

Group Testing With Correlation Under Edge-Faulty Graphs

Hesam Nikpey¹, Jungyeol Kim¹, Xingran Chen¹, Member, IEEE, Saswati Sarkar, Senior Member, IEEE, and Shirin Saeedi Bidokhti¹

Abstract—In applications of group testing in networks, e.g. identifying individuals who are infected by a disease spread over a network, exploiting correlation among network nodes provides fundamental opportunities in reducing the number of tests needed. We model and analyze group testing on n correlated nodes whose interactions are specified by a graph G . We model correlation through an edge-faulty random graph formed from G in which each edge is dropped with probability $1 - r$, and in the newly formed graph, all nodes in the same component have the same state. We consider three classes of graphs: cycles and trees, d -regular graphs and stochastic block models or SBM, and obtain lower and upper bounds on the number of tests needed to identify the defective nodes. Roughly speaking, we use correlation among the states of the nodes to transform the problem into that of a smaller graph with independent node states. This enhancement is quantified through the ratio of the diminished node count to the overall count of nodes, n ; thus, a lower ratio signifies superior performance. The lower bounds are derived by illustrating a strong dependence of the number of tests needed on the expected number of components. In this regard, we establish a new approximation for the distribution of component sizes in “ d -regular trees” which may be of independent interest and leads to a lower bound on the expected number of components in d -regular graphs. The upper bounds are found by forming dense subgraphs in which nodes are more likely to be in the same state. When G is a cycle or tree, we show an improvement by a factor of $\log(1/r)$. For grid, a graph with almost $2n$ edges, the improvement is by a factor of $(1 - r) \log(1/r)$, indicating drastic improvement compared to trees. When G has a larger number of edges, as in SBM, the improvement can scale in n .

Received 27 March 2023; revised 1 July 2024; accepted 10 September 2024. Date of publication 14 October 2024; date of current version 22 November 2024. This work was supported by NSF under Award 2047482 and Award 2008284. (Corresponding author: Hesam Nikpey.)

Hesam Nikpey is with the Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA 19104 USA (e-mail: hesam@seas.upenn.edu).

Jungyeol Kim is with JP Morgan Chase, Jersey City, NJ 07310 USA (e-mail: jungyeol.kim.korea@gmail.com).

Xingran Chen was with the Department of Electrical and System Engineering, University of Pennsylvania, Philadelphia, PA 19104 USA. He is now with the School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China (e-mail: xingranc@ieee.org).

Saswati Sarkar is with the Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104 USA (e-mail: swati@seas.upenn.edu).

Shirin Saeedi Bidokhti is with the Department of Electrical and Systems Engineering and the Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA 19104 USA (e-mail: saeedi@seas.upenn.edu).

Communicated by M. Schwartz, Associate Editor for Coding and Decoding.

Color versions of one or more figures in this article are available at <https://doi.org/10.1109/TIT.2024.3475822>.

Digital Object Identifier 10.1109/TIT.2024.3475822

Index Terms—Graph theory, adaptive algorithms, detection algorithms.

I. INTRODUCTION

GROUP testing [1] is a well studied problem at the intersection of many fields, including computer science [2], [3], [4], [5], [6], information theory [7], [8], [9] and computational biology [10], [11]. The goal is to find an unknown subset of n items that are different from the rest using the least number of tests. The target subset is often referred to as *defective*, corrupted or infected, depending on the field of study. In this work, we use the term defective. To find the subset of defectives, items are tested in groups. The result of a test is positive if and only if at least one item in the group is defective. Group testing is beneficial when the number of defective items is $o(n)$, it is often assumed that the (expected) number of defective items is n^α , $\alpha < 1$. We assume the same in this work.

Over the years, this problem has been formulated via two approaches: the combinatorial approach and the information theoretic approach. In the “combinatorial” version of the problem, it is assumed that there are d defective items that are to be detected with zero error [1]. Using adaptive group testing (i.e., when who to test next depends on the results of the previous tests), there is a matching upper and lower bound on the number of tests in the form $d \log n + O(d)$ [1]. Using non-adaptive group testing (i.e., when the testing sequence is pre-determined), there is an upper bound of $O(d^2 \log(n/d))$ and an almost matching lower bound of $\Omega(\frac{d^2 \log n}{\log d})$. The “information theoretic” approach, on the other hand, assumes a prior statistic on the defectiveness of items, i.e., item i is assumed to be defective with probability p_i . The aim in this case is to identify the defective set with high probability [8]. Roughly speaking, there is a lower bound in terms of the underlying entropy of the unknowns, and an almost matching upper bound up to a $\log n$ factor of the lower bound.

In most existing works, it is assumed that the states of the items, whether or not they are defective, are independent of each other, which is not realistic in many applications. Group testing, for example, can identify the infected individuals using fewer tests, and therefore in a more timely manner, than individual testing, during the spread of an infectious disease (eg, COVID-19) [12], [13], [14], [15], [16], [17]. But the infection states of individuals are in general correlated, with

correlation levels ranging from high to low, depending on how close they live: same household (high), same neighborhood, same city, same country (low). Correlation levels also depend on other factors such as frequency of contact, the number of paths between the individuals in the network of interactions. We elaborate on this further in Section I-A. Another example is the multiaccess channel problem: here a number of users want to communicate through a common channel and we want to assign time slots to them to avoid any conflicts. Before assigning, we aim to find the number of active users that want to send a message. Using group testing, we can identify the number of active users faster by asking a subset of users if any of them is active [9], [18], [19]. But again, nodes are often not independent. Generally, some subset of users might communicate among themselves more often and hence, be more correlated. With this motivation, we aim to model such correlation, design group testing techniques that exploit it, and quantify the gain they provide in reducing the number of tests needed. One can also use group testing to detect faulty links in a network or failure in power grids. Usually, the cause of failed links is the same locally, for instance, an outage of power in some part of the network [20], an overload in a specific district [21], or typically localized cascading line failures in the transmission system of the power grid [22] (failures due to overload can cause load redistribution to neighboring nodes, increasing the likelihood of overload and cascading failures at those nodes). Thus, there is a correlation between states of neighboring nodes, which our model captures.

The closest works to our work are [23], [24], [25], [26] where specific correlation models are considered and group testing methods are designed and analyzed. In [23], the authors consider correlation that is imposed by a one time-step spread of an infectious disease in a clustered network modeled by a stochastic block model. Each node is initially defective (infected) with some probability and in the next time step, its neighbors become defective probabilistically where the probabilities depend on the community structure of the network. The authors provide a simple adaptive algorithm and prove optimality in some regimes of operation and under some assumptions. In [24], the authors model correlation through a random edge-faulty graph G . Each edge e is realized in the graph with a given probability r_e . So depending on how the graph is realized, it is partitioned into some connected components and the tests cannot be designed with the knowledge of the realized components. Each connected component is assumed defective with probability p (in which case, all the nodes in that component are defective) and otherwise non-defective with probability $1 - p$. The authors focus only on a subset of the realizations by studying the case in which the set of connected components across realizations forms a particular nested structure. More specifically, they only consider a subset of realizations such that for each realization $G_1 \in G_r$, there is another realization $G_2 \in G_r$ so that G_1 is instantiated by dividing a component in G_2 into two components. Of course there is one realization that does not obey this rule, the one with the least number of components. They found a near optimal non-adaptive testing strategy for

any distribution over the considered realizations of the graph and showed optimality for specific graphs.

The correlation model we consider is close to the work of [24]. We consider a random (edge-faulty) graph G where each edge is realized with probability r . In a realized graph G_r , (not G), each connected component is assumed defective with probability p , independent of each other. As opposed to [24], we do not constrain our study to a subset of the realizations and instead consider all possible realizations of the graph G . Despite its simplicity, our model captures two key features. First, given a network of nodes, one expects that when a path between two nodes gets shorter, the probability that they are in the same state increases. Our proposed model captures this intuition. By adding one edge to a path, the probability of being in the same state reduces by a factor of r . Second, two nodes might have long distances from each other, but when there are many edge-distinct paths between them, it is more likely that they are in the same state. Under our model, by adding distinct paths between two nodes, the probability of them being in the same state increases.

In other related works, a graph could represent potential constraints on testing (among independent nodes) [27], [28]. This can be viewed as a complementary direction to our setting in which a graph models the inherent dependency of the nodes, but there is no constraint on how the groups can be formed for testing. In [27], the authors design optimal non-adaptive testing strategies when each group is constrained to be path connected. In particular, they use random walks to obtain the pool of tests. In a follow up work, [28] shows that either the constraints are too strong and no algorithm can do better than testing most of the nodes, or optimal algorithms can be designed matching with the unconstrained version of the problem. This is attained by sampling each edge with probability r ($0 < r < 1$ and optimized). If a component is large enough, the algorithm tests the entire component. Our approach in this paper has similarities with [28] in aiming to find parts of the graph that are large and connected enough so that they remain connected with a decent probability after realizing the edges, but our techniques to find the dense subgraphs and the corresponding analysis are different. Specifically, their algorithm is designed for a class of graphs, namely edge expanders, and the groups tested are random. In contrast, we design algorithms that are not necessarily edge expanders and we form the groups deterministically.

A. Our Model

We start by motivating the key attributes that we capture in our model through an example of testing for infections in a network of people (nodes). Consider the interaction network for the spread of an infectious disease (e.g. COVID-19) in a network of people/nodes. There is an edge between two nodes if the corresponding individuals are in physical proximity for a minimum amount of time each week. Such individuals are more likely to be in the same state than those who have been distant throughout. Thus, firstly, the probability of being in the same state decreases with increase in the length of paths (i.e., distance in interaction network) between nodes.

Second, infection is more likely to spread from one node to another if there are many distinct paths between them. Thus, the probability that two nodes are in the same state increases with the increase in the number of distinct paths between them.

We capture correlation through a faulty-edge graph model. Consider a graph $G = (V, E)$ where the node set V , $|V| = n$, represents the items and the edge set E represents connections/correlations between them. Suppose each edge is realized with probability $0 \leq r \leq 1$. After the sampling, we have a random graph that we denote by G_r . Each node is either defective or non-defective. All nodes in the same component of G_r (not G) are in the same state, rendering defectiveness a component property. We consider that each component is defective with probability (w.p.) p independent of others.

As an example, consider graph G with five nodes and eight edges, and a sampled graph realization G_r as shown in Figure 1 (left) and Figure 1 (right) respectively. When $r = 1/3$, G_r is realized w.p. $(\frac{1}{3})^3(\frac{2}{3})^5$. There are two components in G_r , namely, v_1, v_4, v_5 and v_2, v_3 ; v_1, v_4, v_5 are in the same state, which is defective w.p. p , independent of the states of v_2, v_3 .

Two nodes are guaranteed to be in the same state in G_r if there exists at least one path that connects them in G_r . The probability that a path in G survives in G_r increases with increase in r . Thus both the parameter r and the graph G determine the correlation between states of different nodes; the correlation is higher if r is higher, states of all nodes are independent for $r = 0$, while the correlation is the highest possible for a given G for $r = 1$.

This model importantly captures the two attributes we discussed: Clearly, a long path between two nodes in G has a smaller chance of survival in G_r , compared to a short path, making the end nodes less likely to be in the same state as the length of the path in G between them increases. Moreover, the probability that at least one path between two nodes survives in G_r increases with increase in the number of distinct paths between them in G , so having distinct paths between a pair of nodes in G makes them more likely to be in the same state.

We aim to find the minimum expected number of tests needed to find the defective items with at most ϵn errors, where ϵ can potentially be of order $o(1)$. To be precise, let $\#ERR(H)$ be the number of nodes mispredicted by an algorithm on graph H . Then we require to have

$$\mathbb{E}_{H \sim G_r} [\#ERR(H)] \leq \epsilon n \quad (1)$$

where the expectation is taken over G_r and possible randomization of the algorithm. We refer to it as the *average* error.

Remark 1: The definition of error in classic probabilistic group testings such as [8] is a stronger notion of error probability where the goal is to correctly predict all nodes with probability $1 - \epsilon$, and with probability ϵ one or more nodes are mispredicted. This is stronger than our definition of average error in (1) because with probability ϵ at most n nodes are mispredicted in the classic group testing, so the average error would be less than ϵn , the allowed error in our model.

We mostly work with the notion of average error in this paper. In the last section (Section V), we consider a stronger notion of error to limit the *maximum* error: the group testing schemes now need to upper bound the number of mispredicted nodes by ϵn with high probability. We recover all the results of the paper for this stronger constraint on error as well.

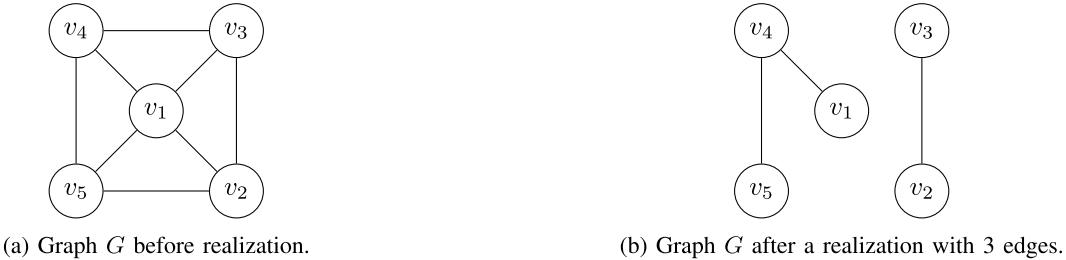
Methodologically, we relate the problem of group testing with correlation to that in a network with fewer nodes in which the states of nodes are independent. We obtain bounds on the number of group tests required in the former, to satisfy the constraints we consider on errors, in terms of known bounds in the latter. The relative quantification provides a basis for comparison and determination of the improvements that can be obtained by exploiting correlation.

The tests can not be designed with the knowledge of G_r , only the value of r and the graph G are known apriori. In the extreme case of $r = 0$, the problem is reduced to the classic group testing with $|V| = n$ independent nodes. In the extreme case of $r = 1$, all components of G remain connected and have the same state and hence the problem is reduced to testing a single node. When $0 < r < 1$, the problem is non-trivial, because there can be multiple components, some with more than one node, and the number and composition of the components is apriori unknown. Thus, it is not apriori known which nodes will be in the same state. Our group testing strategies will seek to circumvent this challenge by identifying parts of G that are connected enough so that they remain connected in G_r with a high probability.

B. Contributions

We obtain upper and lower bounds on the number of group tests needed to determine the states, defective or otherwise, of individual nodes in a large class of interaction graphs in the presence of correlation among the states of nodes. We progressively consider 1) cycles and trees (about n links), 2) d -regular graphs (about $dn/2$ links) and 3) stochastic block models or SBM (with potentially $\Theta(n^2)$ links). The correlation is captured by the factor r (see Section I-A), as well as the structure of the underlying graph G . The bounds are obtained in terms of the number of tests needed when the states are independent, and help us quantify the efficiency brought forth by group testing in terms of r . In particular, our group testing strategies exploit correlation and build upon classical group testing strategies, but with fewer number of nodes. The ratio between this number and the total number of nodes (n) determines the benefits of correlation in our strategies and we refer to it as the (multiplicative) improvement factor. Note that this is not the ratio between the number of tests that are needed, but the ratio between the number of nodes that a classical group testing algorithm gets as input. As such, our results are valid for any group testing algorithm, and they can be translated to the ratio between the total number of tests, accordingly, as needed.

For trees and cycles, we prove an upper bound on the optimal number of tests in terms of the number of group tests when there are $O(n \log(1/r))$ independent nodes, i.e. the number of tests in this case is equal to the optimal number of tests for the classic independent group testing with

Fig. 1. Graph G after a realization of edges.

$O(n \log 1/r)$ nodes. Note that one can trivially determine the states of each node by disregarding correlation and testing among n nodes (e.g. using classic group testing techniques). Our upper bound therefore shows that group testing can reduce the tests. The (multiplicative) improvement factor of $\log(1/r)$ is meaningful (less than 1) when $r > 1/2$. As r approaches 1 the multiplicative factor reduces even further implying even greater benefits due to group testing. Our lower bound, on the other hand, shows an improvement factor $(1 - r)$.

For d -regular graphs, we prove new results for the distribution of components. This leads to a lower bound that is expressed as a sum series depending on r and n . We further prove an upper bound for a specific 4-regular graph, namely grid, in terms of the number of group tests when there are $n(1 - r) \log(1/r)$ independent items. Thus, the improvement factor is $(1 - r) \log(1/r)$, as opposed to only $\log(1/r)$ for trees; this hints to us that group testing gets drastically more efficient for denser graphs.

The stochastic block model divides the network into communities such that nodes in the same community are more connected than nodes in different communities. We show that the reduction in the test count due to group testing can be classified into three regimes: 1) strong intra-community connectivity but sparse inter-community connectivity, which reduces the effective number of independent nodes to the number of communities, 2) strong connectivity leading to an (almost) fully connected graph, in which case all nodes have the same state and one independent test is representative 3) sparse connectivity leading to many isolated nodes, in which case the states of all nodes are independent. The first case reduces to independent group testing with the number of nodes equal to the number of communities, second regime needs a constant number of tests, and finally the third regime reduces to independent group testing with n nodes. The tight upper and lower bounds that are known in the literature for the independent group testing subsequently apply for the first and third cases; for the second case, the analysis is rather simple as there is only a constant number of tests needed.

C. Our Methods and Ideas

We now briefly describe the mathematical techniques that we follow to obtain the bounds. The techniques constitute a contribution in themselves as a graphical structure was not investigated earlier for group testing except under significant restrictions as described earlier. For the upper bound for a cycle, we divide the cycle G into subgraphs of size l (l

nodes) where l is a parameter. The subgraphs are connected in G , but need not be connected in G_r which we do not know apriori. For every subgraph, we select a node that we consider as representative of the subgraph and determine the states of the representatives of all the subgraphs using group testing strategies deployed when states of nodes are independent (ie, we do not exploit possible correlation between the representatives). We consider the state of each node in each subgraph as that of the representative; this is indeed the case if each subgraph is connected, otherwise the states of some nodes are determined in error. The probability of each subgraph being connected decreases with increase in l , thus the expected number of errors, which can be computed as a function of r, l, n , increases with increase in l . The number of representatives and therefore the number of nodes subjected to group tests described above is n/l . Thus the number of group tests is non-increasing with l . Thus l represents a tradeoff between the expected number of errors and the number of group tests, and l is selected appropriately to ensure a low number of group tests subject to ensuring that the expected number of errors does not exceed the specified limit. The number of group tests for the l that satisfies the specified error constraints provides the upper bound on the number of tests for a cycle.

The upper bound for an arbitrary tree can be obtained similarly, with the additional significant complication that for an arbitrary tree G and an l that satisfies constraints on error one may not be able to obtain subgraphs in G of size l that are connected in G (in contrast when G is a cycle, a path of size l constitutes such a subgraph). Refer to Figure 2 for an illustration of this challenge. We get around this challenge by using subgraphs that are not connected in G by themselves, but become connected in G through at most l additional nodes in G (which are not in the subgraph). Construction of such subgraphs is not apriori clear and constitutes an innovation needed for upper bounding the number of tests needed for trees, above and beyond the overall methodology. Each such subgraph is connected in G_r if the links in G among these $2l$ nodes survive in G_r , the probability of this event can again be expressed as a function of l, r , and as before this probability decreases with increase in l . The rest of the methodology is similar to for cycles.

The overall methodology for obtaining the upper bound for grids is the same as that for cycles. The subgraphs in question constitute sub-grids of l nodes. We determine the probability that each such sub-grid is connected in G_r through a recursive decomposition which is not apriori obvious.

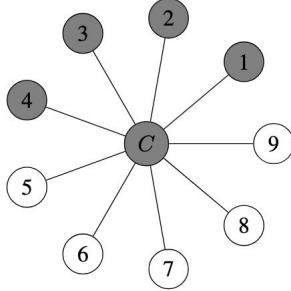


Fig. 2. A star can not be partitioned into trees of size l for any $l > 2$. This is because any partition of a star of n nodes into smaller trees constitutes of a star of m nodes, for a m of our choice and $n - m$ isolated nodes. The figure shows an example where $n = 10, m = 5$. Nodes $C, 1, 2, 3, 4$ constitute the star, nodes $5, \dots, 9$ constitute isolated nodes. We can however partition the star into subgraphs of size l (i.e., having l nodes) each of which can be connected through the central node even when the node does not belong in the subgraph. The figure shows such a partition with $l = 5$. The subgraph consisting of nodes $C, 1, 2, 3, 4$ is connected, the rest of the 5 nodes constitute a subgraph that can be connected through the central node.

The characterization of lower bounds on the number of tests needed for cycles or trees constitutes another innovation. To obtain the lower bound one can assume the knowledge of the components of G_r , which one does not know in reality. Nodes in each component of G_r have the same state, which is independent of those of the states of nodes in other components. Thus each component can be considered a super-node and the states of the super-nodes are independent of each other. Thus, one needs at least as many tests as that when there are $C(G_r)$ nodes whose states are independent, where $C(G_r)$ is the number of components of G_r . A lower bound can now be obtained if the random variable $C(G_r)$ can be bounded. We accomplish this objective by observing that the number of components in a stochastic graph constitutes an edge-exposure martingale and the value of this random variable is concentrated around its expectation, courtesy of Azumas inequality which holds for such martingales.

We initially present the above results for constraints on the expected number of errors. We subsequently generalize them for a stronger constraint, that on the number of errors with a high probability (rather than expectation thereof), for cycle and trees. Lower bounds can be obtained following the same methodology as before, except that lower bounds on the number of tests needed for independent nodes for this stronger constraint do not exist in the literature. We derive the latter lower bound first, adapting some existing proof techniques relying on Information-theoretic inequalities. We show that the lower bounds can be improved for some specific structures of G , such as when G is a star. This stronger notion of error allows us to include the structure of G more heavily and directly in this proof, rather than going via an analysis for the number of components. We have resorted to the latter in obtaining the lower bounds for cycle, tree for the weaker constraint on errors. The upper bound can be obtained following the same broad structure, though some additional technical challenges arise. The number of errors over all subgraphs can be bounded with high probability using Hoeffding's inequality if the number of errors in different

subgraphs are independent. This happens for cycles, the subgraphs are non-overlapping paths and the events that they remain connected in G_r are independent. Nonetheless, this does not happen for trees because nodes in one subgraph may be connected through those in other subgraphs. We surmount this technical challenge by invoking an innovative exposure of nodes of the tree such that the number of connected subgraphs constitutes a node exposure Martingale which satisfies the requisite Lipschitz condition for Azumas inequality to hold. The high probability bound on the number of errors over all subgraphs now follows via Azumas inequality.

II. PRELIMINARIES AND NOTATIONS

We use the following notations for the rest of the paper. Let $\text{CRLTOPT}(G, r, p, \epsilon)$ be the expected number of tests in an optimal algorithm on graph G with correlation parameter r , probability of defectiveness p , and an error of ϵn . Let $\text{INDEPOPT}(n, p, \epsilon)$ be the minimum expected number of tests needed for n items in order to find the defective set with the error probability at most ϵ , where each item is *independently* defective with probability p . Notice that $\text{INDEPOPT}(n, p, \epsilon)$ does not depend on G . Note that group testing is potentially beneficial when the number of defective items is $o(n)$. It is often assumed that the (expected) number of defective items is $n^\alpha, \alpha < 1$, so from now on we assume $p = o(1)$. It is also noteworthy that the definitions of error in INDEPOPT and CRLTOPT are different, as mentioned in Remark 1. When clear from the context, we may drop p, r, ϵ from the notations. We write $A \simeq f(n)$ if $A = f(n) + o(f(n))$. We write $A \lesssim f(n)$ when $A \leq f(n) \pm o(f(n))$. By subgraph $H \subseteq G$, we denote the subgraph on the nodes of H consisting of the edges in G which are between these nodes. The logarithm function \log is assumed to base 2 throughout the paper, unless explicitly stated otherwise.

The following lemma provides a lower bound on CRLTOPT in terms of INDEPOPT – the minimum number of group tests needed in the discovery of the defective set among independent nodes.

Lemma 1: Let $C(G_r)$ be the number of connected components of G_r . Then

$$\text{INDEPOPT}(C(G_r), p, \epsilon n) \leq \text{CRLTOPT}(G, r, p, \epsilon). \quad (2)$$

Remark 2: At first glance, the bound may come across as counter-intuitive because the number of tests in a graph in which the states of nodes are independent provides a lower bound on that when the states are correlated. The apparent contradiction is resolved when we note that the lower bound is obtained in terms of the number of tests in a graph with a fewer nodes than the original: number of components in G_r instead of the number of nodes in G_r .

Proof: Consider the idealized scenario in which one knows the components of G_r . Suppose that we have $C(G_r)$ components. All nodes in the same component are in the same state, and the states of nodes in different components are independent. Thus, each component can be replaced by one node and the minimum number of tests is that needed to test a graph with $C(G_r)$ independent nodes and the expected number of errors is at most ϵn . This number

corresponds to $\text{INDEOPT}(C(G_r), p, \gamma)$ for some γ such that the expected number of errors is at most ϵn . A classical group testing algorithm with $\text{INDEOPT}(C(G_r), p, \gamma)$ tests may make (at least) an error in finding one nodes state with probability γ ; thus the expected number of errors is at least γ . This implies that we need $\gamma \leq \epsilon n$. Clearly $\text{INDEOPT}(C(G_r), p, \gamma)$ is a non-increasing function of γ . Thus at least $\text{INDEOPT}(C(G_r), p, \epsilon n)$ tests are needed when one knows the components of G_r . If one does not know the components, the expected number of tests can only increase. The lemma follows. \square

In Appendix A, we prove the following corollary using concentration results and doob martingales:

Corollary 1: Let $\delta > 0$. Then with probability $1 - \delta$ we have

$$|C(G_r) - \mathbb{E}[C(G_r)]| \leq O(\sqrt{m \log 1/\delta}).$$

Lemma 1 illustrates a connection between the number of connected components and the minimum number of tests CRLTOPT, which we will use later in this work in conjunction with Lemma 1.

Specifically, in the case that $\mathbb{E}[C(G_r)] = cn$ for a constant c , and G has $m = o(n^2)$ edges, then with high probability the number of connected components is within $cn \pm o(n)\sqrt{\log 1/\delta}$.

By having the above concentration result, we would be able to replace $C(G)$ by its expectation in (2). Lemma 1 provides a lower bound on CRLTOPT in terms of INDEOPT. Indeed, any lower bound on the latter leads to a lower bound on the former. We now review some useful lower and upper bounds on $\text{INDEOPT}(G, r, p, \epsilon)$ next.

In the probabilistic group testing of [8], there are n individuals and every individual i is *independently* defective with probability p_i . Let \mathbf{X} be the indicator vector of the items' defectiveness and $H(\mathbf{X}) = \sum_i H(p_i)$ where $H(p_i) = -p_i \log p_i - (1 - p_i) \log(1 - p_i)$ is the binary entropy. Define $\mathbb{E}[\mathbf{X}] = \sum_i p_i$ as the expected number of infections over the vector \mathbf{X} . The testing can be adaptive or non-adaptive, meaning the testing at each step can depend on the results of the previous tests, or not, respectively. Reference [8] proves the following lower bound on the required number of tests (for both adaptive and non-adaptive scenarios)

Theorem 1 ([8]): Any probabilistic group testing algorithm whose probability of error is at most ϵ requires at least $(1 - \epsilon)H(\mathbf{X})$ tests.

For the upper bounds in this paper, roughly speaking, we partition the graph into groups of nodes and assume that the states of nodes in different groups are independent. Subsequently, we obtain bounds for group testing on the original graph in terms of those when the states of nodes are independent. We therefore utilize the existing bounds for smaller networks in our context. Below, we summarize the probabilistic group testing results of [8] for upper bounds on the number of tests needed when items are independent.

Theorem 2 ([8]): There is an adaptive algorithm with probability of error at most $\exp(-2\delta^2 n^{1/4})$ such that the

number of tests is less than

$$2(1 + \delta)(H(\mathbf{X}) + 3\mathbb{E}[\mathbf{X}])$$

In this work, we assume each component is infected with probability p , resulting in $H(\mathbf{X}) = nH(p)$ and $\mathbb{E}[\mathbf{X}] = np$. Hence we can simplify the above theorem and get the following corollary:

Corollary 2: In the adaptive group testing, there is an algorithm with exponentially low error probability and $O(H(\mathbf{X}) + \mathbb{E}[\mathbf{X}])$ tests. Moreover, when every item is defective with probability p , then the number of tests is $O(n(H(p) + p))$.

Theorem 3 ([8]): For any $0 < \epsilon' \leq 1$, $\delta > 0$, and a parameter γ , if the entropy of \mathbf{X} satisfies

$$H(\mathbf{X}) \geq \Gamma_\gamma^2$$

where

$$\Gamma_\gamma := \log_2 \left(\log_{1/\gamma} \left(\frac{2n}{\epsilon'} \right) \right)$$

then with probability of error at most

$$\epsilon \leq \Gamma_\gamma^{-\delta+1} + \frac{1}{2}\epsilon'$$

there is a non-adaptive algorithm that requires no more than

$$T \leq \frac{e \ln n}{\log_2(1/\gamma)} (1 + \delta)H(\mathbf{X}) + \Gamma_\gamma^2 + 2\mathbb{E}[\mathbf{X}]$$

tests.

Similarly, for this work the above theorem simplifies to the following:

Corollary 3: In the non-adaptive group testing, with constants γ and c , where $\epsilon' = \frac{1}{n^c}$, there is an algorithm that recover the defection set with $O(\ln(n)H(\mathbf{X}) + \mathbb{E}[\mathbf{X}])$ tests with high probability when $H(\mathbf{X}) \geq \Omega(\log \log n)$. Moreover, when every item is defective with probability p , then the number of tests is $O(n(\ln(n)H(p) + p))$.

III. GRAPHS WITH A LOW NUMBER OF EDGES

In this section, we consider graphs that have $n + c$ edges, where c is a constant. Specifically, we prove lower and upper bounds on the number of tests needed when the underlying graph is a cycle or tree, where the lower bound can be generalized to graph with $n + c$ edges. We obtain these bounds by formulating the problem into one with independent nodes, potentially with fewer nodes than the original problem. First, we use the lemmas introduced in Section II to obtain lower bounds for cycles and trees. Next, we propose group testing algorithms and prove upper bounds for cycles and trees.

A. A Lower Bound for Cycles and Trees

By Corollary 1, if we know the expected number of components in a graph, we would be able to lower bound the minimum number of tests needed by Lemma 1. The following theorem proves a lower bound for cycle and trees.

Theorem 4: Let G be a cycle or a tree. Then we have

$$\begin{aligned} \text{INDEOPT}((1 - r)n - 10\sqrt{n \log n}, p, \epsilon n) &\leq \\ \text{CRLTOPT}(G, r, p, \epsilon) + O(1/n). \end{aligned}$$

Proof: In a tree, by removing each edge we get one more component, so after removing k edges the tree has $k + 1$ components and the cycle has k components.

Each edge is removed with probability $1-r$, so the expected number of components is $1 + (1-r)(n-1)$ for trees, and $(1-r)n + r^n$ for cycles, which approximately is $(1-r)n$ if $r \neq 1$. By Corollary 1, the number of components is $(1-r)n \pm O(\sqrt{n \log n})$ with probability $1 - 1/n^2$, and with probability $1/n^2$, the difference in tests is at most n , hence $O(1/n)$ additional tests. Applying Lemma 1 thus completes the proof. \square

The above proof also works for any graph with $n+c$ edges, where c is a constant. In other words, when the number of edges is less than $n+c$, a lower bound on the number of tests needed for almost $(1-r)n$ independent nodes is also a lower bound on the number of tests needed under our model with correlation r .

B. An Upper Bound for Cycles and Trees

In this section, we provide algorithms to find the defective set and provide theoretical bounds. We start by considering that G is a simple cycle, and subsequently generalize the ideas to arbitrary trees. Note that after having an algorithm for trees, we would have an algorithm for general graphs, by just considering a tree spanning it. However, the algorithm might be far from optimal.

The general idea is to partition the graph G into subgraphs that will remain connected in G_r with high probability. The nodes in those connected subgraphs will thus have the same states. We can then select a candidate node for each subgraph to be tested. By knowing the probability of each subgraph being connected and the probability of error in classic group testing, we can estimate the error in our problem as a function of the size of the subgraphs and design the subgraphs accordingly.

First, we provide our results for when G is a cycle.

Theorem 5: Consider a cycle of length n . Let $l = \max\{\frac{\log[1/(1-\epsilon/2)]}{\log 1/r}, 1\}$ and $\epsilon' < \epsilon/2$. Then there is an algorithm that uses $\text{INDEOPT}(\lceil n/l \rceil, p, \epsilon')$ tests and finds the defective set with the error at most ϵn .

Proof: Consider the following algorithm:

- 1) Let $l = \max\{\frac{\log[1/(1-\epsilon/2)]}{\log 1/r}, 1\}$. Partition the cycle into $\lceil n/l \rceil$ paths $P_1, P_2, \dots, P_{\lceil n/l \rceil}$ of the same length l , except one path that may be shorter.
- 2) For each path, choose one of its nodes at random and let the corresponding nodes be $v_{P_1}, v_{P_2}, \dots, v_{P_{\lceil n/l \rceil}}$.
- 3) Use an $\text{INDEOPT}(\lceil n/l \rceil, p, \epsilon')$ algorithm (by Theorem 2 for adaptive or Theorem 3 for non-adaptive group testing) to find the defective items among $v_{P_1}, v_{P_2}, \dots, v_{P_{\lceil n/l \rceil}}$ where $\epsilon' < \frac{\epsilon}{2}$ and the probability of being defective equals p .
- 4) Assign the state of all the nodes in P_i as v_i for all i .

Note that for each i , the defectiveness probability of v_i is p . The probability that P_i is actually connected after a realization is r^{l-1} . So the probability that P_i is not in the same state as v_i is at most $1 - r^{l-1}$. Then assuming that we detect all v_i 's correctly, the error in G is at most $\lceil n/l \rceil \cdot (1 - r^{l-1}) \cdot l$.

By replacing $l = \max\{\frac{\log[1/(1-\epsilon/2)]}{\log 1/r}, 1\}$, the error becomes less than $\epsilon n/2$. Moreover, we might also have ϵ' probability of error for the v_i 's (given the criteria set in INDEOPT), meaning that with probability $1 - \epsilon'$, all the nodes are predicted correctly, and with probability ϵ' we have at least one mispredicted node, and at most n mispredicted nodes. So the total error from this part is at most $\epsilon' n < \epsilon n/2$. So the total error is at most $(\epsilon' + \epsilon/2)n < \epsilon n$ and we have the above theorem. \square

Corollary 4: Consider the case in which $p = c/n$ where c is a constant. Let \mathbf{X}' be the vector of candidate nodes. Then, $H(\mathbf{X}') \leq \frac{n}{l} H(p) = O(\log n)/l$, where $H(\cdot)$ is the binary entropy. Note that the average number of infected nodes in \mathbf{X}' is $\mu = c/l$, hence by Theorem 2, the number of tests is upper bounded by

$$\begin{aligned} O(H(\mathbf{X}') + \mu) &\leq O\left(\frac{\log n + c}{l}\right) = O\left(\frac{\log n \log 1/r}{\log[1/(1-\epsilon/2)]}\right) \\ &\simeq O\left(\frac{\log n \log 1/r}{\epsilon}\right). \end{aligned}$$

Note that when correlations are strong, i.e., $r \geq 1 - 1/\log n$, the algorithm does a constant number of tests, as expected. Note that using classic group testing without incorporating correlation we need $O(nH(c/n)) = O(\log n)$ tests.

We now generalize the ideas to derive an upper bound when G is a tree. We partition G into $\lceil n/l \rceil$ subgraphs (which we sometimes refer to as groups) of l nodes, find the probability of each subgraph being connected in a random realization, and then optimize it by choosing l . At a high level, we partition G such that the nodes within a subgraph have small paths among each other. This is because shorter paths remain connected in G_r with higher probability, maximizing the probability of the nodes being in the same state. Finding the probability of error is not straightforward here, because the subgraphs we form may not necessarily be connected if we consider only the nodes in the subgraphs (even when all the edges between them in G are included); but such subgraphs would be connected if other nodes of G are included, i.e., such subgraphs are connected in G through other nodes in G .

We first give a definition to formalize the number of nodes needed to make a subset of nodes connected.

Definition 1: Let $S \subseteq V$ be a subset of the nodes of graph G . The smallest connecting closure of S is a subset $S' \subseteq V$ such that the induced graph over $S \cup S'$ is connected.

For example, consider the graph G_r in Figure 1. If $S = \{v_1, v_5\}$, then the smallest connecting closure of S is $\{v_4\}$, as by adding v_4 to S we make S connected.

Note that if G is a tree, then every connected subgraph of G is also a tree. And the number of links in the induced graph over $S \cup S'$ is one less than the number of nodes in it.

Now we provide a partition of nodes for trees such that for each subgraph, only a few additional nodes and thereby additional links will make them connected. Formally:

Lemma 2: Let G be a tree. There is a partition of the graph into $\lceil n/l \rceil$ subgraphs each with l nodes (one subgraph may have less than l nodes), such that the number of nodes in the smallest connecting closure for each subgraph is less than or equal to l , for each $l \leq n$.

Proof: We prove the lemma by induction on the number of nodes of G . For $n = 1, 2, 3$, the statement is trivially true. Now suppose the lemma is true for any number of nodes less than n , we prove it for n .

We aim to find a set of nodes of size l such that, first, by removing the set the graph remains connected, and second, the smallest connecting closure of the set has at most l nodes. Then by removing the aforementioned set and considering it as one of the subgraphs, we use induction hypothesis for the rest of the graph.

To do that, suppose the tree is hanged by an arbitrary node. Let v be one of the deepest leaves, that is, any other node is at higher or equal level of v . Let u be the first ancestor of v , such that the subtree rooted at u , including u , has l or more nodes. If there are exactly l nodes, then the subtree rooted at u is the desired subgraph.

Now suppose that the subtree rooted at u has more than l nodes. Note that the number of nodes in the path from v to u is l or fewer; otherwise v would have had an ancestor lower than u such that the subtree rooted at it would have at least l nodes. Thus the distance from v to u is less than l . Now we form a subgraph S with l nodes and connecting closure of l or fewer nodes. We progressively build S . Starting with empty set S , we add the subtree of the child of u that v is a descendant of, and the child itself; call this subtree s_1 . Note that s_1 has $k < l$ nodes, otherwise v would have had an ancestor lower than u such that the subtree rooted at it would have at least l nodes. Since s_1 is an entire subtree rooted at a node, G remains connected even when s_1 is removed from it.

Consider $l_1 = l - k$. Recursively, do the same process for the other subtrees of u with l_1 instead of l . Note that u has subtrees other than s_1 , as the subtree rooted at u has more than l nodes and s_1 has at most $l - 1$ nodes. Then consider another subtree of u , called s_2 . If $|s_2| \leq l_1$, we update $l_2 = l_1 - |s_2|$ and add s_2 to S and continue with another subtree of u , which by the same argument exists. If $|s_2| > l_1$, then again we choose a deepest leaf of s_2 and proceed with the same process as before to find another group of nodes, i.e. we start with the deepest leaf and go up in the tree until it exceeds l_1 , and repeat the procedure. Note that after moving to the subtrees of u , we disregard the rest of the graph, so u is an ancestor of all the nodes we encounter next.

Again, for the next recursion, the subtree of the node that exceeds updated l is an ancestor of the rest of the nodes. Let's call u and other nodes that we make a recursion "breaking point". Then any pair of breaking points are ancestor and descendant, and all the nodes added to S are subtrees of breaking points. So by connecting all the breaking points by a single path, which has length at most l , as the distance is less than or equal to u to v , we connect S ; so the smallest connecting closure of S has l or fewer nodes. More than that, we have only included some subtrees of G , so by removing S , G remains connected and we can use the induction for the remaining tree.

To illustrate the algorithm, consider the tree at Figure 3 with $l = 5$. We start with v , which is a deepest leaf, move up and now the subtree is $\{7, v\}$ and we add node 7 to the subgraph as $l \geq 2$. we move up again, and this time we can't add u and

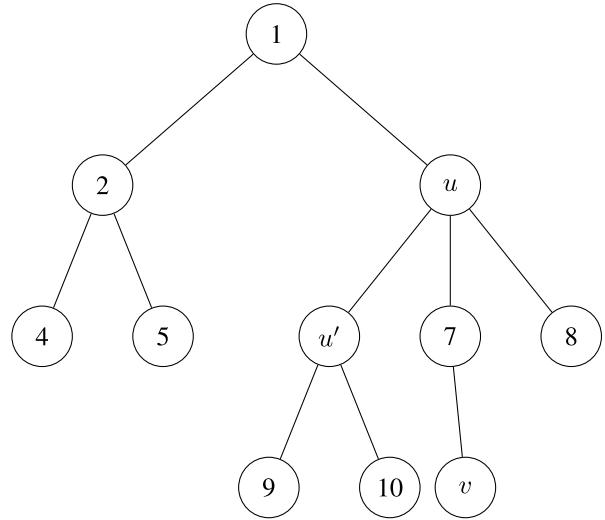


Fig. 3. An example of the procedure in Lemma 2.

its subtrees, as the size of the subtree rooted at u would exceed l . So we update $l_1 = l - 2 = 3$ and proceeds with another subtree of u , let's say the right subtree containing node 8. The size of the subtree at 8 is one (only $\{8\}$), so we can add it to the subgraph($l_1 \geq 1$) and update $l_2 = l_1 - 1 = 2$. Now we continue with the updated l and the left subtree of u . Node 10 is a deepest leaf that we start with, move up to u' , but we can't add the subtree rooted at u' , as the size of the subtree rooted at u' is bigger than l_2 . So we add 10 to the set, update $l_3 = l_2 - 1 = 1$ and proceed with u' . Finally our updated l is 1 and we only add 9 to the subgraph. So the final subgraph is $\{v, 7, 8, 9, 10\}$, and we can connect all of them by adding u and u' .

Now we've found S that has the smallest connecting closure at most l , and includes only subtrees of G , so removing that does not disconnect the graph. Then we save S as an aimed subgraph and use the induction hypothesis on the rest of the graph. Then other formed subgraphs have size l (except one) and have small connecting closures. By adding S to the subgraphs, we get the desired grouping of all nodes and the proof is complete. \square

Note that the complexity of the above algorithm is polynomial, $O(n^2/l)$, as we don't do more than n/l rounds and each round takes at most $O(n)$. Now we are ready to prove the upper bound for trees.

Theorem 6: Consider a tree with n nodes and let $l = \max\{\frac{\log[1/(1-\epsilon/2)]}{2\log 1/r}, 1\}$. Let $\epsilon' < \epsilon/2$. Then there is an algorithm that uses INDEOPT($\lceil n/l \rceil, p, \epsilon'$) tests and finds the defective set with at most ϵn errors. I.e.,

$$\text{CRLTOPT}(G, r, p, \epsilon) \leq \text{INDEOPT}(\lceil n/l \rceil, p, \epsilon').$$

Proof: Consider the following algorithm:

- 1) By Lemma 2, partition the tree into $\lceil n/l \rceil$ subgraphs $g_1, g_2, \dots, g_{\lceil n/l \rceil}$ of the same length l , one subgraph might be smaller than the other ones.
- 2) For each group, choose one of its nodes at random and let them be $v_{g_1}, v_{g_2}, \dots, v_{g_{\lceil n/l \rceil}}$.

3) Use an INDEOPT($\lceil n/l \rceil, p, \epsilon'$) algorithm to find the defective set among $v_{g_1}, v_{g_2}, \dots, v_{g_{\lceil n/l \rceil}}$.

4) Assign the state of all the nodes in g_i as v_i , for all i . First, we calculate the probability that g_i is connected. By Lemma 2, we know that each g_i has the property that its smallest connecting closure has l or fewer nodes. Thus, together g_i and its connected closure have at most $2l - 1$ edges in G , and g_i and its connected closure constitutes a connected subgraph in G . Therefore, the probability of g_i being connected in G_r is at least the probability that the above edges are retained in G_r which is at least $r^{2l-1} \geq r^{2l}$. So the probability that g_i is not in the same state as v_i is at most $1 - r^{2l}$. The rest of the proof revolves around proving that the total error is less than ϵn as was done for cycle and this completes the proof. \square

Corollary 5: Corollary 4 can be recovered for trees with an additional factor of 2.

IV. AN UPPER BOUND FOR GRAPHS WITH MORE EDGES: GRIDS AND SBMs

In this section, we focus on graphs that potentially have many edges. As the number of edges increases, the correlation between nodes increases even when r is not large. As mentioned earlier, we need to target those components that are more likely to appear in various realizations.

We know that there is a threshold phenomenon in some edge-faulty graphs, meaning that when r is below a threshold, there are many isolated nodes (and hence many independent tests are needed) and when r is above that threshold, we have a giant component (and hence a single test suffices). Most famously, this threshold is $\frac{\log n}{n}$ for Erdős-Rényi graphs. For random d -regular graphs, also, [29] has shown that when a graph is drawn uniformly from the set of all d -regular graphs with n nodes and then each edge is realized with probability r , $\frac{1}{d-1}$ is a threshold almost surely.

For the rest of this section, we first study a (deterministic) 4-regular graph, known as the grid¹ and then provide near-optimal results for the stochastic block model. When we consider (deterministic) d -regular graphs, we can't use the results of [29] for random d -regular graphs because we can not be sure that the specific chosen graph is among the "good" graphs that constitute the almost sure result. So we need to develop new results on the number of connected components and the distribution on them for our purposes.

A. The Grid

We first formally define a grid. A grid with n nodes and side length \sqrt{n} is a graph where nodes are in the form of $(a, b) : 1 \leq a, b \leq \sqrt{n}$. Node (a, b) is connected to its four close neighbors (if exist), namely $(a-1, b), (a+1, b), (a, b+1), (a, b-1)$. Border nodes (with $a \in \{1, \sqrt{n}\}$ or $b \in \{1, \sqrt{n}\}$) might have three or two neighbors. Note that the side length is defined by the number of nodes on the side.

In order to derive a lower bound, we need to know the expected number of components in G_r and equivalently the

¹There is a subtle difference worthwhile to mention here: The degree regularity does not hold on the boundaries of the grid.

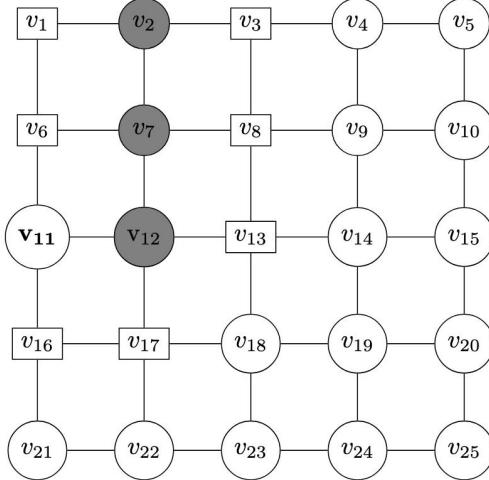


Fig. 4. An example of the procedure described in Section IV-A, starting with border node v_{11} .

expected component size that nodes belong to [29], [30]. To find the expected component size, we describe a random process that forms the components and analyze the expected stopping time. While this is well-known for ER graphs, to the best of our knowledge there are no bounds when the graph is not complete.

In the following, we first state a key result derived from the above process and using that, we provide a lower bound for the grid in Section IV-A.1. We then proceed with designing a testing algorithm and derive a lower bound on the number of tests in Section IV-A.2. At last, we prove the results regarding the estimation size of a component in Section IV-A.3. The last section might be of independent interest.

1) *Lower Bound on the Expected Number of Components in a Grid:* Consider the following process. Pick a node $v \in V(G)$, mark it as processed, and let it be the root of a tree. For each $u \in V(G)$ that is not processed and is a neighbor of v , uv is realized with probability r and added as a child of v . The same process is repeated for each realized u in a Breath First Search (BFS) order. When the process ends, there is a tree with root v , and the expected size of the tree is the expected size of the component that v ends up in.

An example of this process is shown in Figure 4. Node v_{11} is the root (written in bold), the children that are realized are marked in gray, and the children that are not realized are rectangle nodes. The component would be $\{v_{11}, v_{12}, v_7, v_2\}$.

By repeating the process for each node that is not processed yet, we get a spanning forest. The expected number of components in the forest is the expected number of components in the original random graph.

Here, the challenge is that we don't know the number of available (unprocessed) neighbors of a node. It highly depends on the previously chosen nodes, especially when d is small, like in the grid. Note that this is more complicated than the process for ER graphs, as the number of unprocessed neighbors in an ER graph is independent of the previously processed nodes (due to its homogeneous nature). We circumvent this issue by analyzing an infinite regular tree

process that effectively corresponds to a more connected graph and therefore leads to a lower bound on the expected number of connected components for the grid.

Consider an infinite tree with root v such that each node in the tree has three children and run the above process, starting with node v where each edge is realized with probability r . Let $C(v)$ be the component that v ends up in. The following theorem gives us an approximation of the expected size of $C(v)$. This would be the main result to prove a lower bound for the grid.

Theorem 7: When $r \leq 1/3$, the expected component size is

$$\begin{aligned} \mathbb{E}(|C(v)|) &= \sum_{t=1}^{\infty} \frac{t}{2t+1} \binom{3t}{t} r^{t-1} (1-r)^{2t+1} \quad (3) \\ &\simeq \frac{1-r}{r} \sqrt{\frac{3}{4\pi}} \sum_{t=1}^{\infty} \frac{\sqrt{t}}{(2t+1)} \left(\frac{27}{4}r(1-r)^2\right)^t. \end{aligned}$$

Note that when $r < 1/3$, then $\frac{27}{4}r(1-r)^2 < 1$ and hence the sum converges. We prove the above theorem in Section IV-A.3.

In the case of grid, we consider 3-regular trees, as if we run the process on a node of the grid, after the root, each child has at most 3 potential neighbors and if we choose a node in the border, the root also has at most 3 potential children, as illustrated in Figure 4. So the 3-regular tree process that we analyzed corresponds to a more connected graph than the grid. Therefore its expected number of connected components that we found in (3) provides a lower bound on the expected number of connected components in the grid.

Let NC be the number of connected components. Note that NC is a stopping time, as by knowing $C_1 + \dots + C_{NC}$, where C_i is the size of the i 'th component, we can decide whether the process has finished or not. The random process in the 3-regular tree is symmetric over all the nodes, so as NC is a stopping time, $\mathbb{E}[NC] = |V(G)|/\mathbb{E}[C(v)]$. So by Theorem 7, we immediately have the following result.

Theorem 8: For a grid with n nodes and $r \leq 1/3$, the expected number of components is

$$\begin{aligned} \mathbb{E}(NC) &= \frac{n}{\sum_{t=1}^{\infty} \frac{t}{2t+1} \binom{3t}{t} r^{t-1} (1-r)^{2t+1}} \\ &\simeq n \frac{r}{\sqrt{\frac{3}{4\pi}} (1-r)} \cdot \frac{1}{\sum_{t=1}^{\infty} \frac{\sqrt{t}}{(2t+1)} \left(\frac{27}{4}r(1-r)^2\right)^t}. \end{aligned}$$

Figure 5, shows the above approximation $c_{grid} = \frac{r}{\sqrt{\frac{3}{4\pi}} (1-r)} \cdot \frac{1}{\sum_{t=1}^{\infty} \frac{\sqrt{t}}{(2t+1)} \left(\frac{27}{4}r(1-r)^2\right)^t}$ for the number of components in a grid as r changes from .1 to .33.

Corollary 6: Using Lemma 1 in conjunction with Theorem 8, any lower bound on the number of tests for

$$\frac{n}{\frac{1-r}{r} \sqrt{\frac{3}{4\pi}} \sum_{t=1}^{\infty} \frac{\sqrt{t}}{(2t+1)} \left(\frac{27}{4}r(1-r)^2\right)^t} + O(1/n)$$

independent nodes is also a lower bound on the number of tests on a grid under our model.

2) *An Upper Bound for the Grid:* In this subsection, we provide an upper bound for the number of tests in a grid. At a high-level idea, we partition the grid into subgrids and

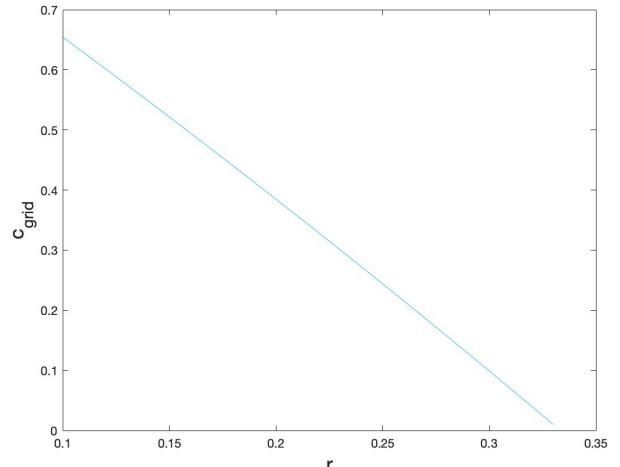


Fig. 5. Number of components obtained by Theorem 8 for $r = [.1, .33]$.

assume that each subgrid is connected, so we can consider one representative node per subgrid to test. In other words, the algorithmic idea is similar to the proof of Theorems [5, 6] where the graph G was partitioned into subgraphs that were more likely to remain connected in G_r . But, here, we choose the subgraphs to be subgrids. In order to calculate the error, we need to compute the probability that a subgrid of length k is connected, where k is to be optimized later. We first estimate the probability that a subgrid becomes connected.

Lemma 3: Let P_k be the probability that a grid of length $k > 1$ becomes connected when each of its edges is realized with probability r . We have:

$$P_k \geq P_{k-1} r^{\Theta((1-r)k)}.$$

Proof: Consider the subgrid of length $k-1$ that contains the bottom-left corner node. Then the main grid consists of the subgrid and a path with $2k-1$ nodes, where each node in the path has one edge to the subgrid. For example in Figure 4, $k=5$, the subgrid is the grid with corner nodes v_6, v_9, v_{24}, v_{21} and the path of with 9 nodes is $v_1, v_2, v_3, v_4, v_5, v_{10}, v_{15}, v_{20}, v_{25}$. With probability P_{k-1} the subgrid is connected. Note that in expectation, $(2k-2)(1-r)$ edges in the path would be removed, and by Chernoff bound it is concentrated around its mean. Then, the path would be decomposed into $(1-r)2k \pm o(rk) = \Theta((1-r)k)$ subpaths with probability at least $1 - 1/k^{10}$. Each subpath has at least one edge to the subgrid, so each one is connected to the path with probability at least r . The probability that all of them connect to the subgrid then is at least $r^{(1-r)\Theta(k)}$ and the lemma is proved. \square

Theorem 9: Let P_k be the probability that a grid of length $k > 1$ becomes connected when each of its edge is realized with probability r . We have:

$$P_k \geq r^{\Theta((1-r)k^2)} = e^{\Theta(\log(r)(1-r)k^2)}$$

Proof: The proof is done by replacing P_{k-1} with P_{k-2} , and then P_{k-2} with P_{k-3} etc in Lemma 3 and at last replacing $P_1 = 1$. \square

We now partition the grid into subgrids of length k , k will be set later, and consider a candidate node for each subgrid and do the independent group testing on candidate nodes. Now similar to Theorem 6, by setting error probability of

each subgraph small enough, that is $1 - P_k < \epsilon/2$, we get $k < \sqrt{\frac{\log(1-\epsilon/1000)}{(1-r)\log r}}$. Then the error is less than ϵn with at most n/k^2 independent node tests with error $\epsilon' < \epsilon/2$.

3) Estimating Component Sizes in 3-Regular Trees: In this section, we prove Theorem 7. We first approximate the distribution of $C(v)$ and using that, compute the expectation of $C(v)$. The following lemmas approximate the distribution of $|C(v)|$.

Lemma 4: Under the above process and for $t \in \mathbb{N}$,

$$P(|C(v)| = t) = \frac{1}{2t+1} \binom{3t}{t} r^{t-1} (1-r)^{2t+1}$$

Proof: Let T be an embedded tree in G with t nodes. In order to T be realized in the process, all the edges in T should be realized and the rest of edges that has a node in T should not be realized. There are $t-1$ edges in T , and each node has three potential edges, so there are $2t+1$ edges that are not realized. So the probability that T be realized is $r^{t-1}(1-r)^{2t+1}$.

Let C_t be the number of trees with t nodes and v as the root. We have

$$P(|C(v)| = t) = C_t \cdot r^{t-1} (1-r)^{2t+1}.$$

Note that $C_0 = C_1 = 1$. We find a closed form of C_t by recursion. Node v has three potential subtrees, where the sum of the size of the subtrees is $t-1$. We thus get the following recursion

$$C_t = \prod_{i+j+k=t-1, i,j,k \geq 0} C_i C_j C_k.$$

This recursion has the same initial points and the same recursion as second order Catalan numbers as follows:

Lemma 5 (31): Order- d Fuss-Catalan numbers that follows the recursion form

$$C_n^d = \prod_{i_1 + \dots + i_d = n-1} C_{i_1}^d \cdots C_{i_d}^d$$

with $C_0^d = C_1^d = 1$, has the closed form $C_n^d = \frac{1}{(d-1)n+1} \cdot \binom{dn}{n}$.

So the solution has the form $C_t = \frac{1}{2t+1} \binom{3t}{t}$ and the proof is completed. \square

Lemma 6: Let $P_\infty = P(|C(v)| = \infty)$. Then, under the above process,

$$P_\infty = \begin{cases} 0 & r \leq 1/3 \\ \frac{3r - \sqrt{r(4-3r)}}{2r^2} & \text{otherwise} \end{cases}$$

Proof: In order for v to be in an infinite component, at least one of its children should be in an infinite component. There are three cases: (i) Either v has one child, and this one is infinite, which happens with probability $3r(1-r^2)P_\infty$; or (ii) v has two children and at least one of them lies in an infinite component, which happens with probability $3r^2(1-r)(1-(1-P_\infty)^2)$; (iii) or v has three children and at least one of them lies in an infinite component, which happens with probability $r^3(1-(1-P_\infty)^3)$. So in total we have

$$P_\infty = 3r(1-r)^2 P_\infty + 3r^2(1-r)(1-(1-P_\infty)^2) + r^3(1-(1-P_\infty)^3).$$

The solutions of this equation are 0 and $P_\infty = \frac{3r \pm \sqrt{r(4-3r)}}{2r^2}$. Note that $P_\infty < 1$, so $\frac{3r + \sqrt{r(4-3r)}}{2r^2}$ is not valid. The relevant solution turns out to be dependent on whether $r > 1/3$ or $r \leq 1/3$. As a matter of fact, when $r > 1/3$, the probabilities of all finite components (as found in Lemma 4) do not add up to one. So for $r > 1/3$, the correct solution is $\frac{3r - \sqrt{r(4-3r)}}{2r^2}$. When $r < 1/3$, we have $\frac{3r - \sqrt{r(4-3r)}}{2r^2} < 0$, so zero is the correct solution and the lemma is proved. \square

Proof: (of Theorem 7) The proof follows from Lemma 4 and Lemma 6 and by using Stirling Approximation. \square

It is worthwhile to remark that the proof generalizes to general d -regular tree processes.

Remark 3: When the underlying graph is an infinite d -regular tree, under the defined process and for $t \in \mathbb{N}$,

$$P(|C(v)| = t) = \frac{1}{(d-1)t+1} \binom{dt}{t} r^{t-1} (1-r)^{(d-1)t+1}$$

B. An Optimal Algorithm for the Stochastic Block Model

In this section, we study our model on SBM graphs. We apply the same techniques used in Erdős-Rényi graphs to find the connectivity threshold to find the structure of the connected components.

A stochastic block model has g clusters of size $k = n/g$, where any pair of nodes in the same cluster are connected with probability q_1 , and any pair of nodes in different clusters are connected with probability $q_2 < q_1$. After realizing each edge with probabilities q_1 and q_2 , we have our graph G . Then based on our correlation model, each edge remains in G_r with probability r . So with probability $r_1 = rq_1$ an edge remains in the same cluster and with probability $r_2 = rq_2$ an edge remains between two different clusters. Here, we assume the size of the clusters are much bigger than $\log n$, i.e. $k \gg \log n$. We find the number of connected components based on r_1 and r_2 with high probability, for simplicity let's say 99%. The probability can be improved with a slight change in the parameters.

Theorem 10: • If $r_1 \geq \frac{100 \log n}{k}$ and $1 - (1 - r_2)^{k^2} \geq \frac{100 \log g}{g}$, then with high probability G is connected. (first regime, one test needed)

• If $r_1 \geq \frac{100 \log n}{k}$ and $1 - (1 - r_2)^{k^2} \leq \frac{1}{100g}$, then with high probability each cluster is connected but most of the clusters are isolated. (second regime, g independent tests needed)

• If $r_1 \leq \frac{1}{100k}$ and $r_2 \leq \frac{1}{100n}$, then with high probability G_r has many isolated nodes. (third regime, $\Omega(n)$ independent tests needed)

• If $r_1 \leq \frac{1}{100k}$ and $r_2 \geq \frac{100 \log n}{n}$, and $g > 1$, then with high probability G_r is connected. (fourth regime, one test needed)

Proof: First, suppose $r_1 \geq \frac{100 \log n}{k}$. A cut is a partition of nodes into two sets (parts), and its size is the number of nodes in the smaller set. We say a cut is disconnected if there is no edge between the sets. A cut of size $i \leq k/2$ in a single cluster has $i(k-i)$ potential edges between the parts. Then

the probability that the specific cut is disconnected is

$$(1 - r_1)^{i(k-i)} \stackrel{(i)}{\leq} e^{-r_1 i(k-i)} \stackrel{(ii)}{\leq} e^{-100 \log n i(1-i/k)} \\ \stackrel{(iii)}{\leq} e^{-50i \log gk} = \left(\frac{1}{gk}\right)^{50i}.$$

The first inequality, (i), is true because $1-x \leq e^{-x}$ for $x \geq 0$, (ii) is true by $r_1 \geq \frac{100 \log n}{k}$, and (iii) is true by $i \leq k/2$. Note that number of cuts of size i is $\binom{k}{i}$, and by Union Bound, the probability that any cut of size i becomes disconnected is at most $\sum_{i=1}^{k/2} \left(\frac{1}{gk}\right)^{50i} \binom{k}{i}$. But $\binom{k}{i} \leq k^i$ by a simple counting argument, so the probability of a cut be disconnected is at most $\sum_{i=1}^{k/2} \left(\frac{1}{gk}\right)^{50i} k^i < \left(\frac{1}{gk}\right)^{48} = (1/n)^{48}$. So with probability $1 - (1/n)^{48}$ a single cluster of size k is connected. Again, by Union Bound, with probability at most $(1/n)^{48} g < (1/n)^{47}$ there is a disconnected cluster. So with probability $1 - (1/n)^{47}$, all clusters are connected.

Now if we assume all the clusters are connected, if there is an edge between two clusters, then those two clusters are connected. So if we consider a graph where the nodes represent the clusters and two nodes are connected if there is at least one edge between the corresponding clusters, then we need to understand the connectivity of the new graph. The probability that there is at least one edge between two clusters is $1 - (1 - r_2)^{k^2}$, and again if this value is more than $\frac{100 \log g}{g}$, then G is connected with high probability. If $1 - (1 - r_2)^{k^2} < \frac{1}{100g}$, then the probability that a cluster is isolated is more than $(1 - 1/(100g))^{g-1} \simeq e^{-1/100} \simeq 0.99$, so most of the clusters are isolated, which proves the first two parts of the theorem.

If $r_1 \leq \frac{1}{100k}$, then with the same argument, with high probability most of the nodes in all clusters are isolated. If we also have $r_2 \leq \frac{1}{100n}$, then this means that most of the nodes don't have any neighbors outside of their cluster with high probability, so in total the graph has $\Omega(n)$ many isolated nodes, which proves the third part.

Now suppose $r_2 \geq \frac{100 \log n}{n}$, and we prove the last part of the theorem. We assume each cluster is empty, i.e. there is no edge in the cluster, and even when they're empty with $r_2 \geq \frac{100 \log n}{n}$, the graph is connected with high probability. Consider a cut in G with $i \leq n/2$ nodes. Each node has $n-k$ potential neighbors in other clusters. So it has at least $n-k-i$ potential neighbors outside of its clusters and the chosen cut. Then, almost similar to the first part of the theorem, the probability that this cut is disconnected is at most

$$(1 - r_2)^{i \cdot (n-k-i)} \leq e^{-r_2 \cdot i \cdot (n-k-i)} \\ \leq e^{-100 \log n \cdot i \cdot \left(\frac{n-k-i}{n}\right)} \stackrel{(i)}{\leq} e^{-100 \log n \cdot i \cdot (1/2-1/g)} \\ = \left(\frac{1}{n}\right)^{100i(1/2-1/g)}.$$

Here, (i) is true by $i \leq n/2$ and $k/n = 1/g$. Again, there are $\binom{n}{i} \leq n^i$ cuts of size i . So the probability that any cut of size i is disconnected is at most $n^i \cdot \left(\frac{1}{n}\right)^{100i(1/2-1/g)} = \left(\frac{1}{n}\right)^{100i(1/2-1/g-0.01)}$. It is not hard to see that if $g > 2$, then $\left(\frac{1}{n}\right)^{100i(1/2-1/g-0.01)} = o(1/n^2)$. So the probability that any

cut is disconnected is bounded by

$$\sum_{i=1}^{n/2} \left(\frac{1}{n}\right)^{100i(1/2-1/g-0.01)} \leq n \cdot o(1/n^2) = o(1/n).$$

So in the case of $g > 2$, we've proved the last part of the theorem. If $g = 2$, for $i > 2$, a cut of size i has at most $i^2/4$ edges in the node set of size i , as the graph is bipartite and the number of edges in the set is maximized when $i/2$ nodes is chosen from each part of the graph. So the potential edges to the other side of the cut is at least $i(n-k) - i^2/4 = i(n-k-i/4) = i(\frac{n-i}{2}) \geq i \cdot 3n/8$, as $i \leq n/2$, and we can repeat the reasoning to prove that with high probability all cuts in this graph are connected. It is also easy to verify that when the cut is a single node or a pair of nodes, then the cut is disconnected with probability at most $o(1/n^4)$, and this completes the proof. \square

Based on the previous theorem, we can now design a simple algorithm based on the parameters r_1 and r_2 . In the first and the last regime, a single node is tested and the result generalizes to all the nodes. In the second regime, we pick a candidate node from each cluster and perform independent group testing on them. The result of each candidate node generalizes for all the nodes in the correspondent cluster. Finally, in the third regime we perform independent group testing on the n nodes of the graph.

V. A STRONGER NOTION OF ERROR

So far, we have focused on bounding the expected error of the algorithms, meaning the error is low (only) on average. But in many applications, we need to have a low error with high probability. As an example, let's say we need the error to be less than e . Under the weaker notion of error (bounding the average), we might have an error of $1.5e$ half of the time, and for the other half have $.5e$ error. So half of the time we don't satisfy the required error. Similar to [8], we introduce probabilistic error with relaxation on error-free prediction. Precisely, in [8] they wanted to find the defective set with probability $1 - \delta$ such that all the nodes are correctly predicted, but we allow up to ϵn mispredicted nodes.

We consider the following stronger notion of error: suppose that we want to have at most ϵn mispredicted nodes with probability $1 - \delta$, and for the δ other fraction we can have any number of mispredicted nodes. We refer to this notion of error as maximum error with parameters ϵ and δ . This is a relaxation of the error compared to [8], where $\epsilon = 0$, i.e. with probability $1 - \delta$ we recover perfectly. Let $\text{CRLTOPT}(G, r, p, \delta, \epsilon)$ be the expected number of tests in an optimal algorithm with maximum error with parameters ϵ and δ . Parameters r and p are defined as in Section I-A.

In the following, we will provide lower bounds on the number of tests under the above notion of error. Then we will provide matching upper bounds for some of the graphs discussed so far.

A. Lower Bounds for the Stronger Error

We first find a lower bound for $\text{CRLTOPT}(G, r, p, \delta, \epsilon)$ when G is the empty graph, i.e. the nodes are independent.

Note that we are no longer able to use lower bounds of classic group testing directly, like Lemma 1, because an error in classical group testing (which affects the average error) might not be counted as an error in maximum error. In other words, in classical group testing, when an error happens with probability δ , there is no guarantee on the number of mispredicted nodes, the error might be one or a constant or all the nodes, but only ϵn mispredicted nodes are allowed in maximum error. So we need to find a lower bound for the problem with maximum error definition and independent nodes directly. We adapt the approach in [8] to derive the following lower bound:

Theorem 11: Let $\text{INDEPOPT}(n, p, \delta, \epsilon)$ be the minimum number of tests for n independent nodes under maximum error with parameters (δ, ϵ) . Then any Probabilistic Group Testing algorithm that, with probability $1 - \delta$, predicts all independent nodes but ϵn of them correctly, needs $n(1 - \delta)(H(p) - H(\epsilon))$ tests where H is the binary entropy function. i.e.

$$\text{INDEPOPT}(n, p, \delta, \epsilon) \geq n(1 - \delta)(H(p) - H(\epsilon)) - O(1).$$

We defer to proof to Appendix B. Analogous to Lemma 1, we immediately get the following lemma:

Lemma 7: Let $C(G_r)$ be the number of connected components in G_r . Then, under a maximum error target, we have

$$C(G)(1 - \delta)(H(p) - H(\epsilon)) \leq \text{CRLTOPT}(G, r, p, \delta, \epsilon). \quad (4)$$

Using Lemma 7 along with our concentration results on the number of connected components for cycles, trees and grids, we find lower bounds on the number of tests for our maximum error criteria. Recall that the lower bound for the average error ϵ has the form of $C(G)(1 - \epsilon n)H(p)$ for a graph G , while under the stronger notion of error we have $C(G)(1 - \delta)(H(p) - H(\epsilon))$. For the regime where $\epsilon = c/n$, $c < 1$, the lower bound for average error and the stronger error simplify to $C(G)(1 - c)H(p)$ and $C(G)(1 - \delta)(H(p) - \frac{\log n}{n}) \simeq C(G)(1 - \delta)H(p)$, respectively, and when $\delta < c$ we get an improvement.

As discussed, there is a gap between our lower and upper bounds. We next show that the lower bound can be improved by capturing the underlying topology of the graph more heavily.

B. An Improved Lower Bound for the Star Graph

Theorem 11 does not depend on the underlying graph G . However, if we take G into account, we can infer information about the states of the nodes, at least for some graphs. Here, we give an improved lower bound for star graphs, where there is a node with degree $n - 1$ and all the other nodes are leaves.

Theorem 12: When the underlying graph G is a star, we have

$$\begin{aligned} n(1 - \delta)[H(r) + (1 - r)H(p) - H(\epsilon) - \\ 1 + p(1 - p)(1 - r)H(r') + o(1)] - O(1) \leq \\ \text{CRLTOPT}(G, r, p, \delta, \epsilon) \end{aligned} \quad (5)$$

where $r' = \frac{r}{r + (1 - r)(p^2 + (1 - p)^2)}$.

Proof: Let \mathbf{X} , \mathbf{B} and \mathbf{Y} be defined same as in the proof of Theorem 11. Let \mathbf{G} be a random binary vector where the i 'th coordinate is 1 iff the i 'th edge of G is realized (with probability r). Then $(\mathbf{X}, \mathbf{G}) \rightarrow \mathbf{B} \rightarrow \mathbf{Y}$ forms a Markov chain. We are interested in $I(\mathbf{X}, \mathbf{G}; \mathbf{Y})$ because

$$I(\mathbf{X}, \mathbf{G}; \mathbf{Y}) \leq I(\mathbf{X}, \mathbf{G}; \mathbf{B}) \leq H(\mathbf{B}) \leq \log |\mathbf{B}| = T$$

where T is the number of test. Write

$$I(\mathbf{X}, \mathbf{G}; \mathbf{Y}) = H(\mathbf{X}, \mathbf{G}) - H(\mathbf{X}, \mathbf{G}|\mathbf{Y}). \quad (6)$$

We now bound $H(\mathbf{X}, \mathbf{G}|\mathbf{Y})$. Let $E = 1$ if $\|\mathbf{X} - \mathbf{Y}\|_0 > \epsilon n$ and $E = 0$ otherwise, same as Theorem 11. Then

$$\begin{aligned} H(\mathbf{X}, \mathbf{G}|\mathbf{Y}) &= H(\mathbf{X}, \mathbf{G}, E|\mathbf{Y}) \\ &= H(E|\mathbf{Y}) + \delta H(\mathbf{X}, \mathbf{G}|\mathbf{Y}, E = 1) \\ &\quad + (1 - \delta)H(\mathbf{X}, \mathbf{G}|\mathbf{Y}, E = 0). \end{aligned} \quad (7)$$

By writing $H(E|\mathbf{Y}) \leq 1$ and $H(\mathbf{X}, \mathbf{G}|\mathbf{Y}, E = 1) \leq H(\mathbf{X}, \mathbf{G})$ and replacing Eq (7) in Eq (6), we get

$$I(\mathbf{X}, \mathbf{G}; \mathbf{Y}) \geq (1 - \delta)(H(\mathbf{X}, \mathbf{G}) - H(\mathbf{X}, \mathbf{G}|\mathbf{Y}, E = 0)) - 1. \quad (8)$$

As G is a tree and every component is independently infected with probability p , we can write

$$\begin{aligned} H(\mathbf{X}, \mathbf{G}) &= H(\mathbf{G}) + H(\mathbf{X}|\mathbf{G}) \simeq nH(r) + (1 - r)nH(p) \\ &= n(H(r) + (1 - r)H(p)). \end{aligned}$$

Now we bound $H(\mathbf{X}, \mathbf{G}|\mathbf{Y}, E = 0) = H(\mathbf{X}|\mathbf{Y}, E = 0) + H(\mathbf{G}|\mathbf{X})$. For the first term, in Theorem 11 we found

$$H(\mathbf{X}|\mathbf{Y}, E = 0) \lesssim nH(\epsilon). \quad (9)$$

To bound the second term, note that the underlying graph G is a star and with probability $1 - 1/n^2$, the number of nodes in a different state than the center is $2np(1-p)(1-r) \pm o(n)$, so the contribution outside of this range to $H(\mathbf{G}|\mathbf{X})$ is only $o(1/n)$. The edges connected to such nodes can not be realized, so $n(1 - 2p(1-p)(1-r))$ edges are still uncertain, and knowing that the two end-points are in the same state, each of such edges are realized with probability $r' = \frac{r}{r + (1-r)(p^2 + (1-p)^2)}$. So

$$H(\mathbf{G}|\mathbf{X}) \leq n(1 - 2p(1 - p)(1 - r))H(r'). \quad (10)$$

Again, by replacing all in Eq (8), we get a lower bound on the number of tests:

$$\begin{aligned} T &\geq I(\mathbf{X}, \mathbf{G}; \mathbf{Y}) \\ &\stackrel{a}{\geq} (1 - \delta)[H(\mathbf{X}, \mathbf{G}) - H(\mathbf{X}, \mathbf{G}|\mathbf{Y}, E = 0)] \\ &= (1 - \delta)[H(\mathbf{G}) + H(\mathbf{X}|\mathbf{G}) - H(\mathbf{X}|\mathbf{Y}, E = 0) \\ &\quad - H(\mathbf{G}|\mathbf{X})] - 1 \\ &\stackrel{b}{\geq} (1 - \delta)[nH(r) + n(1 - r)H(p) - nH(\epsilon) - H(\mathbf{G}|\mathbf{X}) \\ &\quad + o(nH(r))] - 1 \\ &\stackrel{c}{\geq} (1 - \delta)[n(H(r) + (1 - r)H(p)) \\ &\quad - (nH(\epsilon) + n(1 - p)(1 - p)(1 - r))H(r') + o(n)] - 1 \\ &= n(1 - \delta)[H(r) + (1 - r)H(p) - H(\epsilon) - 1 \\ &\quad + p(1 - p)(1 - r)H(r') + o(1)] - O(1) \end{aligned}$$

where a is by Eq 8, b is by Eq 9 and c is by Eq 10. \square

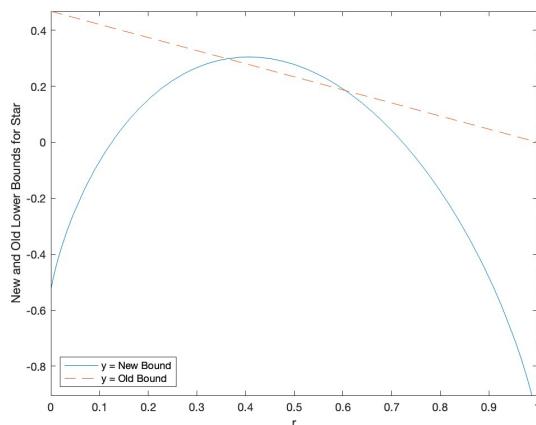


Fig. 6. A comparison of the new lower bound (eq (5)) and the old upper bound (4), without the term $n(1 - \delta)$ that appears in both, for $p = 0.1$ and $\epsilon = 0.0001$.

We compare the lower bound in (5) (Star-specific bound) with the lower bound in (4) (generic bound) in Figure 6 by removing common term $n(1 - \delta)$ which appears in both. One sees that the lower bound in (5) is strictly larger than (4) for a range of r around $r = \frac{1}{2}$. This range corresponds to cases where uncertainty about the edge set of G_r is high, and therefore knowledge about the existence of (or lack thereof) an edge is very informative as captured in our way of upper bounding $H(G|\mathbf{X})$. Even though the improvement offered by the lower bound in (5) is relatively small, it suggests that generic lower bounds are likely to be loose for our correlated group testing problem and the structure of the underlying correlation graph G need to be considered in order to obtain tighter lower bounds.

C. Upper Bounds for Cycles and Trees

We now find upper bounds similar to those that we provided in Sections III-B and IV-A. Under an average error target, we partitioned the graph and computed the incurred average error. Under maximum error targets, however, we don't know what fraction of the realizations with average error ϵn actually has less than ϵn mispredicted nodes, so we can't use those results and need to prove concentrations around the average. For cycles and grids, the subgraphs we designed were independent of each other, in the sense that the connectivity of a subgraph would not change the probability of connectivity of the other subgraphs. Hence by using Hoeffding's bound we prove the following theorem for a maximum error target.

Theorem 13: Consider a cycle of length n and let $l = \max\{\frac{\log[1/(1-\epsilon/2)]}{\log 1/r}, 1\}$, $\delta > 2e^{-\Theta(\frac{\epsilon^2 n \log(1/r)}{\log(\frac{1}{1-\epsilon/2})})}$, and $\epsilon' < \delta/2$. There is an algorithm that uses $\text{INDEOPT}(\lceil n/l \rceil, p, \epsilon')$ tests and finds the defective set with maximum error with parameters ϵ and δ , i.e.

$$\text{CRLTOPT}(\text{Cycle}, r, p, \delta, \epsilon) \leq \text{INDEOPT}(\lceil n/l \rceil, p, \epsilon')$$

Proof: We use the same algorithm and the same subgraphs as in Theorem 5. Recall that the probability of one subgraph not being connected is r^{l-1} and the average error is $\epsilon n/2$. The number of mispredicted nodes in each subgraph is in $[0, l]$ and they are independent of each other, meaning the connectivity of a group does not change the connectivity of another group, so by Hoeffding's bound, with probability at least $1 - \exp[-\Theta(\frac{\epsilon^2 n \log(1/r)}{\log(\frac{1}{1-\epsilon/2})})] > 1 - \delta/2$, the error is at most ϵn . Also with probability more than $1 - \epsilon' > 1 - \delta/2$ all candidates are predicted correctly, so with probability more than $1 - \delta$ the classic group tests detect all the defective nodes with no error, and assuming this, the error on subgraphs is less than ϵn and we're done. \square

The same reasoning works for subgrids of a grid and leads to the same upper bound with the parameters $\delta > 2e^{-\Theta(\frac{\epsilon^2 n \log(1/r)}{\log(\frac{1}{1-\epsilon/2})})}$, and $\epsilon' < \delta/2$. But for trees, we can't use Hoeffding's bound because the connectivity of a subgraph can affect the others, for instance the absence of an edge might make several groups disconnected, hence the groups are not independent anymore. This dependency violates the conditions we need for applying Hoeffding's inequality. In order to fix the issue, we use the node exposure martingales process with a proper graph function definition to prove the desired concentration. Please refer to Appendix A for a more detailed definition of node exposure martingales and graph functions.

Before providing the new theorem for trees, we need the following lemma to use the concentration lemma for node exposure martingale defined in Section III-A.

Lemma 8: Let $g_1, g_2, \dots, g_{\lceil n/l \rceil}$ be the subgraphs formed in Lemma 2. Let $f(H)$ be the number of connected subgraphs g_i in graph H . Then there is an order of node exposure such that at each step, the value of f does not change by more than one.

Proof: Let $g_1, g_2, \dots, g_{\lceil n/l \rceil}$ be the subgraphs formed in Lemma 2 in this order. Consider the following order of node exposure: we first expose all the nodes in the last subgraph, $g_{\lceil n/l \rceil}$, in some order. Then expose the nodes in the subgraph before that, $g_{(\lceil n/l \rceil-1)}$, and so on until the nodes in the last subgraph, g_1 , are exposed.

Consider a node v in subgraph g_i when it is exposed. Note that no subgraph g_j , $j > i$ can become connected after exposing v , as by construction of subgraphs, all the nodes of connecting closure of g_j lies in g_k , $k > j$. Also, no subgraph g_j , $j < i$ can become connected, because neither of g_j 's nodes are exposed yet. So $f(H)$ can potentially only change by one, and for the last node of g_i to make g_i connected, and the lemma is proved. \square

The above lemma allows us to use Azuma's inequality for groups made for trees as described in the following theorem.

Theorem 14: Consider a tree with n nodes and let $l = \max\{\frac{\log[1/(1-\epsilon/2)]}{2 \log 1/r}, 1\}$, $\delta > 2e^{-\Theta(\frac{\epsilon^2 n \log(1/r)}{\log(\frac{1}{1-\epsilon/2})})}$, and $\epsilon' < \delta/2$. Then there is an algorithm that uses $\text{INDEOPT}(\lceil n/l \rceil, p, \epsilon')$ tests and finds the defective set with maximum error with parameters ϵ and δ , i.e.

$$\text{CRLTOPT}(\text{Tree}, r, p, \delta, \epsilon) \leq \text{INDEOPT}(\lceil n/l \rceil, p, \epsilon')$$

Proof: We use the algorithm and the same subgraphs introduced in Theorem 5. Recall from the proof of Theorem 6 that the probability of one group not being connected is r^{2l} and the average error is $\epsilon n/2$. Now we can't use the Hoeffding's bound to show concentration around the average. Instead, we use a node exposure martingale to prove the concentration. Note that Theorem 16 for node exposure martingale only works when the graph function is node Lipschitz, meaning when H_1 and H_2 only differ in one node, $|f(H_1) - f(H_2)| \leq 1$. But if we can find an order of nodes v_1, \dots, v_n exposed such the graph H_i on first i nodes satisfies $|f(H_{i+1}) - f(H_i)| \leq 1$, then we can still use Azuma's inequality. Let $f(H)$ be the number of connected subgraphs g_i in H . Then by Lemma 8 there is an order such that $|f(H_{i+1}) - f(H_i)| \leq 1$, and we can use the concentration theorem (Theorem 16) for the number of connected groups in the random graph G_r . We now have the same error concentration as in Theorem 13 for error (equivalent to the Hoeffding's bound), hence we can repeat the argument to complete the proof. \square

VI. CONCLUSION

In this paper, we consider group testing strategies for identifying defective items when the defects of different nodes are correlated. The correlation is modeled through an underlying graph in which the degree of correlation between the defects in the items depends on the distance between the corresponding nodes in the graph. We relate the problem of design of testing strategies in presence of such correlation to that when the defects are independent. We subsequently obtain testing strategies in terms of those already known for independent defects for a large class of underlying graphs, namely trees, cycles, grids, and stochastic block models. This provides an upper bound for the number of tests needed to ensure the desired error bounds. We also obtain fundamental limits ie lower bounds on the minimum number of tests required to ensure the same error bounds using bounds already known when the defects are independent. The bounds are obtained through a novel combination of edge exposure Martingale theory and graph partition techniques.

We now describe some directions for future research stemming from some restrictive modeling assumptions. Recall that we have a graph G that defines the correlation model; G_r is obtained from G and has all the nodes of G but only a subset of edges (each edge in G makes it to G_r with a given probability). Thus each component of G is broken into several components of G_r . We assume the nodes in the same components of G_r are in the same state, but make no such assumption for nodes in the same component of G . So even if a number of nodes are in the same component in G , or more, suppose a component in G is a clique (i.e., a fully connected subgraph), these nodes may end up in different components of G_r and could therefore have different states (albeit with low probability if the said component is a clique of a large size in G). Note that our guarantees on group testing algorithms apply to the stated structures of G , i.e., despite nodes in the same component of G having different states.

The consideration of G_r has been introduced to incorporate a correlation between states of nodes that are connected

through one or more paths in G , and the correlation depends on the number and lengths of paths between them. This is consistent with all applications that satisfy the following attributes: (1) as the path between two entities gets longer in the connectivity graph G , their states are less likely to impact each other, and (2) as the number of distinct paths between them increases in G , their disease states are more likely to impact each other. The construction of G_r from G , and the assumption that states of nodes in the same component of G_r are identical and the states of nodes in different components of G_r are independent, satisfies both the above properties. The applications used to motivate the correlation between states (eg, medical applications) satisfy the above properties.

If we remove the assumption that the nodes in the same component of G_r have the same state, our algorithm performs worse as the state of our "candidate" node is no longer representative of those of the nodes in the rest of the component. The extent of the decline in performance depends on how different the nodes' states are within the same component. Specifically in a model where the nodes in the same component of G_r are not all in the same state, each component consists of two groups of nodes, corresponding to the two states. Let the larger of the two groups have only q fraction of nodes of the component, clearly $q \geq 1/2$. The larger the value of q , the larger the fraction of nodes that have the same state, and our current assumption is a better fit. In this case, our algorithm has an additional $2q(1-q)n$ error,² which decreases with increase in q (since we consider $q \geq 1/2$). Thus the decline in performance is a continuous function of q . Devising algorithms that are more robust in such modified models constitutes a topic of future research.

Finally, we discuss directions for future research based on the limitations in the results obtained in this paper. There is a gap between the upper and lower bounds, which may be because there is scope for improvement in the lower bound, possibly utilizing the specific structures of the underlying correlation graphs. Another important area for future work is the development of testing strategies for general graphs. Towards that end, one may envision the partition of the graph into structures such as trees, cycles, grids, stochastic block models, etc for which we have identified in this paper testing strategies with guarantees on error rates and the number of tests required. Based on the intuition we've gained in this paper, we believe there is a connection between forming the groups and community detection as both attempt to detect dense subgraphs. Furthermore, designing group testing strategies when the defects dynamically evolve over time over graphs in question remains open. This problem has started receiving attention [24], [32].

APPENDIX

A. Concentration Results

Definition 2 ([30]): A graph theoretic function f is said to satisfy the edge Lipschitz condition

²The candidate node falls in the larger group in the component with probability q , and $(1-q)$ fraction of them would be mispredicted. Or it falls in the smaller group with probability $(1-q)$ and q fraction would be mispredicted. Hence the total error from this is $2q(1-q)$.

if, whenever H and H' differ in only one edge, $|f(H) - f(H')| \leq 1$.

Note that the number of components $C(G)$ is edge Lipschitz, as when two graphs differ in only one edge, they either have the same number of components, or the graph with one less edge has one additional component. One can define a node Lipschitz condition by replacing edge with node [30].

The Edge Exposure Martingale. Let e_1, e_2, \dots, e_m be an arbitrary order of the edges. We define a martingale X_0, X_1, \dots, X_m where X_i is the value of a graph theoretic function $f(H)$ after exposing e_1, e_2, \dots, e_i . Note that X_0 is a constant which is the expected of $f(G)$, where G is drawn from G_r . This is a special case of martingales sometimes referred to as a Doob martingale process, where X_i is the conditional expectation of $f(H)$, as long as the information known at time i includes the information at time $i-1$ [30]. The same process can be defined for node exposure martingales, where the nodes are exposed one by one [30]. Node exposure can be seen as exposing one node at each step, so at the i^{th} step the graph has i nodes along with the edges between them. You can find more about the topic in [30, Chapter 7]. We have the following theorem.

Theorem 15 ([30]): When f satisfies the edge (resp. node) Lipschitz condition, the corresponding edge (resp. node) exposure martingale satisfies $|X_{i+1} - X_i| \leq 1$.

We then have Azuma's inequality.

Theorem 16 ([30]): Let $X_0 = c, \dots, X_m$ be a martingale with

$$|X_{i+1} - X_i| \leq 1$$

for all $0 \leq i < m$. Then

$$\Pr [|X_m - c| > \lambda \sqrt{m}] < 2e^{-\lambda^2/2}.$$

Proof: Consider the number of components $C(G)$ which is an edge-lipschitz function of the graph. Now define $X_0 = \mathbb{E}[C(G_r)]$ and $X_m = C(G_r)$. Applying Theorem 16 concludes the proof. \square

B. Proof of Theorem 11

Proof: The proof is a modified version of the proof of Theorem 1 in [8]. Let \mathbf{X} be the vector of states of the nodes, \mathbf{B} be the vector of the result of the group tests for a testing strategy of choice, and \mathbf{Y} be the estimated states of the nodes. Then $\mathbf{X} \rightarrow \mathbf{B} \rightarrow \mathbf{Y}$ form a Markov chain. Thus, by data processing inequality, $I(\mathbf{X}; \mathbf{B}) \geq I(\mathbf{X}; \mathbf{Y})$. Also we have $I(\mathbf{X}; \mathbf{B}) = H(\mathbf{B}) - H(\mathbf{B} | \mathbf{X}) \leq H(\mathbf{B})$. Now, $H(\mathbf{B}) \leq \log_2 |\mathbf{B}|$, where $|\mathbf{B}|$ indicates the number of possible values of the random vector \mathbf{B} . Since \mathbf{B} represents the result vector, the number of possible values of this vector is at most 2^T , where T is the number of tests. Thus, $T \geq \log_2 |\mathbf{B}|$. Thus, combining the above inequalities, $T \geq I(\mathbf{X}; \mathbf{Y})$.

Moreover,

$$H(\mathbf{X}) = H(\mathbf{X} | \mathbf{Y}) + I(\mathbf{X}; \mathbf{Y}).$$

Thus, $T \geq H(\mathbf{X}) - H(\mathbf{X} | \mathbf{Y})$. Since \mathbf{X} represents the states of n independent nodes, each of which is defective with probability p , $H(\mathbf{X}) = nH(p)$. Thus,

$$T \geq nH(p) - H(\mathbf{X} | \mathbf{Y}). \quad (11)$$

We now obtain an upper bound for $H(\mathbf{X} | \mathbf{Y})$. Define the error random variable E such that

$$E = \begin{cases} 1, & \text{if } \|\mathbf{Y} - \mathbf{X}\|_0 > \epsilon n \\ 0, & \text{if } \|\mathbf{Y} - \mathbf{X}\|_0 \leq \epsilon n \end{cases}$$

where $\|\cdot\|_0$ is the number of non-zero elements in a vector. We can bound the conditional entropy as follows

$$\begin{aligned} H(\mathbf{X} | \mathbf{Y}) &= H(E, \mathbf{X} | \mathbf{Y}) \\ &= H(E | \mathbf{Y}) + \Pr[E = 0]H(\mathbf{X} | \mathbf{Y}, E = 0) \\ &\quad + \Pr[E = 1]H(\mathbf{X} | \mathbf{Y}, E = 1) \\ &\leq 1 + (1 - \delta)H(\mathbf{X} | \mathbf{Y}, E = 0) + \delta H(\mathbf{X}) \\ &\leq 1 + (1 - \delta)H(\mathbf{X} | \mathbf{Y}, E = 0) + n\delta H(p). \end{aligned} \quad (12)$$

We now upper bound $H(\mathbf{X} | \mathbf{Y}, E = 0)$:

$$\begin{aligned} H(\mathbf{X} | \mathbf{Y}, E = 0) &= \\ &\sum_i \Pr[Y = y_i | E = 0]H(\mathbf{X} | Y = y_i, E = 0) \\ &\leq \sum_i \Pr[Y = y_i] \log c' \binom{n}{\epsilon n} \\ &= \log \binom{n}{\epsilon n} + c' \simeq nH(\epsilon). \end{aligned} \quad (13)$$

To obtain the inequality, we note that given that $E = 0$, there are at most ϵn bits in which \mathbf{X} differs from \mathbf{Y} . Thus, given a value of \mathbf{Y} and that $E = 0$, there are at most $\sum_{i=0}^{\epsilon n} \binom{n}{i} \leq c' \binom{n}{\epsilon n}$ values of \mathbf{X} , where c' is a constant. The result follows by recalling that the entropy for any random variable with r values is at most $\log r$. The Theorem follows by putting together (11), (12) and (13). \square

REFERENCES

- [1] D. Du and F. K. Hwang, *Combinatorial Group Testing and its Applications*, vol. 12. Singapore: World Scientific, 2000.
- [2] R. Dorfman, "The detection of defective members of large populations," *Ann. Math. Statist.*, vol. 14, no. 4, pp. 436–440, Dec. 1943.
- [3] M. Cheraghchi, A. Hormati, A. Karbasi, and M. Vetterli, "Group testing with probabilistic tests: Theory, design and application," *IEEE Trans. Inf. Theory*, vol. 57, no. 10, pp. 7057–7067, Oct. 2011.
- [4] A. Coja-Oghlan, O. Gebhard, M. Hahn-Klimroth, and P. Loick, "Optimal group testing," in *Proc. Conf. Learn. Theory*, 2020, pp. 1374–1388.
- [5] M. Cheraghchi, R. Gabrys, and O. Milenkovic, "Semiquantitative group testing in at most two rounds," in *Proc. IEEE Int. Symp. Inf. Theory (IST)*, Jul. 2021, pp. 1973–1978.
- [6] M. Cuturi, O. Teboul, Q. Berthet, A. Doucet, and J.-P. Vert, "Noisy adaptive group testing using Bayesian sequential experimental design," 2020, *arXiv:2004.12508*.
- [7] M. Aldridge, O. Johnson, and J. Scarlett, "Group testing: An information theory perspective," *Found. Trends Commun. Inf. Theory*, vol. 15, nos. 3–4, pp. 196–392, 2019, doi: [10.1561/0100000099](https://doi.org/10.1561/0100000099).
- [8] T. Li, C. L. Chan, W. Huang, T. Kaced, and S. Jaggi, "Group testing with prior statistics," in *Proc. IEEE Int. Symp. Inf. Theory*, Jun. 2014, pp. 2346–2350.
- [9] M. T. Goodrich and D. S. Hirschberg, "Improved adaptive group testing algorithms with applications to multiple access channels and dead sensor diagnosis," *J. Combinat. Optim.*, vol. 15, no. 1, pp. 95–121, Jan. 2008.
- [10] W. J. Bruno et al., "Efficient pooling designs for library screening," *Genomics*, vol. 26, no. 1, pp. 21–30, Mar. 1995.
- [11] M. Farach, S. Kannan, E. Knill, and S. Muthukrishnan, "Group testing problems with sequences in experimental molecular biology," in *Proc. Compress. Complex. SEQUENCES*, Jun. 1997, pp. 357–367.

- [12] V. Brault, B. Mallein, and J.-F. Rupprecht, "Group testing as a strategy for COVID-19 epidemiological monitoring and community surveillance," *PLOS Comput. Biol.*, vol. 17, no. 3, Mar. 2021, Art. no. e1008726.
- [13] C. M. Verdun et al., "Group testing for SARS-CoV-2 allows for up to 10-fold efficiency increase across realistic scenarios and testing strategies," *Frontiers Public Health*, vol. 9, p. 1205, Aug. 2021.
- [14] L. Mutesa et al., "A pooled testing strategy for identifying SARS-CoV-2 at low prevalence," *Nature*, vol. 589, no. 7841, pp. 276–280, Jan. 2021.
- [15] M. Aldridge. (2020). *Conservative Two-stage Group Testing*. [Online]. Available: <https://arxiv.org/abs/2005.06617v1>
- [16] C. Gollier and O. Gossner. (2020). *Group Testing Against COVID-19*. [Online]. Available: <https://www.econstor.eu/bitstream/10419/221811/1/1702074846.pdf>
- [17] P. Bertolotti and A. Jadbabaie. (2021). *Network Group Testing*. [Online]. Available: <https://arxiv.org/pdf/2012.02847>
- [18] T. Berger, N. Mehravari, D. Towsley, and J. Wolf, "Random multiple-access communication and group testing," *IEEE Trans. Commun.*, vols. COM-32, no. 7, pp. 769–779, Jul. 1984.
- [19] B. S. Chlebus, "Randomized communication in radio networks," *Combinat. Optimization-Dordrecht*, vol. 9, no. 1, pp. 401–456, 2001.
- [20] A. Bernstein, D. Bienstock, D. Hay, M. Uzunoglu, and G. Zussman, "Power grid vulnerability to geographically correlated failures—Analysis and control implications," in *Proc. IEEE Conf. Comput. Commun.*, Apr. 2014, pp. 2634–2642.
- [21] M. H. Athari and Z. Wang, "Impacts of wind power uncertainty on grid vulnerability to cascading overload failures," *IEEE Trans. Sustain. Energy*, vol. 9, no. 1, pp. 128–137, Jan. 2018.
- [22] S. Soltan, D. Mazauric, and G. Zussman, "Cascading failures in power grids: Analysis and algorithms," in *Proc. 5th Int. Conf. Future Energy Syst.*, vol. 6, Jun. 2014, pp. 195–206.
- [23] S. Ahn, W.-N. Chen, and A. Özgür, "Adaptive group testing on networks with community structure," in *Proc. IEEE Int. Symp. Inf. Theory (ISIT)*, Jul. 2021, pp. 1242–1247.
- [24] B. Arasli and S. Ulukus, "Group testing with a graph infection spread model," *Information*, vol. 14, no. 1, p. 48, Jan. 2023.
- [25] P. Nikolopoulos, S. R. Srinivasavaradhan, T. Guo, C. Fragouli, and S. Diggavi, "Group testing for connected communities," in *Proc. Int. Conf. Artif. Intell. Statist.*, 2021, pp. 2341–2349.
- [26] P. Nikolopoulos, S. R. Srinivasavaradhan, C. Fragouli, and S. N. Diggavi, "Group testing for community infections," *IEEE BITS Inf. Theory Mag.*, vol. 1, no. 1, pp. 57–68, Sep. 2021.
- [27] M. Cheraghchi, A. Karbasi, S. Mohajer, and V. Saligrama, "Graph-constrained group testing," *IEEE Trans. Inf. Theory*, vol. 58, no. 1, pp. 248–262, May 2012.
- [28] B. Spang and M. Wootters, "Unconstraining graph-constrained group testing," *Approximation, Randomization, Combinat. Optimization. Algorithms Techn.*, vol. 1, pp. 1–14, May 2019.
- [29] A. Goerdt, "The giant component threshold for random regular graphs with edge faults," in *Proc. Int. Symp. Math. Found. Comput. Sci.*, 1997, pp. 279–288.
- [30] N. Alon and J. H. Spencer, *The Probabilistic Method*. Hoboken, NJ, USA: Wiley, 2016.
- [31] J.-C. Aval, "Multivariate Fuss–Catalan numbers," *Discrete Math.*, vol. 308, no. 20, pp. 4660–4669, Oct. 2008.
- [32] S. R. Srinivasavaradhan, P. Nikolopoulos, C. Fragouli, and S. Diggavi, "Dynamic group testing to control and monitor disease progression in a population," in *Proc. IEEE Int. Symp. Inf. Theory (ISIT)*, Jun. 2022, pp. 2255–2260.

Hesam Nikpey received the B.Sc. degree in computer engineering from the Sharif University of Technology in 2019. He is currently pursuing the Ph.D. degree with the Department of Computer and Information Science. His research interests include the analysis of algorithms and graph theory, with application in networks and group testing.

Jungyeol Kim received the Ph.D. degree from the Department of Electrical and Systems Engineering, University of Pennsylvania. He is currently a Quantitative Modeler with JPMorgan Chase. His research interests include modeling and controlling dynamic processes in networked systems, with applications in vehicular communication and epidemic modeling.

Xingran Chen (Member, IEEE) received the B.S. degree in statistics from Central South University in 2015 and the M.A. degree in applied mathematics and computational science from the University of Pennsylvania in 2018. He has been a Lecturer (an Assistant Professor) with the School of Information and Communication Engineering, University of Electronic Science and Technology of China, since September 2023. His research interests include the intersection of information theory, machine learning, and network science, and its applications in the artificial Intelligence of Things (AIoT). He was a recipient of the IEEE Communications Society and Information Theory Society Joint Paper Award in 2023.

Saswati Sarkar (Senior Member, IEEE) received the M.E. degree from the Electrical Communication Engineering Department, Indian Institute of Science, Bengaluru, in 1996, and the Ph.D. degree from the Electrical and Computer Engineering Department, University of Maryland, College Park, in 2000. She joined the Electrical and Systems Engineering Department, University of Pennsylvania, Philadelphia, as an Assistant Professor, in 2000, where she is currently a Professor. Her research interests include complex networks, stochastic control, resource allocation, dynamic games, spread and control of infectious diseases, economics of networks, and cybersecurity. She received the Motorola Gold Medal for the best master's student at the Division of Electrical Sciences, Indian Institute of Science; and the National Science Foundation (NSF) Faculty Early Career Development Award in 2003.

Shirin Saeedi Bidokhti received the M.Sc. and Ph.D. degrees in computer and communication sciences from the Swiss Federal Institute of Technology (EPFL). She is currently an Assistant Professor with the Department of Electrical and Systems Engineering with a secondary appointment with the Department of Computer and Information Systems, University of Pennsylvania (UPenn). Prior to joining UPenn, she was a Post-Doctoral Scholar with Stanford University and the Technical University of Munich. She has also held short-term visiting positions at ETH Zürich, the University of California at Los Angeles, and The Pennsylvania State University. Her research interests include the design and analysis of network strategies that are scalable, practical, and efficient for use in the Internet of Things (IoT) applications, information transfer on networks, and data compression techniques for big data. She was a recipient of the 2023 Communications Society and Information Theory Society Joint Paper Award, the 2022 IT Society Goldsmith Lecturer Award, the 2021 NSF-CAREER Award, the 2019 NSF-CRII Research Initiative Award, and the Prospective Researcher and Advanced Postdoctoral Fellowships from the Swiss National Science Foundation.