Phytopathogenic Mollicutes
Vol. 15 (1), June 2025, 111-112

doi: 10.5958/2249-4677.2025.00059.X

Cagi]
Indlan}ﬁgyn’a{'s com

uct of Diva Enterprises Pv. Ltd.

Epidemiology and control

Evaluating the threat of phytoplasma disease emergence in agroecosystems
and natural habitats

Valeria Trivellone, Roxana Jafari Haddadian and Christopher H. Dietrich

Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana Champaign, Champaign, lllinois,
United States of America

Abstract

Outbreaks of phytoplasma diseases annually cause billions of dollars in crop losses worldwide. A few efforts have been made
to predict disease outbreaks and management continues to focus primarily on reducing pathogen spread following an outbreak.
This study leverages machine learning to assess the global risk of emerging phytoplasma diseases using data from the literature
on previous phytoplasma outbreaks in agroecosystems, combined with newly documented occurrences of phytoplasma-
positive insects (potential vectors) in natural areas worldwide. By applying supervised machine learning on these datasets, key
predictors of vector-host-phytoplasma interactions were identified and their importance in facilitating disease outbreaks was
evaluated. The model highlights critical differences between two types of ecosystems and establishes a foundation for predicting
new phytoplasma-host associations. These findings pave the way for targeted interventions to mitigate the risk of future

outbreaks.
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Introduction

Outbreaks of plant diseases affecting agriculture have, until
very recently, been considered rare and unpredictable. Thus,
disease management continues to focus on reducing pathogen
spread following an outbreak. Proactive strategies, such as
landscape-level prediction of disease emergence
incorporating data on natural vegetation and its interfaces
with crops have rarely been attempted; however they should
be feasible given sufficient information on vegetation cover,
climate, and previously documented associations between
pathogens and their hosts (including insect vectors). Here it
was outlined a new approach for predictive modeling of
disease emergence in phytoplasmas, one of the most
widespread and important groups of vector-borne plant
pathogens, which annually cause billions of dollars in yield
losses to agriculture worldwide (Kumari et al, 2019). This
approach leverages available landscape, socio-economic and
climatic data, combined with data on associations between
phytoplasmas, their insect vectors and plant hosts from
agroecosystems and natural habitats toidentify areas at risk
of disease outbreaks. By using two databases created by the
team at the University of Illinois, this study provides
preliminary results of a modeling approach to predict
emerging phytoplasma diseases.

Materials and Methods

Relevant data (coordinates, country, crop type, infected
insects, rate of infection, phytoplasma strain, year) were
compiled from 838 publications, yielding a database of 317
unique occurrences of phytoplasma-insect associations.
About 42% specimens tested (135) were phytoplasma positive.
About 2,000 insect specimens representing distinct
species and collected in various natural areas worldwide (722
sites in 50 countries) were analyzed using qPCR to quantify
phytoplasma cells. Phytoplasma-positive samples were further
characterized using a multi-locus approach (Trivellone et al,
2023). About 13% specimens (265) were positive.
Environmental variables known or hypothesized to
affect phytoplasma outbreaks, such as temperature,
precipitation, population density, altitude, cropland
proportion,land cover type,and environmental performance
index were selected. Bioclimatic (average temperature -'C
and precipitation -mm) and elevation (m above sea level)
data‘ at 30 arc seconds (approximately 1 km?) resolution
were downloaded from Worldclim 2.1 (Fick and Hijmans,
2017). Global raster data were downloaded from the
Socioeconomic Data and Applications Center (SEDAC)
website. There were considered 6 predictors: UN WPP-
Adjusted Population Density, 2000 and 2020 (CIESIN, 2018),
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human footprint (Venter et al, 2016), Terrestrial Biome
Protection (global weights) /Biodiversity/Ecosystem Vitality
(Wolf et al, 2022), Food Insecurity Hotspots Data Set, vl
(2009 - 2019) (CIESIN, 2020), Global Agricultural Lands in
2000 (Ramankutty et al, 2012), Landcover 2000 and 2050
(Millennium Ecosystem Assessment, 2005).

Data were analyzed using five supervised machine
learning algorithms (Gradient Boosting Machine, Random
Forest, Neural Network, General Linear Model, Recursive
Partitioning) to build a final model that calculates the
probability of infection of a potential insect vector
(phytoplasma positive/negative) given the values of the most
important selected variables. The models were trained using
20% of the data and the remainder of the data was used to
test model accuracy. Classification accuracy and result
reliability was evaluated using the Kappa statistic
(comparison of observed to expected accuracy), with values
ranging from -1to1(<0indicated that the classification is no
better than a random classification). The models were fitted
using the R-package caret (Kuhn, 2008).

Results

The most important variables driving positivity rate in
known and potential insect vectors were precipitation,
temperature, population density, proportion of cropland (for
both habitat types), altitude (for agroecosystems) and
environmental performance index (for natural habitats)
(Figure 1). The top five predictors were used to train each
classification model. The class imbalance ratio (proportion
of negative samples) was calculated for agroecosystems and
natural habitat datasets (0.75 and 6.5, respectively) and a
correction was applied for the highly imbalanced natural
habitat dataset. For both datasets, Random Forest performed
better than the other algorithms (k=0.30, for agroecosystems
and k= 0.51, for natural habitats). For agroecosystems, sites
in lowlands with higher population density were associated
with higher probability of infections. For natural habitats,
higher infection probability was associated with dry
conditions and lower proportion of crop lands.
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Figure 1. Top 10 variables by importance estimated using random forest to predict
phytoplasma-infected insects in agroecosystems (left) and natural habitats (right).

Discussion

Data compiled from literature on phytoplasma outbreaks in
agroecosystems were used combined with data from
intensive screening of insect specimens collected from

natural areas worldwide, to create a classification model
predicting the probability of phytoplasma-positive insect
vectors in different habitat types based on climatic, socio-
economic and landscape characteristics. Although the
models performed accurately on the test data, and data on
recorded positive samples in natural habitats may be
adequate, it was only possible to include 317 records from 47
sites in agroecosystems. Addition of data from
agroecosystems, particularly in under sampled areas of the
tropics, may increase the predictive power of the model.
Next steps include adding more records from tropical regions,
and from plant infections, using infection rate as the
continuous variable to estimate the severity of outbreaks.
Another step will be to evaluate a dataset explicitly
incorporating interfaces between natural areas and
agroecosystems to estimate the risk of spillover.
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