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Abstract—A subspace code is defined as a collection of subspaces
of an ambient vector space, where each information-encoding
codeword is a subspace. This paper studies a class of spatial
sensing problems, notably direction of arrival (DoA) estimation
using multisensor arrays, from a novel subspace coding perspec-
tive. Specifically, we demonstrate how a canonical (passive) sensing
model can be mapped into a subspace coding problem, with the
sensing operation defining a unique structure for the subspace
codewords. We introduce the concept of sensing subspace codes fol-
lowing this structure, and show how these codes can be controlled
by judiciously designing the sensor array geometry. We further
present a construction of sensing subspace codes leveraging a
certain class of Golomb rulers that achieve near-optimal minimum
codeword distance. These designs inspire novel noise-robust sparse
array geometries achieving high angular resolution. We also prove
that codes corresponding to conventional uniform linear arrays
are suboptimal in this regard. This work is the first to establish
connections between subspace coding and spatial sensing, with the
aim of leveraging insights and methodologies in one field to tackle
challenging problems in the other.

I. INTRODUCTION

A subspace code associated with an ambient vector space
is defined as a subset of the set of all subspaces of V. Subspace
codes find applications in non-coherent communications where
the medium only preserves the subspace spanned by the input
vectors into the system rather than the individual symbol entries
of the vectors. The notion of subspace codes and utilizing them
for non-coherent communication was first introduced in the
seminal work by Koetter and Kschischang [1] in the context
of randomized network coding, where subspace codes were
employed over finite fields (i.e., V = F}, for some power
of prime ¢). Recently, this framework was extended to the
field of real/complex numbers (¥ = RM or ¥V = CM), and
analog subspace codes were demonstrated to enable reliable
communication over wireless networks in a non-coherent fash-
ion [2]]. In particular, it was shown that the subspace error
and erasure-correction capability of an analog subspace code is
characterized by the minimum subspace distance—a variation
of the chordal distance [2]—and new algebraic constructions
for complex subspace codes were introduced [2], [3]]. Subspace
codes are also closely related to Grassmann codes [4], [5],
where the dimension of all the subspace codewords are equal.
Subspace codes extend Grassmann codes by allowing subspace
codewords of different dimensions to be included in the code.
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Parallel to these developments, the classical topic of sensing
has recently experienced renewed research interest, in large
part due to increasingly closer integration of sensing and
communications functionalities with the goal of efficiently
utilizing spatio-temporal resources and attaining improved spa-
tial selectivity, resolution, identifiability, and signal-to-noise-
ratio (SNR) [|6]—[9]. Fully harnessing these advantages requires
judiciously designing the sensor array geometry, which has led
to a great interest in sparse arrays. They offer many benefits
over conventional uniform arrays, such as the ability to identify
more signal sources / targets than sensors, as well as super-
resolution capabilities and robustness to noise [[10]-[12]. These
sensing tasks involve estimating parameters, such as directions-
of-arrival (DoAs) of emitters / targets, encoded in a subspace of
the received signal. This hints at a deep underlying connection
between subspace codes and sensing beckoning to be explored.

The purpose of this paper is to establish first contact between
the two fields of subspace coding and sensing, showing that
they actually share many fundamental objectives despite having
so far evolved independently. Herein, we take preliminary
steps towards identifying core mathematical problems of mutual
interest and providing solutions to a subset of them. Firstly, we
establish that the array geometry (especially of sparse arrays)
plays an important role in the design of structured subspace
codes, inspiring novel constructions that achieve optimal mini-
mum subspace distance. A key discovery is that the difference
set (e.g., see [13])—a key mathematical object in the study of
sparse arrays, arising from the sensing model—also emerges
naturally from the minimum distance of subspace codes. Sec-
ondly, we show that the classical problem of DoA estimation
using a multisensor array can be mapped into a subspace coding
problem. Interestingly, the sensing model imposes a unique
structure on the subspace codewords, which can be controlled
by designing the array geometry. This leads to the new concept
of sensing subspace codes that can be also realized in practice
by spatial sampling strategies such as antenna placement and
selection. To showcase the applicability of these codes and the
novel insight into DoA estimation and array design yielded
by them, we consider designing a one-dimensional sensing
subspace code in CM for a single source / target model.
We propose a code construction leveraging a special type of
Golomb rulers with desirable modular arithmetic properties that
achieve near-optimal minimum subspace distance. This gives
rise to novel noise-robust sparse array designs. Conversely, we
show that codes based on uniform sampling—corresponding to



conventional uniform linear arrays—are strictly suboptimal in
this regard. We discuss several directions for future work with
the aim to motivate further research in this hitherto unexplored
intersection of coding theory and sensing.

Notation: For N €N, let [N] denote {1,2,..., N}. Also, let
Z(N) ef {e72™/N 'n € [N]—1} denote the set of N-th roots of
unity. The column space of a matrix X is denoted by (X). For
a vector space ) let P(V) denote the set of all subspaces of V.
Also, V=LM  where L can be either R or C. The set of all r-
dimensional subspaces of L is denoted by G,. 5(L), which is
referred to as Grassmann space. Given L=C, G, »/(C) can be
also described as G, (C) dg{<Z> s ZeCMxr ZH7 = I},
where I, is the r X r identity matrix. The elements of G, ps (L)
are also referred to as r-planes.

Subspace coding preliminaries: Consider two r-planes U
and V. Let U; € U and V; € V be column vectors having unit
length such that |[VHU;| is maximal, subject to the conditions
USU; = 0 and V/'V; = 0 for all i,j with i > j > 1. Then
the principal angle j3;, for i € [r], between U and V is defined
as 3; = arccos |VHU;|, see, e.g., [14], [15]. Similarly to [2],
we adopt a quasi-distance metric between subspaces U and V,
referred to as the subspace distance, defined as

AU, V)E Y sin?(8). (1)
i=1
Note that is proportional to the square of the chordal
distance d. [14], [[16]. The minimum distance of an analog
subspace code C C P(V) is defined as [2]
d(s)

©oE 49U, V). ®)

min
U, VeC,U#V

II. SUBSPACE CODING MEETS SPATIAL SENSING
A. Receiver System Model for Spatial Sensing

Consider K unknowns 64,05, ---,0, with 6, €
[—7/2,m/2), representing the angles of arrival of K far field
objects. A discretization is assumed where 6;’s come from a
grid with IV points. The grid points can be arbitrarily chosen
as long as they are distinct. Here, we pick 6;’s from a grid
with the sin(-) of the grid points equally distanced in [—1, 1),
ie., 0) € {arcsin(—1+2(n — 1)/N)}2_,. The (narrowband)
receiver observes Y = [yn, ilmxr € CMXL where L > K,
with y,, 1’s, for m € [M],1 € [L] given as follows:

K

Ym,l = Z T (Ok) Tt + Wi i, €))
k=1

where w,,, ;’s are additive noise terms, often assumed to be i.i.d.
complex Gaussian, and xj;’s are unknown nuisance parame-
ters, interpreted as the time varying source signal amplitudes at
the [-th time sample of an unknown source in direction 6. In
this sensing model, M represents the number of receiver anten-
nas and L represents the number of time samples. We consider a
canonical passive sensing model, where h(0) = [hp(0)]arx1,
m € [M] denotes the array manifold vector describing the

relative phase shifts experienced by the antennas when a plane
wave impinges on the array from direction 6. Hence, we haveﬂ

B (0) = €™ 500 for m € [M]. 4)

By , hm(0)) in depends on unknown angles {0} .
Nevertheless, we can influence h,,(-) by the choice of the
receiver array geometry, represented by the set of antenna
positions {d,, }»_, (in units of half a wavelength of the carrier
frequency). For simplicity, we assume the d,,’s are integers
between 0 and N — 1, i.e., dy, € [N]—1, for m € [M].

The goal of the receiver is to identify the K-tuple
(01,04,...,0K) or, equivalently, the K-tuple of sin(6y)’s,
given received signal Yys« 7, and array geometry {d,,}_,.

B. A Subspace Coding Perspective of Spatial Sensing

The K-tuple (61,602, . ..,0k) can be considered as a message
u € .4, where ./ is the message alphabet of size (}).
Furthermore, the mapping H : .# — CM>X is the encoder
function, where an input message u = (61,62,...,0K) is
encoded into an M x K complex matrix H(u) as follows:

H(u) = [h(&l),h(ﬁg),...,h(GK)]MxK. (5)

Note that the subtle difference to a classical coding problem is
that we do not have full control over the encoder/code design.
Instead, the encoder is selected from the set of all encoders
with h,,(-) components following , where we have control
over only the values of the d,,’s. In other words, there is a
mapping from the set of M-tuples (di,ds,...,dps) to the set
of possible encoders H ().

Next, note that the equation for the receiver system model,
expressed in (3), can be rewritten as follows:

Yyuse =H@)mxxXxxr +Wuxr, (6)

where X and W are the matrices of unknown coefficients x ;’s
and noise terms w,, ;’s, for k € [K], m € [M], l € [L]. In fact,
Y is the received signal, i.e., the channel output in a coding
problem, and the goal is to decode, i.e., recover u from Y.
Next, we discuss how the problem can be mapped to a
subspace coding problem. Note that matrix X is completely
unknown. Hence, in the transition from H(u) to H(u)X the
only preserved information is the subspace spanned by the
columns of H(u). This exactly mirrors the logic behind the
subspace coding problem in [1]], [2]. We refer to the overall
encoding function as a DoA sensing encoder, defined below.

Definition 1./[DoA sensing encoder] For each choice of M-
tuple (dy,da,...,dy), with dy, € [N], let H(:) : A —
CM*K pe the corresponding function defined in with the
components of h(-) set as in . Then the corresponding DoA
sensing encoder H : .# — CM*K takes a message u =
(61,02,...,0x) € A as the input and generates H (u) as the
output. Furthermore, the corresponding sensing subspace code
C C P(V), where V = CM, is defined as follows:

C={(H(u):ue #}. @)

'In active sensing, the transmit array geometry and waveforms may impose
additional spatio-temporal structure on hy, (+). This is a topic of future research.



The receiver observes Y, according to @ and aims to find the
message u by invoking a decoder function D : CM*E — 7.
Remark 1. It is shown in [2] that the subspace distance metric,
defined in (I, perfectly captures the capability of a subspace
code to recover from subspace errors and subspace erasures as
well as its robustness to additive noise. Note that since L > K
is assumed, we do not run into the issue of subspace erasure
provided the d,,’s are chosen appropriately. In fact, the decoder
D only needs to recover from the additive noise. This problem
is well studied and understood in classical block coding. How-
ever, such studies can not be applied to the subspace coding
domain in a straightforward fashion. In contrast to prior work,
this paper aims at designing sensing subspace codes with the
specific structure in imposed by the sensing problem, while
maximizing the minimum subspace distance. Such subspace
codes have not been studied before.

III. SENSING SUBSPACE CODES: NEW INSIGHTS AND
(NEAR) OPTIMAL DESIGNS FOR SINGLE TARGET

This section examines in further detail the single source
case K = 1, where the goal is to estimate a single DoA 6
belonging to the grid of N points specified in Section[[I-A] Be-
yond providing valuable insights into the structure of desirable
constrained subspace codes, the single source setting is also
an important problem to understand in its own right. Indeed,
it finds applications in both sensing and communications, [17]],
[18], where several theoretical questions still remain open.

The problem of subspace code design in the case K = 1
is reduced to packing lines. The problem of packing lines in
G1,m (R) was first studied by Shannon [19]. A subtle difference
between this and our problem is that spherical codes are
packings in Gp pr(R), whereas our case study for K = 1
is reduced to code designs in Gy p(C), which is actually
equivalent to G2 57 (IR). We also study this problem under the
specific structure (@) imposed by the DoA estimation problem.

To further simplify the expressions, let o := 775" Due to
the specific discretization of 6, i.e., sin § belonging to a grid of
N equally distanced points in [—1,1), we have o € Z(N), i.e.,

oV =1.In particular, for K = 1, the one-dimensional sensing

subspace code C, for a certain choice of (di,da,...,dps) as
defined in Definition[I] is given by:
C={{(a™ a%, ..., a®™)): ae Z(N)}. 8)

Here, codewords are 1-dimensional spans of single-column
matrices. However, for ease of notation, a single-column matrix
is represented as a row, e.g., (a%, a2, ... ,adM). Note that
IC] = N and C C G1,p(C). For a € Z(N), let ¢(«) denote
the corresponding codeword in C, i.e.,

cla) = {(a®,a®,. ..

,adr)), 9)

Also, the subspace distance d(*)(.,.) between two codewords
c(a) and (o) is given by

1

) e(a),c(e)) =1~ 55 . (10

where .* denotes complex conjugation. The minimum distance
dfji)n (C), defined in , can be rewritten as follows:

s () d® (c(e), e(a)).

min
a,a’ €Z(N),a#a’

an

For the decoder in the case of L = K = 1, one can consider
the minimum distance decoder D,,;,, that first computes

& = argmax |Yc(a)l,
o:a€Z(N)

12)

and then maps & to the corresponding output message 6. The
output of the minimum distance decoder in (I2) can be shown
to be equivalent of the maximum likelihood estimate of o under
i.i.d. complex circularly symmetric Gaussian noise. Next, we
establish a relation between dl(ji)n (C) and the probability of error

of Dpnin defined naturally as

def

Pe(Dmin) = Pr{é 7é 9},

under an i.i.d. complex Gaussian noise model for the noise
terms w,,’s. Let the receiver SNR across each antenna be #,
where 02 can be regarded as the normalized noise power.

Theorem 1. [Probability of error of Dumin] For a one-
dimensional sensing subspace code C with minimum subspace
distance dpyi, = d s) (C), Pe(Dmin) is bounded as follows:

min

M
Po(Dyin) < exp ( — 5 (1= VI =)+ In N). (13)

Proof: Let « correspond to the true 6. For any other
o' # «a, with o/ € Z(N), utilizing and the code structure
specified in (8) we have

le(a)fe(a”)] € My/T — diin.

Suppose that the noise is normalized, i.e., |z| = 1 for the
single scattering coefficient x. Then by and noting that
le(a)He(a)| = M, the decoder Dy, is guaranteed to be suc-
cessful if the absolute value of the overall noise term WHe(7)
is less than (M — M+/T = dyin), V7 € Z(N). Also, note that
the variance of this overall noise term is Mo?. Eq. is then
established by utilizing the cumulative distribution function of
the Rayleigh distribution representing the magnitudes of the
N overall noise terms, followed by the union bound on the
probability of the error event for all /. ]

The result in Theorem shows that improving d,;, directly
improves the upper bound on the probability of error of the
minimum distance decoder. This further justifies our approach
to construct sensing subspace codes with the aim to maximize
the minimum subspace distance.

(14)

A. Near Optimal Code Constructions

In this section we aim to design sensing subspace codes
with a minimum distance that is as large as possible by
carefully choosing the underlying parameters dy,ds,...,d;.
In the context of block coding, the problem of maximizing
the minimum distance of a code of given size and length is
one of the most classical coding theory problems and has been
extensively studied in the past several decades.



Given , maximizing dfsi)n (C) is equivalent to minimizing
(with respect to {d,,}M_))

a#l, aEZ(N) ‘ Z

Note that a*a’ € Z(N) and a*a’ # 1, for o, 0’ € Z(N) and
a # o, which is why we simply replace aa’ by « in (15).
Recalling that o = /750, can actually be interpreted as
the maximum value of the unweighted array beampattern [20]].

Next, we make a connection between the problem of min-
imizing the expression in (I3) and the classical problem of
Golomb ruler design [21]], in the particular regime with M ~
V/N. Note that one can write

() (o) ey

m=1 m=1 i,0€[M],i#L

15)

M

3 ot

m=1

For a set A C R, let the difference set of distinct elements be

def

A-A={a—-d :a,d € Aja+#d'}.
Then the idea is that if we pick A = {dy,...,dp} in such
a way that (4 — A) mod N covers almost all the elements
in [N] exactly once, then Y, ,_ 4 a® would be close to zero
when normalized by N (note that de[N] at =0, since « is an
N-th root of unity). As a result, the problem becomes relevant
to the design of Golomb ruler. We leverage this connection to
obtain a good A, as we discuss next.

Let us recall the Bose-Chowla construction of Golomb rulers
[22]]. Let ¢ = p™ be a power of a prime p, and let g denote a
primitive element in F 2. Then the g integers in S defined as

dcf

S<E{iclg®—2:g'—geFy} (17)

have distinct pairwise differences modulo ¢ — 1. Furthermore,
the set (S — &) mod (¢* — 1) has exactly q(q — 1) elements
and equals the set of nonzero integers less than ¢ — 1 that are
not divisible by ¢ + 1.

Now, let us assume N = ¢? — 1, where ¢ is a power of a
prime, and M = q. Then the sensing subspace code based on
the Bose-Chowla construction, denoted by CBO g formally
defined as follows.

Definition 2./Bose-Chowla sensing subspace code] We fix
A = {dy,...,dym} to be the set S given by the Bose-Chowla
construction, specified in . Then C®© of size N is the
sensing subspace code corresponding to A, as defined in ([8).

The following theorem presents the result on the minimum
subspace distance of the code CBC).

Theorem 2./Min distance of Bose-Chowla code] For the
sensing subspace code C'BY), defined in Deﬁnition we have

4 (o) s 1 - 2

1
min M ( 8)

Proof- Given the expression for d(*) in and the
simplification (I3)), establishing (I8) is equivalent to showing
M
> ot
m=1

for any a € Z(N) with a # 1. Note that the choice of A =
{di,...,dp} as the Bose-Chowla Golomb ruler ensures that
A= :=(A—-A) mod N, where N = ¢?> — 1, contains N —
M + 1 distinct elements from [N — 1] U {0}, each of them
exactly once. Also, note that since oo € Z(N) we have

2

< 2M, (19)

Z ati—de — Z o™ = - Zam/ (20)
i,0e[M)],i#l meA~ 'e[N—-1Ju{0}\.A~
Therefore, we have
Y T IN=U{0} VAT =M — 1, @2D)

i,0€[M],i£0

where we used (20) together with the fact that |[A~| = N —
M + 1. This together with the expression in (I6) imply that

M 2
> atm| <2M -1, (22)
m=1

which, by (19), completes the proof. [ |

Corollary 3. The probability of error of the minimum distance
decoder D,,;,, for the code CB® is upper bounded as follows:

M V2
My
402

2
V2V,
where o2 is the normalized power of a single noise term in the

23
receiver system model.

P.(Din) < exp ( —

Proof: The proof is by the lower bound on the minimum
distance established in Theorem[2] together with Theorem[I} M
Next, we comment on the optimality of the code C®©.
Note that two lines being at subspace distance one from each
other implies that the two lines are orthogonal. And the code
C®® has N = M? — 1 lines that, by Theorem are almost
orthogonal. An upper bound on the best minimum distance of
a code of size N in G /(C) can be obtained by the Welch
bound, that is ~ 1 — 1/\/N In this sense the gap-to-one of
d](;i)n(C(BC)) is only within a factor of 2 of the best one can
hope to achieve, according to the Welch bound. Note that the
character-polynomial (CP) code of [2], when considered in the
same regime, attains the distance =~ 1 — 1/M almost matching
the Welch bound. However, our sensing subspace code has the
specific structure imposed by the sensing problem unlike the
CP code in [2]. Yet, our codes operate very close to what is
best achievable by codes without specific structural constrains.

B. Sub-optimality of uniform sensing

Uniform linear arrays (ULA) have been the dominant choice
of array geometry for decades in sensing and communication
[23]. The ULA is the spatial analogue of uniform (Nyquist)
sampling, and hence its (spatial) frequency domain properties
as captured by beamforming, are well-understood and amenable



to analysis. Furthermore, the uniform geometry allows the
development of fast array processing methods, often based on
the Fast Fourier Transform (FFT) algorithm. We now take a
critical look at this popular choice from the perspective of
subspace coding, and evaluate if it is a desirable choice as
a sensing code in the regime N ~ M?2. A ULA sensing code
is given by the set

def

SuLa = [M] - 1. (24)

In other words, the sensor locations d,,, are consecutive integers
from 0 to M — 1. It is easy to see that the set Sypa — Sura has
2M —1 consecutive integers from —M +1 to M —1. As earlier,
we consider the regime N = M? — 1. Let C‘V*" denote the
sesnsing subspace code corresponding to Sypa. The minimum
distance of the code CV™ is upper bounded as

. 4
dph (€M) <1 - . (25)
This result can be proved as follows. From (I5),
“ M-1 2
d (VM) =1 —
min ) M?2 a1, an(N) Z:O
) e (26)
L R Ll
M?| sin %

In the regime N = ]\/[2 1and M > 3, we have & N < 5. Using
Jordan’s inequality, which states that ix <sinz < o, O <z <

2 , we obtain that

1 [sinZTM 2 AM? 4
M2 sin 57 7 M2 g2 T g2

We obtain (23 by using the above result in (26). Hence, in
the regime N = M? — 1 (can be relaxed to larger regime),
the minimum distance of the ULA subspace code remains
strictly bounded away from 1 even as M tends to infinity.
Therefore, it falls short of achieving the Welch bound, and even
asymptotically, these codewords do not become orthogonal.
C. Numerical Results

We conclude this section by numerically illustrating the de-
veloped theoretlcal results. Fig. [T]shows the minimum subspace
dlstance dmm in of the Bose-Chowla [24] sensing code
and the ULA (24) sensing code, as a function of M,
with N = M? — 1. The minimum distance approaches 1 as
M increases in case of the Bose-Chowla ruler, whereas it is
strictly less than 1 (in fact, approaching 0) in case of the ULA.
This is consistent with and (25), respectively. Hence, all
codewords of the Bose-Chowla codebook are approximately
orthogonal, whereas the ULA codebook contains codewords
that are practically indistinguishable in presence of noise. This
is validated by Fig. [2] which shows the empirical probability
of error of the minimum distance decoder (I2), along with an
upper bound on the true probability of error (the minimum of
the tr1v1al bound P, < 1 and @]) evaluated using the values
of d( in Fig. , both as a function of SNR (left panel,

min

= 19) and M (right panel SNR = 0 dB). The probability

—— Bose-Chowla --- ULA
S 100§———4——J\””” : ‘””%
10T T E
“ -2 L Rl 1
\%E 1873§ Ll \\\\\\‘\\H\%
M 100

Fig. 1. Minimum distance of sensing subspace codes. As the code length M

(number of antennas) increases, drmn approaches its maximum value 1 in case

of the Bose-Chowla ruler, and minimum value 0 in case of ULA (N = M?2—1).
Empirical: = —— Bose-Chowla --- ULA
Upper bound: ----- Bose-Chowla ULA
R (| e e R = ]
E 10-1| PR R E
Q 1072 F ‘\ 1 F e
= 1077 NN =
Q‘G 10 3 L | i C 1l A VENIEVE:

“10 25 SNR 5 M 100

Fig. 2. Probability of error of minimum distance decoder. The Bose-Chowla
ruler achieves a low probability of error P. both when SNR (left) or M (right)
increases. The ULA is significantly less robust to noise due to the smaller
minimum distance of the associated sensing subspace code—indeed, when the
SNR is fixed, P. approaches 1 even as M grows (N = M2 — 1).

—
e}
[\)

of error of the Bose-Chowla codebook rapidly approaches 0 at
much lower SNR or values of M than the ULA. The results
are averaged over 10° Monte Carlo trials assuming a unit-
magnitude source = iﬁj, ii.d. complex circularly symmetric
Gaussian noise of variance 02 (SNR := —201log,(c)), and a
source DoA 6 picked uniformly at random from grid points
arcsin(—1+ 2(n — 1)/N), n € [N].

IV. DISCUSSION AND FUTURE DIRECTIONS

To the best of our knowledge, this is the first work to
unveil fundamental connections between subspace codes and
sensing. We hope that our work motivates further research at
the intersection of these two fields, which we believe constitutes
a fertile ground for new ideas. To this end, we briefly discuss
several directions for future research. Firstly, sensing subspace
codes with robustness to perturbations in the d,,’s or the N
grid points would be highly valuable in practical applications.
A related question is whether we can extend these code designs
beyond the considered regime N = M?2? Such a question will
naturally lead to investigation of higher-order difference sets.
Another immediate extension is higher-dimensional sensing
subspace codes where K > 1. This in general is a very
challenging problem, with the only currently available results
being asymptotic limits on packing in Grassmann manifolds (as
M grows large, and K is fixed) [[14], and a few explicit analog
subspace code constructions beyond K = 1,2 [3|]. Further
adding to the rich structure of h(-) are constraints imposed
by low-complexity hybrid beamforming architectures [25], or
in the case of active sensing, the transmitted waveforms [26].
These can generally be modeled by a structured compression
(wide) matrix A, such that the effective system matrix in (6]
is AH. This problem has connections to subspace erasure
problems and results from coding theory counterparts can
provide new designs and guarantees.
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