complicated (Farquhar et al. 1980; Katul et al. 2000). Here 
in our work, we have greatly simplified the model. Some 
steps related to CO2 absorption, including photorespiration, 
stomatal conductance, or other substance limitations, have 
been ignored in our model. For example, we can neglect 
CO2 concentration in greenhouses, since it can be regulated 
there. Furthermore, photorespiration usually occurs under 
high light intensity and low CO2 conditions (Farquhar et al. 
1980). Nonetheless, CO2 transport depends on the concen-
tration difference of CO2 between the inside and the outside 
of the cell membrane. Thus, we have used the Fick’s law to 
directly express this process (Wang et al. 2018):

where k30 is for the diffusion coefficient of CO2, and Ca and 
Ci are for the ambient and the internal CO2 in the cells. As 
Ca increases, the rate of diffusion of CO2 into cells increases; 
however, side effects may occur when Ca is too high (Harley 
et al. 1992).

The final step in photosynthesis is the production of car-
bohydrate. We know that stable carbohydrates are usually 
stored in plants in the form of starch and sucrose, but they 
are formed from glucose (C6H12O6), which is the direct 
product of photosynthesis. The concentration of glucose, 
formed through photosynthesis, can be considered to repre-
sent the biomass of the plant. Thus, we have included glu-
cose in our model and the last step is represented as:

where k31 is the reaction rate constant for the production of 
glucose.

Figure 1 shows a simple diagram of the whole processes 
of photosynthesis, from the absorption of light to the forma-
tion of glucose, where the purple solid arrows indicate the 
transfer of electrons among the intermediates shown, and 
the red dotted arrows indicate the dynamic process of H+ 
transfer to the lumen of the thylakoid membrane. Note that 
some of photosynthetic steps and related enzymes are not 
shown in Fig. 1 or included in the model for simplification. 
This includes PSI system since PSI is much more resistant to 
environmental changes compared to PSII (Butler 1978; Guo 
and Tan 2011). Further, fluorescence from PSI contributes 
only a small amount of the total ChlF and mainly to F0, 
the minimal fluorescence (Lazár 2006). For the meaning of 

(22)
dCi

dt
= k30(Ca − Ci)

(23)PGAld
k31
−−→ 1∕2 glucose
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the symbols and abbreviations used in the diagram, see the 
above text.

Concentrations of the components

The total concentration or probability of the presence of 
some of the intermediates, such as all the QA (i.e., both QA 
and QA

−), all the QB (i.e., all its three forms: QB, QB
−, and 

QB
2−), total P680 (i.e., P680, P680* and P680+), and total 

Pheo (i.e., both Pheo and Pheo−), can be set, in each case, 
to unity (see, e.g., Guo and Tan 2011). Thus, we define the 
sum of the relative concentrations (or probabilities) of each 
component as 1, e.g., QA + QA

− = 1. The other intermediates, 
such as PQ, PC, Fd, ATP, and NADPH, are quantified in 
terms of pools (Ebenhöh et al. 2014), the sizes of which are 
expressed by using subscript “0,” e.g., PQ0, PC0, Fd0, ATP0, 
and NADPH0. These pools are constant for a given sample 
but vary from sample to sample. They are determined from 
experimental data in the model fitting process. Total concen-
trations of these intermediates are listed in Table 1.

The reactions shown in Eqs. 1–23 involve 20 state vari-
ables and are represented as xi, i = 1…20. Since the con-
centration of protons in the stoma is stable (Ebenhöh et al. 

2011), it has not been treated as a variable in our model. The 
initial concentrations of some of the substances are consid-
ered as zero before photosynthetic activities start (i.e., after 
dark adaptation) or estimated from experimental data dur-
ing the model fitting process. The state variables and initial 
conditions are listed in Table 2.

Fig. 1   A simple diagram of the whole processes of photosynthesis from light absorption to the formation of glucose. For full form of the sym-
bols, see the list of abbreviations

Table 1   Sums of relative concentrations of intermediates

A + A* = 300 QB + QB
− + QB

2− = 1
P680 + P680* + P680+ = 1 PQ + PQH2 = PQ0

Pheo + Pheo− = 1 PC + PC− = PC0

QA + QA
− = 1 Fd + Fd− = Fd0

ATP + ADP = ATP0 NADPH + NADP+ = NADPH0

Table 2   State variables and their initial values; for abbreviations, see 
list of abbreviations

State variables Symbol Initial value

A* x1 0
P680* x2 0
P680+ x3 0
Pheo− x4 0
QA

− x5 0
QB

− x6 0
QB

2− x7 0
PQ x8 PQ0

PC− x9 0
Fd− x10 0
N x11 0
RuBP x12 0
PGA x13 PGA0

DPGA x14 0
PGAld x15 0
ATP x16 0
NADPH x17 0
H

+

lumen
x18 0

Ci x19 Ca

Glucose x20 0
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Based on the reactions described in the foregoing subsec-
tions, the 20 state variables are described by the following 
differential equations.

(24)
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= k
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dx11

dt
= k24x18

(
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− k25x11

(35)
dx12
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= −k26x12x19 + 3k29x

5
15
x3
16

(36)
dx13

dt
= 2k26x12x19 − k27x13x16

Here, all the ki constants (i = 1…31) are reaction rate 
constants that are determined from experimental data as 
described below in “Model validation and simulation” 
section.

We note that chlorophyll a fluorescence (ChlF) has been 
widely used as a signature (measurable indicator) of pho-
tosynthesis (see, e.g. Govindjee 1995; Papageorgiou and 
Govindjee 2004; also see: Zhu et al. 2005) and is being used 
as the measurable output. ChlF emission rate is represented 
by the reaction in Eq. (2), and the measured ChIF intensity 
can be expressed as (see Guo and Tan 2011):

where G is an overall instrumentation gain constant, k2 is the 
rate of dissipation by fluorescence, and x1 is the concentra-
tion of A*. PSI fluorescence is ignored here as stated above. 
State Eqs. (24–43) and the final Eq. (44) describe the major 
steps from light absorption to glucose synthesis.

Results and discussion

Model validation and simulation

To determine k1 to k31, G, and the pool sizes in the model, 
the Levenberg–Marquardt algorithm (Levenberg 1944; Mar-
quardt 1963) was used to fit the model to the experimental 
data in order to check the applicability of our model. The 
experimental data that we used is reproduced from the Fig. 2 

(37)
dx14

dt
= k27x13x16 − k28x14x17

(38)
dx15

dt
= k28x14x17 − 5k29x

5
15
x3
16
− k31x15

(39)
dx16

dt
= 3k23(ATP0 − x16)

3x14
18
− k27x13x16 − 3k29x

5
15
x3
16

(40)

dx17

dt
= k20x

2
10

(

NADPH0 − x17
)

− k21(Fd0 − x10)
2x17 − k28x14x17

(41)

dx
18

dt
= 4k

8
x
4

3
+ 4k

16

(

PQ
0
− x

8

)

(PC
0
− x

9
)2 − 4k

17
x
8
x
2

9
x
4

18

− 14k
23
(ATP

0
− x

16
)3x14

18

(42)
dx19

dt
= k30

(

Ca − x19
)

(43)
dx20

dt
=

1

2
k31x15

(44)F = G ∗ k2 ∗ x1
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in Stirbet and Govindjee (2016). We used Matlab (Version 
8.5, The Mathworks, Natick, MA) to program the algorithm. 
A relatively long time (say, e.g., 15 s) of experiments is 
desirable to estimate the reaction rates especially for the 
dark reactions in real applications. The focus of this work 
is to put forward a framework for photosynthetic activities 
and plant growth control strategy; the experiment and the 
data in this work only serve as a demonstration of the pro-
posed concept and algorithm. After parameter estimation, 
the model, described above, was used to simulate the ChlF 

curve. Figure 2 shows that the model, developed in this 
study, fits quite well with the experimental values of chlo-
rophyll fluorescence, and the estimated model parameters 
used are listed in Table 3. As discussed above, the reaction 
rates in the “second-order reaction kinetics” are effective 
rates but they still correspond to some known reactions. In 
addition, polypeptide composition of thylakoid membranes 
highly depends on the environmental conditions even for the 
same species. Under high temperature or heavy metal stress, 
the fluorescence curve will show differences, thus the differ-
ent rates or pool sizes will be obtained through the method 
applied above, which will compensate for the changes in 
polypeptide of thylakoid membranes. 

R e l a t i v e  e r r o r s  w e r e  c o m p u t e d  a s : 
�

∑N

i=1
(y∗

i
− yi)

2

�
�

N
∑

i=1

(y∗
i
)2 , where yi

* is the ith experimen-

tally measured ChlF value and yi is the ith model prediction, 
and N is the number of total data points. The average relative 
error was 0.028%, indicating a good fit of the model to the 
experimental data.

Figure 3 shows simulation results on chlorophyll a 
fluorescence transient (a PSII signal), ATP concentra-
tion (product of light reactions), and glucose concen-
tration (product of dark reactions) during about 15 s, at 
three different light intensities. In these simulations, the 
concentration of external CO2 is assumed to be the same 
in all cases. Figure 3a shows that as the light intensity 
increases, ChlF intensity increases due to higher light 
absorption that leads to higher PSII activity. Figure 3b 
shows the changes in [ATP] with time at three different 
light intensities. As the light intensity increases, the rate 

Time(s)
0 2 4 6 8 10 12 14 16 18

R
el

at
iv

e 
flu

or
es

ce
nc

e 
in

te
ns

ity

0.0

.1

.2

.3

.4

.5
Experiment
Fitting

Time(s)
10-5 10-4 10-3 10-2 10-1 100 101 102R

el
at

iv
e 

flu
or

es
ce

nc
e 

in
te

ns
ity

0.0

.1

.2

.3

.4

Fig. 2   Comparison of experimental and simulation results of time 
dependence of chlorophyll a fluorescence induction. The plot is pre-
sented on a linear time coordinate (main figure) and on a logarith-
mic time coordinate (the insert). The experimental data used are from 
Fig. 2 in Stirbet and Govindjee (2016), from leaves of Pisum sativum 
under 3000 μmol photons m−2 s−1

Table 3   Estimated model 
parameters used for model 
prediction in Fig. 2

For a given system, different model structures can be developed if the system is viewed from different 
angles; the system in this work was viewed as second-order reaction kinetics (for most reactions); further, it 
was highly simplified (see text). The reaction rates in this table cannot be compared with the reaction rates 
used for the first-order reaction kinetic model in the literature (see, e.g., Antal et al. 2013)

Rate constant  
(see Eqs. 1–24)

Figure 2 Rate constant  
(see Eqs. 1–24)

Figure 2 Rate constant  
(see Eqs. 1–24)

Figure 2

k1u 0.07 k14 26.24 k27 0.35
k2 511.22 k15 13.02 k28 0.0004
k3 1507 k16 31.76 k29 1.878
k4 2191 k17 0.02 k30 5.96 × 10−5

k5 0.48 k18 42.34 k31 4.7 × 10−5

k6 78.8 k19 0.18 PQ0 6.0
k7 120.1 k20 6.54 PC0 1.5
k8 3.19 k21 17.58 Fd0 46.7
k9 65.5 k22 95.35 ATP0 0.06
k10 65.0 k23 35.87 NADPH0 20.7
k11 0.038 k24 25.34 PGA0 5.54
k12 85.15 k25 63.74 G 0.08
k13 67.62 k26 0.031
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of electron transfer increases as well as hydrogen ions, 
deposited in the thylakoid lumen, resulting in a larger pH 
gradient and, thus, larger proton motive force difference 
between the inside and outside the thylakoid membrane. 
This, in turn, leads to increased [ATP]. However, since 
the total amount of ATP and ADP in the system is con-
stant, ATP does not always increase when it reaches a cer-
tain level, which is shown by the model as seen in Fig. 3b. 

Further, Fig. 3c shows changes in the concentration of 
glucose, the end product of photosynthesis, with time. 
As the light intensity increases within a certain range, the 
amount of glucose produced also increases, as expected.

Estimation of states and control of photosynthetic 
activities

With a process model, unmeasurable states may be estimated 
based on measured ChlF by using the extended Kalman filter 
(EKF) method (Chui and Chen 1998); consequently, a quan-
tity related to photochemical reactions, though not directly 
measurable, may be controlled or influenced by changing 
light conditions or other variable conditions. Below, we 
illustrate this concept as well as the method.

Estimation of states based on chlorophyll fluorescence

Kalman (1960) had proposed a method based on a math-
ematical model for state estimation, in which values of state 
variables are estimated from the measured system output. 
This method has been widely used, such as in fault diag-
nosis, automation, radar systems, and missile tracking. The 
extended Kalman filter (EKF) developed later (Chui and 
Chen 1998) has mainly been used for state estimation of 
nonlinear systems and it is thus applicable to the photosyn-
thesis model developed here. More information about the 
Kalman filter and the EKF can be found in Chui and Chen 
(1998).

The EKF algorithm was programmed in Matlab to esti-
mate the values of state variables based on the process model 
developed in this study and the measured data on ChlF. 
Figure 4 shows a comparison between simulated glucose 
production as was shown in Fig. 3c (which is practically 
impossible to measure) and the values estimated by the EKF 
method from the measured ChlF. This comparison may not 
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appear very meaningful since both methods are based on the 
same model and the same measured data, and therefore, are 
expected to produce similar results; however, it shows that if 
we take the simulated glucose data to have the true value(s) 
from a sample process, these values can be successfully esti-
mated from measured ChlF by using the EKF method and 
the process model.

Control of photosynthetic activities with a constant PQ 
reduction efficiency rate based on the extended Kalman 
filter method

The reaction quantity v = k15x7x8, related to the reduction 
rate of PQ at a certain moment, is based on Eq. (10). In addi-
tion, the reduction rate of PQ reflects the transport speed of 
electrons in the PSII system, which is related to the overall 
photosynthetic efficiency. We believe that if we can artifi-
cially adjust the dynamic behavior of v, then we can further 
achieve the optimal control of plant growth in the future. The 
simplest and most commonly used PID (proportion, inte-
gral, and derivative) closed loop control system (see, e.g., 
Alvarez-Ramirez et al. 2003, for details of PID control) was 
adopted in this work to control the dynamics of v. It may 
reflect the number of electrons used for forward photochemi-
cal reactions, which should be positively related to the final 
biomass production. The values of x7 and x8, which cannot 

be practically measured, can be estimated by using the EKF 
method from the measured ChlF data.

Figure 5 shows a closed loop control system based on 
EKF. The controllable input is light intensity u and the meas-
urable output is ChlF or F. In the diagram, the controller 
is a control algorithm such as PID. The power supply is 
an energy source for lighting such as light-emitting diodes 
(LED) or high-pressure sodium (HPS) lamps (Iersel et al. 
2016). The Light Regulator regulates the lighting based on 
the controller output. The state observer is based on EKF 
and the process model developed here. The photosensor 
measures ChlF.

We used the PID control as shown in Fig. 5 to regulate 
the reduction speed (v) of PQ; v is usually not at a constant 
level when light intensity is constant because of the light 
protection mechanism and other reaction dynamics in the 
short period of time. However, for example, we may use the 
controller in Fig. 5 to regulate v around a constant setpoint 
V. Figure 6a shows the controlled lighting variations result-
ing from the PID controller to regulate PQ reduction speed 
at about a constant setpoint (Fig. 6b). Figure 6 shows that 
the PID controller drives PQ reduction speed to the setpoint 
quickly and then reduces illumination light to maintain v 
near a constant value. Constant levels of lighting intensities 
are often applied in greenhouse production, but a steady 
level of lighting may result in energy wastage and even 

Fig. 5   Flow chart of closed 
loop control system based on 
extended Kalman filter
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reduce photosynthetic efficiency because of light protec-
tion mechanisms, or it may even damage the plants. This 
example demonstrates how the photosynthesis process may 
be altered to yield a desired dynamic behavior by using the 
model developed here along with the measured ChlF.

Conclusions

In this study, a minimized model structure was developed to 
describe the dynamically significant activities in the plant 
photosynthesis process. Some details such as those related to 
water oxidation (Kok–Joliot cycle) and photorespiration are 
not included in our current simplified analysis. After param-
eter optimization, the model, presented here, was, however, 
able to describe quite well experimentally measured chlo-
rophyll fluorescence. The model was then used to show that 
unmeasurable state variables in the process may be estimated 
by using the extended Kalman filter (EKF) method. Finally, 
a feedback control framework has been proposed to alter or 
regulate photosynthetic activities by using an EKF-based 
state observer. The control framework is illustrated, in this 
study, with an example in which plastoquinone reduction 
is regulated with light intensity as a controllable input and 
chlorophyll fluorescence as a measured output. We empha-
size that, on the one hand, we need to make the model as 
detailed as possible to describe the real system, but, on the 
other hand, we must make the model as simple as possible to 
develop a framework for controlling photosynthetic activi-
ties. We are aware that the model is not perfect and can be 
improved in the future, but it demonstrates the concept and 
potential of a plant growth control by using plant physiologi-
cal signal as a feedback. This type of framework is important 
because it allows further development of optimal control 
for greenhouse production. This work serves as a launching 
point for further research on plant growth optimization and 
regulation.
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