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with greenness on a global scale
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ABSTRACT. Long-term reconstructed solar-induced chlorophyll fluorescence (SIF) derived from
raw gridded SIF has been used for the estimation of gross primary production (GPP),
but the robustness of the spatial relationship may vary from location to location.
We examined the often-used linear relationship between GPP and SIF in terms of
R? values for varied locations globally using three GPP datasets (FLUXCOM, VPM,
PML) and three long-term reconstructed monthly SIF datasets (CSIF, SIF005, and
RTSIF). The results show that the R? value is a concave function of vegetation
greenness level (NDVI) on an annual or seasonal basis. The average R? is over
0.8 in areas where the annual average NDVI is in the range of 0.4 to 0.6, whereas
the R? is much lower where the annual average NDVI is less than 0.2 or greater
than 0.8. Prediction of GPP or SIF by three methods from five major environmental
variables revealed greater uncertainties in GPP and/or SIF at low or high greenness
levels as an apparent cause of the low R2. The results offer useful insights into how
global GPP may be effectively estimated from multi-satellite measured SIF.
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1 Introduction

Gross primary production (GPP), as the largest component of the global carbon cycle, drives the
functioning of global ecosystems."> With the increase in extreme climate events, accurate estima-
tion of GPP can provide useful information for understanding and managing the ecological envi-
ronment. GPP exhibits strong spatiotemporal heterogeneity because of different vegetation types,
phenology, and meteorological conditions.** The Fluxnet network, consisting of more than 200
eddy covariance measurement sites of different landcovers and climate types, synthesizes GPP-
related data as the basis for quantifying terrestrial photosynthesis around the world. Limited spatial
and temporal data resolutions, however, hinder the widespread use of global GPP estimates from

the network because an individual flux site only measures CO, fluxes over ~1 km?3¢
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Various models have been used for the estimation of global GPP, and the models can be
largely classified into three types:> (1) data-based models—these models are mainly based on
data analysis by machine learning and other methods to derive relationships between CO, flux
observations and optical indices or climate variables. Examples include FLUXCOM GPP’ and
MTE GPP.?® The accuracy of data-based models often depends on the density of regional sites.°
For areas with few measurement sites, the estimation accuracy of GPP is generally low; (2) light
use efficiency (LUE) models—LUE models are mainly based on empirical equations of light
energy utilization in photosynthesis. The main differences between various LUE models are
in the environmental stress factors or the maximum LUE factor used.> MODIS GPP’ and
VPM GPP'? are LUE models. The limitations of these models lie in the a priori LUE,,,, and
the limited roles of the selected stress factors; (3) process-based models—these models are based
on the physiological processes of vegetations, which include PML GPP'!' and BESS GPP.!” The
complexity of plant physiological processes in different areas and meteorological conditions
leads to a diversity of model parameters and the need for input information, which in turn leads
to uncertainties in GPP estimation.'*!* In general, a simple model structure cannot track regional
productivity dynamics, especially in extreme environmental conditions or low-productivity
regions, while complex model structures, especially process-based models, may involve uncer-
tainties and propagation of uncertainties from input data."

Solar-induced fluorescence (SIF), a co-product of plant photosynthesis, is sensitive to plant
physiological changes.'>!® With the retrievals of satellite-based SIF data such as Greenhouse
Gases Observing Satellite (GOSAT), Scanning Imaging Absorption Spectrometer for
Atmospheric Chartography (SCTAMACHY), Global Ozone Monitoring Experiment-2 (GOME-2),
and Orbiting Carbon Observatory-2 (OCO-2), Tropospheric Monitoring Instrument (TROPOMI);
SIF-based ecosystem environmental stresses monitoring!’ and photosynthetic capacity
inversions'®! have become the latest research efforts. SIF has shown potential for estimating
GPP from specific sites to global spatial scales’®>? or from instantaneous to monthly time
scales”>® because of its good linear relationships with GPP. Raw SIF datasets, however, are
rough patterns of the global SIF distribution obtained by averaging noisy, sparse, and infrequent
samples over large footprint sizes.”” For long-term and high-resolution needs, long-term
reconstructed SIF datasets based on fusion methods and other remote sensing data (such as
surface reflectance) are generated, which include CSIE?® SIF005,”° GOSIF,*® RSIE>' and
RTSIE3? As a result of their long-time spans and high spatial resolutions, they are widely
used in the estimation of regional or global GPP.**** Shekhar et al. showed the advantages of
four reconstructed SIF datasets over NDVI (normalized difference vegetable indices) and EVI
(enhanced vegetable indices) in estimating GPP of different vegetation types at the site scales.*
NDVI, nonetheless, is a greenness index widely used to indicate differences in vegetation density
and health.

On a global scale, the signal-to-noise ratio of remote-sensing data, vegetation phenology,
physiological or physical factors, viewing-illumination geometry, and environmental factors col-
lectively and interactively affect the relationship between GPP and SIF, but the intrinsic mech-
anisms underpinning such cross-scale relationships are still unknown.*® As a result, although a
spatial distribution of the ratio of GPP over SIF can result in a fine-grained estimation of GPP
based on SIF, the reliability of such a linear relationship between GPP and SIF may vary with
location and needs to be examined. Chen et al. presented a global distribution of the GPP/SIF
ratio in a normalized form, showing that the GPP/SIF spatial distributions in tropical rainforest
and Australian shrublands areas vary with the selected GPP or SIF datasets.>” An analysis of the
robustness of GPP estimation from SIF globally based on different data sources may help reduce
biases introduced by the processing of GPP and SIF data, but such studies are lacking. Vegetation
greenness, often measured with NDVI, represents vegetation growth state and coverage.®® It is,
therefore, meaningful to analyze the dependence of the relationship between GPP and SIF on
greenness levels.

Environmental variables are important factors affecting ecosystem functions and therefore
the GPP-SIF relationship.*’ Environmental variables are widely used as inputs for predicting
regional or global GPP and SIF based on different machine learning methods.”**%
Variations in the influences of environmental variables on GPP and SIF will change the con-
sistency of variations between the two and thus add uncertainties in the GPP-SIF relationship.
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Determining the environmental effects on GPP and SIF is thus helpful in explaining the changes
in GPP-SIF relationship in different regions.

In this work, we analyzed the robustness of the linear relationship between GPP and SIFon a
global scale based on three commonly used GPP datasets and three long-term reconstructed SIF
datasets. This entailed (1) evaluating GPP variations globally to illustrate their dependence on
greenness (NDVI), (2) assessing the robustness of GPP prediction from long-term reconstructed
SIF as influenced by greenness, and (3) analyzing possible sources of variability by observing the
influences of environmental variables on GPP and SIF in different greenness levels based on
machine learning methods.

2 Materials and Methods

2.1 GPP Data

Three GPP datasets, the FLUXCOM GPP (a data-based model), the PML GPP (a process-based
model), and the VPM GPP (an LUE model) were used. The FLUXCOM GPP data were derived
from training three machine learning algorithms (model tree ensemble, artificial neural networks,
and multivariate adaptive regression splines and random forests) based on data from 224
FLUXNET sites, meteorological measurements, and satellite data.”*° All FLUXCOM GPP data
are available from Ref. 41. Average monthly data from 2001 to 2018 resampled to a spatial
resolution of 0.5 deg were used for this study.

The PML GPP dataset is produced from a coupled diagnostic biophysical model,'' which
was originally derived from a biophysical model for surface conductance (G,) based on the
Penman-Monteith (PM) equation.*? Monthly PML GPP data with a spatial resolution of 0.5 deg
from 2003 to 2017 are processed by the Google Earth Engine.*’

The VPM GPP dataset is based on the LUE model, and it is expressed as the product of
maximum light energy use efficiency (e,,), photosynthetic active radiation (PAR) absorbed by
chlorophylls (APAR), temperature stress limitation (7', ), and water stress limitation (W.gja.):

GPP = Emax X Tscala.r X Wscala.r X APAR, (1)

where APAR is expressed as the product of the fraction of absorbed photosynthetic active
radiation by chlorophylls (fPAR) and PAR with fPAR estimated from EVI, T, and W,
in are expressed as follows, respectively:'®*

(T - Tmax) X (T B Tmin)

T calar = , 2
seakar (T - Tmax) X (T - Tmin) - (T - Topt)2 @)
W LrLsw 3

scalar — 1 +LSWImax ’

where T in, Tmax> and Ty are the minimum, maximum, and optimum temperatures for vegeta-
tion photosynthesis, respectively; LSWI, .. is the maximum LSWI (land surface water index)
during the growing season over several years; g, is a biome-specific parameter and is obtained
from a lookup-table (LUT) from the MODIS land cover data. Monthly data with a spatial res-
olution of 0.5 deg from 2001 to 2016 are from Ref. 45.

2.2 SIF Data

Three long-term and high-resolution SIF datasets generated by fusion methods (e.g., machine
learning), named CSIF,?® SIF005,% and RTSIF,*? were used in this study. CSIF was produced by
training a neural network with surface reflectance from MODIS and daily sounding-based SIF
retrievals at 757 nm from OCO-2. Data at 0.5 deg spatial resolution and 4-day temporal reso-
lution, available from Ref. 46, were averaged to monthly resolution from 2001 to 2016 in
this work.

SIF005 was based on a framework that circumvents the discrepancies, such as retrievals,
instrument characteristics, overpass time, and viewing-illumination angles, based on cumulative
distribution function (CDF) matching to correct the offset between SIF values between
SCIAMACHY and GOME-2. Monthly data at 0.05 deg spatial resolution are available from

Journal of Applied Remote Sensing 014514-3 Jan-Mar 2025 e Vol. 19(1)



Fu et al.: Robustness of gross primary production estimation from long-term. ..

o NDVI
o
© (0.8,0.9)
Z e (0.7,0.8)
o
© (0.6,0.7)
z
N (0.5,0.6)
(2]
(0.4,0.5)
o (0.3,0.4)
» (0.2,0.3)
8 (0.1,0.2)
(0,0.1)
180° 120°W 60°W 0° 60°E 120°E 180°

Fig. 1 Annual average NDVI from 2001 to 2020.

Ref. 47. They were resampled to 0.5 deg spatial resolution from 2003 to 2018 without changes to
the time interval.

RTSIF is produced by running the Extreme Gradient Boosting (XGBoost) algorithm on raw
un-gridded TROPOMI SIF data, surface reflectance, PAR, land surface temperature, land cover,
and C3/C4 fraction. Data at 0.05 deg spatial and 8-day temporal resolutions, available from
Ref. 48, were resampled to 0.5 deg spatial resolution and monthly time interval from 2001
to 2020.

2.3 Vegetation Greenness

The annual NDVI data from the MODIS satellite were used to represent vegetation greenness.
Monthly NDVI values at 0.05 deg spatial resolution are directly available from MOD13C2.%
They were resampled to 0.5 deg spatial resolution in this work. Figure 1 shows the global annual
average NDVI divided into nine levels from O to 1. The global average NDVI values for the four
seasons (MAM: March to May, JJA: June to August, SON: September to November, DJF:
December to February) were also calculated (Fig. 11 in Appendix).

1

2.4 Landcover

The dominant land cover class from MCDI12C1 is used in this study,” of which adopt the
International Geosphere—Biosphere Program (IGBP) land cover classification scheme consisting
of 17 major land cover classes.’® In this study, eight major vegetation classes were used, which
include CRO (croplands), DBF (deciduous broadleaf forest), EBF (evergreen broadleaf forest),
ENF (evergreen needles forest), GRA (grasslands), MF (mixed forest), SAV (savannas and
woody savannas), and SHR (closed shrublands and open shrublands). To match the GPP and
SIF data, land cover data were aggregated to 0.5 deg-by-0.5 deg grids by the nearest sampling
method. An example global distribution of the eight major vegetation types is shown in Fig. 12 in
the Appendix.

2.5 Climate Data

Environmental variables, including SWR (short-wavelength radiation), minimum temperature
(TMP), precipitation (PRE), vapor pressure deficit (VPD), and soil moisture (SM), from
TerraClimate were used in this work. TerraClimate is a dataset with monthly climate and climatic
water balance for global terrestrial surfaces. It uses climatically aided interpolation with high-
spatial-resolution climatological normals from the WorldClim dataset and coarser-spatial-reso-
lution and time-varying data from CRU Ts4.0 and the Japanese 55-year Reanalysis (JRASS).”!
Monthly climate data with a spatial resolution of 0.5 deg from 2001 to 2020 are processed in this
work using the Google Earth Engine.’

2.6 Data Analysis

On a global scale, the linear relationship between GPP and SIF provides a direct and effective
method for estimating global GPP based on readily available SIF data.**** It is thus meaningful
to analyze the robustness of this linear dependence in terms of R? values from different data
sources of GPP and SIF. Linear regression of GPP versus SIF was performed for each location
(pixel). The resulting slope and R? as functions of location and greenness level.
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Partial least squares regression (PLSR), random forests (RF), and K-nearest neighbor (KNN)
algorithms with five inputs and two outputs were used to determine the effects of environmental
variables, including short-wavelength radiation (SWR), minimum temperature (TMP), precipi-
tation (PRE), vapor pressure deficit (VPD), and soil moisture (SM), on GPP and SIF. In this
study, the prediction of GPP or SIF based on environmental variables was implemented at each
location (pixel). Compared with other machine learning algorithms and deep learning algorithms,
PLSR, RF, and KNN are more efficient and suitable for small-scale data sets and have low
parameter adjustment complexity. For model training, 80% of monthly data for each location
(pixel) were randomly selected and the remaining 20% were used for model testing. The R>
values for GPP and SIF prediction were determined for each pixel and then analyzed as functions
of location and greenness level.

3 Results

3.1 Global GPP Variations with Season and Greenness
To observe GPP variations globally, the seasonal averages of the three GPP datasets are displayed
in Fig. 2. The datasets show similar seasonal patterns on the global scale. In MAM (March to
May), the high-GPP areas are mainly in the tropical rain forests, southwestern United States, East
Asia, and Europe. In JJA (June to August), the high-GPP areas are mainly in the tropical rain
forests, Western United States, and Eurasia except for Central Asia. In SON (September to
November), the high-GPP areas are mainly in the tropical rain forests, whereas in DJF
(December to February), the high-GPP areas are mainly in southern Africa and South America.
The GPP maps in Fig. 2 show a positive correlation between vegetation greenness and GPP
yield, as can be expected, which is confirmed by the plot of GPP versus NDVI in Fig. 3. Among
the three datasets, PML gives higher GPP than FLUXCOM and VPM where NDVI > 0.2.
Compared with FLUXCOM, VPM GPP gives higher GPP at lower greenness levels but lower
GPP at higher greenness levels. In addition, the temporal GPP correlations among the three data-
sets show similar global patterns and are the lowest (R* < 0.5) in the EBF areas in the rainforest
and the SHR areas in Australia (Fig. 4), which shows greater inconsistencies and uncertainties in
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Fig. 2 Spatial patterns of seasonal mean values of the three GPP datasets. MAM (March to
May), JJA (June to August), SON (September to November), and DJF (December to
February). (a) FLUXCOM_MAM. (b) FLUXCOM_JJA. (c) FLUXCOM_SON. (d) FLUXCOM_DJF.
(e) PML_MAM. (f) PML_JJA. (g) PML_SON. (h) PML_DJF. (i) VPM_MAM. () VPM_JJA.
(k) VPM_SON. (I) VPM_DJF.
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Fig. 4 Linear correlations between GPP datasets. (a) FLUXCOM versus PML. (b) FLUXCOM
versus VPM. (c) PML versus VPM.

estimating GPP in these regions. The strong dependence of GPP on greenness indicates that the
dependence of GPP on SIF may also vary with greenness as shown in the following subsection.

3.2 Global Variations in the Linear Dependence of GPP on SIF
Linear regression was used to analyze the dependence of GPP on SIF for different locations and
Fig. 5 shows the spatial distribution of the regression R? values for each of the three GPP datasets
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Fig. 5 Spatial patterns of R? for linear regression of each of the three GPP datasets versus each of
the three SIF datasets. The timeframe for each pair was determined by the intersection of the GPP
and SIF datasets: (a) FLUXCOM versus CSIF: 2001 to 2016; (b) PML versus CSIF: 2003 to 2016;
(c) VPM versus CSIF: 2001 to 2016; (d) FLUXCOM versus SIF005: 2003 to 2018; (e) PML versus
SIF005: 2003 to 2017; (f) VPM versus SIF005: 2003 to 2016; (g) FLUXCOM versus RTSIF: 2001 to
2018; (h) PML versus RTSIF: 2003 to 2017; (i) VPM versus RTSIF: 2001 to 2016.
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Fig. 6 Spatial patterns of slopes of linear regression between each of the three GPP datasets and
each of the three SIF datasets. The GPP-SIF data pairs are indicated by the subfigure labels.
(@) FLUXCOM versus CSIF; (b) FLUXCOM versus SIF005; (c) FLUXCOM versus RTSIF;
(d) PML versus CSIF; (e) PML versus SIF005; (f) VPM versus SIF005; (g) FLUXCOM versus
RTSIF; (h) PML versus RTSIF; (i) VPM versus RTSIF.

(FLUXCOM, PML, VPM) with respect to each of the three long-term reconstructed SIF datasets
(CSIF, SIF005, RTSIF). The results show generally high correlations between SIF and GPP,
especially in areas above 30° N, but the R? values vary greatly with location. In particular, the
R? is low for Central Asia, North Africa, the tropical rainforest, and Australian shrublands.

For further analysis of the spatial variations in the regression R?, the slope values of linear
regression of GPP versus SIF are mapped in Fig. 6 for different pairs of GPP and SIF datasets.
The regression slope values depend on the data pair as shown by the differences among the
subfigures, but an interesting observation can be made from the relative variations within each
subfigure. For areas with relatively high R? in Fig. 2, such as areas above 30° N, the slope values
are relatively high and uniform, while for areas with relatively low R?, such as Central Asia and
the tropical rainforest, the slope values tend to be low, variable, or both. A low slope value indi-
cates a weak dependence of GPP on SIF, whereas slope variations indicate a lack of consistency,
both of which lead to low R? values.

Comparing Fig. 1 with Figs. 2 and 4 reveals a form of association between greenness and
regression R? and slope (examine Central Asia, North Africa, the tropical rainforest, and
Australia, where the NDVI is low or high). Figure 7 plots the R? against the annual average
NDVI values (binned into nine discrete levels) for different GPP and SIF dataset combinations.
The linear regression R? values of GPP versus SIF show a strong dependence on the greenness

—&— CSIF
—&— SIF005
—8— RTSIF

01 02 03 04 N:)..:]I 06 07 08 09 01 02 03 O.AN:)..;I 06 07 08 09 01 02 03 04 N:)jv]o.s 07 08 09
Fig. 7 Linear regression R? of GPP versus SIF for different dataset combinations as a function of
greenness level. The NDVI values were rounded up to the nearest tenth; thus, 0.1 represents the
interval [0, 0.1], and 0.2 represents the interval (0.1, 0.2] and so on. (a) FLUXCOM. (b) PML.
(c) VPM.
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level for all the dataset pairs. With increasing greenness level, the regression R? increases first,
levels, and then decreases as a concave function of NDVI. The R? reaches a maximum (average
R? over 0.8) in areas where the annual average NDVI is in the range of 0.4 to 0.6. The R? is much
lower where the annual average NDVI is less than 0.2 or greater than 0.8.

For further analysis of its dependence on greenness, linear regression of GPP versus SIF was
performed by season and the R? is plotted in Fig. 8 against the average NDVI for the four seasons
(shown in Fig. 11 in Appendix). The linear regression R> of GPP versus SIF remains a concave
function of greenness level for all seasons and dataset pairs. The R? in the MAM and SON
seasons is higher than that in JJA and DJF across the NDVI levels. In MAM and SON, the
R? in the mid-level NDVI areas can be higher than 0.8, but the highest R? in JJA and DJF is
only about 0.6, except for the VPM-CSIF dataset pair in JJA (Fig. 8).

Since different greenness levels often result from different vegetations, linear regression of
GPP versus SIF was performed by vegetation classes and the R? values are plotted with respect to
the annual average NDVI in Fig. 9. The results show that while different vegetation classes
appear in different ranges of NDVI, the regression R” curves collectively make up a concave
function similar to the overall R? values shown in Fig. 7. The low-greenness areas with low
R? are mainly GRA and SHR vegetation classes, whereas high-greenness areas with low R?
are mainly EBF and SAV vegetation classes. Some vegetation classes such as GRA and SAV
are widely distributed around the world, and their NDVI levels and R? vary greatly in different
areas. Other vegetation classes, such as CRO, DBF, ENF, and MF, are mainly in the middle levels
of greenness with high R?.
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Fig. 8 Linear regression R? of GPP versus SIF by season as a function of greenness level for
different dataset combinations (MAM: March to May, JJA: June to August, SON: September to
November, DJF: December to February). (a) MAM_FLUXCOM; (b) MAM_PML; (c) FLUXCOM
versus RTSIF; (d) PML versus CSIF; (e) PML versus SIF005; (f) PML versus RTSIF; (g) VPM
versus CSIF; (h) VPM versus SIF005; (i) VPM versus RTSIF.
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0.0

NDVI NDVI NDVI

Fig. 9 Regression R? of GPP versus SIF by vegetation classes for nine combinations of GPP and
SIF datasets as functions of greenness levels. CRO—croplands, DBF—deciduous broadleaf
forest, EBF—evergreen broadleaf forest, ENF—evergreen needles forest, GRA—grasslands,
MF—mixed forest, SAV—savannas and woody savannas, and SHR—closed shrublands and
open shrublands. (a) FLUXCOM versus CSIF; (b) PML versus CSIF; (c) VPM versus CSIF;
(d) FLUXCOM versus SIF005; (e) PML versus SIF005; (f) VPM versus SIF005; (g) FLUXCOM
versus RTSIF; (h) PML versus RTSIF; (i) VPM versus RTSIF.

3.3 Influence of Environmental Variables on GPP and SIF

As an analysis of possible sources of variation in the GPP-SIF relationship, the influences of five
commonly used environmental variables on GPP and SIF were observed by training models with
five inputs (SWR, TMP, PRE, VPD, and SM) and two outputs (GPP, SIF) by three methods. The
GPP and SIF prediction R? values for the tested datasets are plotted in Fig. 10 as functions of
NVDI for the PLSR method. The results from the RF and the KNN methods are similar to Fig. 10
and are included in the Appendix as Figs. 13 and 14. We can observe from the figure that the R?
for GPP estimation is generally higher than that for SIF estimation at nearly all greenness levels
and often by greater amounts at low or high greenness levels. More interestingly, the R? varies
with greenness level in a similar concave fashion as observed for the linear regression R? of GPP
versus SIF. The lower R? values at low or high greenness in Fig. 10 mean that GPP, SIF, or both
have greater portions of their variances attributable to other sources than the five inputs and are
thus less predictable, which may explain the lower linear regression R? between GPP and SIF at
low or high greenness.

4 Discussion

4.1 Uncertainties in Different GPP Estimation Methods
Many methods have emerged for global GPP estimation, and they can be divided into data-based
models, LUE models, and process-based models. These models have resulted in a wide range in
the estimated global annual sum carbon emission from 112 to 169 Pg Cyear~!,>>** indicating
uncertainties and variations in the models. These uncertainties are observed in this work. As
shown in Fig. 3, the three GPP datasets (FLUXCOM, PML, and VPM) used, which are based
on three different estimation methods, differ among areas with different greenness levels.
Remote sensing data, such as surface reflectance, vegetable indices, and various meteoro-
logical variables, are used as auxiliary constraints to estimate global GPP, but inconsistent
performance among GPP datasets has been observed in studying environmental stresses (such
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Fig. 10 R? values as a function of NDVI for GPP and SIF prediction from SWR, TMP, PRE, VPD,

and SM by a PLSR model. (a) FLUXCOM_CSIF; (b) FLUXCOM_SIF005; (c) FLUXCOM_RTSIF;
(d) PML_CSIF; (e) PML_SIF005; (f) PML_RTSIF; (g) VPM_CSIF; (h) VPM_SIF005; (i) VPM_RTSIF.

as drought, high temperature), illustrating uncertainties among the GPP estimation models.>
On a global scale, biases in these auxiliary factors, such as inversion errors in surface reflectance
by cloudy climate in rainforest areas,”®*> low signal-to-noise ratios of different remote sensing
data in low-productivity ecosystems,”’*® will lead to uncertainties in GPP estimation in these
areas.

Other sources of uncertainty in global GPP estimation include the selection of some
vegetation class-specific empirical parameters, such as €., in the LUE models and V., in
the process-based models. There have been studies specifically addressing these issues.”®
The distribution of flux tower sites used for model training in data-based models is also one
source of uncertainty. For regions with fewer flux tower sites, the uncertainty of GPP estimations
is generally larger.® There are fewer tower sites in the tropical rainforest, the Australian SHR
region, and the arid region of Central Asia, which can lead to larger errors in GPP estimation
as reflected by the lower linear correlations or greater differences among the GPP datasets shown
in Fig. 4.

4.2 Robustness of a Linear Relationship Between GPP and SIF
Based on the basic light use efficiency model, SIF = APAR X ¢y X f. and GPP =

APAR X LUE, we can get % = % ]t to link and interpret the GPP-SIF relationship, where

¢r is the overall light use efficiency for fluorescence emission, LUE is the light use efficiency for
photosynthesis, and f. is the portion of fluorescence detected by sensors.’ APAR, LUE/ ¢,
and f.., as factors in the GPP-SIF relationship, are closely related to vegetation greenness,
canopy structure, and environmental factors.®” The robustness of the GPP-SIF relationship,
therefore, varies with location as shown by the regression R? in Fig. 5. Further, the global dis-
tribution of the slope in Fig. 6 is not a simple function of the greenness level, because it depends
on the selected dataset pairs. For areas with relatively high R? in Fig. 6, such as areas above
30° N, the slope values are relatively uniform from different dataset pairs, whereas for areas
with relatively low RZ, such as Central Asia and the tropical rainforest, the slope tends to be
different from different dataset pairs. Low R? values thus mean GPP-SIF slope inconsistency
and non-robustness. These spatial variations in the linear regression slope for GPP versus
SIF (Fig. 6) are consistent with the results of Chen et al.’” The ratio of GPP/SIF in tropical rain

forests and Australian shrublands, however, varies with data sources,’’ which supports the
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relatively low R? of GPP versus SIF in these areas from this work (Fig. 5). The GPP-SIF R?
for different vegetation classes (Fig. 9) are consistent with the what has been reported for
North America.%

Figure 7 shows that the R? of GPP versus SIF varies with greenness in a concave fashion. In
low-greenness areas where NDVI < 0.2, the SIF values are usually less than 0.1 [see Figs. 15(a)—
15(c) in Appendix, for examples]. Because of the fragile ecosystems and low signal-to-noise
ratios caused by sparse vegetation, the linear relationship between GPP and SIF in these areas
is weak.””>® In high-greenness areas where NDVI > 0.8, on the other hand, satellite measure-
ments cannot detect all fluorescence activities because of the complexity of the ecosystem and
cloudy weather in high productivity areas,?®*> or the lack of variations in GPP and SIF in the
steady climate conditions in rainforest areas [see Figs. 15(d)-15(f) in Appendix], the linear rela-
tionship between GPP and SIF is also weak. As shown in Fig. 7, the linear relationship between
GPP and SIF is the best in mid-greenness areas (0.3 < NDVI < 0.7), where there are more types
of plants (Fig. 9) and differences among different types of plants are less influential than in the
low- or high- greenness areas. Experiments have shown, for example, that SIF corrected by a site-
specific f., can improve the linear relationship between GPP and SIF, but there is still a lack of a
method for the global scale, especially for the comprehensive evaluation of multiple data
sources.** The linear regression R? of GPP versus SIF remains a concave function of greenness
level for all seasons and dataset pairs (Fig. 8). It can be known that the linear regression R? values
of GPP versus SIF in MAM and SON were higher than those in JJA and DJF across the NDVI
levels. In fact, no matter whether in the north or south hemisphere, plants in MAM or SON
(spring or autumn) have moderate photosynthesis intensity, and the coupling relationship
between GPP and SIF is more significant. In JJA and DJF, some extreme climates (such as strong
light, high temperature, extreme cold) may cause photosynthesis to approach saturation or
stop,%* 8 so the changes of SIF and GPP are no longer completely synchronized.

Five environmental variables affecting vegetation photosynthesis predict or explain GPP and
SIF to varied degrees, depending on greenness (Fig. 10, and Figs. 13 and 14 in Appendix). The
R? for GPP or SIF in the mid-greenness areas is greater than that of low- or high-greenness areas.
This concave shape resembles and may partially explain the concave shape of the liner regression
R? of GPP versus SIF because the less predictable/determinable GPP or SIF is, the less definitive
the GPP-SIF relationship is likely to be. In addition, GPP and SIF are affected by physiological
and non-physiological factors, and the different physiological responses of GPP and SIF to envi-
ronmental factors will lead to different predicted R for GPP and SIF. GPP is the ultimate product
of photosynthesis and may be more sensitive to environmental factors, whereas SIF is mainly an
intermediate byproduct of photosystem II,'> which would cause R? for GPP estimation from five
environmental variables generally higher than that for SIF estimation at nearly all greenness
levels (Fig. 10). However, the detailed explanatory power of environmental factors for GPP and
SIF physiology deserves further study. For non-physiological factors, SIF, as an optical signal,
can be reflected and reabsorbed in the canopy and then only part of it can be received by sensors
(The received portion is represented as f...), and it is also affected by viewing-illumination
geometry,'>®! which may partly explain that R? for GPP estimation is generally higher than that
for SIF estimation. To analyze the relationship between GPP and SIF on a global scale, one
should, therefore, not only pay attention to the physiological connections between GPP and
SIF as influenced by environmental variables but also to low signal-to-noise ratios caused by
weak signals in low-greenness areas, complex system structures, and cloudy weather in
high-greenness areas. Uncoupling the differential contributions of physical and physiological
factors to the GPP-SIF relationship still requires further study.

4.4 Implications From This Study

In this work, we only investigated the spatial distribution of R? of a linear relationship between
GPP and SIF on the global scale. Nonlinear to linear relationships between GPP and SIF have
been extensively studied at the leaf-canopy level, but the biophysical mechanisms behind these
relationships on a global scale are still lacking. NPQ is another light energy destination other than
photochemistry and chlorophyll fluorescence and its influence on the GPP-SIF relationship at
different time scales should also be considered in future work (such as the decoupling of NPQ, on
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the diurnal scale and NPQ, on the seasonal scale). Clearly, more mechanistic process studies are
needed to understand the nature of the GPP-SIF relationship. In canopy-global cross-scale analy-
sis, existing studies have shown various linear relationships between GPP and SIF from hourly to
monthly scales.® Further research, thus, should comprehensively analyze the reliability of the
relationship between GPP and SIF at different spatiotemporal scales and identify the key drivers
across scales.

In addition to the mechanisms between GPP and SIF on a global scale, accurate retrievals of
SIF or GPP, especially in areas with low or high greenness, should be considered as one of the
directions to improve the accuracy of GPP estimation based on SIF. For satellite-measured SIF,
statistical retrieval algorithms have gradually replaced methods based on the physical processes,
which may ignore some complex details in atmospheric corrections. The selection of parameters
in the statistical inversion algorithm, such as the reference surface, the fitting window, and the
number of principal components (PCs), are still focuses of work to improve the accuracy of the
algorithm. In addition, the current retrieval algorithm of red-band SIF is still being studied, which
seems to be able to provide a new basis for decoupling the contributions of PSI and PSII to
chlorophyll fluorescence. The retrievals of existing satellite SIF data are based on different
algorithms and bands, and detector degradation has been detected in satellite sensors.”® Further
research is needed to standardize multi-source SIF satellite data.

5 Conclusion

In this work, we have shown that on a global scale, the robustness of a linear relationship between
GPP and SIF follows a concave function of vegetation greenness. The linear relationship is the
strongest in the mid-greenness areas, and the linear relationship is much weaker where vegetation
greenness is low (NDVI < 0.4) or high (NDVI > 0.6). This study demonstrates the global robust-
ness pattern for estimating GPP based on satellite SIF due to the ability of SIF to track photo-
synthesis. Low- or high-greenness areas should receive more attention to increase the accuracy of
global GPP estimates. Further, the prediction of GPP and SIF from five environmental variables
indicates that a lack of determinedness in GPP or SIF in low or high-greenness areas partially
explains the weaker linear relationship between GPP and SIF. The results provided useful
insights into the robustness of estimating GPP in different areas globally based on multi-satellite
measured SIF.

6 Appendix

Figures 11-15 provide additional insights supporting the main findings of this study. Figure 11
presents Seasonal average NDVI from 2001 to 2020. Figure 12 presents Global distribution of
eight major vegetation classes in 2015. Figure 13 highlights R? values as a function of NDVI for
GPP and SIF prediction from SWR, TMP, PRE, VPD, and SM by an RF model, followed by
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Fig. 11 Seasonal average NDVI from 2001 to 2020. (a) MAM (March to May), (b) JJA (June to
August), (c) SON (September to November), and (d) DJF (December to February).
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Fig. 12 Global distribution of eight major vegetation classes in 2015. CRO—croplands, DBF—
deciduous broadleaf forest, EBF—evergreen broadleaf forest, ENF—evergreen needles forest,
GRA—qgrasslands, MF—mixed forest, SAV—savannas and woody savannas, and SHR—closed
shrublands and open shrublands.
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Fig. 13 R? values as a function of NDVI for GPP and SIF prediction from SWR, TMP, PRE,
VPD, and SM by an RF model. (a) FLUXCOM_CSIF. (b) FLUXCOM_SIF005. (c) FLUXCOM_
RTSIF. (d) PML_CSIF. (e) PML_SIF005. (f) PML_RTSIF. (g) VPM_CSIF. (h) VPM_SIFO005.
(i) VPM_RTSIF.

Fig. 14, which demonstrates R” values as a function of NDVI for GPP and SIF prediction from
SWR, TMP, PRE, VPD, and SM by a KNN model. Lastly, Fig. 15 summarizes GPP-SIF scatter
plots for example locations with low or high greenness.
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Fig. 14 R? values as a function of NDVI for GPP and SIF prediction from SWR, TMP, PRE, VPD,
and SM by a KNN model. (a) FLUXCOM_CSIF. (b) FLUXCOM_SIF005. (c) FLUXCOM_RTSIF.
(d) PML_CSIF. (e) PML_SIF005. (f) PML_RTSIF. (g) VPM_CSIF. (h) VPM_SIF005. (i) VPM_RTSIF.
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Fig. 15 GPP-SIF scatter plots for example locations with low greenness (a)-(c), NDVI < 0.20 and
high greenness (d)-(f), NDVI > 0.8.
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