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Abstract
Optical absorption and scattering properties are often estimated from the diffusive reflection light
intensity at only one distance from thematerial surface, which often encounters accuracy and
convergence issues. In this work, amethodwas proposed to determine optical properties by using
diffusive reflection light intensity profiles atmultiple distances, which enhanced data richness as a
result of the intensity profiles are linearly independent. In thismethod, five features of light intensity
profiles (contrast, correlation, energy, homogeneity, and secondmoment)were used to reduce the
data dimensions. To demonstrate the effectiveness of the proposedmethod,Monte Carlo (MC)
simulations were used to generate diffusive reflection light intensity profiles with noise at different
distances for various combinations of four optical properties (absorption coefficientμa, scattering
coefficientμs, isotropic coefficient g, and refractive index n). Thefive profile feature vectors were used
as inputs and the four optical parameters were used as outputs to train and test a backpropagation (BP)
neural network. The influences of noise levels and the number of diffusive light intensity profiles on
parameter estimation accuracy were investigated. The four optical parameters estimated by the BP
networkwere comparedwith the results estimated by the traditional least squaresmethod, which
shows that the proposedmethod can estimate the optical properties with higher accuracy and better
convergence.

1. Introduction

Optical properties such as absorption coefficients (μa), scattering coefficients (μs), isotropic coefficients (g), and
refractive index (n) are relatedwithmaterial chemical composition and physical properties [1]. They are very
useful inmedical diagnosis, food and agricultural product qualitymeasurement, pollution detection, andmany
other applications [2, 3]. Hence,much attention has been paid to determine absorption coefficientsμa and
reduced scattering coefficientsμ′s=(1−g)μs ofmaterials over the past 30 years.

When photons propagate in a turbidmedia, itmay be absorbed, scattered, or reflected [4]. Diffusive
reflection light from the surface is usually recorded to estimatematerial optical properties. Themost common
method is that performing a diffusion approximation of the Boltzmann radiation transfer equation, which
describes the relationship between the diffusive light intensity and desired optical parameters [5]. There are
several challenges in it, including the selection of initial values, long computation time, and poor convergence.
Many researchers have tried to resolve these issues.

Farrell et alfirst reported the use of artificial neural networks (ANN) to estimateμ′t=μa+μ′s and
μeff=(3μaμ′t)1/2 from reflective data obtained from a diffusive transportationmodel [6]. Chen et alused
measurement data of spatial diffusive reflection to train anANN to estimateμa andμ′s [7]. Similarly,Warncke
et al andChen et al estimatedμa andμ′s values withANNs [8, 9]. There is a lack of research on estimating the

OPEN ACCESS

RECEIVED

30October 2019

REVISED

10November 2019

ACCEPTED FOR PUBLICATION

4December 2019

PUBLISHED

17 February 2020

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2020TheAuthor(s). Published by IOPPublishing Ltd

https://doi.org/10.1088/2053-1591/ab5ef0
https://orcid.org/0000-0002-8016-988X
https://orcid.org/0000-0002-8016-988X
mailto:guoy@jiangnan.edu.cn
mailto:guoy@missouri.edu
https://crossmark.crossref.org/dialog/?doi=10.1088/2053-1591/ab5ef0&domain=pdf&date_stamp=2020-02-17
https://crossmark.crossref.org/dialog/?doi=10.1088/2053-1591/ab5ef0&domain=pdf&date_stamp=2020-02-17
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


four optical properties (μa,μs, g, and n) simultaneously. It is known that the performance of estimation
algorithmsmay drop quickly when the number of estimated parameters increases. The application of ANNhas
helped resolve the issue of computation speed, but few attempts have beenmade to enhance data richness to
make estimation performancemore robust. Thus, there is a need to enhance data richness when estimating
multiple optical properties.

Optical properties affect the exit angles of diffusive reflection photons emitted from the surface [10]. In
conventionalmeasurements, this angle information is omittedwhen the diffusive reflection light intensity is
only recorded at one distance from the surface (usually right at the surface).When it is applied to the estimation
of optical parameters, the data richness would be enhanced because photon emission angles affect the light
intensity distribution, whichmaymake the diffusive light intensities at different distances from thematerial
surface linearly independent. In this work, we proposed a back propagation (BP)neural networkmethod
[11–13] to determinematerial optical properties fromdiffusive reflection light intensity profiles obtained at
multiple distances.

2.Method development

To enhance optical property estimation, the developed BPneural network basedmethod includes the steps as
described below.

Step 1:Obtain diffusive light intensities atmultiple distances
When photons are incident in amedium, it will be scattered, reflected, or absorbed as shown infigure 1. In

existing research, spatially-resolved diffusive reflection ismeasured at or near the surface. The photon exit angle
is thus inconsequential and the information is not taken advantage of. In order to enhance data richness, we
propose to capture diffusive light intensity profiles atmultiple distances from the surface as illustrated in
figure 1.Δh infigure 1 denotes the distance between two neighboring positions.

Monte Carlo (MC) simulations have been proven to be an effectivemethod to simulate light propagation in
medium [14, 15]. To demonstrate themethod developed in this work, diffusive reflection intensity profiles at
different distances from thematerial surface for various combinations ofμa,μs, g, and nwere simulated byMC
simulation. Tomake the simulationsmore realistic, a Gaussian noise with different signal-to-noise ratios (SNR)
was added to study the robustness of themethod. In this work,flat surfacewas used to demonstrate the proposed
concept, whichwas realized by a neural network in the following steps 3 and 4. BP neural networks are not
limited by the shape of surfaces. The neural network can be trainedwith the data from any surfaces with any
shape and roughness. If data were too uncertain because of too complex shapes or roughness, othermethodswill
also have problems to estimate parameters. In reality,flat surfaces themselves havewide applications formaterial
propertiesmeasurement, for example,milk quality, oil quality, blood, andmany others.

Step 2: Features extraction
Direct use of reflection intensity profiles is computationally inefficient. Hence, effective data reduction is

needed [16–18]. In this work, the following features were extracted: (1)Correlation, (2)Contrast, (3)Energy, (4)
Homogeneity, and (5) Secondmoment. These features were selected experimentally based on their usefulness in
predicting the optical properties.

Figure 1. Illustration of the fate of photons and diffusive reflection intensity profiles at different distances from thematerial surface.
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Step 3:Neural network training and testing
ABPneural networkwas used to estimateμa,μs, g, and n from the intensity profile features. TheMC

simulation in Step 1 provided the training and test data sets. The trained BP neural network consisted of four
layers: an input layer, two hidden layers, and an output layer. The input to the BPneural network included the
five feature vectors extracted from the reflection intensity profiles atmultiple distances and the outputs are the
four optical parameters.

By experimenting different network structures, the number of nodes in the first and second hidden layers
was set at 9 and 14, respectively. The log-sigmoid activation functionwas selected for all the neurons. Several
initializationmethods forweights and thresholdswere tested and results showed that theGaussian random
initializationmethod [19, 20] performed the best. The Levenberg-Marquardt trainingmethod [21, 22]was used
in adjusting theweights and offsets in the backpropagation training process.

Step 4: Application of the trained BP neural network.
After a BP neural network is trained and tested, it can serve as an optical property estimator. To use the

estimator, themultiple diffusive reflection intensity profiles atmultiple distances as illustrated infigure 1 are
needed, and the intensity profile features as input vectors to the neural network are extracted.

3. Results and discussion

3.1. Generation of diffusive reflection intensity profiles at different distances from thematerial surface
Themodel forMC simulation inWang et al [23]was adopted and used to generate reflection intensity profiles.
The ranges of optical property valueswere found in [24]. In the simulations,μawas assigned as a randomnumber
between 0.1 cm−1 and 100 cm−1.μswas assigned as a randomnumber between 200 cm−1 and 1800 cm−1.
For the isotropy factor g, total forward scatteringmeans g=1 and isotropic scatteringmeans g=0. Formost
biologicalmaterials in the visible and near-infrared regions, the values of g range from0.69 to 0.99. In thiswork,
it was assigned as a randomnumber between 0.65 and 1. The refractive indexnwas assigned as a randomnumber
between 1 and 4. After the four randomoptical parameters are generated, theywill be provided to theMonte
Carlo algorithm to drive the simulation.Different levels of noisewere added to these reflection intensity profiles.

The photonswere incident orthogonally on thematerial at a point. The positionof photonwas specifiedby the
Cartesian coordinates (x, y, z). The photondirectionwas specifiedbyunit vector, r, which can be equivalently
describedby the directional cosines (μx,μy,μz):μx=r•x,μy=r•y, andμz=r•z,where x, y, and z are unit
vectors along each axis. The photonpositionwas initialized as (0, 0, 0) and the directional cosineswere initialized as
(0, 0, 1). The photon location anddirectionwere continuously updated according to the propagation rules.When
aphoton leaves the surface resulting frombackdiffusive reflection, its position (x0, y0, 0), direction (μx,μy,μz),
andweightwere recorded. For an intersecting surface at distanceh from z=0 (i.e.material surface), a photon
emitted from z=0would hit the surface z=h at (xh, yh, h), where xh=x0+uxh/μz and yh=y0+uyh/μz. In
thiswork, layers at equal incrementΔh (0.2 cm)were used, soh=iΔh (i is a positive integer). For theΔh
selection, it is not necessarily 0.2 cm,which is only used as an example to demonstrate the proposedmethod in this
work. Theneural network canbe trainedwith data fromany distances as long as the distance is not so far that the
signal is tooweak.

Figure 2 shows the profiles of diffusive reflection light intensities at different distances from thematerial
surface forμa=3.5 cm−1,μs=235 cm−1, g=0.73, and n=1.35. There are 80×100 grids
(0.05 cm×0.05 cm) for each intensity profile. The reflectance intensity (number of photons) is recorded for
each grid. It shows that the photons gradually spreadwith increasing distance from the surface.

3.2. Intensity profile independence
The six intensity profiles at different distance are independent to each other. To test the independence among
the six intensity profiles, reflectance intensity was plotted as a function of radius r from the incident light
location. Figure 3 shows the diffusive reflection intensity corresponding to the six intensity profiles infigure 2. It
is obvious that the curves are not parallel.When the reflectance intensity vectors are put into amatrixA, the rank
ofA is 6, whichmeans that these curves and the intensity profiles infigure 2 are independent. Since these vectors
are not orthogonal to each other, the correlation between themwill not be 0. They are independent. Each of
them cannot be linearly represented by others, so they provide complementary information for determining
optical properties.

The influence ofGaussian noise at different SNRs on the original intensity profile was tested. AGaussian
noise at SNR from10 dB to 80 dBwas added to the intensity profiles before further analysis, including intensity
profile feature extraction, neural network training and testing.
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3.3.Optical property estimation
For each level of noise, therewere totally 3,000 sets of intensity profile feature vectors (18,000 intensity profiles in
total), of which 2,700 sets were used as training data and 300 sets were used as test data. Figures 4(a)–(d) show the
average relative errors of the four estimated optical parameters changingwith SNR and the number (m) of
intensity profiles taken at different distances from the surface of thematerial for the test dataset. Figure 4 clearly
shows that the optical parameters estimated from a greater number (m) of intensity profiles aremore accurate
and robust against noise. For example, when SNR is 40 dB, themean relative errors (MRE) inμa,μs, g, and n for

Figure 2. Simulated profiles of diffusive reflection light intensities at different distances from thematerial surface (μa=3.5 cm−1,
μs=235 cm−1, g=0.73, and n=1.35). (1) distance 1: h=0 cm; (2)distance 2: h=0.2 cm; (3) distance 3: h=0.4 cm; (4) distance
4: h=0.6 cm; (5) distance 5: h=0.8 cm; and (6) distance 6: h=1.0 cm.Colors indicate intensity values of each grid.

4

Mater. Res. Express 7 (2020) 025403 L Liu et al



the test data set were 8.5%, 10.1%, 2.3%, and 5.7%, respectively, if intensity profiles at six distances were used;
while theMREs became 39.5%, 32.6%, 13.8%, and 6.8%, respectively if intensity profile at only one distance was
used. This clearly demonstrates thatmeasurements atmore distances contribute to parameter estimation.More

Figure 3.Diffusive reflection light intensities of each grid as a function of radius r from the incident light at different distances from the
material surface.

Figure 4.Themean relative errors of estimated optical properties as a function of SNR and the number of intensity profiles used as
input: (a) absorption coefficientμa, (b) scattering coefficientμs, (c) anisotropy coefficient g, and (d) refractive index n.

5

Mater. Res. Express 7 (2020) 025403 L Liu et al



independent data provide extra constraints formodel parameter estimation andmakemodel parametermore
robust. This is a universalmathematical solution. The proposed BP neural networkmay be retrained to take care
of other noises in future research.

The traditional least squaresmethod for estimating the optical properties was tested for comparison. The
method uses the Boltzmann transfer equation tofit the spatial diffusive reflection curve to deriveμaandμ’s. The
estimationmay fail to converge although only two optical properties were estimated. For example, the
theoretical diffusive light intensity was generated throughMC simulation forμa=3.5 cm−1,μs=235 cm−1,
g=0.73, and n=1.35. The trueμ’swas 63.45 cm

−1. In one least squares fitting, the algorithm converged to
μa=3.1 cm−1 andμ′s=56.64 cm−1; in another least squaresfitting, the algorithmconverged toμa=20.46 cm−1

andμ′s=0.016 cm−1. For the twofittings, nonoisewas added to the simulated theoretical diffusive reflection light
intensity. This clearly shows that although thefittings are good, the parameters obtained canbe totallywrong.

Different from themethod proposed in this work, the prediction of optical properties by the traditional
nonlinear least squares inverse algorithmwas affected significantly by the initial values. The diffusive light
intensity at thematerial surface follows a simple decaywith distance from the incident light point, which does
not provide rich dynamic information. In the traditional least squares algorithms, initial values should be
provided, which highly affect the performance of the algorithms. If we do not know the range of the values, it
would be very difficult to provide suitable initial values. An inappropriate initial valuemay lead big error in
parameter estimation.Without experience about the optical property ofmaterials, it is difficult to judgewhether
an estimated optical parameter from the traditional least square algorithms is valid.

4. Conclusions

To improve optical property estimation fromdiffusive reflectionmeasurement, amethodwas developed in this
workwhich uses diffusive light intensity profiles obtained at different distances from thematerial surfaces to
enhance data richness. The backpropagation neural network algorithmwas used to estimate theμa,μs, g, and n
at the same timewithout needing close initial values as the traditional least squares algorithms usually require.
The proposedmethod is robust against noise and the relative errors forμa,μs, g, and nwere less than 10%
respectively when the noise level was at 40 dB.
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