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Abstract—1In applications of group testing in networks, e.g.
identifying individuals who are infected by a disease spread
over a network, exploiting correlation among network nodes
provides fundamental opportunities in reducing the number of
tests needed. We model and analyze group testing on n correlated
nodes whose interactions are specified by a graph G. We model
correlation through an edge-faulty random graph formed from
G in which each edge is dropped with probability 1 — », and in
the newly formed graph, all nodes in the same component have
the same state. We consider three classes of graphs: cycles and
trees, d-regular graphs and stochastic block models or SBM, and
obtain lower and upper bounds on the number of tests needed to
identify the defective nodes. Roughly speaking, we use correlation
among the states of the nodes to transform the problem into
that of a smaller graph with independent node states. This
enhancement is quantified through the ratio of the diminished
node count to the overall count of nodes, n; thus, a lower ratio
signifies superior performance. The lower bounds are derived by
illustrating a strong dependence of the number of tests needed on
the expected number of components. In this regard, we establish
a new approximation for the distribution of component sizes in
“d-regular trees” which may be of independent interest and leads
to a lower bound on the expected number of components in d-
regular graphs. The upper bounds are found by forming dense
subgraphs in which nodes are more likely to be in the same
state. When G is a cycle or tree, we show an improvement by
a factor of log(1/7). For grid, a graph with almost 2n edges,
the improvement is by a factor of (1 — r)log(1/r), indicating
drastic improvement compared to trees. When G has a larger
number of edges, as in SBM, the improvement can scale in n.
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I. INTRODUCTION

ROUP testing [1] is a well studied problem at the

intersection of many fields, including computer science
[2], [3], [4], [5], [6], information theory [7], [8], [9] and
computational biology [10], [11]. The goal is to find an
unknown subset of n items that are different from the rest
using the least number of tests. The target subset is often
referred to as defective, corrupted or infected, depending on
the field of study. In this work, we use the term defective. To
find the subset of defectives, items are tested in groups. The
result of a test is positive if and only if at least one item in
the group is defective. Group testing is beneficial when the
number of defective items is o(n), it is often assumed that the
(expected) number of defective items is n™, o < 1. We assume
the same in this work.

Over the years, this problem has been formulated via two
approaches: the combinatorial approach and the information
theoretic approach. In the ‘“combinatorial” version of the
problem, it is assumed that there are d defective items that
are to be detected with zero error [1]. Using adaptive group
testing (i.e., when who to test next depends on the results of
the previous tests), there is a matching upper and lower bound
on the number of tests in the form dlogn + O(d) [1]. Using
non-adaptive group testing (i.e., when the testing sequence is
pre-determined), there is an upper bound of O(d?log(n/d))
and an almost matching lower bound of Q(djolg“fl") The
“information theoretic” approach, on the other hand, assumes
a prior statistic on the defectiveness of items, i.e., item % is
assumed to be defective with probability p;. The aim in this
case is to identify the defective set with high probability [8].
Roughly speaking, there is a lower bound in terms of the
underlying entropy of the unknowns, and an almost matching
upper bound up to a logn factor of the lower bound.

In most existing works, it is assumed that the states of the
items, whether or not they are defective, are independent of
each other, which is not realistic in many applications. Group
testing, for example, can identify the infected individuals using
fewer tests, and therefore in a more timely manner, than
individual testing, during the spread of an infectious disease
(eg, COVID-19) [12], [13], [14], [15], [16], [17]. But the
infection states of individuals are in general correlated, with
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correlation levels ranging from high to low, depending on how
close they live: same household (high), same neighborhood,
same city, same country (low). Correlation levels also depend
on other factors such as frequency of contact, the number of
paths between the individuals in the network of interactions.
We elaborate on this further in Section I-A. Another example
is the multiaccess channel problem: here a number of users
want to communicate through a common channel and we
want to assign time slots to them to avoid any conflicts.
Before assigning, we aim to find the number of active users
that want to send a message. Using group testing, we can
identify the number of active users faster by asking a subset
of users if any of them is active [9], [18], [19]. But again,
nodes are often not independent. Generally, some subset of
users might communicate among themselves more often and
hence, be more correlated. With this motivation, we aim to
model such correlation, design group testing techniques that
exploit it, and quantify the gain they provide in reducing the
number of tests needed. One can also use group testing to
detect faulty links in a network or failure in power grids.
Usually, the cause of failed links is the same locally, for
instance, an outage of power in some part of the network
[20], an overload in a specific district [21], or typically
localized cascading line failures in the transmission system of
the power grid [22] (failures due to overload can cause load
redistribution to neighboring nodes, increasing the likelihood
of overload and cascading failures at those nodes). Thus, there
is a correlation between states of neighboring nodes, which our
model captures.

The closest works to our work are [23], [24], [25], [26]
where specific correlation models are considered and group
testing methods are designed and analyzed. In [23], the
authors consider correlation that is imposed by a one time-
step spread of an infectious disease in a clustered network
modeled by a stochastic block model. Each node is initially
defective (infected) with some probability and in the next time
step, its neighbors become defective probabilistically where
the probabilities depend on the community structure of the
network. The authors provide a simple adaptive algorithm
and prove optimality in some regimes of operation and under
some assumptions. In [24], the authors model correlation
through a random edge-faulty graph G. Each edge e is
realized in the graph with a given probability .. So depending
on how the graph is realized, it is partitioned into some
connected components and the tests cannot be designed with
the knowledge of the realized components. Each connected
component is assumed defective with probability p (in which
case, all the nodes in that component are defective) and
otherwise non-defective with probability 1 — p. The authors
focus only on a subset of the realizations by studying the case
in which the set of connected components across realizations
forms a particular nested structure. More specifically, they only
consider a subset of realizations such that for each realization
G, € @G, there is another realization Go € G, so that
G is instantiated by dividing a component in G; into two
components. Of course there is one realization that does not
obey this rule, the one with the least number of components.
They found a near optimal non-adaptive testing strategy for
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any distribution over the considered realizations of the graph
and showed optimality for specific graphs.

The correlation model we consider is close to the work
of [24]. We consider a random (edge-faulty) graph G where
each edge is realized with probability r. In a realized graph G..,
(not 3), each connected component is assumed defective with
probability p, independent of each other. As opposed to [24],
we do not constrain our study to a subset of the realizations
and instead consider all possible realizations of the graph G.
Despite its simplicity, our model captures two key features.
First, given a network of nodes, one expects that when a path
between two nodes gets shorter, the probability that they are
in the same state increases. Our proposed model captures this
intuition. By adding one edge to a path, the probability of
being in the same state reduces by a factor of r. Second,
two nodes might have long distances from each other, but
when there are many edge-distinct paths between them, it is
more likely that they are in the same state. Under our model,
by adding distinct paths between two nodes, the probability
of them being in the same state increases.

In other related works, a graph could represent potential
constraints on testing (among independent nodes) [27], [28].
This can be viewed as a complementary direction to our setting
in which a graph models the inherent dependency of the nodes,
but there is no constraint on how the groups can be formed for
testing. In [27], the authors design optimal non-adaptive testing
strategies when each group is constrained to be path connected.
In particular, they use random walks to obtain the pool of tests.
In a follow up work, [28] shows that either the constraints are
too strong and no algorithm can do better than testing most
of the nodes, or optimal algorithms can be designed matching
with the unconstrained version of the problem. This is attained
by sampling each edge with probability » (0 < r < 1 and
optimized). If a component is large enough, the algorithm
tests the entire component. Our approach in this paper has
similarities with [28] in aiming to find parts of the graph that
are large and connected enough so that they remain connected
with a decent probability after realizing the edges, but our
techniques to find the dense subgraphs and the corresponding
analysis are different. Specifically, their algorithm is designed
for a class of graphs, namely edge expanders, and the groups
tested are random. In contrast, we design algorithms that
are not necessarily edge expanders and we form the groups
deterministically.

A. Our Model

We start by motivating the key attributes that we capture in
our model through an example of testing for infections in a
network of people (nodes). Consider the interaction network
for the spread of an infectious disease (e.g. COVID-19) in a
network of people/nodes. There is an edge between two nodes
if the corresponding individuals are in physical proximity for
a minimum amount of time each week. Such individuals are
more likely to be in the same state than those who have
been distant throughout. Thus, firstly, the probability of being
in the same state decreases with increase in the length of
paths (i.e., distance in interaction network) between nodes.
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Second, infection is more likely to spread from one node to
another if there are many distinct paths between them. Thus,
the probability that two nodes are in the same state increases
with the increase in the number of distinct paths between them.

We capture correlation through a faulty-edge graph model.
Consider a graph G = (V,E) where the node set V,
|[V| = n, represents the items and the edge set E represents
connections/correlations between them. Suppose each edge is
realized with probability 0 < r < 1. After the sampling,
we have a random graph that we denote by G,.. Each node
is either defective or non-defective. All nodes in the same
component of G, (not (G) are in the same state, rendering
defectiveness a component property. We consider that each
component is defective with probability (w.p.) p independent
of others.

As an example, consider graph G with five nodes and
eight edges, and a sampled graph realization G, as shown
in Figure 1 (left) and Figure 1 (right) respectively. When r =
1/3, Gy is realized w.p. (3)3(2)°. There are two components
in G, namely, v1,v4,v5 and vg, v3; V1, V4, U5 are in the same
state, which is defective w.p. p, independent of the states of
Vg, V3.

Two nodes are guaranteed to be in the same state in G, if
there exists at least one path that connects them in G,. The
probability that a path in G survives in G, increases with
increase in r. Thus both the parameter r and the graph G
determine the correlation between states of different nodes;
the correlation is higher if 7 is higher, states of all nodes are
independent for » = 0, while the correlation is the highest
possible for a given G for r = 1.

This model importantly captures the two attributes we
discussed: Clearly, a long path between two nodes in G has
a smaller chance of survival in G,., compared to a short path,
making the end nodes less likely to be in the same state as the
length of the path in G between them increases. Moreover, the
probability that at least one path between two nodes survives
in GG, increases with increase in the number of distinct paths
between them in G, so having distinct paths between a pair of
nodes in G makes them more likely to be in the same state.

We aim to find the minimum expected number of tests
needed to find the defective items with at most en errors, where
e can potentially be of order o(1). To be precise, let #ERR(H)
be the number of nodes mispredicted by an algorithm on graph
H. Then we require to have

Ep~e, [#ERR(H)] < en (1)

where the expectation is taken over G, and possible
randomization of the algorithm. We refer to it as the average
error.

Remark 1: The definition of error in classic probabilistic
group testings such as [8] is a stronger notion of error
probability where the goal is to correctly predict all nodes
with probability 1 — €, and with probability € one or more
nodes are mispredicted. This is stronger than our definition of
average error in (1) because with probability e at most n nodes
are mispredicted in the classic group testing, so the average
error would be less than en, the allowed error in our model.
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We mostly work with the notion of average error in this
paper. In the last section (Section V), we consider a stronger
notion of error to limit the maximum error: the group testing
schemes now need to upper bound the number of mispredicted
nodes by en with high probability. We recover all the results
of the paper for this stronger constraint on error as well.

Methodologically, we relate the problem of group testing
with correlation to that in a network with fewer nodes in which
the states of nodes are independent. We obtain bounds on the
number of group tests required in the former, to satisfy the
constraints we consider on errors, in terms of known bounds
in the latter. The relative quantification provides a basis for
comparison and determination of the improvements that can
be obtained by exploiting correlation.

The tests can not be designed with the knowledge of G,
only the value of r and the graph G are known apriori. In the
extreme case of r = 0, the problem is reduced to the classic
group testing with |V| = n independent nodes. In the extreme
case of » = 1, all components of G remain connected and
have the same state and hence the problem is reduced to
testing a single node. When 0 < r < 1, the problem is
non-trivial, because there can be multiple components, some
with more than one node, and the number and composition of
the components is apriori unknown. Thus, it is not apriori
known which nodes will be in the same state. Our group
testing strategies will seek to circumvent this challenge by
identifying parts of G that are connected enough so that they
remain connected in GG, with a high probability.

B. Contributions

We obtain upper and lower bounds on the number of group
tests needed to determine the states, defective or otherwise,
of individual nodes in a large class of interaction graphs
in the presence of correlation among the states of nodes.
We progressively consider 1) cycles and trees (about n links),
2) d—regular graphs (about dn/2 links) and 3) stochastic
block models or SBM (with potentially ©(n?) links). The
correlation is captured by the factor r (see Section I-A), as
well as the structure of the underlying graph GG. The bounds are
obtained in terms of the number of tests needed when the states
are independent, and help us quantify the efficiency brought
forth by group testing in terms of r. In particular, our group
testing strategies exploit correlation and build upon classical
group testing strategies, but with fewer number of nodes. The
ratio between this number and the total number of nodes (n)
determines the benefits of correlation in our strategies and we
refer to it as the (multiplicative) improvement factor. Note
that this is not the ratio between the number of tests that
are needed, but the ratio between the number of nodes that
a classical group testing algorithm gets as input. As such, our
results are valid for any group testing algorithm, and they can
be translated to the ratio between the total number of tests,
accordingly, as needed.

For trees and cycles, we prove an upper bound on the
optimal number of tests in terms of the number of group
tests when there are O(nlog(1/r)) independent nodes, i.e.
the number of tests in this case is equal to the optimal
number of tests for the classic independent group testing with
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(a) Graph G before realization.

Fig. 1. Graph G after a realization of edges.

O(nlog1/r) nodes. Note that one can trivially determine the
states of each node by disregarding correlation and testing
among n nodes (e.g. using classic group testing techniques).
Our upper bound therefore shows that group testing can reduce
the tests. The (multiplicative) improvement factor of log(1/r)
is meaningful (less than 1) when » > 1/2. As r approaches
1 the multiplicative factor reduces even further implying even
greater benefits due to group testing. Our lower bound, on the
other hand, shows an improvement factor (1 — r).

For d—regular graphs, we prove new results for the
distribution of components. This leads to a lower bound that
is expressed as a sum series depending on r and n. We further
prove an upper bound for a specific 4—regular graph, namely
grid, in terms of the number of group tests when there are
n(1 — r)log(1/r) independent items. Thus, the improvement
factor is (1 —r)log(1/r), as opposed to only log(1/r) for
trees; this hints to us that group testing gets drastically more
efficient for denser graphs.

The stochastic block model divides the network into
communities such that nodes in the same community are
more connected than nodes in different communities. We show
that the reduction in the test count due to group testing can
be classified into three regimes: 1) strong intra-community
connectivity but sparse inter-community connectivity, which
reduces the effective number of independent nodes to the
number of communities, 2) strong connectivity leading to an
(almost) fully connected graph, in which case all nodes have
the same state and one independent test is representative 3)
sparse connectivity leading to many isolated nodes, in which
case the states of all nodes are independent. The first case
reduces to independent group testing with the number of nodes
equal to the number of communities, second regime needs a
constant number of tests, and finally the third regime reduces
to independent group testing with n nodes. The tight upper
and lower bounds that are known in the literature for the
independent group testing subsequently apply for the first and
third cases; for the second case, the analysis is rather simple
as there is only a constant number of tests needed.

C. Our Methods and Ideas

We now briefly describe the mathematical techniques that
we follow to obtain the bounds. The techniques constitute a
contribution in themselves as a graphical structure was not
investigated earlier for group testing except under significant
restrictions as described earlier. For the upper bound for a
cycle, we divide the cycle G into subgraphs of size [ (I
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(b) Graph G after a realization with 3 edges.

nodes) where [ is a parameter. The subgraphs are connected
in G, but need not be connected in G, which we do not
know apriori. For every subgraph, we select a node that
we consider as representative of the subgraph and determine
the states of the representatives of all the subgraphs using
group testing strategies deployed when states of nodes are
independent (ie, we do not exploit possible correlation between
the representatives). We consider the state of each node in
each subgraph as that of the representative; this is indeed the
case if each subgraph is connected, otherwise the states of
some nodes are determined in error. The probability of each
subgraph being connected decreases with increase in [, thus
the expected number of errors, which can be computed as a
function of r, [, n, increases with increase in /. The number of
representatives and therefore the number of nodes subjected
to group tests described above is m/l. Thus the number
of group tests is non-increasing with [. Thus [ represents
a tradeoff between the expected number of errors and the
number of group tests, and [ is selected appropriately to ensure
a low number of group tests subject to ensuring that the
expected number of errors does not exceed the specified limit.
The number of group tests for the [ that satisfies the specified
error constraints provides the upper bound on the number of
tests for a cycle.

The upper bound for an arbitrary tree can be obtained
similarly, with the additional significant complication that for
an arbitrary tree GG and an [ that satisfies constraints on error
one may not be able to obtain subgraphs in G of size [ that
are connected in GG (in contrast when G is a cycle, a path of
size [ constitutes such a subgraph). Refer to Figure 2 for an
illustration of this challenge. We get around this challenge by
using subgraphs that are not connected in G by themselves,
but become connected in G through at most [ additional nodes
in G (which are not in the subgraph). Construction of such
subgraphs is not apriori clear and constitutes an innovation
needed for upper bounding the number of tests needed for
trees, above and beyond the overall methodology. Each such
subgraph is connected in G, if the links in G among these 21
nodes survive in G, the probability of this event can again be
expressed as a function of [, 7, and as before this probability
decreases with increase in [. The rest of the methodology is
similar to for cycles.

The overall methodology for obtaining the upper bound for
grids is the same as that for cycles. The subgraphs in question
constitute sub-grids of [ nodes. We determine the probability
that each such sub-grid is connected in G,. through a recursive
decomposition which is not apriori obvious.
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Fig. 2. A star can not be partitioned into trees of size ! for any ! > 2. This
is because any partition of a star of n nodes into smaller trees constitutes of a
star of m nodes, for a m of our choice and n — m isolated nodes. The figure
shows an example where n = 10,m = 5. Nodes C,1,2,3,4 constitute
the star, nodes 5,...9 constitute isolated nodes. We can however partition
the star into subgraphs of size [ (i.e., having [ nodes) each of which can be
connected through the central node even when the node does not belong in
the subgraph. The figure shows such a partition with [ = 5. The subgraph
consisting of nodes C, 1, 2, 3, 4 is connected, the rest of the 5 nodes constitute
a subgraph that can be connected through the central node.

The characterization of lower bounds on the number of
tests needed for cycles or trees constitutes another innovation.
To obtain the lower bound one can assume the knowledge
of the components of G,, which one does not know in
reality. Nodes in each component of GG, have the same state,
which is independent of those of the states of nodes in other
components. Thus each component can be considered a super-
node and the states of the super-nodes are independent of
each other. Thus, one needs at least as many tests as that
when there are C'(G,) nodes whose states are independent,
where C'(G,.) is the number of components of GG,.. A lower
bound can now be obtained if the random variable C(G,) can
be bounded. We accomplish this objective by observing that
the number of components in a stochastic graph constitutes
an edge-exposure martingale and the value of this random
variable is concentrated around its expectation, courtesy of
Azumas inequality which holds for such martingales.

We initially present the above results for constraints on
the expected number of errors. We subsequently generalize
them for a stronger constraint, that on the number of errors
with a high probability (rather than expectation thereof), for
cycle and trees. Lower bounds can be obtained following the
same methodology as before, except that lower bounds on the
number of tests needed for independent nodes for this stronger
constraint do not exist in the literature. We derive the latter
lower bound first, adapting some existing proof techniques
relying on Information-theoretic inequalities. We show that the
lower bounds can be improved for some specific structures
of G, such as when G is a star. This stronger notion of
error allows us to include the structure of G more heavily
and directly in this proof, rather than going via an analysis
for the number of components. We have resorted to the
latter in obtaining the lower bounds for cycle, tree for
the weaker constraint on errors. The upper bound can be
obtained following the same broad structure, though some
additional technical challenges arise. The number of errors
over all subgraphs can be bounded with high probability using
Hoeffdings inequality if the number of errors in different
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subgraphs are independent. This happens for cycles, the
subgraphs are non-overlapping paths and the events that they
remain connected in G, are independent. Nonetheless, this
does not happen for trees because nodes in one subgraph may
be connected through those in other subgraphs. We surmount
this technical challenge by invoking an innovative exposure of
nodes of the tree such that the number of connected subgraphs
constitutes a node exposure Martingale which satisfies the
requisite Lipschitz condition for Azumas inequality to hold.
The high probability bound on the number of errors over all
subgraphs now follows via Azumas inequality.

II. PRELIMINARIES AND NOTATIONS

We use the following notations for the rest of the paper.
Let CRLTOPT(G, r, p, €) be the expected number of tests in
an optimal algorithm on graph G with correlation parameter
r, probability of defectiveness p, and an error of en. Let
INDEPOPT(n, p, €) be the minimum expected number of tests
needed for n items in order to find the defective set with the
error probability at most €, where each item is independently
defective with probability p. Notice that INDEPOPT(n, p, €)
does not depend on G. Note that group testing is potentially
beneficial when the number of defective items is o(n). It is
often assumed that the (expected) number of defective items
is n* a < 1, so from now on we assume p = o(1). It is
also noteworthy that the definitions of error in INDEPOPT
and CRLTOPT are different, as mentioned in Remark 1. When
clear from the context, we may drop p, r, € from the notations.
We write A ~ f(n) if A = f(n) + o(f(n)). We write
A < f(n) when A < f(n) £ o(f(n)). By subgraph H C G,
we denote the subgraph on the nodes of H consisting of the
edges in G which are between these nodes. The logarithm
function log is assumed to base 2 throughout the paper, unless
explicitly stated otherwise.

The following lemma provides a lower bound on CRLTOPT
in terms of INDEPOPT - the minimum number of group tests
needed in the discovery of the defective set among independent
nodes.

Lemma I: Let C(G,) be the number of connected
components of G,.. Then

INDEPOPT(C(G,),p,en) < CRLTOPT(G, 7, p,e).  (2)

Remark 2: At first glance, the bound may come across as
counter-intuitive because the number of tests in a graph in
which the states of nodes are independent provides a lower
bound on that when the states are correlated. The apparent
contradiction is resolved when we note that the lower bound
is obtained in terms of the number of tests in a graph with a
fewer nodes than the original: number of components in G,
instead of the number of nodes in G,.

Proof: Consider the idealized scenario in which one
knows the components of G,. Suppose that we have C(G,)
components. All nodes in the same component are in the
same state, and the states of nodes in different components
are independent. Thus, each component can be replaced
by one node and the minimum number of tests is that
needed to test a graph with C(G,) independent nodes and
the expected number of errors is at most en. This number
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corresponds to INDEPOPT(C(G,.), p, ) for some ~ such that
the expected number of errors is at most en. A classical
group testing algorithm with INDEPOPT(C(G,.),p,7y) tests
may make (at least) an error in finding one nodes state
with probability v; thus the expected number of errors is
at least . This implies that we need 7 < en. Clearly
INDEPOPT(C(G,),p,7) is a non-increasing function of ~.
Thus at least INDEPOPT(C(G,.), p, en) tests are needed when
one knows the components of G,.. If one does not know the
components, the expected number of tests can only increase.
The lemma follows. O

In Appendix A, we prove the following corollary using
concentration results and doob martingales:

Corollary 1: Let 6 > 0. Then with probability 1 — § we
have

|C(Gr) = E[C(G,)]] < O(v/mlog1/6).

Lemma 1 illustrates a connection between the number of

connected components and the minimum number of tests
CRLTOPT, which we will use later in this work in conjunction
with Lemma 1.
Specifically, in the case that E[C(G,)] = c¢n for a
constant ¢, and G has m = o(nQ) edges, then with high
probability the number of connected components is within
en £ o(n)4/log1/0.

By having the above concentration result, we would be able
to replace C(G) by its expectation in (2). Lemma 1 provides
a lower bound on CRLTOPT in terms of INDEPOPT. Indeed,
any lower bound on the latter leads to a lower bound on the
former. We now review some useful lower and upper bounds
on INDEPOPT(G, r, p, €) next.

In the probabilistic group testing of [8], there are n
individuals and every individual ¢ is independently defective
with probability p;. Let X be the indicator vector of the
items’ defectiveness and H(X) = ). H(p;) where H(p;) =
—p;logp; — (1 — p;) log(1 — p;) is the binary entropy. Define
E[X] = >, pi as the expected number of infections over
the vector X. The testing can be adaptive or non-adaptive,
meaning the testing at each step can depend on the results of
the previous tests, or not, respectively. Reference [8] proves
the following lower bound on the required number of tests (for
both adaptive and non-adaptive scenarios)

Theorem 1 ([8]): Any probabilistic group testing algorithm
whose probability of error is at most € requires at least (1 —
€)H(X) tests.

For the upper bounds in this paper, roughly speaking,
we partition the graph into groups of nodes and assume
that the states of nodes in different groups are independent.
Subsequently, we obtain bounds for group testing on the
original graph in terms of those when the states of nodes
are independent. We therefore utilize the existing bounds for
smaller networks in our context. Below, we summarize the
probabilistic group testing results of [8] for upper bounds on
the number of tests needed when items are independent.

Theorem 2 ([8]): There is an adaptive algorithm with
probability of error at most exp (—26*n'/4) such that the
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number of tests is less than
2(149)(H(X) + 3E[X])

In this work, we assume each component is infected with
probability p, resulting in H(X) = nH(p) and E[X] =
np. Hence we can simplify the above theorem and get the
following corollary:

Corollary 2: In the adaptive group testing, there is an
algorithm with exponentially low error probability and
O(H (X)+E[X]) tests. Moreover, when every item is defective
with probability p, then the number of tests is O(n(H (p) +p).

Theorem 3 ([8]): For any 0 < ¢ < 1, 6 > 0, and a
parameter -, if the entropy of X satisfies

H(X)>T?

2n
I, :=log, (logl/,Y (6/>)

then with probability of error at most

where

1
€ S 1‘\;54»1 + 56/

there is a non-adaptive algorithm that requires no more than

elnn

2
T< Togs(1/7) (1+0)H(X) + T3 + 2E[X]
tests.

Similarly, for this work the above theorem simplifies to the
following:

Corollary 3: In the non-adaptive group testing, with
constants  and ¢, where € = n%, there is an algorithm that
recover the defection set with O(In(n)H (X)+E[X]) tests with
high probability when H(X) > Q(loglogn). Moreover, when
every item is defective with probability p, then the number of
tests is O(n(Iln(n)H (p) + p).

III. GRAPHS WITH A LOW NUMBER OF EDGES

In this section, we consider graphs that have n + c edges,
where c is a constant. Specifically, we prove lower and upper
bounds on the number of tests needed when the underlying
graph is a cycle or tree, where the lower bound can be
generalized to graph with n+c edges. We obtain these bounds
by formulating the problem into one with independent nodes,
potentially with fewer nodes than the original problem. First,
we use the lemmas introduced in Section II to obtain lower
bounds for cycles and trees. Next, we propose group testing
algorithms and prove upper bounds for cycles and trees.

A. A Lower Bound for Cycles and Trees

By Corollary 1, if we know the expected number of
components in a graph, we would be able to lower bound the
minimum number of tests needed by Lemma 1. The following
theorem proves a lower bound for cycle and trees.

Theorem 4: Let G be a cycle or a tree. Then we have

INDEPOPT((1 — 7)n — 10y/nlogn, p,en) <
CRLTOPT(G, r,p,€) + O(1/n).
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Proof: 1In a tree, by removing each edge we get one
more component, so after removing k edges the tree has k +
1 components and the cycle has k£ components.

Each edge is removed with probability 1—r, so the expected
number of components is 1 + (1 — 7)(n — 1) for trees, and
(1 — r)n + ™ for cycles, which approximately is (1 — r)n
if » # 1. By Corollary 1, the number of components is
(1 —7)n £+ O(v/nlogn) with probability 1 — 1/n2, and with
probability 1 /n2, the difference in tests is at most n, hence
O(1/n) additional tests. Applying Lemma 1 thus completes
the proof. (I

The above proof also works for any graph with n -+ c edges,
where ¢ is a constant. In other words, when the number of
edges is less than n + ¢, a lower bound on the number of tests
needed for almost (1 — r)n independent nodes is also a lower
bound on the number of tests needed under our model with
correlation 7.

B. An Upper Bound for Cycles and Trees

In this section, we provide algorithms to find the defective
set and provide theoretical bounds. We start by considering
that G is a simple cycle, and subsequently generalize the
ideas to arbitrary trees. Note that after having an algorithm for
trees, we would have an algorithm for general graphs, by just
considering a tree spanning it. However, the algorithm might
be far from optimal.

The general idea is to partition the graph G into subgraphs
that will remain connected in G, with high probability. The
nodes in those connected subgraphs will thus have the same
states. We can then select a candidate node for each subgraph
to be tested. By knowing the probability of each subgraph
being connected and the probability of error in classic group
testing, we can estimate the error in our problem as a
function of the size of the subgraphs and design the subgraphs
accordingly.

First, we provide our results for when G is a cycle.

Theorem 5: Consider a cycle of length n. Let [ =
max{w, 1} and ¢ < ¢€/2. Then there is an
algorithm that uses INDEPOPT([n/l],p, €') tests and finds the
defective set with the error at most en.

Proof: Consider the following algorithm:

1) Letl = max{w7 1}. Partition the cycle into
[n/l] paths Pi, P, ..., P, of the same length [,
except one path that may be shorter.

2) For each path, choose one of its nodes at random and
let the corresponding nodes be vp, ,vp,,. .. VP -

3) Use an INDEPOPT([n/l],p,€’) algorithm (by Theo-
rem 2 for adaptive or Theorem 3 for non-adaptive
group testing) to find the defective items among
VP, UP,, -+ - VP, ,; Where ¢ < § and the probability
of being defective equals p.

4) Assign the state of all the nodes in P; as v; for all 4.
Note that for each i, the defectiveness probability of v; is p.
The probability that P; is actually connected after a realization
is 7/=1. So the probability that P; is not in the same state
as v; is at most 1 — /=1, Then assuming that we detect all
v;’s correctly, the error in G is at most [n/l] - (1 —ri=1) . 1.
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By replacing | = max{ W, 1}, the error becomes

less than en/2. Moreover, we might also have ¢’ probability
of error for the v;’s (given the criteria set in INDEPOPT),
meaning that with probability 1 — ¢/, all the nodes are
predicted correctly, and with probability ¢ we have at least
one mispredicted node, and at most n mispredicted nodes.
So the total error from this part is at most €'n < en/2. So the
total error is at most (¢' +¢€/2)n < en and we have the above
theorem. |

Corollary 4: Consider the case in which p = ¢/n where ¢
is a constant. Let X’ be the vector of candidate nodes. Then,
H(X') < 7H(p) = O(logn)/l, where H(.) is the binary
entropy. Note that the average number of infected nodes in
X’ is . = ¢/l, hence by Theorem 2, the number of tests is
upper bounded by

€

Note that when correlations are strong, i.e., r > 1 —1/logn,
the algorithm does a constant number of tests, as expected.
Note that using classic group testing without incorporating
correlation we need O(nH (c/n)) = O(logn) tests.

We now generalize the ideas to derive an upper bound when
G is a tree. We partition G into [n/l] subgraphs (which we
sometimes refer to as groups) of [ nodes, find the probability
of each subgraph being connected in a random realization, and
then optimize it by choosing [. At a high level, we partition G
such that the nodes within a subgraph have small paths among
each other. This is because shorter paths remain connected
in G, with higher probability, maximizing the probability of
the nodes being in the same state. Finding the probability
of error is not straightforward here, because the subgraphs
we form may not necessarily be connected if we consider
only the nodes in the subgraphs (even when all the edges
between them in G are included); but such subgraphs would be
connected if other nodes of G are included, ie, such subgraphs
are connected in G through other nodes in G.

We first give a definition to formalize the number of nodes
needed to make a subset of nodes connected.

Definition 1: Let S C V be a subset of the nodes of graph
G. The smallest connecting closure of S is a subset S’ C V
such that the induced graph over S U S’ is connected.

For example, consider the graph G, in Figure 1. If § =
{v1,vs}, then the smallest connecting closure of S is {v4},
as by adding v, to S we make S connected.

Note that if G is a tree, then every connected subgraph of
G is also a tree. And the number of links in the induced graph
over S U S’ is one less than the number of nodes in it.

Now we provide a partition of nodes for trees such that
for each subgraph, only a few additional nodes and thereby
additional links will make them connected. Formally:

Lemma 2: Let G be a tree. There is a partition of the graph
into [n/l] subgraphs each with [ nodes (one subgraph may
have less than [ nodes), such that the number of nodes in the
smallest connecting closure for each subgraph is less than or
equal to [, for each [ < n.
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Proof: We prove the lemma by induction on the number
of nodes of GG. For n = 1,2, 3, the statement is trivially true.
Now suppose the lemma is true for any number of nodes less
than n, we prove it for n.

We aim to find a set of nodes of size [ such that, first,
by removing the set the graph remains connected, and second,
the smallest connecting closure of the set has at most [ nodes.
Then by removing the aforementioned set and considering it
as one of the subgraphs, we use induction hypothesis for the
rest of the graph.

To do that, suppose the tree is hanged by an arbitrary node.
Let v be one of the deepest leaves, that is, any other node is
at higher or equal level of v. Let u be the first ancestor of v,
such that the subtree rooted at u, including u, has [ or more
nodes. If there are exactly ! nodes, then the subtree rooted at
u is the desired subgraph.

Now suppose that the subtree rooted at u has more than
l nodes. Note that the number of nodes in the path from v
to u is | or fewer; otherwise v would have had an ancestor
lower than u such that the subtree rooted at it would have
at least [ nodes. Thus the distance from v to u is less than
l. Now we form a subgraph S with [ nodes and connecting
closure of [ or fewer nodes. We progressively build S. Starting
with empty set S, we add the subtree of the child of u that
v is a descendant of, and the child itself; call this subtree s;.
Note that s; has & < [ nodes, otherwise v would have had an
ancestor lower than u such that the subtree rooted at it would
have at least [ nodes. Since sy is an entire subtree rooted at a
node, GG remains connected even when s; is removed from it.

Consider [; = [—k. Recursively, do the same process for the
other subtrees of « with [y instead of [. Note that u has subtrees
other than s1, as the subtree rooted at u has more than [ nodes
and s; has at most [ — 1 nodes. Then consider another subtree
of u, called so. If |sa| < Iy, we update I = I3 — |s1] and
add ss to S and continue with another subtree of u, which by
the same argument exists. If |s2| > [, then again we choose
a deepest leaf of so and proceed with the same process as
before to find another group of nodes, i.e. we start with the
deepest leaf and go up in the tree until it exceeds [;, and
repeat the procedure. Note that after moving to the subtrees
of u, we disregard the rest of the graph, so w is an ancestor
of all the nodes we encounter next.

Again, for the next recursion, the subtree of the node that
exceeds updated [ is an ancestor of the rest of the nodes. Let’s
call v and other nodes that we make a recursion “breaking
point”. Then any pair of breaking points are ancestor and
descendant, and all the nodes added to S are subtrees of
breaking points. So by connecting all the breaking points by
a single path, which has length at most [, as the distance is
less than or equal to w to v, we connect S; so the smallest
connecting closure of S has [ or fewer nodes. More than that,
we have only included some subtrees of G, so by removing
S, G remains connected and we can use the induction for the
remaining tree.

To illustrate the algorithm, consider the tree at Figure 3 with
I = 5. We start with v, which is a deepest leaf, move up and
now the subtree is {7, v} and we add node 7 to the subgraph
as [ > 2. we move up again, and this time we can’t add v and
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Fig. 3. An example of the procedure in Lemma 2.

its subtrees, as the size of the subtree rooted at u would exceed
l. So we update /; = | — 2 = 3 and proceeds with another
subtree of u, let’s say the right subtree containing node 8. The
size of the subtree at 8 is one (only {8 }), so we can add it
to the subgraph(l; > 1) and update [, = [y — 1 = 2. Now we
continue with the updated [ and the left subtree of u. Node
10 is a deepest leaf that we start with, move up to u’, but we
can’t add the subtree rooted at w’/, as the size of the subtree
rooted at u’ is bigger than l5. So we add 10 to the set, update
I3 =15 —1=1 and proceed with «’. Finally our updated [ is
1 and we only add 9 to the subgraph. So the final subgraph
is {v,7,8,9,10}, and we can connect all of them by adding
uw and u'.

Now we’ve found S that has the smallest connecting closure
at most [, and includes only subtrees of (, so removing
that does not disconnect the graph. Then we save S as an
aimed subgraph and use the induction hypothesis on the rest
of the graph. Then other formed subgraphs have size [ (except
one) and have small connecting closures. By adding S to the
subgraphs, we get the desired grouping of all nodes and the
proof is complete. O

Note that the complexity of the above algorithm is
polynomial, O(n?/l), as we don’t do more than n/l rounds
and each round takes at most O(n). Now we are ready to
prove the upper bound for trees.

Theorem 6: Consider a tree with n nodes and let | =
max{w, 1}. Let ¢ < €/2. Then there is an
algorithm that uses INDEPOPT([n/l],p, €') tests and finds the
defective set with at most en errors. L.e.,

CRLTOPT(G, r,p, €) < INDEPOPT([n/l],p,€).

Proof: Consider the following algorithm:

1) By Lemma 2, partition the tree into [n/l] subgraphs
g1,92,---,9mm/ Of the same length [, one subgraph
might be smaller than the other ones.

2) For each group, choose one of its nodes at random and

let them be vy, , vg,, ... Vg, ;-
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3) Use an INDEPOPT([n/l],p,€) algorithm to find the

defective set among vy, , Vg, , . .. Vg, ;-

4) Assign the state of all the nodes in g; as v;, for all <.
First, we calculate the probability that g¢; is connected.
By Lemma 2, we know that each g; has the property that
its smallest connecting closure has [ or fewer nodes. Thus,
together g; and its connected closure have at most 2] —
1 edges in G, and g; and its connected closure constitutes
a connected subgraph in G. Therefore, the probability of g,
being connected in G, is at least the probability that the above
edges are retained in G, which is at least r2=1 > 2!, So the
probability that g; is not in the same state as v; is at most
1 — 2. The rest of the proof revolves around proving that
the total error is less than en as was done for cycle and this
completes the proof. (]

Corollary 5: Corollary 4 can be recovered for trees with an
additional factor of 2.

IV. AN UPPER BOUND FOR GRAPHS WITH MORE
EDGES: GRIDS AND SBMs

In this section, we focus on graphs that potentially
have many edges. As the number of edges increases, the
correlation between nodes increases even when r is not large.
As mentioned earlier, we need to target those components that
are more likely to appear in various realizations.

We know that there is a threshold phenomenon in some
edge-faulty graphs, meaning that when r is below a threshold,
there are many isolated nodes (and hence many independent
tests are needed) and when r is above that threshold, we have
a giant component (and hence a single test suffices). Most
famously, this threshold is loi ™ for Erd6s-Rényi graphs. For

random d-regular graphs, also, [29] has shown that when a
graph is drawn uniformly from the set of all d-regular graphs
with n nodes and then each edge is realized with probability
T, d—il is a threshold almost surely.

For the rest of this section, we first study a (deterministic)
4-regular graph, known as the grid' and then provide near-
optimal results for the stochastic block model. When we
consider (deterministic) d-regular graphs, we can’t use the
results of [29] for random d-regular graphs because we can
not be sure that the specific chosen graph is among the “good”
graphs that constitute the almost sure result. So we need to
develop new results on the number of connected components
and the distribution on them for our purposes.

A. The Grid

We first formally define a grid. A grid with n nodes and
side length /n is a graph where nodes are in the form of
(a,b) : 1 < a,b < /n. Node (a,b) is connected to its four
close neighbors (if exist), namely (a — 1,0), (a +1,b), (a,b+
1), (a,b—1). Border nodes (with a € {1,y/n} orb € {1,/n})
might have three or two neighbors. Note that the side length
is defined by the number of nodes on the side.

In order to derive a lower bound, we need to know the
expected number of components in G, and equivalently the

IThere is a subtle difference worthwhile to mention here: The degree
regularity does not hold on the boundaries of the grid.
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Fig. 4. An example of the procedure described in Section IV-A, starting
with border node v11.

expected component size that nodes belong to [29], [30].
To find the expected component size, we describe a random
process that forms the components and analyze the expected
stopping time. While this is well-known for ER graphs, to the
best of our knowledge there are no bounds when the graph is
not complete.

In the following, we first state a key result derived from the
above process and using that, we provide a lower bound for
the grid in Section IV-A.1. We then proceed with designing a
testing algorithm and derive a lower bound on the number of
tests in Section IV-A.2. At last, we prove the results regarding
the estimation size of a component in Section IV-A.3. The last
section might be of independent interest.

1) Lower Bound on the Expected Number of Components
in a Grid: Consider the following process. Pick a node v €
V(G), mark it as processed, and let it be the root of a tree.
For each u € V(@) that is not processed and is a neighbor
of v, uv is realized with probability » and added as a child
of v. The same process is repeated for each realized u in a
Breath First Search (BFS) order. When the process ends, there
is a tree with root v, and the expected size of the tree is the
expected size of the component that v ends up in.

An example of this process is shown in Figure 4. Node
v11 18 the root (written in bold), the children that are realized
aremarked in gray, and the children that are not realized are
rectangle nodes. The component would be {v11,v12,v7,v2}.

By repeating the process for each node that is not
processed yet, we get a spanning forest. The expected number
of components in the forest is the expected number of
components in the original random graph.

Here, the challenge is that we don’t know the number
of available (unprocessed) neighbors of a node. It highly
depends on the previously chosen nodes, especially when
d is small, like in the grid. Note that this is more
complicated than the process for ER graphs, as the number of
unprocessed neighbors in an ER graph is independent of the
previously processed nodes (due to its homogeneous nature).
We circumvent this issue by analyzing an infinite regular tree
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process that effectively corresponds to a more connected graph
and therefore leads to a lower bound on the expected number
of connected components for the grid.

Consider an infinite tree with root v such that each node in
the tree has three children and run the above process, starting
with node v where each edge is realized with probability r.
Let C(v) be the component that v ends up in. The following
theorem gives us an approximation of the expected size of
C(v). This would be the main result to prove a lower bound
for the grid.

Theorem 7: When r < 1/3, the expected component size
is

E(|C(v)|):Z%tﬂet)rt_l(l_r)ml 3)
l-r [3 ¢~ vVt 21 t
a \/;;(%m(ﬂ“%-

Note that when r < 1/3, then 2fr(1 — r)?> < 1 and
hence the sum converges. We prove the above theorem
in Section I'V-A.3.

In the case of grid, we consider 3-regular trees, as if we run
the process on a node of the grid, after the root, each child
has at most 3 potential neighbors and if we choose a node
in the border, the root also has at most 3 potential children,
as illustrated in Figure 4. So the 3-regular tree process that
we analyzed corresponds to a more connected graph than the
grid. Therefore its expected number of connected components
that we found in (3) provides a lower bound on the expected
number of connected components in the grid.

Let NC be the number of connected components. Note that
NC is a stopping time, as by knowing C7 +- - -+ Cn¢, where
C; is the size of the i’th component, we can decide whether
the process has finished or not. The random process in the
3—regular tree is symmetric over all the nodes, so as NC'is a
stopping time, E[NC] = |V(G)|/E[C(v)]. So by Theorem 7,
we immediately have the following result.

Theorem 8: For a grid with n nodes and r < 1/3, the
expected number of components is

n
St g () (=
r 1

JEQ ) T i -2y

Figure 5, shows the above approximation cg4piq =
T 1
. for the number of com-
VEQ-1 T, gy (Era-n?)
ponents in a grid as r changes from .1 to .33.
Corollary 6: Using Lemma 1 in conjunction with Theo-

rem 8§, any lower bound on the number of tests for

n
1 3 Vit (27 +0{/n)
_ [es) t
A 3 i1 @ (T —=r)?)t
independent nodes is also a lower bound on the number of
tests on a grid under our model.
2) An Upper Bound for the Grid: In this subsection,

we provide an upper bound for the number of tests in a grid.
At a high-level idea, we partition the grid into subgrids and

E(NC) =

~n
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Fig. 5. Number of components obtained by Theorem 8 for r = [.1,.33].

assume that each subgrid is connected, so we can consider
one representative node per subgrid to test. In other words,
the algorithmic idea is similar to the proof of Theorems [5, 6]
where the graph G was partitioned into subgraphs that were
more likely to remain connected in G,.. But, here, we choose
the subgraphs to be subgrids. In order to calculate the error,
we need to compute the probability that a subgrid of length &
is connected, where k is to be optimized later. We first estimate
the probability that a subgrid becomes connected.

Lemma 3: Let Pj be the probability that a grid of length
k > 1 becomes connected when each of its edges is realized
with probability . We have:

Py > P_yr®00b),

Proof: Consider the subgrid of length k£ — 1 that contains
the bottom-left corner node. Then the main grid consists of the
subgrid and a path with 2k — 1 nodes, where each node in the
path has one edge to the subgrid. For example in Figure 4, k =
5, the subgrid is the grid with corner nodes vg, vg, Va4, V21 and
the path of with 9 nodes is v, va, v3, Vg, Vs, V10, V15, U20-V25-
With probability Pj_; the subgrid is connected. Note that
in expectation, (2k — 2)(1 — r) edges in the path would be
removed, and by Chernoff bound it is concentrated around
its mean. Then, the path would be decomposed into (1 —
r)2k+o(rk) = ©((1 —r)k) subpaths with probability at least
1 —1/k0. Each subpath has at least one edge to the subgrid,
so each one is connected to the path with probability at least
r. The probability that all of them connect to the subgrid then
is at least r(1=7)9(k) and the lemma is proved. O

Theorem 9: Let P}, be the probability that a grid of length
k > 1 becomes connected when each of its edge is realized
with probability r.We have:

P, > (1=K _ ©(log(r)(1-r)k?)

Proof: The proof is done by replacing Py_; with Pj_o,
and then Pj_o with P;_3 etc in Lemma 3 and at last replacing
P =1. ]

We now partition the grid into subgrids of length k, k& will
be set later, and consider a candidate node for each subgrid
and do the independent group testing on candidate nodes.
Now similar to Theorem 6, by setting error probability of
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each subgraph small enough, that is 1 — P, < €/2, we get
k< log(1—€/1000)

(1—7r)logr
most n/k? independent node tests with error € < €/2.

3) Estimating Component Sizes in 3-Regular Trees: In
this section, we prove Theorem 7. We first approximate the
distribution of C'(v) and using that, compute the expectation
of C(v). The following lemmas approximate the distribution
of |C(v)].

Lemma 4: Under the above process and for ¢ € N,

1 3t t—1 2t+1
12
2t +1 (t)T (1=r)

Proof: Let T be an embedded tree in G with ¢ nodes.
In order to T be realized in the process, all the edges in T’
should be realized and the rest of edges that has a node in
T should not be realized. There are ¢t — 1 edges in 7', and
each node has three potential edges, so there are 2¢ + 1 edges
that are not realized. So the probability that 7' be realized is
P11 — )2,
Let C; be the number of trees with ¢ nodes and v as the
root. We have

P(ICM)| =t) = C; - rt=1(1 — )21,

Note that Cy = C7; = 1. We find a closed form of C; by
recursion. Node v has three potential subtrees, where the sum
of the size of the subtrees is ¢ — 1. We thus get the following

recursion

i+j+k=t—1,i,5,k>0

. Then the error is less than en with at

P(C)| =1) =

Cy = C,C;Cy.
This recursion has the same initial points and the same
recursion as second order Catalan numbers as follows:
Lemma 5 ([31]): Order-d Fuss-Catalan numbers that fol-
lows the recursion form

d_ d d
ci= I ot
114 Fig=n—1
with C¢ = C{ = 1, has the closed form C¢ = m : (dr?).
So the solution has the form Cy = 52— (%) and the proof
is completed. O

Lemma 6: Let P,, = P(|C(v)|] =
above process,

00). Then,under the

P 0 r<1/3
B i VA o) W otherwise

Proof: In order for v to be in an infinite component,
at least one of its children should be in an infinite component.
There are three cases: (i) Either v has one child, and this one
is infinite, which happens with probability 3r(1 — r2)P..; or
(i) v has two children and at least one of them lies in an
infinite component, which happens with probability 3r2(1 —
r)(1 — (1 — Py)?); (iii) or v has three children and at least
one of them lies in an infinite component, which happens with
probability 73(1 — (1 — Py.)?). So in total we have

Py = 3r(1—7)2 Py + 3r%(1 — 7)(1 — (1 — Px)?)
+73(1 = (1 = Py)?).
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The solutions of this equation are 0 and P, =

3r+./r(4—3 3 4-3r) . .
T\/Qﬂ. Note that P, < 1, s0 %M is not valid.

The relevant solution turns out to be dependent on whether
r>1/3 or r <1/3. As a matter of fact, when r > 1/3, the
probabilities of all finite components (as found in Lemma 4)
do not add up to one. So for r > 1/3, the correct solution

jg Sroyrid=sr) w. When r < 1/3, we have Sroyrid—sr) ”2:(24_3” <
0, so zero is the correct solution and the lemma is
proved. (|
Proof: (of Theorem 7) The proof follows from Lemma 4
and Lemma 6 and by using Stirling Approximation. ]
It is worthwhile to remark that the proof generalizes to
general d—regular tree processes.
Remark 3: When the underlying graph is an infinite d-
regular tree, under the defined process and for t € N,

B. An Optimal Algorithm for the Stochastic Block Model

In this section, we study our model on SBM graphs.
We apply the same techniques used in Erd6s-Rényi graphs
to find the connectivity threshold to find the structure of the
connected components.

A stochastic block model has g clusters of size k = n/g,
where any pair of nodes in the same cluster are connected
with probability ¢;, and any pair of nodes in different clusters
are connected with probability g < ¢;. After realizing each
edge with probabilities ¢; and g2, we have our graph G. Then
based on our correlation model, each edge remains in G, with
probability r. So with probability ; = r¢; an edge remains
in the same cluster and with probability ro = g2 an edge
remains between two different clusters. Here, we assume the
size of the clusters are much bigger than logn, i.e. k > logn.
We find the number of connected components based on r; and
ro with high probability, for simplicity let’s say 99%. The
probability can be improved with a slight change in the
parameters.

Theorem 10: o If r{ > 1001% and 1 — (1 — Tg)k2 >
1001%, then with high probability G is connected. (first
regime, one test needed)

o If oy > 100dosn ng (1 —pp)h < To5;» then with
high probability each cluster is connected but most of the
clusters are isolated. (second regime, g independent tests
needed)

o If M < ﬁ and ro < ﬁ, then with high
probability G, has many isolated nodes. (third regime,
Q(n) independent tests needed)

o If r; < ﬁ and 7o > 1()01+M’ and g > 1, then with
high probability G, is connected. (fourth regime, one test

needed)
Proof: First, suppose 1 . A cut is a partition

of nodes into two sets (parts), and its size is the number of
nodes in the smaller set. We say a cut is disconnected if there
is no edge between the sets. A cut of size ¢ < k/2 in a single
cluster has i(k — i) potential edges between the parts. Then

100log n
%
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the probability that the specific cut is disconnected is

(1- ,r,l)i(kfi) %) o—r1i(k—i) (2) o~ 100log ni(1—i/k)

(Zi)e—SOi log gk _ (i

504
P
The first inequality, (i), is true because 1—x < e™* for x > 0,
(ii) is true by r; > %, and (iii) is true by i < k/2. Note
that number of cuts of size 7 is (’Z), and by Union Bound,
the probability that any cut of size ¢ becomes disconnected is
at most ZWQ( )50 (%), But (¥) < & by a simple counting
argument, SO the probablhty of a cut be disconnected is at most
zk/ 3(Z)P K < ()18 = (1/n)*8. So with probability 1 —
(1) a single cluster of size k is connected. Agam by Union
Bound, with probability at most (1)*8g < (1)%7 there is a
disconnected cluster. So with probablhty 1- (n)47, all clusters
are connected.

Now if we assume all the clusters are connected, if there
is an edge between two clusters, then those two clusters
are connected. So if we consider a graph where the nodes
represent the clusters and two nodes are connected if there
is at least one edge between the corresponding clusters, then
we need to understand the connectivity of the new graph.
The probability that there is at least one edge between two
clusters is 1 — (1 — 7'2)’“2, and again if this value is more
than 1901989 = thep G is connected with high probability.

If1—(1- Tg)kz < 100 , then the probability that a cluster is
isolated is more than (1 —1/(100g))9~" ~ = 1/100 ~ .99,
so most of the clusters are isolated, which proves the first two
parts of the theorem.

If rp < ﬁ, then with the same argument, with high
probability most of the nodes in all clusters are isolated. If we
also have ro < ﬁ, then this means that most of the nodes
don’t have any neighbors outside of their cluster with high
probability, so in total the graph has {2(n) many isolated nodes,
which proves the third part.

Now suppose ro > 1001%, and we prove the last part
of the theorem. We assume each cluster is empty, i.e. there
is no edge in the cluster, and even when they’re empty with
T > 10071#, the graph is connected with high probability.
Consider a cut in G with ¢ < n/2 nodes. Each node has n —k
potential neighbors in other clusters. So it has at least n—k —
1 potential neighbors outside of its clusters and the chosen
cut. Then, almost similar to the first part of the theorem, the
probability that this cut is disconnected is at most

(1— TZ)i-(n—k—i) < g2t (n—k—i)

ki () X
< e—lOOlogn-z-( - < e—lOOlong(l/Q—l/g)

_ (Liio00i(1/2-1/9)
=) .

Here, (i) is true by ¢ < n/2 and k/n = 1/g. Again, there
are (") < n' cuts of size i. So the probability that any cut
of size i is disconnected is at most n' - (1)100:(1/2=1/9) —

(1 )100i(1/2=1/9=0.01) Tt js not hard to see that if g > 2, then
(2)100:(1/2=1/9=0.01) = (1 /n?). So the probability that any
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cut is disconnected is bounded by

n/2
2(3)1001(1/2—1/5;—0-01) <n- o(l/n2)

i=1

= o(1/n).

So in the case of g > 2, we’ve proved the last part of the
theorem. If ¢ = 2, for ¢+ > 2, a cut of size ¢ has at most
i? /4 edges in the node set of size i, as the graph is bipartite and
the number of edges in the set is maximized when i/2 nodes
is chosen from each part of the graph. So the potential edges
to the other side of the cut is at least i(n — k) — i2/4 =
i(n —k—i/4) = i(%*) > i-3n/8, as i < n/2, and we can
repeat the reasoning to prove that with high probability all
cuts in this graph are connected. It is also easy to verify that
when the cut is a single node or a pair of nodes, then the
cut is disconnected with probability at most o(1/n*), and this
completes the proof. ]

Based on the previous theorem, we can now design a simple
algorithm based on the parameters r; and 75. In the first
and the last regime, a single node is tested and the result
generalizes to all the nodes. In the second regime, we pick a
candidate node from each cluster and perform independent
group testing on them. The result of each candidate node
generalizes for all the nodes in the correspondent cluster.
Finally, in the third regime we perform independent group
testing on the n nodes of the graph.

V. A STRONGER NOTION OF ERROR

So far, we have focused on bounding the expected error of
the algorithms, meaning the error is low (only) on average.
But in many applications, we need to have a low error with
high probability. As an example, let’s say we need the error
to be less than e. Under the weaker notion of error (bounding
the average), we might have an error of 1.5 e half of the time,
and for the other half have .5e error. So half of the time we
don’t satisfy the required error. Similar to [8], we introduce
probabilistic error with relaxation on error-free prediction.
Precisely, in [8] they wanted to find the defective set with
probability 1—4§ such that all the nodes are correctly predicted,
but we allow up to en mispredicted nodes.

We consider the following stronger notion of error: suppose
that we want to have at most en mispredicted nodes with
probability 1 — 6, and for the ¢ other fraction we can have any
number of mispredicted nodes. We refer to this notion of error
as maximum error with parameters € and d. This is a relaxation
of the error compared to [8], where ¢ = 0, i.e. with probability
1 — § we recover perfectly. Let CRLTOPT(G,r,p,d,€) be
the expected number of tests in an optimal algorithm with
maximum error with parameters € and . Parameters r and p
are defined as in Section I-A.

In the following, we will provide lower bounds on the
number of tests under the above notion of error. Then we
will provide matching upper bounds for some of the graphs
discussed so far.

A. Lower Bounds for the Stronger Error

We first find a lower bound for CRLTOPT(G,r,p,d,¢€)
when G is the empty graph, i.e. the nodes are independent.
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Note that we are no longer able to use lower bounds of
classic group testing directly, like Lemma 1, because an error
in classical group testing (which affects the average error)
might not be counted as an error in maximum error. In other
words, in classical group testing, when an error happens
with probability ¢, there is no guarantee on the number of
mispredicted nodes, the error might be one or a constant or
all the nodes, but only en mispredicted nodes are allowed
in maximum error. So we need to find a lower bound for
the problem with maximum error definition and independent
nodes directly. We adapt the approach in [8] to derive the
following lower bound:

Theorem 11: Let INDEPOPT(n,p,d,¢) be the minimum
number of tests for n independent nodes under maximum error
with parameters (J, €). Then any Probabilistic Group Testing
algorithm that, with probability 1 — ¢, predicts all independent
nodes but en of them correctly, needs n(1 —6)(H (p) — H (e€))
tests where H is the binary entropy function. i.e.

INDEPOPT (n, p, d,€) > n(l —6)(H(p) — H(e)) — O(1).

We defer to proof to Appendix B. Analogous to Lemma 1,
we immediately get the following lemma:

Lemma 7: Let C(G,) be the number of connected
components in G,. Then, under a maximum error target,
we have

C(G)(1 — 8)(H(p) — H(e)) < CRLTOPT(G, 7,p, 8, ¢). (4)

Using Lemma 7 along with our concentration results on
the number of connected components for cycles, trees and
grids, we find lower bounds on the number of tests for our
maximum error criteria. Recall that the lower bound for the
average error € has the form of C(G)(1 — en)H(p) for a
graph G, while under the stronger notion of error we have
C(G)(1—0)(H(p)—H (€)). For the regime where € = ¢/n, ¢ <
1, the lower bound for average error and the stronger error
simplify to C(G)(1—c)H (p) and C(G)(l—é)(H(p)—%) o~
C(G)(1 — 6)H(p), respectively, and when § < ¢ we get an
improvement.

As discussed, there is a gap between our lower and upper
bounds. We next show that the lower bound can be improved
by capturing the underlying topology of the graph more
heavily.

B. An Improved Lower Bound for the Star Graph

Theorem 11 does not depend on the underlying graph G.
However, if we take GG into account, we can infer information
about the states of the nodes, at least for some graphs. Here,
we give an improved lower bound for star graphs, where there
is a node with degree n — 1 and all the other nodes are leaves.

Theorem 12: When the underlying graph G is a star,
we have

n(l=0)[H(r)+ (1 —r)H(p) — H(e)—

1+p(1—p)(1—=r)H(r') +0o(1)] - O(1) <
CRLTOPT(G, r,p, d,€) (5)

! __ T
where ' = ey
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Proof: Let X, B and Y be defined same as in the proof
of Theorem 11. Let G be a random binary vector where the
¢’th coordinate is 1 iff the i’th edge of G is realized (with
probability ). Then (X,G) — B — Y forms a Markov chain.
We are interested in I(X, G;Y) because

IX,G;Y)<IX,G;B)<HB)<logB|=T
where T' is the number of test. Write
IX,G;Y)=H(X,G) - HX,G|Y). (6)

We now bound H(X,G|Y).Let E=1if | X —Y]||o > en
and E = 0 otherwise, same as Theorem 11. Then

H(X,G|Y) = H(X, G, E|Y)
= H(E|Y) +6H(X,G|Y,E =1)
+(1-§HX,G[Y,E =0). )

By writing H(E|Y) < 1 and HX,G|Y,E =
H(X,G) and replacing Eq (7) in Eq (6), we get

I(X,G;Y) > (1-0)(H(X,G) - HX,G|Y,E =0)) -
(3)

As G is a tree and every component is independently infected
with probability p, we can write

H(X,G) = H(G) + H(X|G) ~ nH(r)
=n(H(r)+ (1 —r)H(p)).

Now we bound H(X,G|Y,E = 0) = HX|Y,E = 0) +
H(GIX). For the first term, in Theorem 11 we found

H(X|Y,E =0) <nH(e). )

1) <

+ (1 —=r)nH(p)

To bound the second term, note that the underlying graph G is
a star and with probability 1—1/n2, the number of nodes in a
different state than the center is 2np(1—p)(1—7r)=+o(n), so the
contribution outside of this range to H(G|X) is only o(1/n).
The edges connected to such nodes can not be realized,
so n(1—2p(1—p)(1—r)) edges are still uncertain, and knowing
that the two end-points are in the same state, each of such
;dges are realized with probability 7’ = — g1 Ew g
0

H(GIX) <n(1—2p(1—p)(1— ) HE).  (10)

Again, by replacing all in Eq (8), we get a lower bound on
the number of tests:

T>I1(X,&;Y)

> (1-6)[H(X,G) - H(X,G[Y,E = 0)]
=(1-9)[H(G)+HX|G) - HX|Y,E=0)
;H(GIX)} -
> (1 =0)[nH(r)+n(1 —r)H(p) — nH(e) — H(G|X)
+o(nH ()] -1
> (1 =0)[n(H(r) + (1 —r)H(p))
— (nH(e) + n(1 —p(1 - )(1*7"))H(7"')) o(n)] —1
=n(1—=06)[H(r)+ (1 —r)H(p) — H(e) —
+p(1=p)(L=r)H(@') +0(1)] - O(1)

where a is by Eq 8, b is by Eq 9 and c is by Eq 10. (]
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Fig. 6. A comparison of the new lower bound (eq (5)) and the old upper
bound ((4)), without the term n(1 — §) that appears in both, for p = 0.1 and
e = 0.0001.

We compare the lower bound in (5) (Star-specific bound)
with the lower bound in (4) (generic bound) in Figure 6 by
removing common term n(1 — §) which appears in both. One
sees that the lower bound in (5) is strictly larger than (4)
for a range of r around r = % This range corresponds to
cases where uncertainty about the edge set of G, is high, and
therefore knowledge about the existence of (or lack thereof)
an edge is very informative as captured in our way of upper
bounding H(G|X). Even though the improvement offered by
the lower bound in (5) is relatively small, it suggests that
generic lower bounds are likely to be loose for our correlated
group testing problem and the structure of the underlying
correlation graph G need to be considered in order to obtain
tighter lower bounds.

C. Upper Bounds for Cycles and Trees

We now find upper bounds similar to those that we provided
in Sections III-B and IV-A. Under an average error target,
we partitioned the graph and computed the incurred average
error. Under maximum error targets, however, we don’t
know what fraction of the realizations with average error en
actually has less than en mispredicted nodes, so we can’t
use those results and need to prove concentrations around the
average. For cycles and grids, the subgraphs we designed were
independent of each other, in the sense that the connectivity of
a subgraph would not change the probability of connectivity
of the other subgraphs. Hence by using Hoeffding’s bound
we prove the following theorem for a maximum error
target.

Theorem 13: Consider a cycle of lzength n and let | =
o nlog(1/T)

max{%,l}, 5§ > 2 ) and € <

d/2. There is an algorithm that uses INDEPOPT([n/l],p,€)

tests and finds the defective set with maximum error with

parameters ¢ and J, i.e.

CRLTOPT(Cycle,r, p, 8, €) < INDEPOPT([n/l], p, )
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Proof: ~We use the same algorithm and the same
subgraphs as in Theorem 5. Recall that the probability of one
subgraph not being connected is '~ and the average error
is en/2. The number of mispredicted nodes in each subgraph
is in [0,{] and they are independent of each other, meaning
the connectivity of a group does not change the connectivity
of another group, so b;/ Hoeffding’s bound, with probability

at least 1 — exp[—@(%)] > 1 —§/2, the error is at
T—c/2

most en. Also with probability more than 1 —€¢ > 1—4/2 all
candidates are predicted correctly, so with probability more
than 1 — ¢ the classic group tests detect all the defective nodes
with no error, and assuming this, the error on subgraphs is
less than en and we’re done. ]

The same reasoning works for subgrids of a grid
and leads to the same upper bound with the parameters

2nlog(1/r)
§ > 2 ° 52" and ¢ < §/2. But for trees, we can’t
use Hoeffding’s bound because the connectivity of a subgraph
can affect the others, for instance the absence of an edge might
make several groups disconnected, hence the groups are not
independent anymore. This dependency violates the conditions
we need for applying Hoeffding’s inequality. In order to fix
the issue, we use the node exposure martingales process
with a proper graph function definition to prove the desired
concentration. Please refer to Appendix A for a more detailed
definition of node exposure martingales and graph functions.

Before providing the new theorem for trees, we need the
following lemma to use the concentration lemma for node
exposure martingale defined in Section III-A.

Lemma 8: Let g1, 92, - .., g[n/1 be the subgraphs formed in
Lemma 2. Let f(H) be the number of connected subgraphs
g; in graph H. Then there is an order of node exposure such
that at each step, the value of f does not change by more than
one.

Proof: Let g1, 92, - -, g1 be the subgraphs formed in
Lemma 2 in this order. Consider the following order of node
exposure: we first expose all the nodes in the last subgraph,
grn/11» in some order. Then expose the nodes in the subgraph
before that, g(n/17—1), and so on until the nodes in the last
subgraph, g1, are exposed.

Consider a node v in subgraph g; when it is exposed.
Note that no subgraph g;,j > i can become connected after
exposing v, as by construction of subgraphs, all the nodes of
connecting closure of g; lies in g, k > j. Also, no subgraph
95,7 < i can become connected, because neither of g;’s nodes
are exposed yet. So f(H) can potentially only change by one,
and for the last node of g; to make g; connected, and the
lemma is proved. ]

The above lemma allows us to use Azuma’s inequality for
groups made for trees as described in the following theorem.

Theorem 14: Consider a tree Wighln(lr/l(gdes and let | =
o €-nlog T

maX{W,l}, §>2 o2 and € < 5/2.
Then there is an algorithm that uses INDEPOPT([n/l],p,€)
tests and finds the defective set with maximum error with

parameters ¢ and 9, i.e.

CRLTOPT(Tree,r,p,d,¢) < INDEPOPT([n/l],p,€)
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Proof: We use the algorithm and the same subgraphs
introduced in Theorem 5. Recall from the proof of Theorem 6
that the probability of one group not being connected is 7% and
the average error is en/2. Now we can’t use the Hoeffding’s
bound to show concentration around the average. Instead,
we use a node exposure martingale to prove the concentration.
Note that Theorem 16 for node exposure martingale only
works when the graph function is node Lipschitz, meaning
when H; and H; only differ in one node, |f(H;) — f(H2)| <
1. But if we can find an order of nodes v, . . . , v,, exposed such
the graph H; on first ¢ nodes satisfies |f(H;11)— f(H;)| <1,
then we can still use Azuma’s inequality. Let f(H) be the
number of connected subgraphs g;in H. Then by Lemma 8
there is an order such that |f(H;4+1) — f(H;)| < 1, and
we can use the concentration theorem (Theorem 16) for the
number of connected groups in the random graph G,.. We now
have the same error concentration as in Theorem 13 for error
(equivalent to the Hoeffding’s bound), hence we can repeat
the argument to complete the proof. (]

VI. CONCLUSION

In this paper, we consider group testing strategies for
identifying defective items when the defects of different
nodes are correlated. The correlation is modeled through an
underlying graph in which the degree of correlation between
the defects in the items depends on the distance between the
corresponding nodes in the graph. We relate the problem of
design of testing strategies in presence of such correlation
to that when the defects are independent. We subsequently
obtain testing strategies in terms of those already known for
independent defects for a large class of underlying graphs,
namely trees, cycles, grids, and stochastic block models. This
provides an upper bound for the number of tests needed to
ensure the desired error bounds. We also obtain fundamental
limits ie lower bounds on the minimum number of tests
required to ensure the same error bounds using bounds
already known when the defects are independent. The bounds
are obtained through a novel combination of edge exposure
Martingale theory and graph partition techniques.

We now describe some directions for future research
stemming from some restrictive modeling assumptions. Recall
that we have a graph G that defines the correlation model;
G, is obtained from G and has all the nodes of G but only
a subset of edges (each edge in G makes it to G, with a
given probability). Thus each component of G is broken into
several components of GG,.. We assume the nodes in the same
components of G, are in the same state, but make no such
assumption for nodes in the same component of G. So even if
a number of nodes are in the same component in GG, or more,
suppose a component in G is a clique (i.e., a fully connected
subgraph), these nodes may end up in different components of
G, and could therefore have different states (albeit with low
probability if the said component is a clique of a large size
in G). Note that our guarantees on group testing algorithms
apply to the stated structures of G, i.e., despite nodes in the
same component of G having different states.

The consideration of GG, has been introduced to incorporate
a correlation between states of nodes that are connected
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through one or more paths in GG, and the correlation depends
on the number and lengths of paths between them. This
is consistent with all applications that satisfy the following
attributes: (1) as the path between two entities gets longer in
the connectivity graph G, their states are less likely to impact
each other, and (2) as the number of distinct paths between
them increases in G, their disease states are more likely to
impact each other. The construction of G, from G, and the
assumption that states of nodes in the same component of G,
are identical and the states of nodes in different components of
G, are independent, satisfies both the above properties. The
applications used to motivate the correlation between states
(eg, medical applications) satisfy the above properties.

If we remove the assumption that the nodes in the same
component of GG,- have the same state, our algorithm performs
worse as the state of our “candidate” node is no longer
representative of those of the nodes in the rest of the
component. The extent of the decline in performance depends
on how different the nodes’ states are within the same
component. Specifically in a model where the nodes in the
same component of G, are not all in the same state, each
component consists of two groups of nodes, corresponding to
the two states. Let the larger of the two groups have only
g fraction of nodes of the component, clearly ¢ > 1/2. The
larger the value of ¢, the larger the fraction of nodes that have
the same state, and our current assumption is a better fit. In this
case, our algorithm has an additional 2¢(1 — q)n error,” which
decreases with increase in ¢ (since we consider ¢ > 1/2).
Thus the decline in performance is a continuous function of
q. Devising algorithms that are more robust in such modified
models constitutes a topic of future research.

Finally, we discuss directions for future research based on
the limitations in the results obtained in this paper. There is
a gap between the upper and lower bounds, which may be
because there is scope for improvement in the lower bound,
possibly utilizing the specific structures of the underlying
correlation graphs. Another important area for future work
is the development of testing strategies for general graphs.
Towards that end, one may envision the partition of the graph
into structures such as trees, cycles, grids, stochastic block
models, etc for which we have identified in this paper testing
strategies with guarantees on error rates and the number of
tests required. Based on the intuition we’ve gained in this
paper, we believe there is a connection between forming
the groups and community detection as both attempt to
detect dense subgraphs. Furthermore, designing group testing
strategies when the defects dynamically evolve over time over
graphs in question remains open. This problem has started
receiving attention [24], [32].

APPENDIX
A. Concentration Results

Definition 2 ([30]): A
f is said to satisfy

>The candidate node falls in the larger group in the component with
probability ¢, and (1 — g) fraction of them would be mispredicted. Or it
falls in the smaller group with probability (1 — ¢) and ¢ fraction would be
mispredicted. Hence the total error from this is 2¢(1 — q).

function
condition

theoretic
Lipschitz

graph
the edge
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if, whenever H and H’
[F(H) - f (H)] < 1.

Note that the number of components C(G) is edge
Lipschitz, as when two graphs differ in only one edge, they
either have the same number of components, or the graph with
one less edge has one additional component. One can define
a node Lipschitz condition by replacing edge with node [30].

The Edge Exposure Martingale. Let ej,es,...,¢, be
an arbitrary order of the edges. We define a martingale
Xo,X1,...,X,;m where X; is the value of a graph theoretic
function f(H) after exposing ey, eo, ..., e;. Note that X, is a
constant which is the expected of f(G), where G is drawn
from G,. This is a special case of martingales sometimes
referred to as a Doob martingle process, where X, is the
conditional expectation of f(H), as long as the information
known at time ¢ includes the information at time ¢—1 [30]. The
same process can be defined for node exposure martingales,
where the nodes are exposed one by one [30]. Node exposure
can be seen as exposing one node at each step, so at the i
step the graph has ¢ nodes along with the edges between them.
You can find more about the topic in [30, Chapter 7]. We have
the following theorem.

Theorem 15 ([30]): When f satisfies the edge (resp. node)
Lipschitz condition, the corresponding edge (resp. node)
exposure martingale satisfies |X; 1 — X;| < 1.

We then have Azuma’s inequality.

Theorem 16 ([30]): Let Xy = ¢,...,X,, be a martingale
with

differ in only one edge,

X1 — X, <1
for all 0 < ¢ < m. Then
Pr[|Xm —c| > AW/m]| < 20N /2,

Proof:  Consider the number of components C(G)
which is an edge-lipschitz function of the graph. Now define
Xo = E[C(G,)]] and X,,, = C(G,). Applying Theorem 16
concludes the proof. (]

B. Proof of Theorem 11

Proof: The proof is a modified version of the proof
of Theorem 1 in [8]. Let X be the vector of states of the
nodes, B be the vector of the result of the group tests for
a testing strategy of choice, and Y be the estimated states
of the nodes. Then X — B — Y form a Markov chain.
Thus, by data processing inequality, I(X;B) > I(X;Y). Also
we have I(X;B) = H(B) — HB | X) < H(B). Now,
H(B) < log, |B|, where |B| indicates the number of possible
values of the random vector B. Since B represents the result
vector, the number of possible values of this vector is at most
2T, where T is the number of tests. Thus, 7> log, |B|. Thus,
combining the above inequalities, T > I(X;Y).

Moreover,

H(X)=HX|Y)+I(X;Y).
Thus, T > H(X) — H(X | Y). Since X represents the

states of n independent nodes, each of which is defective with
probability p, H(X) = nH(p). Thus,

T >nH(p)— HX|Y). (11)
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We now obtain an upper bound for H(X | Y). Define the
error random variable £ such that
1, if|[Y=X|o>en
0, if||Y—-X]o<en

where ||.||op is the number of non-zero elements in a vector.
We can bound the conditional entropy as follows

H(X|Y)=HE,X|Y)
H(E|Y)+Pr[E=0HX|Y,E=0)
Pr[E=1H(X|Y,E=1)
1+(1-6)H(X|Y,E=0)+3H(X)

1+ (1-8)H(X|Y,E=0)+nsH(p). (12)

ININ +

We now upper bound H(X | Y, E = 0):
HX|Y,E=0)=
> PrlY =y|E=0H(X|Y =y, E=0]

<3 Prly = yilloge ("

=2 [ y]ogc(€n>

:log<n>+c’:nH(e).
en

To obtain the inequality, we note that given that £ = 0, there
are at most en bits in which X differs from Y. Thus, given
a value of Y and that E = 0, there are at most Y i () <
c (;‘L) values of X, where ¢’ is a constant. The result follows
by recalling that the entropy for any random variable with
r values is at most logr. The Theorem follows by putting

together (11), (12) and (13).

(13)

O
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