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Abstract

Jamming signals can jeopardize and ultimately prevent the effective operation
of global navigation satellite system (GNSS) receivers. Given the ubiquity of
these signals, jamming mitigation and localization techniques are of crucial
importance, and these techniques can be enhanced with accurate jammer clas-
sification methods. Although data-driven models have proven useful for detect-
ing jamming signals, training these models using crowdsourced data requires
sharing private data and may therefore compromise user privacy. This article
explores the use of federated learning to locally train jamming signal classifi-
ers on each device, with model updates aggregated and averaged at a central
server. This approach ensures user privacy during model training by removing
the need for centralized data storage or access to clients’ local data. The person-
alized federated learning strategies employed in this study are also tested on
non-independent and identically distributed data sets composed of spectrogram
images from interfered GNSS signals. In addition, this article discusses the effect
of model quantization, which is used to effectively reduce communication costs,
as well as a fusion strategy for personalized federated learning schemes in which
multiple classifiers are available.

Keywords
distributed inference, federated learning, Jamming detection, machine learning,
neural networks.

1 | INTRODUCTION

Global navigation satellite system (GNSS) jamming signals are L-band spectrum
interferences that can overpower a GNSS receiver and prevent its effective opera-
tion (Amin et al., 2016; Morton et al., 2021). A wide variety of jammers can be found
in the online market at cheap prices, which makes intentional, human-made jam-
ming signals a threat such that to national security and safe navigation (Borio et al.,
2016; Morales-Ferre et al., 2020). In addition, signals do not need to be malicious
to have a jamming effect: even legitimate waveforms, including the continuous
wave interferences produced by damaged electronics and the signals emitted by
Distance Measurement Equipment technology conceived for aircraft navigation,
can interfere with GNSS receivers (Li et al., 2019). Jamming sources are located on
Earth or, in the case of drone jammers, near Earth’s surface. Because of path-loss

NAVIGATION, 72(1)

Licensed under CC-BY 4.0 © 2025 Institute of Navigation


mailto:wu.p@northeastern.edu

. WU ET AL.
€BION

attenuation in GNSS signals due to the large distance between Earth and GNSS
satellites, jamming interferences are often received with remarkably higher power
than the useful GNSS signal, which can lead to localized performance disruption
over a radius of several kilometers (Mitch et al., 2011). Jamming has been sug-
gested to be the main cause of GNSS-based service outages (Morales Ferre et al.,
2019), making protection against this kind of attack a desirable feature in GNSS
receivers (Dovis, 2015; Thombre et al., 2018).

One such form of protection involves jammer classification, which can enhance
classical interference cancellation techniques. In general, interference cancellation
techniques are formulated as an estimation problem where the jamming signal
is detected and estimated, often with a parametric model (Borio & Closas, 2017).
Because the aim of these techniques is to first reconstruct the interference, knowl-
edge of the type or class of interference can accelerate the algorithm. For exam-
ple, if the algorithm knows that a continuous wave interference is threatening a
receiver, it would only need to estimate the interference’s central frequency in order
to reconstruct its waveform and implement a cancellation measure. Furthermore,
jamming classification techniques inherently involve detecting the interference.
Most previous GNSS studies regarding protection against jamming interferences
have focused on detecting (Arjoune et al., 2020), mitigating (Borio et al., 2018), and
localizing the interference (Strizic et al., 2018), with little effort dedicated to the
classification of jamming signals (Morales Ferre et al., 2019) until more recent pub-
lications (Chen et al., 2024; Mehr & Dovis, 2022). The notable exception is some
previous work in the context of radar systems, such as the machine learning jam-
ming prediction algorithm proposed by Lee et al. (2020).

Recent studies have focused more explicitly on potential approaches to classi-
fying jamming signals. For example, Morales Ferre et al. (2019) proposed Support
Vector Machine- and Convolutional Neural Network-based classifiers for the
purpose of jammer classification, which they treated as an image classification
problem. Their classifiers achieved nearly 99% accuracy at detecting a jamming
incident and over 90% classification accuracy when differentiating among a vari-
ety of jamming types (namely those considered in this article) after being trained
on a set of 600 images per class. According to Voigt (2021), the use of multivar-
iate time-series approaches can also increase the accuracy of jammer classifica-
tion techniques. More recent studies (Closas et al., 2024; Mehr & Dovis, 2024)
in GNSS interference classification have prominently utilized machine learning
techniques. For example, Mehr & Dovis (2022) demonstrated the effectiveness of
Convolutional Neural Networks for jammer classification, while Chen et al. (2024)
explored a compound neural network model. Residual Neural Networks have also
been employed (Brieger et al., 2022; Zengyuan et al., 2023). Mehr et al. (2023) and
van der Merwe et al. (2024) contributed classifiers based on other machine learn-
ing techniques, highlighting the growing popularity and success of these methods
in GNSS interference classification.

Most studies of GNSS integrity rely on synthetic data because data collection in
the presence of jamming signals is difficult. This difficulty is further compounded
in studies that wish to use different interference types and received power values.
However, some interference effects, such as the ones introduced by multipath
reflections, can be difficult to recreate in synthetic data sets. Thus, despite the
challenges of obtaining real GNSS interference data, the use of real data has the
potential to significantly improve the training and assessment of data-driven clas-
sifiers. One option for collecting real GNSS data involves traditional crowdsourcing
approaches, where clients record data and share it with a central unit that trains the
classifier. Nevertheless, crowdsourcing raises concerns about user privacy because
it requires that users send their data directly to a centralized server.
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Aimed at addressing these concerns, Federated Learning (FL) has recently
attracted great interest because it protects user privacy and efficiently uses resources
by harnessing the processing power of edge devices (Niknam et al., 2020). FL is
a promising solution that enables many clients to jointly train machine learning
models while maintaining local data decentralization. Such collaboration between
users in distributed scenarios has proven useful in GNSS interference manage-
ment tasks (Jiang et al., 2024; Nicola et al., 2020). Instead of exchanging data and
conducting centralized training, each party in a FL system sends its model to the
server, which then updates a joint model and sends the global model back to the
parties. Because the original user data is not exposed, FL effectively addresses pri-
vacy issues (McMahan et al., 2017).

FL has proven highly beneficial for jamming signal classification in GNSS appli-
cations, particularly for protecting the privacy of collaborating users and reducing
the amount of data being exchanged. In the traditional crowdsourcing-based alter-
native, in which users send snapshot data to a server in charge of centrally training
the classifier, intercepted data snapshots could be used to compute the position of
the user. These snapshots therefore reveal confidential user information, which
is generally undesirable for most users but especially problematic in contexts like
military or other sensitive applications. In contrast, FL allows for model training
without the need to share raw data, thereby preserving privacy. Additionally, the
bandwidth required for such transmission in a crowdsourcing framework can be
very large (as we will see from the typical data sets that are employed in train-
ing such models), making this approach impractical from a communication per-
spective. FL reduces this communication overhead by transmitting only model
updates rather than large amounts of raw data to a central server. Finally, GNSS
receivers are typically spread across various geographical locations, each experi-
encing different jamming events. Decentralized, FL-based methods leverage this
geographic distribution to create more robust and generalized models. In other
words, by learning from diverse environments, the models enhance their perfor-
mance and robustness.

Despite the advantages of FL, one common problem is the challenge of
non-independent and identically distributed (IID) data, which diminishes learning
effectiveness. Non-IID data refers to the scenario where the data distribution across
edge devices differs significantly, posing unique challenges for FL algorithms.
Various approaches have been developed to address this issue. One such approach,
called personalized FL, has garnered significant attention because it tailors models
to each client’s local data distribution. There are several ways to achieve this cus-
tomization, including local fine-tuning (Ben-David et al., 2010; Wang et al., 2019),
meta-learning (Fallah et al., 2020; Jiang et al., 2019), transfer learning (Li & Wang,
2019), model mixture methods (Deng et al., 2020), and pair-wise collaboration
methods (Huang et al., 2021).

Quantization is another crucial aspect of FL (Krishnamoorthi, 2018).
Specifically, quantization enables efficient communication and reduces compu-
tational costs by representing model parameters with lower precision. By quan-
tizing the weights or gradients, we significantly reduce the amount of data that
needs to be transmitted during the aggregation process. This downsizing is espe-
cially beneficial in FL scenarios where communication resources are limited
and bandwidth is a constraint (Lang & Shlezinger, 2022; Reisizadeh et al., 2020).
Many quantization methods have been proposed, such as Uniform Quantization
(Widrow et al., 1996), Non-uniform Quantization (Baskin et al., 2021), Stochastic
Quantization (Damgaard & Hiiffel, 1987), Vector Quantization (Gray, 1984)
and Quantization-Aware Training (Jacob et al., 2018). In general, integrating
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quantization into FL algorithms can enhance scalability and privacy while main-
taining reasonable model accuracy.

Here, we continue our preliminary (Wu et al., 2023) and more recent
work (Deng et al., 2024) towards training jamming signal classifiers using
privacy-preserving strategies that can cope with crowdsourcing-based data col-
lection. In this extended study, we specifically investigate (i) the challenge of
non-IID datasets, with the goal of developing solutions based on personalized
FL strategies, and (ii) the impact of model quantization in the communication
process. Our overall objective is to obtain a Neural Network-based global model
capable of classifying different jamming signals, as shown in Figure 1. To pre-
serve client privacy while leveraging crowdsourcing data collection strategies,
we exploit FL approaches in which model parameters are shared with clients,
thereby allowing local classification of jamming signals while avoiding data shar-
ing (Figure 2).

In our proposed framework, we assume the possible existence of C different
jamming types and perform our FL approach over a network with M collabora-
tive users. We then study the FL-based jamming classifier under two different data
distribution scenarios. In the first scenario, clients’ data is IID; that is, all clients
observe a similar amount of interference instances from all C classes. In the sec-
ond, non-IID scenario, clients observe data that is unbalanced towards different
classes. Although working with non-IID data poses several challenges, non-IID
data is common in real-world scenarios given that not all clients have access to all
available types of data. In the context of this work, non-IID data arises when not
all participating users observe the same classes of jamming signals. We therefore
investigate different techniques for addressing the challenges of non-IID data in
the context of jammer classification. Rather than employing a single global model
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FIGURE 1 System diagram of the jamming signal classifier considered herein. First, a
receiver downloads a pre-trained model from the server, which can be either i) trained on locally
available data and sent back to the server for fusion with other models; or ii) used to perform
jamming classification on local data. Monochrome spectrogram images of the six jammer types
available in the test data set from Morales Ferre et al. (2019) are shown: (b) Amplitude Modulated
(AM), (c) chirp, (d) Frequency Modulated (FM), (e) Pulsed or Distance Measurement Equipment
(DME), and (f) narrow band (NB) jammers. Class (a) shows a clean signal (no interference).
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FIGURE 2 Federated learning framework for training jamming signal classifiers. First,
M collaborative clients receive the parameters of the classifier from a server. These clients
retrain the model based on their local data and then upload their updated classifier to the server
in charge of fusing the results. This process does not require the exchange of actual user data or
positions, thus preserving their privacy.

distributed among clients, we use a framework where each client maintains a
personalized model. This approach enables clients to more accurately represent
their unique data distributions while simultaneously benefiting from the collective
knowledge derived from other clients. Finally, we investigate the effects of quan-
tization techniques on the transmission of parameters between clients and the
server and demonstrate the influence of quantization bit depth on the performance
of various FL algorithms.

The remainder of this paper is organized as follows. In Section 2, we describe the
satellite signal model and targeted jammer types. Our FL technique is then derived
in Section 3, and the experimental setup and results are described in Section 4.
Finally, Section 5 concludes the paper.

2 | SYSTEM MODEL

For the purpose of this article, we model the analog baseband equivalent of the
received GNSS signal as

r(t) =s(t)+ j(t) + w(t), (€]

where s(t) contains the useful GNSS satellite signals and w(¢t) represents sources
of randomness, such as thermal noise, which are typically modeled as an additive
white Gaussian noise process. The term j(¢) represents the signal waveform gen-
erated by a jamming source as measured at the receiver. Several waveforms are
possible for j(t) depending on the type of jammer (Morales-Ferre et al., 2020).
Accurate knowledge of j(t) allows for prompt reaction to a jamming threat, either
for its localization (Nardin et al., 2023) or mitigation. For mitigation, interference
cancellation techniques aim to estimate the waveform of j(t) so that it can be
reconstructed and directly subtracted from r(¢).

Jammers can be classified according to their characteristic features, including
the type of device by which they are broadcast, their frequency spectrum, and their
number of antennae (Borio et al., 2016). In this paper, we target the same jammer
types as in Morales Ferre et al. (2019), given that we use their data set of jammer
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signals and benchmark our results against theirs. Overall, the aim of our research
is to use the FL technique explained in Section 3 for the classification of the follow-
ing jammer types:

. Amplitude Modulated (AM);

Chirp;

Frequency Modulated (FM);

. Pulsed or Distance Measurement Equipment (DME);
. Narrow Band (NB) jammers; and

No interference.

R N

As in Morales Ferre et al. (2019), we do not consider wideband jammers given
that their presence is difficult to detect when analyzing spectrogram images. All
five jammers considered here have narrow spectra that overpower the signal of
interest, which becomes buried in noise. Note that our classification strategy, pro-
posed in Section 3, simultaneously performs the task of detecting interference
because the absence of interference can be properly identified. The waveform
expressions j(t) for each of the five jammer types listed above can be found in
Morales Ferre et al. (2019) but are not explicitly used for training or testing the FL
solution proposed here.

Our classification strategy mostly relies on the behavior of these five jammer
types in the frequency domain. While AM and FM jammers target pre-fixed fre-
quencies, others, such as chirp jammers, sweep over different frequency bands.
Feature extraction approaches based on spectral analysis of the signals, such as
their spectrograms, are therefore suitable for distinguishing different jammer types.
Specifically, the short-time Fourier transform allows for the time-frequency localiza-
tion of the interference signal. (Morales Ferre et al., 2019) successfully approached
jammer classification as an image classification problem, where spectrograms of
the received signal r(t) were treated as images. In their approach, the spectrograms
are computed on the discrete-time version of r(t) in Equation (1), which, at an
appropriate sampling rate f, =1/T,, would be modeled as r[n]=s[n]+ jn]+w[n],
where t =nT, for neZ.

3 | FEDERATED LEARNING METHODOLOGIES

Many different FL algorithms have been discussed for different applications
(Li, Sahu, Talwalkar et al., 2020; Park et al., 2022; Wu et al., 2021) but especially
in the field of image classification. One de facto approach for FL is Federated
Averaging (FedAvg) (McMahan et al., 2017), which fuses the model parameters by
a weighted sum. According to previous studies (Hsu et al., 2019; X. Li et al., 2020),
the learning effectiveness of standard FL methods is compromised when using
non-IID data. In this section, we explore two FL strategies. The first leverages FL
to develop a unique global model capable of making accurate predictions on data
from various clients, whereas the second focuses on learning personalized models
for individual clients with the goal of achieving higher accuracy on their local
data sets.

Global FL. In the first strategy, we consider the setup depicted in Fig. 2, where
M collaborative clients train a global classification model (e.g., a neural network)
such that:

y=h(X; ) ()
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where y eRC is the vector of class posteriors with elements p(y=/¢|X), with
¢ e {AM, Chirp, FM, DME, NB, NO}. Here, h:X+> h(X) is the neural network
classifier parameterized by @ e RNo, and X eR%W* is the spectrogram of the
received GNSS signal r[n]. See Morales Ferre et al. (2019) for more details regard-
ing the construction of the spectrogram data. In this contribution, we assume that
the data D is composed of M disjoint data sets D, ={y?, X,(j)}ﬁ":l, iefl,..., M}

The training process for this model can be formulated as the minimization of a
loss function:

M
min{ﬁ(a)) = Z}'i(a))+),A(a), o, )} 3)

i=1

where o, is the initial weight, or, if the model is trained recursively, the aggre-
gated weight from the global model of the previous round. L(w) is the global
loss function, and 7, : R SR o— F.(w) are local loss functions. The regular-
izer term AA(w, @, ) helps prevent the model from drifting away from the global
model and protects against overfitting. Setting A =0 represents the conventional
FedAvg approach to FL (McMahan et al., 2017), and if A#0, the regularizer
can be the L-2 norm, resulting in FedProx (Li, Sahu, Zaheer, et al., 2020). The A
term can be more complex, as demonstrated in model-contrastive FL. (MOON)
(Q. Lietal., 2021), which incorporates a contrastive loss term for control.

Personalized FL. For personalized FL, each client has its own personalized
model which is shared among clients to cross-pollinate the local data without shar-
ing it. The objective here is to learn multiple models, for which we can mathemat-
ically define the loss function:

M
min{ﬁ(a)l,...,a)M)zz.?-'i(a)i)+7LA(a)1,...,a)M)} @

i=1

where o =[o,,...,0,,...,0,,]. When o, =, —aV}'i(a)g) and A =0, the model
reduces to local fine-tune, meta-learning, or transfer learning with different strate-
gies and cases (Tan et al., 2023). In the case where A #0 and A represents the L-2
norm ||o; - o, |, this function is referred to as Ditto (T. Li et al., 2021). More com-
plex A terms can be employed to observe the relationships among different mod-
els. This approach typically involves pairwise collaboration methods that calculate
the similarity between models and determine the fusion weight for each model, as
proposed by Fed AMP (federated attentive message passing) (Huang et al., 2021).

Because our goal is to employ FL approaches for jamming classification, not to
compare different FL. methods, we choose several popular FL methods that have
already shown promising results across diverse applications. In this section, we
1) discuss the practical problem of quantizing the shared parameters before trans-
mitting them, which affects the performance of the models through the different
FL strategies; and 2) introduce a fusion strategy to make a classification decision
based on a set of personalized models, which results from a probabilistic interpre-
tation of the local classifiers.

3.1 | Quantization in Federated Learning
In FL schemes, the shared information needs to be quantized before being trans-

mitted in order to reduce the communication bandwidth. Here, we briefly discuss
quantization, which we then experimentally investigate in Section 4
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FIGURE 3 In FL schemes, quantization of shared data happens during transmission from
clients to the server and from the server back to clients.

The quantization operation and dequantization formulas in an FL scheme are
as follows:

Oy(x)= Ew +z (5)

where O, (x) is the N-bit quantized version of a variable x, L-‘ is the round oper-
ator, s is the scale, and z is the zero point. When designing the quantizer, the
choice of scale and zero point is crucial. These values are typically chosen based
on the range of the input signal values in order to minimize information loss. For
instance, if the range of values in a signal is [a, b], the scale and zero point can be
computed as:

5= le\]__al (6)
Z:LO;_GW -

Once the quantized information is received, it can be re-quantized for process-
ing. For instance, in the FL scheme in Fig. 3, the server re-quantizes model param-
eters before fusing them to some N'> N number of bits. This re-quantization can
be achieved mathematically by:

M@ =sx(q-2) (8)

where Qy}(q) is the N'-bit re-quantized version of q=Q, (x). The scale and zero
point are computed as before but using N’ instead of N.

For our work, the model parameters are quantized only for communication pur-
poses, namely when they are downloaded from the server to clients and uploaded
from clients to the server. During the local training and server aggregation, the
weights are re-quantized to float values. The details of this re-quantization are
shown in Algorithm 1, where Q(w) represents the quantized vector parameters.

A generic FL algorithm operates as follows: given M clients and an initial model
o, , each client receives the current model from the server at each of the T iterations
where the process is repeated. Clients then update their model parameters based
on their local data and send the quantized model parameters back to the server.
The server aggregates these local parameters into either a single global model (in
the case of general or global learning) or into M personalized models (i.e., one for
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ALGORITHM 1
General FL Algorithm
Input: number of clients M; the architecture of local models h with initial @, (if personalized
models, then @, = [@], ..., @)']); local loss functions F; data D = {D;, ..., D,,}; and number of
iterations T;
fort=0,..,T-1do
Server: send Q(@,) to each client
forie Mdo
Update the @i, < Equation (3) or (4)
Upload local model parameters Q(@!,,) to server.
end for
Server: aggregate @i, as @ with different FL algorithms
end for
Output: @,

each client in the case of personalized learning). The aggregated parameters are
then sent back to the respective clients for the next iteration of training. Detailed
steps for this generic FL approach are outlined in Algorithm 1.

3.2 | Fusion Strategy used in Federated Learning

Some personalized models, like FedAMP, can only learn from data that has a
similar distribution as their local training data. This requirement creates a chal-
lenge when there is no prior knowledge of which model to use for new data points.
In these cases, a fusion scheme is needed to combine the M available models and
generate a reasonable estimate (Wu et al., 2024).

In a scheme similar to FedAMP, the ie{l,..., M} classifier (i.e., each of the per-
sonalized models) provides a categorical posterior distribution for c, the jammer
class, which can take any of the jef{l,...,L} labels based on the current data y
and the corresponding model M. In other words:

L
ple| M, y)=TTp5 ", ©)
j=1

where D denotes the probability of the j-th label given the i-th classifier, and
[c=j] is an indicator function that returns 1 if ¢=j and 0 otherwise. The a priori
class probability p(c) is categorical and defined by the probabilities p io? which, in
the equiprobable case, result in p o = 1/L,Vj. The optimal fusion rule is provided
by the joint posterior distribution, which Pastor et al. (2021) showed is propor-
tional to:

ML i
oc H?;Ilp(c | M, y) _ Hi:lHj:l(pﬂi)[c_J]

clM,..,,
P( | 1:M Y) p(c) p(©)
[e=J] (10)
:ﬁ Pjn Pjz"Pjm
j=1 Pjo

Here, the M different models are conditionally independent given the c. The result-
ing joint distribution is categorical, from which the maximum a posteriori proba-
bility can be readily obtained to predict the class c.
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This section presents a series of experiments in which we show the applicability
of FL to train, in a distributed manner, a jammer classifier. Our classifier performs
comparably to a classifier trained on a centralized node with access to all local data
sets. In the following sections, we describe the data set used for our experiments,
how this data set is employed in a distributed learning scheme, how the model was
configured, and the results obtained from our experiments.

4.1 | Data Pre-processing

We used the data set provided by Morales Ferre et al. (2019), which is available
open-access at https://zenodo.org/record/3370934. This data set contains 61800 .bmp
monochrome spectrogram images with 512 X 512 pixel resolution, binary scale, and
600 DPI. The spectrograms were computed from simulated GNSS signals affected
by interference from the aforementioned jammer types (see Section 2). Morales
Ferre et al. (2019) used 6000 images for training (1000 for each jammer class), 1800
images for validation, and the remaining 54000 images for testing.

To optimize computational resources and expedite the training process, we
pre-processed the data following an approach typical in machine learning contexts.
First, we used both the training and validation data sets, as the validation step is
often omitted from the experimentation process unless performing hyperparam-
eter tuning. The combined dataset, which includes both training and validation
data, was divided into 75% for training and 25% for testing. To further enhance the
training process, image resolution was reduced from 512 X 512 to 256 X 256 pixels
using of bilinear interpolation techniques. Finally, once all the data were prepro-
cessed, the pixel values were normalized to the range [-1, 1] using mean 0.5 and
standard deviation 0.5 to facilitate the training.

4.2 | Federated Data Setting

We investigated two different data settings. First, in the IID setting, all clients
received similar data distributions (i.e., a similar number of samples from each
jammer class). For these experiments, we uniformly split the data into groups of 20,
30, and 40 clients to examine how client numbers may influence the results. This
split resulted in approximately 65, 43, and 32 samples per client for the 20-, 30-, and
40-client scenarios, respectively.

Second, we considered a non-IID setting in which the distribution of training
samples from different jammer classes was unbalanced across clients. To gen-
erate non-IID splits of the data set, we followed the approach by T. Li, Sahu,
Talwalkar, & Smith (2020), in which client data is sampled using a Dirichlet
distribution. In brief, we defined the number of clients and classes, and then,
for a given client i, we defined the probability of sampling data from each label
jefl,...,C} as the vector (piys--Pic)~Dir(B), where Dir(-) denotes the
Dirichlet distributionand B =(B,,,..., B;¢ )T is the concentration vector parame-
ter. The concentration parameter f is used to generate proportions for distribut-
ing each class’s data points among the clients. These proportions then determine
how many data points of that class each client will receive. By adjusting f, we
control the level of skewness in the data distribution, with smaller f values lead-
ing to more uneven, non-IID distributions.
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FIGURE 4 Number of data points per class for each of the M = 20 clients.

The advantage of this approach is that the imbalance level can be flexibly changed
by adjusting f; ;- Forour analysis, we set the concentration parameter f3; jtoa rel-
atively small value of 0.1, thereby creating a more unbalanced partitioning. This
imbalance is evident in the distribution of data points among clients, as many cli-
ent data sets only contain a subset of the six labels. For example, Figure 4, shows
the number of samples per class for each client when M =20 clients, and some cli-
ents contain a disproportionately large or small percentage of certain class labels.

4.3 | Model Setting

Morales Ferre et al. (2019) employed a convolutional neural network (CNN) to
train a classifier based on their full data set D. Their solution serves as the bench-
mark for our results, which rely on the same CNN architecture to train a classifier
using the FL framework described earlier. This CNN consisted of one convolu-
tional layer, one pooling layer, and one fully connected layer with a ReLU activa-
tion function. The convolution layer used 16 filters of size 12x12x 1, a learning
rate of 0.01, and a stochastic gradient descent optimizer (Ruder, 2016). The last
layer was the softmax layer to produce classification results. Cross-entropy was
used for the cost function.

4.4 | IID and Non-IID Experiments

Figure 5(a) shows the accuracy of federated averaging algorithms over 400 com-
munication rounds in an IID data setting. The final accuracy of the centrally trained
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FIGURE 5 Example of FedAvg in 400 rounds under IID data setting. (a) Accuracy.
(b) Confusion matrix of FedAvg for M = 20 clients.

model (approximately 93.4%) was used as a benchmark for subsequent tests. This
figure also compares the accuracy achieved with different numbers of clients M.
As expected, better results were achieved when a small number of clients were
used. With a fixed amount of data, fewer clients means that each client has access
to a larger share of the data, thus enabling better training of local their models.
Nevertheless, high accuracy was achieved for all tested numbers of clients.

The corresponding confusion matrix in Figure 5(b) reveals that each jammer
class is identified with relatively high accuracy, with the DME jammer type and
the clean signal (“NoJam”) achieving the highest accuracies (over 99%). The
classifier is therefore able to accurately detect the absence of interference, as the
interference-free spectrogram in Figure 1(a) differs notably from the others. This
unique spectrogram arises because the spectrum of a clean signal contains the sig-
nal of interest buried in Gaussian noise, which pollutes the whole spectrogram.
On the other hand, because jamming signals are received with dramatically higher
power than the satellite signal of interest, the noise w(t) cannot be observed in
spectrograms (b)-(f) from Figure 1. In contrast, the SingleFM and NB jammer
types were classified with less than 90% accuracy. The results from Figure 1 suggest
that the classifier struggled to distinguish between SingleAM and SingleFM inter-
ference, which both span only one or two narrow bands of the signal spectrum.
Indeed, the SingleFM spectrogram is equivalent to the SingleAM spectrogram with
an additional band. The classifier also struggled to distinguish between the NB and
SingleChirp interferences, both of which have a lower magnitude in their spectra
due to being more spread. This spread makes their respective spectrogram images
look blurry relative to spectrograms from SingleAM and SingleFM interference.

Figure 6(a) illustrates the corresponding accuracy of the FedAvg algorithm for
different numbers of clients in a non-IID data setting, again compared to the accu-
racy of the centrally trained model as a benchmark. The results show that the accu-
racies for different client numbers are lower than the corresponding accuracies in
the homogeneous IID data setting, indicating the increased difficulty of learning
with heterogeneous data. Consistent with the IID data setting, increasing the num-
ber of clients reduced the algorithm’s overall accuracy. Moreover, with 40 clients,
the algorithm took more communication rounds to converge than when smaller
numbers of clients were considered.

Figures 6(b) and 6(c) show the corresponding confusion matrices for 20 and 40
clients under the non-IID, Dirichlet-distributed data setting. As in the IID data
setting, the DME jammer type and clean signal were the easiest to classify, with
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FIGURE 6 Example results from FedAvg across 400 rounds with a non-IID data set
(a) Accuracy of different number of clients. (b) Confusion matrix for M = 20 clients. (c) Confusion
matrix for M = 40 clients.

accuracies of 100% and 97.48% for M =20 and 95.79% and 98.45% for M =40
clients, respectively. For M =40, classification accuracies were low for the NB
and SingleAM jammer types, and for M =20, the worst accuracy was achieved
with the SingleFM jammer type. As in Figure 5(b), inspecting the non-diagonal
elements reveals that the classifier specifically struggled to distinguish between
SingleAM and SingleFM interference and between NB and SingleChirp interfer-
ence. For M =40, where performance was already worse due to the higher num-
ber of clients (implying less local data), the classifier also struggled to distinguish
between NB and DME signals. Nevertheless, even with a high number of clients
(i.e., M =40), the classifier achieved accuracies above 80% with the DME, clean
signal, SingleChirp, and SingleFM jammer types. For a lower number of clients
(i.e., M =20), all jammer types could be classified with an accuracy above 80%.

As a final remark, the results presented in this section are comparable to those
obtained with the benchmark training process: the centralized classification
algorithm proposed by Morales Ferre et al. (2019). In their results, classification
accuracy was also highest for the DME (or pulsed) interference and the clean
signal. Their confusion matrices likewise showed that their classifier struggled
to distinguish SingleAM from SingleFM interferences and NB from SingleChirp
interferences. Moreover, our obtained accuracies for M =20 when classifying the
DME and NB types exceed the accuracies achieved by the benchmark neural net-
work. Our proposed FL framework therefore allows us to obtain results compara-
ble to those from state-of-the-art centralized classification algorithms while also
preserving user data privacy and security.

4.5 | Comparison of FL Algorithms

Despite achieving comparable results to the benchmark, the above FL algorithm
nevertheless yields unfavorable outcomes with low accuracy when applied to
non-IID datasets. In this section, we compare four different FL algorithms to assess
their performance in non-IID data settings. This evaluation encompasses several
metrics. First, we consider accuracy (Acc), which was discussed earlier, and we
also employ the macro F-1 (F1) score to account for variations in sample and class
distribution across different clients. Furthermore, we evaluate the classification
accuracy for new data points that lack prior information from any specific clients.
The corresponding metrics for these data points are the server accuracy (S-Acc)
and the server F1 score. Of the four FL algorithms we consider, FedAvg, FedProx,
and Ditto learn a global model automatically. On the other hand, FedAMP only

0.0

(©)

0.0

0.0 0.0
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TABLE 1
Results of different FL algorithms. “Acc” denotes Accuracy, “F1” refers to the macro F1 score, “S-Acc” represents
Server Accuracy, and “S-F1” signifies the Server F1 score. The numbers following these abbreviations indicate the
quantization bits, such as “Acc-8” for Accuracy with 8 bits.
Data Algorithms Acc F1 S-Acc S-F1 Acc-8 F1-8 S-Acc-8 S-F1-8 Acc-4 F1-4 S-Acc-4 S-F1-4
FedAvg  82.84 82.75 82.84 82.75 69.86 50.96 69.86 50.96 35.92 10.55 35.92 10.55

FedProx  73.38 73.04 73.38 73.04 59.69 43.35 59.69 43.35 28.97 14.12 2897 14.12

(40.0.) FedAMP 94.61 81.92 7529 74.7 96.4 86.83 60.49 44.37 79.24 58.22 2142 588
Ditto 93.63 83.3 7247 728 952 84.45 67.17 4097 53.02 3568 34.63 8.57
FedAvg  85.55 85.21 85.55 85.21 74.56 73.07 74.56 73.07 33.09 21.49 33.09 21.49
20,0.1) FedProx  60.95 55.22 60.95 55.22 57.41 51.29 57.41 51.29 18.59 7.44 1859 7.44

FedAMP 9534 71.74 61.71 56.2 93.87 69.97 59.91 5401 71.39 37.33 17.16 4.88
Ditto 95.29 71.99 71.29 68.37 93.41 65.64 62.49 57.26 30.76 2437 284 16.34
FedAvg 91.50 91.40 91.50 91.40 89.7 89.66 89.7 89.66 30.07 24.77 30.07 24.77

(20.TID) FedProx 91.63 91.55 91.63 91.55 83.6 83.51 83.6 83.51 33.88 26.73 33.88 26.73
' FedAMP 90.51 90.23 89.95 89.85 87.94 87.68 87.4  87.31 36.04 30.08 40.09 35.92

Ditto 88.47 87.65 90.26 90.16 85.49 84.78 86.17 86.12 46.30 35.92 44.24 35.49

uses personalized models, which require a fusion strategy. Moreover, we assess
how the number of quantization bits affects the performance of these algorithms.
We evaluate performance using both 8-bit and 4-bit settings, as the difference from
the original 32-bit configuration is marginal for 16-bit encoding, while the 2-bit
scheme yields unsatisfactory results.

The results for the various FL algorithms are presented in Table 1. Based on the
results in the IID data setting (bottom rows), personalized models like Fed AMP do
not demonstrate a significant advantage over centralized methods such as FedAvg
and FedProx, which consistently achieved superior outcomes. Even so, the perfor-
mance differences among all algorithms were relatively minor. However, in the
non-IID data setting, personalized FL algorithms clearly outperform centralized
algorithms with respect to accuracy. Notably, FedAMP consistently delivers the
highest accuracy across all data configurations, maintaining superior performance
even with 4-bit quantization, where its accuracy exceeds 70%. In contrast, other
approaches generally yield accuracies at or below 50% at 4-bit quantization.

Ditto also demonstrates commendable performance, with the unquantized and
8-bit quantization cases achieving similar performance as FedAMP, but for the
4-bit quantization case, Ditto loses the ability to match the high level of accuracy
achieved by FedAMP. Even so, Ditto usually achieves higher server accuracy and
server F1 score than Fed AMP. This discrepancy arises because Ditto learns a global
model alongside the personalized models, which provides it with greater robust-
ness. In contrast, Fed AMP relies solely on personalized models, and server accu-
racy is derived from the fusion of the personalized models.

With respect to server accuracy and the F1 score, centralized FL (i.e., FedAvg) is
the strongest approach. As shown in Table 1., Fed Avg consistently achieves top-tier
server accuracy and F1 scores across various quantization scenarios. Conversely,
FedProx does not perform as well under our experimental settings, suggesting a
potential requirement for further hyperparameter optimization. Such optimization
falls outside the scope of this study.

Finally, our analysis reveals that quantization significantly influences the training
process: lower bit precision resulted in poorer outcomes. Nevertheless, the results
at 8-bits remain commendably robust, especially within personalized FL frame-
works. This finding offers valuable insights for the design of future FL systems.
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5 | CONCLUSION

This paper demonstrates the efficacy of selected FL algorithms in the context of
GNSS jamming classification. These algorithms would allow the successful imple-
mentation of a crowdsourcing scheme in which real data is gathered without com-
promising user privacy. We provide results of spectrogram image classification
for simulated GNSS signals affected by six different jammer types. Under certain
FL configurations, classification accuracies are high for all the studied jammer
types, though DME and clean signals were consistently classified with the high-
est accuracies (above 99%). Conversely, the classifier could struggle to distinguish
between AM and FM and between NB and Chirp jammer types. Nevertheless, the
FL framework proposed herein performed favorably relative to the benchmark
centralized classification algorithm in Morales Ferre et al. (2019), showing that
it is possible to work in a collaborative scenario that protects user privacy with-
out causing performance to drop. Our experimental results specifically showed
that i) it is more difficult to learn non-IID data than IID data; ii) assuming the
total number of data points is the same, having more clients each with fewer
data points decreases classifier performance; iii) personalized FL algorithms are
more effective at handling non-IID data; and iv) choosing a different quantiza-
tion bit number can reduce communication costs while still maintaining good
performance. Future research in this area will include collecting real-world data
to investigate various practical non-IID scenarios. These scenarios include cases
where clients are situated at varying distances from jammer sources and where
clients are situated across diverse environments where the signal characteristics
differ despite being of the same type. Finally, we aim to explore and develop var-
ious FL algorithms to enhance classification efficiency while maintaining perfor-
mance and privacy (Wu, 2024). These algorithms could involve the use of different
quantization methods (Almanifi et al., 2023) and differential privacy techniques
(Yin et al., 2021).
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