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ABSTRACT: The dynamics of polymer melts at the crossover between COOPERATIVE CDGLE THEORY VS NSE EXPERIMENT

DYNAMICS IN

unentangled and entangled regimes is formalized here through an ENTANGLED

extension of the Cooperative Dynamics Generalized Langevin Equation  poLymeRrs =03

(CDGLE) (J. Chem. Phys. 1999, 110, 7574), by including the constraint 0. 4=0-5
to the dynamics due to entanglements through an effective i:o. o
intermonomer potential that confines the motion of the chains. As & '

one polymer chain in a melt interpenetrates with a ~/N other chains, o a=096
with N the degree of chain polymerization, their dynamics is coupled i’ o a=1.15

through their potential of mean-force, leading to chains’ cooperative
motion and center-of-mass subdiftusive dynamics. When increasing the
degree of polymerization, the extended CDGLE approach describes the
dynamical behavior of unentangled to weakly entangled systems
undergoing cooperative dynamics. By direct comparison of the CDGLE with data of Neutron Spin Echo (NSE) experiments on
polyethylene melts, we find that the cooperative dynamics in entangled systems are confined in the region delimited by
entanglements. We extend the CDGLE to describe linear dynamical mechanical measurements and use it to calculate shear
relaxation for the polyethylene samples investigated by NSE. The effects of cooperative dynamics, local flexibility, and entanglements
in the shear relaxation are discussed. It is noteworthy that the theoretical approach describes with accuracy the crossover from
unentangled to entangled-global dynamics for polyethylene melts of increasing chain length, covering the regimes of unentangled
and weakly entangled (up to 12 entanglements) dynamics in one approach.
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1. INTRODUCTION model the temporal evolution of the spatial coordinates of the

Entangled polymer melts display unique dynamical properties as monomers within a macromolecular chain.” The model

the time scales of diffusion and viscosity change several orders of incorporates the influence of the surrounding molecules through
magnitude with increasing degree of polymerization. More an effective friction coefficient and random forces. In the Rouse
specifically, the scaling exponents that define the dynamics, model, random forces are treated as uncorrelated and

diffusion and viscosity, as a function of the degree of
polymerization, N, differ notably between short and long chains.
In the case of long chains, dynamics are dominated by
entanglements, which are transient points of contact between
chains that cause topological constraints, resulting from the

approximated as white noise, representing random collisions
among monomers from surrounding polymer chains. This
approximated description is often refined by introducing time-
dependent friction via memory functions.”~” The Rouse model,

chains’ inability to pass through one another.'? These however, does not account for the constraints due to the
entanglements constrain chain diffusion, particularly when presence of entanglements as it represents the polymers as
chains are very long, causing diffusion to primarily occur along idealized chains that are free of crossing other chains and
the chain’s curvature, resembling the slithering motion of a themselves, while maintaining correct average structure, in the

snake, known as “reptation”.” Conversely, in liquids comprising
short chains, entanglements per chain are minimal, facilitating
rapid chain diffusion, with short-lived entanglements exerting
negligible impact on chain motion."”

Traditionally, short and long chain dynamics have been
represented by two distinct and formally incompatible formal-
isms: the Rouse and reptation models, respectively.

The Rouse model effectively describes the dynamics of short
polymer chains in a liquid, employing a Langevin equation to

form of end-to-end distance and radius-of-gyration. Notably,
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incorporating local semiflexibility and cooperative dynamics
enhances its agreement with experimental observations.”™"*

The dynamics of long polymer chains in a melt is convention-
ally described through the reptation model, initially proposed by
de Gennes and subsequently formalized by Doi and Edwards."”
In this model, fluid relaxation occurs through the anisotropic
diffusion of the chain within an effective tube formed by the
entangled chains surrounding the polymer, eventually leading to
its final creeping outside the tube.”” The original reptation
model aptly captures dynamics in the fully entangled regime,
characterized by linear chains with high polymerization degree
and long-lasting entanglement constraints. However, to enhance
its applicability to systems featuring shorter and weakly
entangled chains, where defining a persisting confining tube
becomes challenging,'> some modifications were proposed to
the original reptation model. These consider additional
relaxation mechanisms that encompass contour length fluctua-
tions, constraint release, and tube dilation, acknowledging that
the tube is formed by the surrounding chains movin% on the
same time scale than the tagged chain inside the tube.'®"” These
refined reptation approaches significantly enhance agreement
with experimental observations. However, they also render
direct comparison with experiments challenging, as different
approximations need to be applied to compare the model to
different experiments, such as shear and scattering experiments.
This point was clearly argued by Likhtman, who proposed the
slip-link model, which mimics reptation through the numerical
solution of a set of stochastic differential equations that include a
phenomenological anisotropic harmonic potential."®

Despite its advancements, over the years critiques of the
reptation model have emerged from both theoretical and
experimental perspective. Ngai recently presented a compre-
hensive overview of the disparities observed between experi-
ments and the reptation model and provided an alternative
explanation of the observed phenomena using the Coupling
Model.'"”*° Note that although the idea of a tube is a
phenomenological concept, in the years there has been a
notable effort to predict both the tube diameter, d, and the
number of monomers between entanglements, N,, as a function
of polymer type and concentration.”'

Computer simulations of polymer melts suggest that the
overall dynamics of polymers are even more complex than
previously thought. They have revealed how polymer dynamics
is heterogeneous, with chains forming interconverting regions of
slow and fast dynamics.”” Building on this observation, we
derived a Generalized Langevin Equation for Cooperative
Dynamics (CDGLE) from the Hamiltonian of the liquid by
projecting the dynamics onto the coordinates of the
subensemble of slow and interacting macromolecules, moving
in the field of the faster surrounding polymers.'>'* The resulting
Generalized Langevin Equation adequately explains the center-
of-mass subdiffusive motion observed in unentangled polymer
melts through neutron spin echo (NSE) experiments.'" In the
CDGLE intramolecular and intermolecular forces govern
polymer dynamics until interdiffusion leads to a loss of
dynamical correlation. More details on this approach can be
found in Section 2.

In this manuscript we expand upon the original CDGLE
approach to describe the dynamics of polymer melts across
varying chain lengths, including the crossover to entangled
dynamics. We derive an effective anharmonic potential that acts
between monomers of interacting chains within de Gennes’
correlation hole.” The potential is isotropic and applies to
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unentangled and weakly entangled systems. Preliminary results
from this model were outlined in a previous short publication™’;
Here, we present a theoretical framework for entangled
dynamics, including the derivation of the anharmonic, isotropic
effective potential that confines polymer dynamics due to
entanglements, along with new findings on scattering and mean-
square displacements.

To test the CDGLE, we select a set of Neutron Spin Echo
(NSE) experiments of dynamic structure factors of polyethylene
melts (also reported in the literature as PEB-2 samples)
collected by Richter and co-workers.""** These data provide
detailed information on the dynamics of polymer melts in a wide
range of chain lengths, comprehensive of the transition from the
unentangled to the entangled dynamics up to 12 entanglements
per chain. When compared against the NSE data the CDGLE
demonstrates remarkable accuracy.'#** Although comparisons
with NSE data have been made previously, the approach in this
paper enables us to separately identify the distinct contributions
to scattering relaxation from chain semiflexibility, dynamical
cooperativity, and entanglements.

Finally, to evaluate the effect of dynamical cooperativity in the
stress relaxation,”> we extend here the CDGLE formalism to
describe dynamical mechanical measurements in the linear shear
perturbation. For these calculations we utilize the same
parameters we obtained from reproducing the NSE experiments
to formally connect scattering and linear shear experiments.

Previous efforts have been made to describe the dynamics of a
single polymer chain within a Generalized Langevin formalism
where, however, entanglements are accounted for by the integral
of the memory function.”*** Because solving the integral of the
memory function is not trivial and may yield different results
depending on the type of approximations used, the CDGLE
abandons the single-chain perspective and instead models the
effect of entanglements as an interchain potential between
monomers in a group of # interacting chains.'>*’

The topological constraints arising from entanglements are
formalized starting from the intermolecular monomer pair
distribution function, leading to a time-dependent potential. In
our model, an ensemble of n interacting polymers exhibits
cooperative motion within the volume defined by the correlation
hole. The entangled chains within this ensemble experience a
confining potential that evolves over time as the molecules
interdiffuse.” >’

Although our entanglement potential is harmonic at any given
time, the time-dependent nature of the related force constant
results in an effective time-dependent potential that is
anharmonic, consistently with both simulations**** and experi-
ments. " Tt is important to note that an exact microscopic
formalism for the potential confining highly entangled systems is
only feasible for rods or polymers represented as chains of
coarse-grained stiff needles, as derived by Sussman and
Schweizer.>>*® In their approach, the potential is anisotropic
and effectively captures the dynamics of strongly entangled
systems where the motion is directionally dependent. Since we
do not assume any anisotropy in the formalism, our theory
remains isotropic and applies only to unentangled and weakly
entangled systems where the dynamics are isotropic.

The same CDGLE approach applies to unentangled and
weakly entangled systems. Entangled dynamics naturally emerge
in the theoretical predictions of CDGLE for samples of long
polymer chains where interdiffusion is slow, while the
entanglement potential does not impact the dynamics of short
chains that interdiffuse rapidly. Additionally, the CDGLE

https://doi.org/10.1021/acs.macromol.4c01442
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preserves the formal structure of the Rouse equation and its
mathematically convenient representation in normal modes.'>"*

Among the most intriguing predictions of the CDGLE theory
are as follows: (i) the existence of cooperative motions in
polymer melts, leading to subdiffusive dynamics, irrespective of
the monomeric structure and local semiflexibility.”” The
CDGLE presents a comprehensive framework with the polymer
persistence length as a key parameter, thus encompassing
systems with diverse monomeric structures; and (ii) the
ubiquity of cooperative dynamics across all polymer melts
regardless of their degree of polymerization. The relevance of
cooperative motion emerging from intermolecular correlation
has been highlighted in recent work by Wang and co-workers
through a detailed analysis of coarse-grained MD simulations
and scattering experiments, both in the real and reciprocal
space.”>”” The presence of cooperative motion has been
hypothesized to explain the experimentally observed subdiffu-
sive dynamics of intrinsically disordered proteins within
coacervates.””” Finally, comparison with NSE experiments
reveals that (iii) in entangled systems, the confinement imposed
by entanglements constraints the region of cooperativity to the
volume delineated by these entanglement constraints.>

Several of these predictions closely align with recent findings
from Neutron Spin Echo (NSE) studies, where cooperative
dynamics of unentangled and entangled chains were thoroughly
investigated by Richter, Kruteva, Zamponi, and their collabo-
rators. " Considering that the CDGLE has been applied for
comparison and testing to their NSE experiments, this alignment
comes as no surprise.

The paper is structured as follows: Section 2 provides a
summary of the Langevin equation governing the cooperative
dynamics in both unentangled and entangled polymer melts,
where Subsection 2.2 formally derives the time correlation
functions needed to compare the theory with experiments. This
is followed by Section 3, which presents the derivation of the
effective potentials incorporated into the CDGLE, including the
confining potential arising from entanglements. The numerical
self-consistent procedure utilized to solve the CDGLE equation,
along with the method for determining its parameters and their
values, are outlined in Section 4. Section 5 compares the
CDGLE against Neutron Spin Echo data, encompassing an
analysis of various contributions to the dynamic structure factor,
such as semiflexibility, cooperativity, nonzero a parameter, and
entanglements. Section 6 introduces the CDGLE theory of
stress relaxation under linear shear and predicts stress relaxation
for the samples studied via NSE. Section 7 reports the analytical
solution of the entanglement force, while Section 8 presents the
derivation of the shear relaxation modulus under a linear
perturbation for the CDGLE. The paper summarizes our
findings in the concluding section.

2. MANY-CHAIN COOPERATIVE DYNAMICS MODEL
FROM UNENTANGLED TO ENTANGLED DYNAMICS

This paper builds upon the Cooperative Dynamics Generalized
Langevin Equation (CDGLE) theory for polymeric liquids,">"*
extending the original framework to describe cooperative many-
chain dynamics across both unentangled and entangled regimes.
In this section we briefly present the essential equations that are
needed to calculate mean-square displacements, dynamic
structure factors, and shear relaxation. The extended theoretical
details of the new developments are provided in the Supporting
Information, while the original theory for unentangled chains is
illustrated in our previous publications.
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The fundamental concept in the CDGLE is that in a polymer
liquid characterized by a monomer density p and chains with
degree of polymerization N, approximately n o p~/N chains are
enclosed within a volume defined by the range of the potential of
mean force, which corresponds to de Gennes’ correlation hole.”
The radius of this spherical volume is proportional to the radius
of gyration R, o N Y2 of any given chain. Pair of chains in the n
ensemble are interacting at the center-of-mass level through the
potential of mean force, leading to the center-of-mass
subdiffusive motion.'>"*

Molecular dynamics (MD) simulations of polyethylene melts
demonstrate that these # interpenetrating chains gradually lose
correlation over time as they interdiffuse.”” This is evidenced by
their van Hove time correlation function decaying to unity after
a characteristic time, 7.,,,, which represents the time required for
the chains to diffuse a distance comparable to the range of the
mean-force potential, and roughly corresponds to the longest
Rouse relaxation time.

In the theory presented here, at the monomer level, correlated
chains interact through an interchain potential that mimics the
confinement of entanglements. Notably, the intermolecular
center-of-mass and monomer forces are not inserted through an
ad hoc procedure in the CDGLE equation; rather, they emerge
from the Mori-Zwanzig projection operator method as van
Hove functions, and are subsequently approximated.'”** The
interactions are, at any given time, harmonic, but the
corresponding spring constants are time-dependent, yielding
effective anharmonic pair potentials that guide the dynamics.

At each time interval, these constants are optimized through a
self-consistent procedure until convergence of the interpolymer
and intermonomer distances is achieved, leading to effective
anharmonic potentials (see Section 3).

Given a group of n interpenetrating polymers, which initially
occupy the volume of the correlation hole, the time evolution of
a generic monomer i in the polymer a, which is interacting with
polymer b belonging to another chain, is governed by a Langevin
equation in the space coordinates
)

2
4

() 3

@) — (n — ()]
" A rP(t) — ( DKr(6)1r7(t)

L

é/eff

+ ) K0 I() + BX9(1)
b#a (1)

In the spirit of the Rouse model, the equation contains viscous

RO 3 wN ., (a)
forces, {,s———, intramolecular forces, WZJ A, (1),

dt
random forces, F9(¢), but with the inclusion of time-
dependent intermolecular forces, with K[r(t)] the force
constants. The methodology for calculating these intermolecular
forces is detailed in Section 3.

Taking advantage of the statistical equivalence of each chain
in the subensemble and the isotropic nature of the liquid, the
solution of the coupled equations reduces to studying the
dynamics of a pair of chains. More specifically, eq 1 is solved
using a similarity transformation, which separates the formalism
into (n — 1) identical equations in the relative monomer

coordinatesr™(t) = (£(t) — r(t))//2, and one equation
in the collective monomer coordinates,

() = [Zrzlr(i)(t)]/\/ﬁ as
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dr’(t) _ DD Q
Ceff dt - _ksA r (t) + FD(t) (2)
LLALO PR A N
eff dt - s N (3)
with
BPK[r(t)]
AP = —3’ (- 1D1+QQl+A @
y _ (n = DAPK[r(t)] T
AV = — 1-Q,Q,]+A )

where A is the single chain intramolecular matrix, corresponding
to the Rouse matrix for a fully flexible polymer. Nevertheless,
because real polymers must be modeled with more realistic
intramolecular forces than those described by the Rouse model,
CDGLE uses a matrix formalism to describe semiflexible chains
of finite length represented as freely rotating chains (FRC)."

The eigenvector Qy is the first eigenvector of the Rouse
matrix, defined as Q) = N™2(1, 1,~, 1). By adopting an
identical friction coeflicient, (g for both relative and collective
coordinates we assume that the relative and collective memory
functions in the original Generalized Langevin Equation are
Markovian and integrated to give the effective friction
coefficient.””** This approximation is valid when the most
relevant slow dynamics are already properly accounted for in the
linearized part of the equation, as we argue is the case here.**

2.1. Solution of the CDGLE in Normal Modes. The
CDGLE formalism can be conveniently solved by trans-
formation into independent normal modes, consistently with
the Rouse model. This simplification is possible because the
intramolecular and the intermolecular potentials, including the
confinement due to entanglements, are modeled as harmonic
springs, with the caveat that the intermolecular spring constants
are time dependent. Entanglements confine the relative chain
motion at the monomer level, while cooperative dynamics
mainly affect the center-of-mass interdiffusion.

For the center of mass dynamics, where p = 0 and 4, = 0, the
motion in relative and collective coordinates follows the
equations

dE (t
Cer E;ﬁ ) = —kAGE () + F5(t)
dr, ()
Ceff dt - Fg(t) (6)
with
AY = nK[r(t)]/k, (7)

and n Ky[r(t)] the repulsive force constant responsible for
correlated chain dynamics, defined in Section 3. The collective
dynamics of the group of chains is diffusive, A) = 0, and the
fluctuation—dissipation theorems are defined as'”

(F3(6)-F5(t)) = 6n(n — DkyTC6(t, t)

(F§(t)FE(t)) = 6nkgTLq5(t, t') (8)

eq 8 emerge when the multibody structural distribution function
is approximated by a product of pair distribution functions.
Thus, the single-chain center-of-mass dynamics is subdiffusive
until the polymer moves a relative distance, r(t), larger than the
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range of the interaction potential, when the intermolecular
interaction at the center-of-mass level reduces to zero, Ky[r(t)] =
0, and eq 6 reduces to the well-known diffusion equation.

The internal dynamics (p =1, 2,-+, N — 1) are expressed as a set
of uncoupled equations of motion in the relative, 51(,“)(1?), and
collective, )(Z(,“)(t) , normal mode coordinates,

dE“(t)
P _ _1. ADg(a) 4
eff dt - ksAp§P (t) + Fp(t) (9)
(1)
P _ _1. AN (@) X
eff dt - ksApr (t) + Fp (t) (10)
with
Af = Ag =4, + (n = DK[r(£)1/k, (11)
where /1p are the eigenvalues of the single-chain intramolecular

matrix: if the chain is fully flexible, 4, are the Rouse eigenvalues.
K[r(t)] is the time-dependent attractive force constant, defined
in Section 3, due to entanglements acting between monomers
belonging to different entangled chains inside the ensemble of n
interpenetrating polymers. Here, the relative mode coordinates

are defined as §p(t) =2:[Q,]™" rP(t), while the collective mode
coordinates are xp(t) =) [‘UQW]_l rN(t).

The related fluctuation—dissipation theorem reads

(E,(t)-E(t)) = 6kyTCg5(t, t)5(p, q) (12)

for both the relative (£,) and the collective (y,) dynamics.

The solution of eq 9 for the internal modes (p = 1, 2, -+, N)
leads to the equations in the relative and collective coordinates,
respectively,

t
£,(1) = £(0)e /% 4 /50 [ arg iR (1) 50
0
(13)

t
7,(6) = 2,©)e/ 5 4 0 [ e p (el )
(14)
with
t t kAt (n—1)
= = +
Tf,p(t) Tx,p(t) Cetr Cotr

/t K[r(z)]dr
0
(15)

where Ty e chainy = e/ (ks 4,) is the characteristic relaxation
time of the single chain without entanglement effects.

If the chain is fully relaxed before this characteristic time at
which chains start to feel the presence of entanglements, i.e., if
Tdecorr < Te With Tdecorr = Toingle—chainp-1 the relaxation time of the
longest single-chain mode, and 7, = d*/D the entanglement time,
the entanglements are not affecting the dynamics. This is the
case for unentangled chains in our model, while for entangled
chains where 74, > 7. the chains feel the effect of the
entanglement potential.

By applying the eigenvector transformation and the inverse of
the similarity transformation matrix (see SI), the dynamics in
real space coordinates is defined as a function of the normal
modes through the transformation

https://doi.org/10.1021/acs.macromol.4c01442
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n(N—1)
R = Y Q)
p=0
n N-
= k(k Z (Q),,l&,1)]

1

+— 2, (Q),lx, (1]
N pz=0 X bPp (16)

where (Q;);, and (Q,);, are the eigenvectors of the relative and
collective equations of motion, respectively.

2.2. Time Correlation Functions in the CDGLE
Approach. This section presents the essential time correlation
functions (TCFs) required for calculating the monomer and
center-of-mass mean-square displacements, the dynamic
structure factor, and the shear modulus.

The center-of-mass mean-square displacement (Section 5.1)

ARY(t) = ([r,(t) — £,(0)1")
= n’NT(IE (1) — £,(0)F)
+ (I, (1) = x, (O] (17)
where
(€,(t) — &,(0)T")
— <§O(0)2>[€_t/%’0(t) _ 1]2 + 6”(” - 1)kBTe_2t/T§,O(t)
; Z:eff
/ dTeZT/Tg'O(T)
0
nky
(W) - %, (O)F) =TT,
eff

(18)
with <§o (0)2> =6n (” - 1) kBT/Ceffand <Xo (0)2> =6n kBT/Ceff'

In the limit of noninteracting chains and at long time, eq 17
. . 6kyT
correctly recovers Brownian diffusion with AR*(t) = ~2—¢.

eff
The monomer mean-square displacement (Section 5.1) is

([rf(t) = rf(0)F)

2 (€ (1) — £(O)F)

N-1

IZQ¢um—x@n

S

(19)

where we enforced the property that the elgenvectors are
orthonormal and the identity Y i=3 [k (k+ 1)]™' = (n — 1)/n.
The solution of eq 19 requires mternul modes TCES, where p = 1,
2,--, N — 1. For the relative displacement of two monomers
inside a pair of polymers during a time interval At =t — t, with ¢,
= 0, the relative and collective displacements

(&) — £O)F)
= (£,(0)")le™/ =

0

1]2 + a‘_BTe—zr/r;P(t)
eff
(20)

and
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(I, () = x,(O)T)
= (r, (0))[e™/%HV —

t
d ZT/‘[)(/P(T)
/o i (21)

If there are not interactions between chains, or between
monomers belonging to different chains, one obtains the
single-chain limit by applying the condition that n = 1, thus
recovering the Rouse formalism.

The dynamic structure factor (Section 5.2) depends on the
correlation of the displacement of two monomers belonging to
the same chain

(Ief(t) - rﬁ(}@]ﬁ

1]2 + 6kBTe—2t/rZ/F(t)

eff

-Q, £(0))
LY a0 - 2O
n o jip%p 22)

To solve these equations, one needs the TCFs for the center-of-
mass motion presented above, and the products of the first
normal mode coordinates at the same time, p = 0,

6”(” - l)kBT e—lt/%,o(f)

&%) = (&, (07) 0 4
Ceff

t
[ et
0

Gy () = &, (07 + I,

eff
(23)
For the internal modes TCFs entering eq 22, where p = 1,2,--, N

— 1, the products of the normal mode coordinates at different
times are

(€ (1)£(0)) = (€ (0 e/
<Xp (t) 'Xp (0)> = O(p (0)2>e_t/rzrp(t)
(€)%, 0) = 0

(24)
and at the same-time
(€ (02) = (€ (070 4 Sl 20,0
eff
0
<x (t)2> — (0)2> —2t/7, (t) + =B 6kB —2t/rl'p(t)
v eff
d 27/1,,,(7)
/0‘ Te (25)

The TCFs just presented are needed to solve the shear relaxation
in Section 6.

Finally, the numerical solution of the CDGLE reported in
Section 3 requires the evolving time-dependent distance
between the center-of-mass of two interacting polymers,
RZ (1) = ([&(t) — &,(0)]*)/N, and the time-dependent distance

https://doi.org/10.1021/acs.macromol.4c01442
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between two monomers belonging to two different chains,
which enters the confinement potential due to entanglements,

defined as

((e}(8) = £i())
~ ((r}(0) - £/(0))*)

+ ([(x}() = £{(0)) = () = £j(O)T) (26)
given that we approximate Irf(t) — rh(t)l—lr (0) - rb(O)IN
([(x(t) = x(0)) — (x2(1) — rb(O))] )1/2 Both distances are
solved self- con51stently as descrlbed in Section 4.

With this section we have completed the definition of all the
physical quantities we use to calculate the dynamics of a
subensemble of n interacting polymers.

3. MODELING THE EFFECTIVE INTERCHAIN
POTENTIALS

The theory presented in this paper describes the temporal
evolution of a subset of n correlated macromolecules, where two
distinct potentials operate between these chains: first, a many-
body intermolecular potential of mean force acting between the
center-of-mass of two polymers undergoing slow cooperative
dynamics. This potential enters the zero mode of motion (p =
0). Second, a potential that mimics the confinement due to
entanglements, and impacts monomer dynamics through
higher-order modes (p = 1,-+, N) in the model.

3.1. Many-Body Intermolecular Potential of Mean
Force. In a liquid of neutral polymers, the effective
intermolecular potential between chains reflects how local
intermolecular monomer—monomer interactions propagate
through the medium leading to the effective pair interactions
between the center-of-mass of a pair of chains.***® The excluded
volume intermolecular interaction between monomers gen-
erates an effective potential given by the projection of these
many-body interactions through the liquid onto a pair of
effective sites, in this case the center-of-mass on each chain. The
resulting potential has a dominant repulsive component at short
distances and an attractive part at large distances. The attractive
part is largely entropic in nature, due to the local degrees of
freedoms that are averaged out during coarse-graining and the
multiple liquid configurations.***’

Given that the theory tracks the dynamics of a relatively small
number of molecules, n = pRg/ N, undergoing slow cooperative
motion, the effective potential is well-approximated by a
potential of mean force, which is the gotential between two
molecules in the field of the others.***’ The potential can be
approximated by a Gaussian function, with a time-dependent
spring constant for the center-of-mass intermolecular force
given by'>1350

KO[Rcm(t)] ~ _ﬂ\/iélN kB

75R2,(t)

2
76R, 27)

J— é’,,

with R2,(¢) = ([&,(t) — &,(0)]*)/N the square 1ntermolecular
center-of-mass distance between a pair of molecules.'” This
distance evolves in time as polymers interdiffuse, with the
effective force being calculated at each time interval through a
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self-consistent procedure until the optimized intermolecular
distance converges.

It is worth noting that the zero mode, which displays the
center-of-mass subdiffusive motion, also influences monomer
dynamics, as the monomer’s coordinate is derived from the
summation across all modes (eq 16). Consequently, coopera-
tivity also impacts monomer mean-square displacement (see
Figure 4).

3.2. Potential Representing the Constraint Due to
Entanglement. In the volume occupied by a chain, Rg, the
chain is statistically in contact with n — 1 other chains.
Entanglements occur between the “tagged” chain and the n — 1
other chains that are interpenetrating. The number of
entanglements that the “tagged” chain experiences is given by
the total number of monomers in the volume of the
interpenetrating chains, (n — 1)N ~ pRg, divided by the number
of monomers in a chain segment between a pair of
entanglements, N,. The statistical number of entanglements
per chain is then (n — 1)N/N, % pR;/N..

Our model accounts for the effect of entanglements by
applying a potential that is zero at any intermonomer distance
smaller than a characteristic distance, d, which relates to the
“tube” diameter in the reptation picture. When two monomers,
initially at contact, move a relative distance larger than the given
average value, d, they experience an effective potential that tends
to confine their relative motion to that distance.

To solve the potential, we start by recognizing that any
monomer, 4, within a polymer chain has a joint probability, g(r),
of encountering another monomer, b, belonging to a different
chain at a distance r = Ir, — r,l. If we define R as the distance
between monomer a in the first chain, and the average position
of a generic monomer b in the second chain (see Figure 1), then

Figure 1. Two monomers, a and b, belonging to two different polymer
chains are separated by a distance r. Given the distribution of a chain’s
monomers around the polymer’s center-of-mass, the average distance
between the monomer a and a generic monomer b is given by R. Here, R
is the average distance between the monomer a and any monomer b in
the second polymer chain.

r=lrl = [R + r,/l, with Ir,’| the average distance of a monomer b
from its polymer’s center-of-mass. The potential of mean force
between a pair of monomers, a and b, belonging to two mutually
entangled chains inside the correlation hole can be written as
V[r(t)] = —kyTpR}/N, In [g(r, t)], and the related

intermolecular force constant is
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K[r(t)] = kBTpRg/Ne< lr(t) or(t) >
1 dg(r(t))

= ToR)/N, [ dri(6) W i(0) o

where the potential is calculated as an average over the position
distribution of the monomer b in the second polymer,

or

3/2
POiD) = | g | O
2,77,'Rg (29)

An analytical expression for the effective force acting between
the two monomers can be derived using the thread model
representation of the monomer pair distribution function for a
liquid of polymer chains. In the thread model a polymer is
described as an infinitely thin and infinitely long chain, while the
density of the liquid is kept constant. In this model, the PRISM
theory”' gives for the pair distribution function of the monomers
inside the volume defined by an entangled segment the simple
analytical expression

LY

gr) =1+ -

[xl

1/
[xl

npo* [ (30)

which describes the joint probability of finding another
monomer belonging to another polymer at some distance Irl.
Here, £, &~ 3/mpo” is the local density fluctuation screening
length, which is related to the liquid packing fraction and the
bulk properties of the systems, such as the liquid compressibility.
The second characteristic length scale is the entanglement
length &; ~ d/ V2. For distances larger than the “tube”
diameter, each monomer has a high probability of encountering
another polymer, as each chain is confined within the “tube” and
does not move outside of it.

Under these approximations, the equation of the force
constant can be solved analytically, as a function of the average
distance between the monomer a and a generic monomer b in
the second chain, R(t), as

33 3

5c12 —3R(t)* /2R,
K[R(t)] = kgT /N2 —_In 24, :
b NPT fﬁ (31)

with the derivation of eq 31 presented in Section 7. The
confining potential is then given by V [R(¢)] = 0 if R(¢) < d and

VIR($)] ~ kBT/Neize‘W)z/ZRé[R(t) —dP?
o (32)
for R(t) > d.

At any give time, ¢, the potential is harmonic. However, the
time dependence of the spring constant leads to an effective
time-dependent potential that is anharmonic, as illustrated in
Figure 2.

Harmonic potentials have been used in the literature to
describe the confinement of entanglements. Slip-link models are
numerical methods used to simulate the dynamics of a single
entangled polymer chain, with the entanglements represented as
harmonic constraints.”>>” Slip-link models are single-chain,
largely phenomenological, and anisotropic. In contrast, our
potential is isotropic and anharmonic, which limits the
application of the CDGLE in its present form to unentangled
and weakly entangled systems. More detailed discussions of the
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Figure 2. (A) Effective force that a monomer experiences as a function
of time when it moves a distance comparable to R(t) ~ d with respect to
another monomer belonging to another chain entangled with the first.
The two monomers, which are initially in contact, inter diffuse as a
function of time and as they move apart they experience an increasing
confining force. This force could be represented by an effective “tube”
in a single-chain formalism. (B) Effective entanglement potential
between two monomers belonging to two entangled chains. The shape
of this curve depends on the thermodynamic conditions and on the
chemical structure of the polymer.

strengths and limitations of slip-link models are present in the
literature.>

The force constant enters eq 11 and applies at the monomer
level to both unentangled and weakly entangled polymers. While
it has a relevant impact on the dynamics of long chains, it has no
effect on the dynamics of short chains because their motion
becomes uncorrelated before they move an intermolecular
monomer distance comparable to d. The numerical value of the
parameter d is obtained from fitting the NSE experimental data.
Once the optimal value of d is defined, the equation of motion is
solved self-consistently as described in Section 4.

Panel A of Figure 2 displays the time-dependent effective
force that confines a monomer due to the presence of
entanglements, obtained from the self-consistent solution of
the CDGLE equation of motion, while Panel B of Figure 2 shows
the related potential. The force grows smoothly as the distance
between the two monomers increases. It shows confinement
that opposes the free diffusion of the monomer and increases as
the monomer approaches the point of entanglement. The range
and intensity of the confining force and potentials are in
agreement with simulations’* and experiments.”**** Notably,
unlike slip-link models that use phenomenological harmonic
potentials to constrain the dynamics, the effective potential in
this approach is time-dependent and anharmonic. The confining
force and potential depend through eq 31 on the sample’s
density and temperature, on the polymer radius of gyration and
effective segment length, as well as on the entanglement distance
d. The distance d is the only free parameter optimized to
reproduce the NSE data, while the other parameters are
determined by the type of polymers and the thermodynamic
conditions of the sample.

It is noteworthy that the different polyethylene samples in this
study, which have increasing degree of polymerization and
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whose parameter d is optimized independently, show identical
values of the optimized d parameter and identical confinement
force. The onset of the confining force when two close
monomers separate by the distance d occurs at about 100 ns
(Panel A in Figure 2): this time window agrees with the
crossover of the center-of-mass subdiffusive to diffusive
dynamics for entangled chains in the chain mean-square-
displacement (see Panel B in Figure 4).

4. METHODS: NUMERICAL SOLUTION OF THE CDGLE

4.1. Self-Consistent Solution of the CDGLE with Entangle-
ments. In this section we explain the numerical self-consistent
procedure that is used to solve the extended CDGLE, eq 1. The zero
mode potential depends on the relative distance of the center-of-mass
of two chains, which changes with time as the chains interdiffuse. Thus,
eq 17 is solved self-consistently at a fixed time interval until we obtain
agreement between the assumed distance between the centers-of-mass
of a pair of chains and the distance predicted by solving the equation of
motion. Initially, the procedure adopts a small interpolymer distance,
selecting an ensemble of chains close in space and interacting. As the
calculation proceeds the polymers interdiffuse away from each other
and their dynamics ultimately become uncorrelated.

Once the interpolymer distance is optimized for a fixed time interval,
we optimize the average interchain monomer—monomer distance
following a similar procedure. The potential that constraints the relative
motion of entangled chains (eq 32) acts between pairs of monomers
belonging to two different polymers in the subensemble of chains that
are interpenetrating at initial time. Being local, this potential enters the
monomer equations of motion, eq 16 with eqs 13, 14, and 15, which are
solved self-consistently for the intermonomer distance, eq 26.

After both distances have converged, the system moves an
infinitesimal time-step forward and the whole procedure is repeated
having as initial guess for the distances the values calculated in the
preceding time step. This convergence procedure is quite robust and is
not sensitive to small differences in the length of the time interval
selected, or to the chosen initial values adopted for the distances, so
long as the time step is short enough at initial times.

At each given time, after optimizing the intermolecular center-of-
mass and monomer distances, we calculate the effective forces that
contribute to the CDGLE time correlation functions, as well as the
structural and dynamical quantities of interest. These include the new
intermolecular distances, which are then optimized self-consistently
until convergence is achieved.

4.2. Effective Parameters Entering the Theory. The Langevin
Equation for cooperative dynamics requires a number of molecular and
physical parameters as an input. Most parameters are defined either
from the analysis of computer simulations or from the experiments.

The experiments define the molecular parameters (polymer
flexibility as polyethylene’s persistence length or the g parameter for
the freely rotating-chain model, and degree of polymerization, N) and
the thermodynamic parameters (temperature, T, and monomer
density, p). The non-Gaussian parameter, @ defined below is calculated
from simulations performed for polyethylene at the given thermody-
namic conditions. From the same simulations we calculated the
semiflexibility parameter, g = —(cos ) of the freely rotating-chain
model, which agrees with the one reported in the literature for
polyethylene, g = 0.785. These simulations were previously
documented in our papers and will not be extensively discussed
here.*”*® Briefly, we completed a set of LAMMPS®” MD simulations of
polyethylene represented by United Atoms (UA-MD) at the same
thermodynamic conditions of the experimental data, with the
temperature T = 509 K, and the density p = 0.733 g/cm®** and
increasing degree of polymerization from N = 16 to N = 300 monomers.
All the simulations were performed in the canonical ensemble using the
Nose-Hoover thermostat, following the procedure described in our
previous papers.“‘g’58

Other parameters entering the theory are parameters that we obtain
from fitting the data from the NSE experiments as briefly described
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below. Those parameters are the entanglement length, d, the number of
correlated chains, n, and the monomer friction coefficient, (..

The distance d entering the confining potential (eq 32 and Figure2),
is equivalent to the statistical length of the chain segment between two

entanglements, d = \/ﬁe [1l. Experimentally, the value of N, has been

traditionally measured using a variety of methods such as melt rheology,
neutron spin echo, and NMR relaxation. Different methods may lead to
different values of N,.° This discrepancy may result from the fact that
there are differences in the theoretical models used to interpret the
data."® Note that N, can be also obtained from an analysis of computer
simulations using the primitive path method,®! the Contour REduction
Topological Analysis algorithm or CRETA algorithm,62 the Z-code and
others.”” These methods give slightly different values of N, for
polyethylene and the entanglement distance d is estimated to be
somewhat smaller than the experimental one.

In our study the calculation of d by direct comparison of the self-
consistent calculation with the data of neutron spin echo gives an
identical outcome for all the entangled samples even if the parameter is
evaluated for each sample independently. The values that optimizes the
agreement with NSE experiments (d = 17 A) is consistent with

d= \/EI for I = 1.53 A and N, ~ 130 for polyethylene.

Another input parameter is the monomer effective friction coefficient
which is obtained in this study using two different procedures
depending on the degree of polymerization of the samples. Short
chains, which follow unentangled dynamics, have fast relaxation and
reach the region of Fickian dynamics during the time scale of the NSE
experiments (see Figure 4, Panel B). For these NSE samples the
monomer friction coefficient is calculated from the diffusion coeflicient
in the region for ¢ > 74, for unentangled chains where the chain mean-
square-displacement scales linearly in time, as { = kyT/(N D), with kg
the Boltzmann constant.

The friction coefficient of long entangled chains is more difficult to
derive from NSE experiments because those samples do not reach the
diffusive regime in the time scale of the experiments. For these samples,
we calculate the friction by optimizing the agreement between the
theory and the dynamic structure factor of the experiments. The
resulting diffusion coeflicients, which are reported in Figure 3, Panel A,
for the entangled polymers are consistent with the values obtained from
independent experiments of NMR***® and NSE.*’ They also follow the
scaling with N expected for long chains with this number of
entanglements. The values of friction coefficients are also consistent
with the diffusion coeflicients we calculated using a reconstruction

N A 1 BE
10 O NMR . 12} :
F % A NSE E '%10_ //O &O
3 ‘E‘Q o Theory s | NULR
= [ 12N 1 B F %
& 1F N 2 = KCaE 4
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E o)
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Figure 3. (A) Diffusion coefficient of entangled samples, calculated
using the numerically optimized friction coefficient (green squares) as a
function of the degree of chain polymerization, and compared with
NMR data from refs 55 and 56 (light blue circles), and NSE data from
ref 57 (red triangle). The dashed line depicts the scaling of N2, typical
of entangled polymers. (B) Number of chains undergoing correlated
dynamics (n). This parameter is optimized by fitting the CDGLE
theory to the NSE experiments. The figure shows that while the number
of correlated chains increases as the square root of the degree of
polymerization in unentangled polymer samples (N < 130), it remains
constant for samples that are entangled (N > 130).>* See text for more
details.
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procedure from the mesoscale simulations of coarse-grained poly-
ethylene melts.%”

The last nontrivial parameter in our calculation is the number of
chains undergoing correlated dynamics, n. Approximatively, one can
estimate the value of n using the number of chains that statistically
occupy the volume defined by the range of the intermolecular potential,
i.e., the polymer correlation hole. The range of the potential, for samples
at the density and temperature of the NSE data, is of the order of the
polymer radius of gyration, R, = JN14/6. Given that for melts, the
monomer density p = nN/Rg ~ 1, the number of correlated chains is
n & p/N 2. For chains of fixed length, N, the number of correlated
chains is expected to increase with increasing chain stiffness as the
overall volume spanned by one chain increases. It also increases with
increasing chain density. Thus, for chains of melts of homogeneous
composition and constant density, the number of chains undergoing
cooperative dynamics should grow as n oc N°*.

In this study, as previously mentioned, the number of chains
undergoing cooperative dynamics is treated as an adjustable parameter,
the value of which is determined through optimization to directly align
the theoretical predictions with experimental observations. We find that
n increases as N*° for unentangled and slightly entangled chains in
agreement with the theoretical predictions, while it becomes fairly
constant in the entangled regime (see Figure 3, Panel B). Thus, our
study suggests that the number of chains undergoing cooperative
motion grows until the crossover to entangled dynamics, where the
cooperative dynamics becomes confined to the region between
entanglements, and n ~ /)\/ﬁe I3, or, to use a picture close to the
“reptation” model, in entangled polymers the cooperative motion, and
the related subdiffusive behavior, is dominated by the presence of
entanglements, which confine the correlated motion of the chain to the
region inside the “tube”.** Thus, the dynamics in segments shorter than
the entanglement length can still show subdiffusive behavior due to the
cooperative motion of the interprenetrating chains inside the
correlation hole, while larger segments of the chain are confined by
the entanglements and display subdiffusive motion only on the local
scale.

5. RESULTS: COMPARISON OF THE CDGLE WITH
NEUTRON SPIN ECHO EXPERIMENTS FOR WEAKLY
ENTANGLED AND UNENTANGLED POLYMERS

In this section we present the CDGLE predictions for mean-
square displacements and dynamic structure factor. We compare
the theoretical predictions with Neutron Spin Echo data of
polyethylene samples at the temperature T = 509 K, monomer
density p = 0.733 g/cm®, and increasing degree of polymer-
ization, N = 192, N = 377, 849, 1041, 1178, and 1692.* The
input parameters to the CDGLE approach are presented in
Section 4.

5.1. Mean-Square Displacements. The incoherent part of
the intermediate scattering function measured in NSE experi-
ments is defined as

N
Sk, t) = N~! Z <eik-[r,v(t)—r,(0)]>

ij=1 (33)
where we drop the chain index a because the monomers i and j
belong to the same polymer. Here, S(k, t) can be expressed as
the exponential function of an infinite series in the momentum
transfer k%.°°° In the condition under which the distribution of
displacement is Gaussian, only even contributions are relevant
and the k* term is the leading one,*

N
Sk, t) = N! K6 -0

ij=1 (34)
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and is calculated in the CDGLE approach from the intra-
molecular time-dependent monomer—monomer distance of eq
22, which includes contributions due to cooperativity,
entanglements, and chain semiflexibility.

The self-contribution in the exponent of the dynamic
structure factor, eq 34, is the mean-square monomer displace-
ment calculated using eq 19. Figure 4 illustrates the monomer
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Figure 4. (A) Monomer mean square displacement for polyethylene
with N = 377, N = 849, and N = 1962 (from top to bottom). The
CDGLE formalism (full line) is compared with the Rouse predictions
for a fully flexible chain (dashed lines). The Rouse equation scales in
time following #’ with v = 0.5 exponent, while the CDGLE shows the
crossover from cooperative motion of a semiflexible chain (v (0.5) to
the reptation characteristic exponent of v = 0.25 in the long time region.
(B) Center-of-mass mean square displacement as a function of time for
polyethylene melts of increasing chain length. Symbols are data from
Neutron Spin Echo, superimposing lines are the theory presented here.
From top to bottom, N = 36 (triangle down), 106 (triangle up), 192
(circle), 377 (squares), N = 1041 (red line) and N = 1178 (light blue
line). For samples N = 1041 and N = 1178, experimental points are not
reported (see text). Long-time Fickian dynamics is represented by the
dashed lines in both panels.

mean square displacement predicted by the CDGLE for some of
the NSE samples studied here. Specifically, it shows the mean
square displacement, calculated using eq 19, for polyethylene
with N = 377, 849, and 1962. These samples represent the
crossover from unentangled to entangled dynamics, covering a
range of entanglements from two entanglements for N = 377 to
12 entanglements for N = 1692. The CDGLE formalism for a
semflexible chain undergoing cooperative dynamics is compared
with the Rouse predictions for a fully flexible chain. The Rouse
model scales with time following #, with an exponent v = 0.5 as
expected. In contrast, the CDGLE shows that, a short times, the
cooperative motion of a semiflexible chain is characterized by an
exponent smaller than that of the Rouse motion (v < 0.5). In the
short-time regime, the monomer dynamics become slower with
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increasing chain length (v ~ 0.4S, 0.38, and 0.35 for N = 377,
849, and 1692, respectively). At long times, the monomer
displacement transitions to center-of-mass diffusion for the
shorter chain. For the entangled samples, it crosses to the
reptation motion, with the characteristic exponent v = 0.25,
before transitioning to the expected diffusive dynamics.

In the low wavevector regime, where k R, <1,

Sk, t) K

Z([rcm(t) - 1, (0)]%)

lim In
k—0

(35)

Consequently, in the case of short chains where R is small, one
can compute the mean-square displacement from the low k limit
of S(k, t). Panel B of Figure 4 illustrates the center-of-mass
mean-square displacement versus time, including both the data
from Neutron Spin Echo (NSE) and the theoretical predictions
of the extended CDGLE: the two are in excellent agreement. As
we previously mentioned, in the case of entangled chains where
the radius of gyration is large, the values of the momentum
transfer, k, reported in the experimental NSE data are not low
enough to fulfill the required limit. Therefore, it is impossible to
directly obtain the center of mass diffusion from the NSE data in
such scenarios. For those entangled chains we report in our
figure only the theoretical predictions.

Panel B of Figure 4shows that, consistently with the known
dynamical behavior of polymer melts, the MSD of the center of
mass follows diffusive dynamics at long time, AR(t)* o t. The
most interesting behavior emerges at shorter time scales, where
the dynamics is subdiffusive, with AR(t)*> « # and v < 1, for all
the samples, including short, unentangled chains. The
subdiffusive behavior becomes increasingly more pronunced
with increasing degree of polymerization. Note that, akin to
undercooled systems, the subdiffusive behavior observed in the
molecular center-of-mass serves as an indication of heteroge-
neous dynamics and correlated cooperative motion in this
context.””

In the CDGLE theory, the correlation of the dynamics due to
the intermolecular intermonomer potential-of-mean-force leads
to a slowing down of the center-of-mass motion as long as the
chains are within the range of the effective mean-field potential.
The subdiffusive dynamics persists for longer time for longer
unentangled chains, given that the range of the potential of mean
force is consistent with the polymer correlation hole and hence
with R,. Because the polymer must diffuse beyond the potential’s
range for its dynamics to lose correlation, the transition to
Brownian motion occurs at a distance comparable to the
unentangled polymer’s size.

The picture is slightly different for entangled chains where we
find that entanglements dominate the subdiffusive motion of the
chains. For very long chains the subdiffusive dynamics is
terminated when entanglements’ dynamics set in and the center-
of-mass mean-square displacement displays subdiffusive motion
only inside the volume defined by the entanglement length scale,
d. Furthermore, inside that volume the subdiffusive dynamics is
identical, and involves the same number of chains in the
cooperative motion, for all the entangled samples (see Panel B of
Figure 4).

5.2. Dynamic Structure Factor. The incoherent scattering
function, eq 34 depends on the distance between two monomers
belonging to the same polymer ([r,(t) — r,(0)]*), which is
calculated following eq 22. For dynamically heterogeneous
systems, like ours, the incoherent scattering function includes a

* correction term to the Gaussian approximation,

q
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Ine* ) ~ S (ArOF) + E(ArOPPay(t) - 0(F). This
term is a small contribution to the overall dynamic structure
factor.”® For all the NSE samples available, the CDGLE
predictions are in very good agreement with NSE experiments.
Moreover, to analyze further the components of the observed
structure factor’s decay, we take advantage of our analytical
formalism to evaluate the shape and weight of each contribution
of semiflexibility, cooperativity, and entanglements to the overall
polymer dynamics for chains of increasing length in the melt.
5.2.1. Contributions Due to Entanglements. In Figure S and
in Panel A of Figure 6, experimental data are compared with two

1

0.8

S(k,1)/S(k.0)
o
(o)}

<
~

0.2

Figure S. Comparison between theoretical (lines) and experimental
(symbols) values of the normalized incoherent intermediate scattering
function for polyethylene with N = 192 with (full lines) and without
(dashed lines) the contribution due to entanglements. For this short
chain, the number of entanglements is equal to one, and entanglement
effects on the dynamics are small. Data are at increasing wave vector g =
0.3 (circle), 0.5 (square), 0.77 (diamond), 0.96 (triangle up), 1.15
(triangle down).

different versions of the theory: the CDGLE where the
contribution from entanglements is accounted for, and the
CDGLE theory where entanglements are neglected, meaning
that the intermonomer potential is zero. In both figures the
inclusion of entanglements improve the agreement with
experiments. The CDGLE formalism in both cases describes
semiflexibile chains modeled as FRCs, using a Bixon-Zwanzig
type of approach as presented in Section 2.°7%

Note, however, that the sample with N = 192 in Figure 5 has
statistically only one entanglement, and its dynamics is well
described also by the Langevin Equation for cooperative
dynamics with no entanglements.'* However, while the
difference between the two curves is small, the correction due
to the presence of the entanglements still improves the
agreement of the theory with the data.

The entanglement effect is more pronounced in the N = 377
sample in Figure 6 Panel A, where including the entanglement
potential in the CDGLE improves the long-time decay of the
structure factor and its agreement with the data in the long-time
scale. In this sample, each chain in the melt has statistically two
entanglements. Thus, polyethylene with N = 377 is at the
crossover region between unentangled and entangled dynamics.
While similar effects are observed in all the samples, the effect of
entanglements becomes more pronounced as the number of
entanglements per chain increases.

5.2.2. Cooperativity and Semiflexibility. To quantify the
combined effects of cooperativity, semiflexibility, and entangle-
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Figure 6. (A) Comparison between theoretical (lines) and experimental (symbols) values of the normalized incoherent intermediate scattering
function for polyethylene with N = 377 with entanglement (full lines) and without entanglements (dashed lines). Data are at increasing wave vector q =
0.3 (circle), 0.5 (square), 0.77 (diamond), 0.96 (triangle up), 1.15 (triangle down). (B) Comparison between theoretical (lines) and experimental
(symbols) values of the normalized incoherent intermediate scattering function for polyethylene N = 377 (full lines) and the Rouse dynamics for a
flexible chain of equivalent mean-square end-to-end distance (dashed lines). Data are at increasing wave vector q = 0.3 (circle), 0.5 (square), 0.77

(diamond), 0.96 (triangle up), 1.15 (triangle down).
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Figure 7. (A) Comparison between theoretical (lines) and experimental (symbols) values of the normalized incoherent intermediate scattering
function for polyethylene with N = 849 including entanglement (full lines) and the Rouse dynamics of a flexible chain without entanglements and
cooperative dynamics (dashed lines). Data are at increasing wave vector q = 0.3 (circle), 0.5 (square), 0.77 (diamond), 1.15 (triangle up). (B) Same as
in Panel A, but reported on a logarithmic time scale to emphasize the agreement between CDGLE theory and experiments in the short-time regime.

ments we map the freely rotating-chain in the CDGLE onto a
fully flexible chain represented by a freely jointed chain model,
where the “beads” are connected by effective bonds of length
L& = ~/17 A. This mapping ensures that the freely jointed chain
of N segments of length /4 has the same mean-square end-to-
end distance of the freely rotating-chain of N segments of length
l, correlated by an eftective semiflexibility parameter of g = 0.785.
By solving our CDGLE formalism while enforcing g = 0, [ and
n = 0, we calculate the dynamics of a chain completely flexible,
unentangled, and uncorrelated with the surrounding chains, i.e.,
the dynamics of a Rouse chain, where the chain has the same
number of “beads” and equivalent mean-square end-to-end
distance than the sample.

In the reptation model of entangled dynamics, the motion
inside the “tube” is represented by the Rouse model. The most
relevant region of S(k,t) where the Rouse dynamics should apply
is the short time region of the plot and the large wave-vector, k,
region where the effects of the entanglements are not yet felt by
the polymer. In Figure 6 Panel B, we compare the dynamics of
the CDGLE chain with experimental data of the incoherent
scattering function and with the Rouse formalism for a
polyethylene sample with N = 377 beads. While the CDGLE
agreement with the experiments is excellent in the whole range
of time scales, the Rouse model is unable to reproduce, not even
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qualitatively, the observed experimental decay. This is because
the Rouse model is missing both cooperativity and local
semiflexibility. The dynamical correlation observed in the mean-
square center-of-mass displacement of Figure 4, Panel B as
subdiffusive motion is also visible in the short-time decay of the
dynamic structure factors for all the NSE samples.

Figure 7 presents a comparison between the CDGLE
approach and the NSE data for N = 849, alongside theoretical
predictions for a semiflexible chain without entanglements and
with cooperative motion. The figure illustrates excellent
agreement both in the short-time regime, emphasized by the
logarithmic scale, and in the long-time regime, evident on the
linear scale.

The following three figures offer a comparison between
CDGLE theory and NSE experiments for weakly entangled
polyethylene chains, together with CDGLE calculations
excluding entanglements. This comparison elucidate the impact
of entanglements on chain dynamics. In Figure 8, experimental
data for N = 1041 are compared with the theory where
semiflexibility and cooperativity of the dynamics are accounted
for but entanglements are not included. The theory for
semiflexible unentangled chains agrees well with the experi-
ments in the short time region. Similar plots are presented for
chains with a higher number of entanglements, namely N=1178
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Figure 8. Comparison between theoretical (lines) and experimental
(symbols) values of the normalized incoherent intermediate scattering
function for polyethylene N = 1041 with (full lines) and without
(dashed lines) the contribution due to entanglements. Data are at
increasing wave vector q = 0.3 (circle), 0.5 (square), 0.77 (diamond),
0.96 (triangle up), 1.15 (triangle down).

corresponding to 8 entanglements and N = 1692 corresponding
to 12 entanglements. Those plots are shown in Figures 9 and 10,
respectively.

S(k,0/S(k,0)

! . |
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~J0
t [ns]
Figure 9. Comparison between theoretical (lines) and experimental
(symbols) values of the normalized incoherent intermediate scattering
function for polyethylene N = 1178 with (full lines) and without
(dashed lines) the contribution due to entanglements. Data are at
increasing wave vector g = 0.3 (circle), 0.5 (square), 0.77 (diamond),
0.96 (triangle up), 1.15 (triangle down).

In all the plots the theory without the presence of
entanglements agrees well with the experiments in the short
time region, for t < 4 ns. This general behavior is expected
considering the fact that at short time the monomer dynamics is
not affected by the length of the polymer chain the monomer
belong to, and only samples its local environment. For the
center-of-mass motion, the dynamics inside the entangled
region is dominated by cooperativity, which is similar for all
entangled chains, given that the motion is very local. The
concept that the dynamics on a local scale is common to all the
polymers that have different chain lengths but identical chemical
structure agrees with the physical hypothesis that motivates
Ngai’s Coupling Model approach, where local and global
dynamics connect at an intermediate time scale which is similar
for all degrees of polymerization of the polymer samples.®”
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Figure 10. Comparison between theoretical (lines) and experimental
(symbols) values of the normalized incoherent intermediate scattering
function for polyethylene N = 1692 with (full lines) and without
(dashed lines) the contribution due to entanglements. Data are at
increasing wave vector g = 0.3 (circle), 0.5 (square), 0.77 (diamond),
0.96 (triangle up), 1.15 (triangle down).

6. COOPERATIVE DYNAMICS IN THE SHEAR
RELAXATION

6.1. Theory: CDGLE Stress Relaxation under Linear
Shear Perturbation. The effect of cooperative dynamics on
dynamical mechanical measurements of a polymer liquid under
linear shear flow is described by the CDGLE a;)proach. The
complete derivation is presented in Section 8.""¢ Briefly, the
stress tensor for a subensemble of chains undergoing
cooperative dynamics under a linear shear flow defined as v, =
7(t) y, with 7(t) the shear rate matrix, is given by

N
aup(t) = niNks D [(n = DGLOARD, ()
ij=1

+ (rN()A

i,

11,\;77;1,\]/1(1‘»]

with & = x and f# = y, where the tensor is partitioned into a
relative and a collective contribution.

After applying the transformation into normal modes, the
general expression for the stress tensor is

(36)

p
% (£) = LkaTl4(n = 1)°
Kylr(t)] ¢ 2/ Cal Kl Ol Kl Ol

t
'/0 & Ko["(f)]

N-1
t D
CE [ e
p=1"0 (37)

which gives for the CDGLE shear relaxation modulus of a group
of interacting polymer chains undergoing cooperative dynamics

G(t) = %kBT 4(n — 1)2e_Rz(f)/Rgze—2n/§eff /O Kolr(t)1dt’

N-1
+ Z e—lks/\g(f)/ﬁeff
p=1 (38)

Note that the CDGLE predicts a more complex decay of the
shear relaxation modulus than the straightforward multi-
exponential decay described by Rouse. Here intermolecular
correlations in the dynamics of interacting chains significantly
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Figure 11. (A) CDGLE predictions of the shear relaxation for polyethylene N = 377. The figure shows the contributions to the total relaxation. The
presence of semiflexibility slows down the relaxation, while the effect of cooperativity leads to a shoulder visible in the short-time regime. (B)
Comparison of the shear modulus for chains of increasing length, N = 377, N = 849, N = 1041, N = 1178, and N = 1692. The decay of G(t) occurs on
time scales that increase with the degree of polymerization, as expected. The dashed lines are the shear modulus predicted by the Rouse model for
flexible unentangled chains with those degrees of polymerization. The inset shows the scaling with N of the terminal time.

influence the modulus’s relaxation through the contribution of
the zero mode.

This is the final CDGLE equation for which we report some
model calculations in the following section.

6.2. Results: CDGLE Predictions of Shear Relaxation in
Polyethylene Melts with Increasing Degrees of Polymer-
ization. Polyethylene is a polymer known for its propensity to
crystallize, which poses challenges for measuring shear
relaxation under the thermodynamic conditions and time
window of the NSE experiments studied in this paper.”'
Consequently, we present the CDGLE calculations of shear
relaxation to study the effect of cooperativity and semiflexibility
on the dynamical mechanical properties of a melt comprising
semiflexible polymers of increasing degree of polymerization.
We adopt the same parameters of the samples previously
investigated by NSE and reported in this paper.'***

In Figure 11, we illustrate the predictions of the CDGLE for
shear relaxation of a polyethylene chain within a subset of
interacting polymers undergoing cooperative dynamics. The
samples have varying degrees of polymerization. Panel A shows
model calculations of G(¢) for a sample with N = 377, where the
polymers are modeled as semiflexible FRC chains, both with and
without entanglements. The cooperative dynamics contribution
to G(t) appears as a small plateau in the short-time region of the
plot, characterized by a rapid decay of the function. The short-
time contribution to shear relaxation, arising from cooperativity,
is intermolecular and decays over the time scale at which
subdiffusive dynamics transition to diffusive behavior in the
center-of-mass mean-square displacement. Panel B highlights
that shear modulus relaxation requires increasingly longer times
as the degree of polymerization of the weakly entangled chains
increases. The inset illustrates the terminal time determined at a
fixed G(t) value for samples of increasing N. The terminal time is
calculated for samples of increasing chain length by identifying
the time at which each curve crosses the G(t) = 107> line. This is
an approximate estimate of 7 = [§° G(t), based on the
assumption that G(t) ~ ¢™*/". By imposing that G(t)y_19, =
G(t)n-117s and so on for all the samples, it defines the time for
which fy_1600 = Tnz1692) En=1178 = Tn=1178 and so on for all the
samples. The integral of G(t) is the shear viscosity. While for
shorter chains, this terminal time adheres to a scaling akin to
Rouse scaling, the longest chain exhibits a transition to much
slower times, seemly scaling with N with an approximate

exponent of 2.5. Because this sample is only weakly entangled, its
dynamics does not conform yet to fully entangled scaling, nor
does it show the expected plateau in G(t).' Testing the
entanglement scaling behavior of viscosity within this polymer-
ization range is not feasible.

7. SOLUTION OF THE ENTANGLEMENT FORCE

In this section we derive the entanglement force, eq 31. Because
the intermolecular force experienced by the molecules depends
on their reciprocal distance, the entanglement force evolves with
time.'” eq 1 is solved through a self-consistent procedure at a
fixed time interval; fluctuations of the intermolecular distance
are allowed, but the average intermonomer distance is at each
time step the one that is obtained from the optimization.
Because the equation is solved at a fixed time interval, we drop in
our notation the time dependence (see eq 28) with the
understanding that the intermonomer distance is in itself time
dependent.

The equation of the force, eq 31, has two type of terms that are
related by a simple transformation

1 —r/E _ d e_r/é
2 T T 3
r 0 r (39)
so that the only integral to solve is of the type
/¢
=-p /dl‘b\P("h) (40)
By introducing the Fourier transforms
ik-r
1_ _4_”3 / dke—z
Il (2r) k (41)
and
—Irl/& 2 ikr
e =_471'3/‘dk.’;’e22
Il (2n) 1+ k¢ (42)

the integral is rewritten as

I=—ﬁ‘ / / /5 +k2/drbe a

(43)
where k =k, +k, + k3, 4 =3/(2R}),andr =R + ;.
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Next, we introduce the change of variables

K=k +k,
k=k - K
k, =K -k (44)

which leads to

o1 rdE dk ik
B Ly B
p 2J K J T+ k- kP

’ 1kr ;tr/z
/"’r b (45)
given the convolution integral
1 )}
/ dkl 211,/ 2 = ( 7[/)
kilk" — ki 8k (46)

Using the solution

fdk/ ) : 2
K(E° + Ik — kT9)
(4r) | arccot(kE) k 5 Py
——|—=* — —In(k
. : Sin(k” + &7 @)

and solving the second integral with eq 39, the arccot term
cancels. Because the exponentlal term is dominant at k ~ N7,
where k&4~ d/N and kzéjz ~ N7, in that range In(k* + £72) » —
Iné%. Then, the entanglement force constant is well approxi-
mated as

3J3 3 gd —3R(t)2/2R
K[R(t)] = k T/N——l
IRO) = TIN5l e -

which is eq 31.

8. SOLUTION OF THE CDGLE STRESS RELAXATION
UNDER LINEAR SHEAR PERTURBATION

We now turn to the calculations of the effect of cooperative
dynamics on dynamical mechanical measurements, specifically
for a polymer liquid under linear shear flow."”’

The stress tensor for a subensemble of chains undergoing
cooperative dynamics under a linear shear flow defined as v, =
7(t) y, with 7(t) the shear rate matrix, is given by

a/}(t) - _E z < 1(1( ) /}(t)>

ij=1 (49)

with @ = x and f§ = y. By inserting the similarity transformation
matrix, the tensor is partitioned into a relative and a collective
contribution,

aup(t) = k Z [(n — D(rE(OAD (1)

i,j=1
i (1(t)A1] ],ﬂ(t)>] (50)

After transforming the stress tensor into relative and collective
diffusive modes, we disregard the first collective mode. This
mode represents the diffusion of a cluster of interacting chains
and does not contribute to the shear stress, thereby simplifying
eq 50 to

ZORl (CRDPWHNOLYC)

+ Z AN, (8, 5 (8)
(1)

where the center-of-mass relative diffusion of a group of
interacting chains still enters the tensor. Here, the eigenvalues
AI],D and Aﬁ’ for mode numbers p = 1,--, N — 1 are defined in eq
11, while the eigenvalue Ag, corresponding to mode p = 0, is
defined in eq 7.

For the internal modes, for which p = 1, 2,-+, N — 1, the cross

correlation functions in the relative coordinates are

Z / dre 2k,AD(t- T)/cgy(t)

sppl

<§p,(x(t)§ ,/}(t)>
(52)

and similarly for the collective coordinates. Thus, the total
contribution to the shear from the internal coordinates is

kTp ft —2kAp(t—
E dre™ M = ey (4
N ot 0 7o)

%,;(t)p=1,z,~--,N—1 =

(83)
which gives for the shear relaxation modulus
N-1
Gy = BTy ks
p=1 (54)

By applying the conditions of no cooperative dynamics (n = 1)
and no entanglements, along with complete polymer flexibility
(g=0), itis straightforward to derive from eq 54 the well-known
Rouse expression for the modulus. In fact, under these
conditions, AI? equals /111,}““.

However, the CDGLE predicts a more complex decay of the
shear relaxation modulus than the straightforward multi-
exponential decay described by Rouse. This is due to the
presence of cooperative chain motion, where intermolecular
correlations in the dynamics of interacting chains significantly
influence the modulus’s relaxation through the contribution of
the zero mode. For the center of mass relative mode, Ag is given
by n Ky[r(t)]/k, whereas for the collective mode, AY equals
zero. The stress tensor for the zero mode is as follows:

6(1,/i(t)p=0 = ﬁ(n - l)nKO[r(t)]<‘§p,u(t)§p,/}(t)>

(85)

with time evolution under shear of the a and # components of
the zero mode

<§O,a(t)§0,/i(t)> = 4kBT(n - l)
/t o2/l O] =Kl (O]
0

k@ T e

The general expression for the stress tensor is
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P
Ga,/i(t) = NkBT 4(n — 1)*

/  ar Kol O o atmirtn-sitrton
0 K[r(7)]

N-1
t
+ z / dre—ZkSAg(t—T)/Ceffy(T)
p=170 (57)

which gives for the shear relaxation modulus of a group of
interacting polymer chains undergoing cooperative dynamics

G(t) = %kBT 4 — 1) RO 2% [ Kl

N-1
+ Z e_stA}Ia)(t)/geff
p=1 (58)
which is eq 38.

9. CONCLUSIONS

This paper presents the theoretical formalism that extends the
CDGLE approach to the dynamics of polymer melts covering
systems with different degrees of polymerization, spanning the
dynamics from the unentangled to the weakly entangled regime.
The formalism does not need to be modified to describe the two
different dynamical regimes observed for short and for long
chains. Signatures of the crossover to entangled dynamics are
observed in the monomer mean-square displacement, diffusion
coeflicient, and shear relaxation modulus for the sample with the
highest degree of polymerization studied here. The proposed
CDGLE approach is found to be in excellent agreement with
NSE data, while predicting reasonable values of the fitting
parameters, that are the friction coeflicient, the entanglement
length, and the number of chains undergoing cooperative
dynamics.

The flexibility of the formalism in addressing different systems
is due to the many-chain nature of the approach. The theory
selects at initial time a group of interpenetrating chains
interacting through an effective center-of-mass pair potential
that represents the projection of the many-body monomer-
monomer interactions onto the polymer center-of-mass of a pair
of chains. The monomer-monomer interactions propagate
through the liquid of macromolecules surrounding the slow-
moving chains undergoing cooperative motion.

A second intermolecular intermonomer potential is the direct
consequence of the chains being entangled. This potential limits
the relative motion of two monomers belonging to two different
chains, which are initially in contact and then interdiffuse freely
until they experience the constraint in their dynamics due to
entanglements. Both potentials depend in magnitude on the
distances between the interacting units, which is evolving in time
as the chains interdiftuse. In this way the system is considered in
equilibrium only locally in the time domain, and the acting
forces are solved self-consistently at any given time interval.
Finally all the molecules that are initially correlated become
uncorrelated and at long enough time intervals the sampled
dynamics is Brownian.

The number of interpenetrating chains grows with chain
length as N'/2 for unentangled chains. The entangled chain
dynamics is characterized by the interplay between cooperative
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dynamics and the presence of entanglements. Cooperative
motion occurs for polymers comprised in the volume defined by
the distance between two entanglements, d. At length scales
larger than the characteristic entanglement distance, d,
entanglements suppress many-chain cooperative motion. The

number of interacting chains scales as n « /N, in entangled

samples, and is constant for the weakly entangled samples we
study.

It is reasonable to hypothesize that for chains longer than the
ones described in this study, a secondary correlated motion
could occur on the longer length scale of the chain size where the
cooperativity would involve the domains on the entanglement
length scale and larger in a hierarchical clustering of cooperative
motion. Still, we expect the dynamics of any entangled polymer
chain to exhibit cooperative motion, with a constant n « \/ﬁe s
in the short-time regime and at length scales shorter than d.

It is noteworthy that while both Rouse and reptation models
focus on the dynamics of a single chain in the field of the
surrounding polymers, the role played by interchain coopera-
tivity has emerged as a key component of polymer dynamics in
several recently published experimental studies.*”™*® These
studies investigated both unentangled and entangled polymer
dynamics, as well as dynamics of short tracer chains in an
entangled matrix. They showed that chain cooperativity is
present in polymer melts even when the liquid is formed by short
chains: a finding that agrees with our model and our
simulations.'>** Interpenetration and effective chain interac-
tions have been found to modify the dynamics of intrinsically
disordered proteins in coacervates, as cooperative effects are
observed in the correlated subdiffusive dynamics of their
centers-of-mass.”*”
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