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Abstract—Group testing, a problem with applications in vari-
ous fields, traditionally assumes independent node states. Recent
research, however, focuses on real-world scenarios that often
involve correlations among nodes, challenging the simplifying
assumptions made in existing models. In this work, we consider a
comprehensive model for arbitrary statistical correlation among
node states. To capture and leverage these correlations effectively,
we model the problem by hypergraphs inspired by [1].

We establish that arbitrary correlations among nodes can be
represented as a hypergraph with a probability distribution over
its edges, and design a novel greedy adaptive algorithm capable
of conducting informative tests and dynamically updating the
distribution. We analyze its performance and give theoretical
guarantees on the number of tests that depend solely on the en-
tropy of the underlying probability distribution and the average
number of infections.

I. INTRODUCTION

In recent years, group testing has gained increasing interest
across various disciplines, including computer science [2]-[5],
statistics [6], [7], information theory [8]-[12], and biology
[13]-[15]. This problem involves a population (set of nodes)
where a specific subset is infected, and we can test any
subpopulation. A positive test result indicates at least one
infection within the subset, and the primary goal is to identify
all infected individuals. Historically, group testing operated
under the assumption of independent node states [16], [17]
and almost matching lower and upper bounds are known on
the minimum number of tests. In particular in [17], near-
optimal bounds have been obtained for both adaptive and non-
adaptive group testing, quantified as O(H(X) + p), where
i = >, p; represents the average number of infections,
with p; being the probability that a node i is infected, and
H(X) =7, —pilogp; being the entropy.

However, states of nodes exhibit strong statistical corre-
lation in most real-world settings. For example, in disease
propagation scenarios, states of individuals within the same
household exhibit correlation; if one member is infected, the
likelihood of infection among other members increases [18]—
[20]. Similarly, in network fault diagnosis, adjacent connec-
tions are more likely to be simultaneously faulty due to shared
physical infrastructure or external factors [21]. Some recent
papers have significantly enhanced the precision and efficiency
of group testing algorithms by incorporating these correlations
[20], [22]-[25].
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Yet, much of the existing literature that consider group
testing strategies for correlated nodes propose 1) models that
are context-specific and oftentimes oversimplified, and 2)
group testing strategies that are tied to specific correlation
models. For disease propagation, the correlation models are
built either on the notion of proximity (defined through graphs)
[19], [20] or in conjunction with a disease spread model [3],
[26]. For network fault diagnosis, the correlation is based
on physical proximity between the nodes in a network, or
frequency of communication between two nodes [21].

In this work, our objective is to devise group testing algo-
rithms for a comprehensive model for correlation, ie., a general
joint distribution denoted by D on the state of the nodes, where
D(S) represents the probability that exactly a subset S of
individuals are infected. Our aim is to devise group testing
algorithms tailored to this expansive scope without substantial
simplification. We describe our contributions below.

A. Contributions

We model arbitrary statistical correlation by employing
hypergraphs, drawing inspiration from [1]. A hypergraph G =
(V, E) has node set V, |V| = n, and edge set F, where each
hyperedge e € E is a subset of nodes: e C V. We consider an
arbitrary probability distribution of infection of hyperedges,
which is obtained from the general joint distribution D of
infection of subsets of nodes which in turn captures arbitrary
statistical correlation among infection of different nodes. The
work in [1] considers a specific hypergraph model where all
edges have equal cardinality d, where the correlations are
combinatorial rather than statistical [1], and therefore differs
in scope from our work.

We propose an adaptive group testing algorithm that is
capable of exploiting correlation by the means of updating the
posterior distribution on the hyperedges given the previous
test results. The algorithm works in two stages. Stage 1
focuses on conducting “informative” tests, which significantly
narrows down the search space. When these tests are no
longer feasible, the algorithm transitions to a second stage
where it tests the remaining uncertain nodes individually.
We demonstrate that this algorithm successfully identifies the
infected set and requires an expected number of tests that
depends on the entropy of the prior distribution H(X) and
the mean number of infections p. Furthermore, using methods
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similar to those in [17], we establish entropy as a lower bound
on the number of tests. This reveals that when the average
number of infections is less than the entropy, our algorithm
achieves order-wise optimality. We further provide an example
in which the minimum number of tests is governed by p which
dominates H(X) demonstrating the looseness of the most
widely used entropy lower bound. The expected number of
tests required by our algorithm is lower than or matches those
required by algorithms in prior works that focus on specific
correlation models.

II. PROBLEM FORMULATION

We model a generalized group testing problem via hy-
pergraphs [1]. Consider the hypergraph G = (V, E) where
V' is the set of nodes and E the set of hyperedges. Each
hyperedge e € E is a subset of the nodes, e C V. We
assume |V| = n. In a population of size n, each individual is
represented by a node in this hypergraph and the hyperedges
capture possible dependencies between the nodes’ states. A
distribution P is assumed over the edges in E, and one edge
e ~ P is sampled from this distribution to be infected. We use
sampled edge, infected edge, or target edge interchangeably.
The probability that hyperedge e is infected is denoted by p..
When a hyperedge is infected, all nodes v € e are infected
(positive) and all other nodes u ¢ e are not infected (negative).
The goal is to sequentially (and adaptively) perform group
tests, with minimum number of tests, until the infected edge
is identified accurately.

Fig 1 shows an example of a hypergraph where V =
{v1,v2,v3,v4,05} is the set of nodes, F = {eg =
{’Ul,’UQ,Ug}, €y = {111, 1]5}, e3 = {1}4,115}} is the set of edges,
and pe, = 0.3, pe, = 0.2, p., = 0.5 define the distribution
over the edges. Note that v, and v3 have a complete correlation
and are always in the same state because each edge contains
either both of them or none of them. Also, vy and v, are also
completely correlated as they are always in opposite states
because each edge contains exactly one of them.

Let X = (X;,Xo,...,X,) be the vector of the nodes’
states where X; = 1 if the ¢’th node is positive and X; = 0
otherwise. We denote the probability that node v is positive
by p,. When an edge e is sampled, we have Vv € e : X, =
1 and Vv ¢ e : X, = 0. Within this model, each node v
may belong to multiple edges and therefore, we have p,, =

E[Xi] = > ccp: esv, Pe- The expected number of infections,
I, is thus
p=EXi+ X+ + X =D pi (1)
i€V

It is worthwhile to mention that in prior work such as [17],
it is often assumed that u < n, based on the observation that
otherwise the number of tests needed is Q(n). Interestingly,
this is not true in general when we have correlation, as
captured in our model, and an example is given in [27,
Appendix A]. We next define testing and recovery.

a) Testing.: A group test T' is defined by the subset of
nodes 7' C V that take part in that test. We denote the ¢’th test
by T;, T; C V, and its result by r;. We say r; = 1 (positive test
result) iff there is at least one node in 7; that is infected (i.e.,
belongs to the sampled edge) and r; = O otherwise. Testing
is done sequentially and adaptively. More precisely, T; is a
function of the prior tests 77,...,7;_; and their respective
results 71, ..., 7;—1. We denote the total number of tests by L.

In order to design the tests sequentially, we utilize the
posterior probability of nodes and edges of the hypergraph
being infected given the previous tests and their results. In
particular, suppose tests 11,75, ..., T} are performed and the
results are rq,7s,...,7;. We denote the posterior probability
of e € I/ with Qe|{(T1,m1),(T2,r2) s (Tho i) } - Note that de|{} =
Pe. Similarly, the posterior probability of v € V being infected
is

Qol{(Ty,r1)ses(Thra) } D @) T} @

ecE: edv
When it is clear from the context, we drop
{(T1,r1),(Ta,72),. .., (Tk, )} and use g. and g,.
b) Recovery.: Given the test sequence 717, ..., T, and the

respective results rq,...,7, the nodes’ states are estimated
as X = (Xl, Xg, .. ,Xn) where X is the estimated state of
node i, ¢ = 1,...,n. The probability of error is then defined
as P, = P(X # X), where the randomness is over P and
possible randomness of the testing design.

c) Objective.: In this work, we aim to devise algorithms
that, in expectation, use the least number of tests (minimize
E[L]) and recover the sampled edge with probability of error
P, that goes to zero as n goes to infinity. For some of our
results, we have P, = 0.

Remark 1. This model is equivalent to arbitrary correlation
among nodes. To see this consider an arbitrary distribution
D over the power set of a population size n where D(S)
is the probability that exactly subset S of the population is
infected, ie, all nodes in S are infected and no node outside S
is infected. Now in our model, we can consider a hypergraph
where the edge set is the power set of the population, and
pe = D(S), for the hyperedge e that corresponds to S. Since
> sD(S) = 1, {pe}eck is a distribution. It is important to
note that the set of hyperedges can also be a proper subset of
the power set, depending on the distribution D. From this, we
can see that |support(D)| = |E|.

In [27, Section 5.1], we provide details on how previous
works can be modeled using hypergraphs and show how our
testing algorithm would perform on them.

Before presenting our algorithm, we establish a lower bound
on the number of tests needed under this model. Our result
is inspired by [17] where almost matching lower and upper
bounds are proved for adaptive and non-adaptive independent
group testing. Using similar techniques, we find that entropy
H(X) is a lower bound on the number of tests.
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Fig. 1. A hypergraph with V = {v1,v2,v3,v4,v5}, E =
{{1,2,3},{1,5},{4,5}} and P{1,2,3} = 0.3, P{1,5} = 0.2, P{4a,5} = 0.5.

Theorem 1. For any algorithm that recovers the sampled edge
e* with probability at least 1 — € using L tests, we have

L>(1-oH(X) 3)

where H(X) =) 5 —Pe log pe.
This lower bound may not be tight as demonstrated next.

Example 1. Consider a graph G = (V,E) comprising n
nodes where each subset of size n — 1 is included in E as
an hyperedge. Consider a uniform probability distributed on
the edges, i.e. p. = %for all e € E. In this example, the
entropy H(X) is logn. However, it’s notable that every test
of size two or greater will yield positive results, rendering them
redundant. Consequently, the problem is effectively simplified
to individual testing when a single individual is found to be
negative which takes Q(n) tests.

III. AN ALGORITHMIC APPROACH
A. Challenges

Most classic adaptive algorithms for independent group
testing are, in essence, built on generalized binary-splitting
which greedily chooses the test that most evenly splits the
candidate nodes or equivalently chooses the test with the
maximal information gain. In probabilistic group testing (with
independent nodes) [17], this involves choosing subsets of
nodes to test such that the probability of a subset containing
a positive node is close to 1/2, meaning that the test provides
close to one bit of information. A negative test result allows
a subset to be ruled out. Candidate subsets that test positive
are, however, partitioned into two subsets (with roughly equal
probability mass) for further testing. With such a design, the
posterior probability of the sets testing positive, given the
sequence of previous test results, is close to 1/2. To follow
this paradigm, we face challenges.

First and foremost, it is important to note that treating each
node individually and disregarding the underlying correlation
is not efficient in terms of the number of tests needed and we
aim to propose testing strategies that exploit the correlation.

Now consider the classical idea of greedily testing subsets
and ruling out those subsets that test negative. If one wishes
to utilize the correlation that is inherent in our model, it is

not straightforward how the group tests should be designed:
(i) Suppose that you have chosen a subset .S of nodes to test.
If this test is negative, not only all nodes in S are negative
but also all those edges that contain a node in S are not the
target infected edge and could be ruled out. (ii) If the test
is positive, we cannot conclude that the nodes that belong to
V\S are negative. As a matter of fact, all can still remain
valid candidates if they share an edge with an element of S.
In other words, we can not conclude that the target infected
edge is a subset of S. The design of the tests is thus nontrivial.

B. Some Useful Definitions

Suppose group tests 14,75, ..., Ty are performed and the
results are 71,79, ..., 7. Recall that the posterior probability
of edge e (resp. node v) given the previous k test results, is
Qe {(T1,m1)(Tavra) oo (Tior)t TSP Q| {(Ty 1), (Ta ). (T ) }
defined in (2)). When it is clear from the context, we drop the
conditions and show them with ¢, and ¢,. With a slight abuse
of notation, we refer to {g.}.cr as the posterior distribution
D which gets updated after each test.

To connect edge probabilities to the probability that a test
becomes positive, we need the following definition.

Definition 1. For a subset S C V, the edge set of S is defined
as E(S)={e|e€ EAVYv € e:v € S}. The weight of the
set S after tests {(T1,71), (T2, 72), ..., (Tk,7k)} is defined as

w(SH(T1, ) (Teri)) = D Qe{(Tyi) (o)}
e€E(S)

4)

When  clear from the context, we simply drop

{(Ty,71), ..., (Tw, )} and write w(S).

Here, w(S) is the probability that V' '\ S becomes negative,
and as we will discuss later, we need to keep it close to half.

After performing £ tests, the expected number of infections
would be updated according to the posterior probabilities
discussed above. We denote the expected number of infected
nodes in the posterior probability space by:

We omit (71,71),. .., (Tk,rx) when contextually clear.
Throughout this work, when a new test (T;,7;) is
done, we compute qe|(1y,r).,...,(T;,r;) rom the last posterior
Qe|(T1,r1),...,(Ts—1,m_1)- 10 Other words, we initially start with
Dy = P and after observing the results of the ¢’th test,
compute D; from D;_; based on (7;,7;) where D; =
{4e(11 1), (T574) YecE- In Lemma 2, we prove that comput-
ing the posterior probability entails “removing some edges
from the distribution” according to the following definition:

Definition 2. Let D be a distribution over a set E. Re-
moving e € E from D entails setting D(e) = 0 and re-
normalizing D(e) by a factor ¢ > 1, D(e) + ¢D(e), such
that ) . D(e) =1

In the graph in Fig 1, we can see that p,, = 0.5, p,, =
Pus = 0.3, py, = 0.5, and p,, = 0.7. If S = {v1, va,v3,05},
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then E(S) = {e1,e2} and w(S) = pe, + pe, = 0.5. The
average number of infections is 4 = 0.5+ 0.3 4+ 0.3+ 0.5+
0.7 = 2.3. If a test {ve, v4} returns positive, ¢., = 0 as it can
not be the target edge, and the posterior is re-normalized by
the scalar 0.8 so that ge, = Pe, /.8, ¢es = Pe, /-8 sum up to 1.

C. Overview and Ideas

The ideas behind our algorithm can be summarized in three
points: (1) devise a testing mechanism in which by testing
a subset of the nodes, we can rule out edge sets that are
not compatible with the result; (2) design the subset so that,
independent of the test result, a constant (independent of
parameters) fraction of the mass is ruled out. (3) Updating
posterior probabilities of infections for the nodes and edges
based on the prior test results. If at every step we can do
this until we reach a single edge (with probability 1), then we
would have done O(H (X)) in expectation (Lemma 3) which
is optimal by the lower bound in Theorem 1. Example 1 shows
that this might not be always possible. These types of tests are
“informative”, as they shrink the search space significantly.

For instance, suppose a set .S with w(S) = 1/2 is given and
we test V'\ S. If the test is positive, it means that the sampled
edge e* is not in F(S) which contains half the probability
mass. If the test is negative, then e* is in E(S) which rules
out E\ E(S). So in either case, we gain one bit of information.
Since finding a set that has w(S) = 1/2 might not be possible,
we relax this condition. We aim to find a set S so that w(S)
is between two constants c = 1/2—dand 1 —c =1/2+ 9,
let’s say between 0.05 and 0.95.

We next describe how to find S € V with 0.05 < w(S) <
0.95. We design a greedy-like algorithm that finds .S iteratively
by removing the nodes from the working set. The algorithm
starts with S = V. Initially, w(S) = 1. Then the algorithm
drops the nodes in .S one by one until it finds 0.05 < w(S) <
0.95 (at which point the algorithm performs a test on V' \ §
and based on the result updates the posterior distribution).

The challenge arises when the algorithm can not find such
an S. In proposition 1, we argue that this can happen only
when all the remaining nodes in S have at least probability
1 —2c = .9, to which we refer as high probability nodes,
and the remaining nodes in V'\ S have a positive node with
probability at most ¢ = 0.05. What we propose in this stage
is the following: In a single test, the algorithm can test all
the low-probability nodes. If it is positive, we rule out 0.95 of
the mass, which is an unexpected gain, and continue with the
algorithm. If it is negative, we end up with the high probability
nodes. At this point, the algorithm tests nodes individually. We
refer to the first stage of the algorithm when an informative
test can be found based on S as Stage 1 of the algorithm,
and the second stage of the algorithm for which we test nodes
individually as Stage 2 of the algorithm.

D. The Proposed Algorithm

The proposed algorithm is presented in Algorithm 1. In
Stage 1 of the algorithm which corresponds to lines 3-14, the
algorithm greedily finds a set S so that ¢ < w(S) < 1—c

Algorithm 1: Adaptive Algorithm for General GT

1 Input: Graph G = (V, E), distribution D = P over F,
and parameter ¢ < 1/2.

2 Output: Target edge e*.

3 Initialize set S = V.

4 Compute w(S) by (4) using the (updated) posterior
distribution D = {¢c }ecE-

sIfe<w(S)<1—c test V\S:

6  If the test is positive, remove E(S) from D by
def 2 to update the posterior distribution.

7 If the test is negative, remove E \ E(S) from D by
def 2 to update the posterior distribution.

8 Return to line 3.

9 Else:

10 If there is an edge with g. = 1, return e.

n  IfJv:c<w(S\v) <1-¢ remove v from S and

go to line 5.

12 If3v:l-—c<w(S\v), remove v from S and go
to line 11.

13 Otherwise (w(S) >1—cand Vo : w(S\ v) < ¢),
test V'\ S.

14 If the test is positive, remove E(S) from D by
def 2 to update the posterior and go to line 3.

15 If the test is negative, test every node v € S

individually with 0 < ¢, < 1, update the posterior
after every test and return the nodes with ¢, = 1.

This is captured in lines 11 and 12. When the set .S is found,
it is tested in line 5 and the posterior is updated accordingly.
The posterior probabilities are used in the calculation of w(.S)
using (4). If the algorithm can not find a set ¢ < w(S) < 1—c¢
at this stage, it tests V' \ S in line 14 which has a high
probability of being negative. If at Line 14, the test result is
positive (unexpectedly), the algorithm rules out 1 — ¢ fraction
of the mass and gets back to line 5. Stage 2 of the algorithm
is outlined in line 15, where it tests uncertain high probability
nodes individually. Note that at this point, all the nodes
outside of S are negative. The following example shows how
Algorithm 1 is run on the graph of Fig 1.

Example 2. Let’s run Algorithm 1 on the graph in Figure 1
with ¢ = 0.1. Initially, S = {v1,v2,vs,v4,v5} and w(S) = 1.
By removing vy from S, E(S \ v1) contains only one edge
es = {4,5}, hence ¢ < w(S\v1) = 0.5 < 1—c and the
algorithm tests v1. If it is negative, then it rules out e; and es
and after scaling the edges, q., = 1 and the algorithm returns
it. If it is positive, it removes es and scales the other edges by
2 50 ge, = 0.6 and g, = 0.4. Again S would be initialized to
contain all the nodes, and after removing v, w(S\v2) = 0.4
so the algorithm test vy to eliminate one of e1 or es. The
expected number of tests here is 1.5.

IV. ANALYSIS

In this section, we bound the expected number of tests
performed by Algorithm 1. The main result is built on the
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following key lemma. Recall that H(X) is the entropy of the
edge distribution and f is the expected number of infections in
line 15 (computed with the posterior probabilities). The proofs
are provided in the full version [27].

Lemma 1. Algorithm 1 finds e* with E[L; + Ls] <

H(X)+ EZ]C tests in expectation.

1
log (1i o)

The roadmap of our proof for Lemma 1 is as follows. We
first prove that removing E(S) (resp. E\E(S)) from D (see
Definition 2) upon obtaining a positive (resp. negative) test
result for V'\S provides the true posterior distribution. This is
established in Lemma 2. We then bound the expected number
of tests done in Stage 1 of the algorithm by liH (X) (see

Lemma 3) and the number of individual tests done in Stage 2
by 728 (see Lemma 4) to conclude the proof of Lemma 1.

a) Posterior Update: We first need the following lemma
to justify the correct operation of Algorithm 1 in removing
edges after each test. In particular, The target edge e* is never
removed and each test indicates whether the target edge is in
E(S) or E'\ E(S). Building on this, we further prove that
the update rule utilized in Algorithm 1 computes the posterior
probabilities given all the previous tests.

Lemma 2. Consider a distribution D over the edge set
E and a test T = V \ S with result v. If r = 1, the
posterior probability is obtained by removing E(S) according
to Definition 2. If r = O, the posterior probability is obtained
by removing E \ E(S) according to Definition 2.

b) Bounding Tests in Stage 1 and Stage 2: The above
lemma implies that if both E(S) and E\ E(S) have a moderate
mass (i.e., w(S) > c and 1 — w(S) > ¢), regardless of the
result, the test is informative. This is quantified to limit the
number of tests for Stage 1 of the algorithm:

Lemma 3. Before line 15, the expected number of tests that
Algorithm 1 performs is bounded by E[L] < ﬁH(X).
Algorithm 1 stops performing in Stage 1 when the greedy
process of finding S, ¢ < w(S) < 1—c¢, fails in line 12, and the
nodes out of S tests negative in line 14. The following propo-
sition shows that the remaining set of nodes are partitioned
into “high probability nodes” and “low probability nodes”.

Proposition 1. When Algorithm 1 reaches 13, we have (i)
w(S)>1—¢ (ii) Pr(3v e V\ S :v € e*) < c where e* is
the target edge, and (iii) Vv € S : q, > 1 — 2c.

At this point, in Stage 2, we resort to individual testing in
Line 15. We next bound E[L2] based on the expected number
of infected nodes [ at the “stopping time”.

Lemma 4. Let i = JA(T1,r1),....(Try r1y) be the expected
number of infected nodes at the beginning of line 15 where
(Ti,r3),1 < i < Ly are random variables indicating the prior
tests and results. Then the algorithm performs Lo < 1%6 tests
in line 15.

A direct implication of Lemma 1 is that when the size of

the edges is constrained so that p ~ fi, then O(H(X) + )
tests are achievable in expectation. This is quantified next.

Theorem 2. IfVe € E : f1(n) < ! e| < fa(n), Algorithm 1
finds e* with oz L H(X, A )((1 5oy 1 1ests in expectation.
(lfc

While Theorem 2 imposes a constraint on the edge sizes and
finds the infected set with probability 1, the constraint can be
relaxed if a small probability of error (e, fixed or approaching
zero) can be tolerated. We use Markov Lemma to bound the
probability that |e*| exceeds u/e. By removing those edges for
which |e| > p/e, we ensure i < u/e and get the following.

Theorem 3. There is an algorithm that performs E[L;+ Lo] <

ﬁH (X)+ 5(1572@ fests in expectation and returns the

correct edge e* with probability 1 — e.

In the above Theorem, there is a trade-off between the
probability of error and the expected number of tests. With
e error, the second term in expectation increases with 1/e. So
if we set e — 0 when n — oo, for example € = 1/logn, we
incur a multiplicative factor of logn on the second term. The
above theorem can be further improved if |e*| is concentrated
around p. In this case, the dependency on 1/¢ becomes slower.
For example, if the concentration is exponential, for instance,
we have Pr(le*| > 2u) < 27" then we can show that
with probability 1 —2~2(") the algorithm recovers e* and the

expected number of tests is E[L; + Lo] < ﬁH(X) +
-0
ﬁ. More details are provided in [27, Section 4].

V. DISCUSSION

In this work, we studied the problem of group testing
with arbitrary correlation using hypergraphs. We proposed an
adaptive algorithm and provided theoretical guarantees on its
performance as a function of the entropy of the model as well
as the expected number of infected nodes.

Our correlation model contains prior models in [1], [17],
[19], [23], [24] as a special case and the proposed algorithm
can recover/enhance some of their results. For instance, in
[17], independent GT with individual infection probabilities
p; is considered. Applying Theorem 3 yields the guarantee of
O(H(X)+ £) tests in expectation, recovering infected nodes
with probability 1—e. For p > 1, this becomes O(H (X )+p),
because the number of infections is concentrated around u,
aligning with [17], refer to [27, Section 5.1] for more details.

While we discussed conditions under which our algorithm
and its corresponding performance upper bound are near-
optimal, it remains open whether our algorithm has an op-
timal performance. Interestingly, in contrast to the classical
(independent) group testing, entropy is not a tight lower
bound as we discuss in Example 1. Future works include
providing tighter lower/upper bounds for the adaptive case.
More generally, devising non-adaptive algorithms with near-
optimal performance guarantees is another topic of interest.
Additionally, while our current algorithm’s complexity is poly-
nomial in the number of edges, future efforts could explore
more efficient polynomial algorithms in the number of nodes.
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