
Assisting Humans in Human-Robot Collaborative 
Assembly Contexts through Deep Q-Learning 

Abstract—Collaborative robots, affectionately referred to as 
“cobots,” serve to function alongside their human counterparts to 
help them complete a specific task. This differs from traditional 
systems in which the machines are set about their own jobs and 
are often locked behind cages so as to prevent human access in 
favor of safety. By removing these walls and introducing 
collaborative systems, a new level of versatility and productivity is 
opened within the contexts that they are often employed. This 
focus of human-robot interaction has grown in recent years, and 
alongside it the topic of teaching and learning from demonstration 
has been investigated. Several methods of implementation for this 
topic have been developed, and while they are potentially effective, 
they still have gaps in versatility. Thus, we propose a different 
method of robot learning from demonstrations through the 
employment of deep Q-networks. These networks permit effective 
learning not only with human demonstration data, but also with 
direct feedback from the collaborating user. The proposed 
solution is experimentally implemented in real-world human-
robot collaborative tasks. Preliminary results and analysis suggest 
the competitive performance of the proposed approach. Future 
work of this study is also discussed. 

Keywords—robotics, human-robot interaction, learning from 
human demonstrations, collaborative tasks, algorithm  

I. INTRODUCTION

Autonomous robotic systems have been rapidly developed 
and employed in many contexts as part of the rise of Industry 
4.0 [1-3]. The primary focus in the context of robotics within 
Industry 4.0 is the development of smart factories equipped with 
multitudes of sensors and advanced robotics designed to enhance 
safety, cost efficiency, and productivity [4-6]. These advanced 
robotics are often employed not only as those with designated 
tasks to perform within their own areas, but also as collaborative 
robots designed to function alongside human workers. Several 
methods exist for the development of these systems so that they 
may collaborate appropriately. One such approach is the 
Teaching-Learning-Prediction-Collaboration (TLPC) framework 
[7]. It involves task demonstrations that the robot learns from, 
then predicts human intentions, and collaborates with its human 
partner accordingly. In this way, the desired behavior is learned 
rather than rigidly hardcoded in human-robot interaction (HRI). 

There are a multitude of studies regarding the refinement and 
implementation of deep Q-learning models, which are built on 
the reinforcement learning paradigm [8]. Several methods exist 
that seek to improve training times and, of course, the agent’s 
score and therefore performance in its task. Deep Q-learning is 
slow compared to other learning paradigms, requiring the agent 

to select and perform an action, examine the results, store that 
experience, and learn from previous ones. It is for this reason 
that there has been much focus on speeding along training times 
in order to enhance its feasibility. 

Notably, a large area of application for deep Q-learning 
networks is that of simulated environments, such as Atari 2600 
games [9, 10]. Simulations prove to be an excellent training 
ground for the learning agent due to the speed at which it may 
learn, being unburdened by any physical restrictions that may 
slow the process down. For instance, the model receives the 
frame data from the game and produces estimated Q-values from 
that data. Thus, it is hindered often only by the speed of the game 
itself, provided there is sufficient computational power for it and 
the training. Deep Q-learning for robotics differs in the speed of 
its execution. An agent is limited by the time that it takes to 
execute an action and receive feedback in a physical space due 
to time of movement, calculations from sensor data, etc. 

It should be noted, however, that deep Q-networks are 
consistently applied in the field of robotics, despite potential 
delays in the learning process. To circumvent this issue, simulated 
environments are still often used. Gu et. al, for instance, made 
use of a simulated environment for their experiments prior to 
physical, real-world experiments in their deep learning task for 
robotic manipulation, which they note, in particular, enables 
faster comparisons of design choices [11]. We implement a 
similar approach in our work, which will be discussed later. 
Similarly, a study conducted by Mohanty et al. utilized deep Q-
learning for mobile robot navigation [12]. Specifically, the 
design focused on the topic of path planning in an environment 
consisting of obstacles that must be avoided while reaching a 
goal point. Much like the previous study, a simulated 
environment in addition to a physical environment was used for 
the production of the agent and its learned experiences. 

The training time of the agent is not simply a matter of 
convenience, but of necessity as well, particularly in collaborative 
robotics tasks. A method of addressing the latency of physical 
systems in collaborative deep reinforcement learning tasks is 
proposed by Ghadirzadeh [13]. This approach leans heavily on the 
concept of human intention prediction and determines the correct 
time for the robot to act and begin executing its actions based on 
gathered human motion data in addition to the current state of a 
developed behavior tree. It does so by integrating the Q-function 
as a node within the behavior tree itself to make its proactive 
decisions. In doing so, the model gains a “head start” on acting, 
cutting out some of the inevitable delays of physical systems. 
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In this work, we employ a deep Q-network to facilitate robot 
learning and enhance versatility in the TLPC framework in 
human-robot collaborative contexts. This solution allows the robot 
to explore its action space and receive direct feedback from its 
human partner for each action taken, thus “reinforcing” its task 
knowledge to further assist the human in collaborative tasks. By 
utilizing this method, the instruction of the robot shifts from 
static teaching to a dynamic relationship in which feedback can 
be consistently given to help the robot improve its behaviors. 

II. RECAP OF TLPC FRAMEWORK 

As noted previously, this study extends the development of 
the TLPC framework [7], which is outlined in distinct segments 
as shown in Fig. 1. First, a human teammate teaches the robot 
how to perform a task. This step is notably minimally demanding 
of the user, simply requiring them to perform the task as they 
normally would. From this demonstration, the robot handles the 
learning process in which it takes this demonstration data and 
applies it in a way that permits it to build and optimize its task 
strategies. The learned knowledge permits the robot to predict 
human intentions in shared tasks, and as a result, to collaborate 
effectively with its human partner. 

 
Fig. 1. The TLPC Framework. 

III. METHODOLOGY 

A. Deep Q-Learning 

Reinforcement learning is a learning paradigm designed to 
permit an agent to learn the optimal policy for sequential 
decision problems [14]. This process involves the computation 
of the appropriate action value for a given policy [8]. The learning 
performance is improved with the development and refinement 
of this policy, which comes as a result of consistent exploration 
and exploitation within an agent’s environment where the agent 
is the learner of the policy and executor of the actions, and the 
environment is the space that it is learning within. 

The structure for a typical reinforcement learning setup is 
comprehensively introduced in [8]. In the learning process, at 
time t, the agent observes a state 𝑠𝑠𝑡𝑡  from its environment 
(where 𝑠𝑠𝑡𝑡 is in state space S) and performs an action 𝑎𝑎𝑡𝑡 selected 
from action space A. This action selection is based upon the 
policy that defines the agent’s behavior, usually denoted as π, 
which maps states to actions. Following the action, a reward of 
𝑟𝑟𝑡𝑡 is provided to the agent according to the quality of the action 
taken, and the current state transitions to the state 𝑠𝑠𝑡𝑡+1 according 
to the state transition probability 𝑃𝑃(𝑠𝑠𝑡𝑡+1|𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡) [8]. Naturally, 

good actions produce a positive reward, and bad actions 
produce negative ones. This is defined by the reward function 
𝑅𝑅(𝑠𝑠, 𝑎𝑎). The agent progresses through the transitions until a 
done state is reached, at which point a new episode is begun. 

The goal of the agent is to gain the highest reward possible 
from its environment, and this process involves the estimation 
of the maximum Q-values possible for a given state and action. 
These values are derived from the Bellman equation [15]: 

𝑄𝑄(𝑠𝑠, 𝑎𝑎) = 𝑟𝑟(𝑠𝑠, 𝑎𝑎) + 𝛾𝛾 max 𝑄𝑄(𝑠𝑠′, 𝑎𝑎′).                  (1) 

In Eq. (1), the Q-value for state s and action a is calculated 
by the immediate reward for taking action a in state s plus the 
maximum reward for the next state 𝑠𝑠′ over all possible actions 
𝑎𝑎′ . The discount factor 𝛾𝛾  is applied to this to offset future 
rewards against immediate ones, where 𝛾𝛾 ∈ (0,1] [8, 15]. 

Our implementation of deep Q-learning in the TLPC 
framework consists of two deep neural networks – a main and 
target network – as is typical for a double Q-learning setup [14]. 
The main network is used for the predictions of the Q-values 
for a given state, and the target network is used for the 
calculation of loss at each step [16]. These models are built with 
a combination of one-dimensional convolution layers, dense 
layers, and an LSTM layer, as our data is sequential in nature. 
The input state representation is a two-dimensional one-hot 
array of shape (LT, NA), where LT denotes the maximum length 
of a given task, and NA represents the number of possible 
actions. From this representation, the sequence of the task is 
effectively modeled for each state. 

B. Modeling of Robot Learning for HRI 
As shown in [16], the efficacy of pre-training the agent with 

demonstration data prior to giving it access to the environment 
is promising. With this, it is possible to effectively cut down on 
the training time in which a human is required to be present for 
explicit feedback. This pre-training phase makes use of four 
loss types for updates to the network: a one-step double Q-
learning loss, an n-step double Q-learning loss, a supervised large 
margin classification loss, and finally an L2 regularization loss. 

The one- and n-step double Q-learning loss are forms of 
temporal difference (TD) loss, and in our implementation, we 
use the Huber loss function which utilizes both mean squared 
error and mean absolute error, as defined below [15]: 

ℒ(𝛿𝛿,𝑦𝑦, 𝑓𝑓(𝑥𝑥)) = �
1
2

(𝑓𝑓(𝑥𝑥)− 𝑦𝑦)2              if |𝑓𝑓(𝑥𝑥) − 𝑦𝑦| ≤ 𝛿𝛿

𝛿𝛿|𝑓𝑓(𝑥𝑥) − 𝑦𝑦| − 1
2
𝛿𝛿2    if |𝑓𝑓(𝑥𝑥)− 𝑦𝑦| > 𝛿𝛿

 ,               (2) 

where ℒ  represents the Huber loss function, δ represents the 
delta parameter that establishes the threshold for switching 
between the two components of the function, y is the target 
value, and f(x) is the predicted value. Implementing n step 
returns helps to propagate the expert’s trajectory values to 
earlier states, thus producing more effective pre-training [16]. 
The returns are calculated as: 

𝑟𝑟𝑡𝑡 + 𝛾𝛾𝑟𝑟𝑡𝑡+1 + 𝛾𝛾𝑛𝑛−1𝑟𝑟𝑡𝑡+𝑛𝑛−1 + max𝑎𝑎𝛾𝛾𝑛𝑛𝑄𝑄(𝑠𝑠𝑡𝑡+𝑛𝑛 ,𝑎𝑎),         (3) 

where 𝑟𝑟𝑡𝑡 is the reward at timestep t, 𝛾𝛾 is the discount factor, n 
is the number of steps into the future that are being considered, 
and the final part of the equation determines the maximum 
estimated Q-value for the state at timestep t+n for all actions a. 
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The large margin classification loss is crucial to the pre-
training phase of the algorithm, as it forces non-demonstrator 
actions to be at least a margin lower than those taken by the 
expert [16]. In other words, this encourages the network to 
prioritize demonstrator actions above others. The loss is 
calculated as: 

𝐽𝐽(𝑄𝑄) = max[𝑄𝑄(𝑠𝑠, 𝑎𝑎) + 𝑙𝑙(𝑎𝑎𝐸𝐸 , 𝑎𝑎)] − 𝑄𝑄(𝑠𝑠, 𝑎𝑎𝐸𝐸),            (4) 

where 𝑎𝑎𝐸𝐸 is the action of the demonstrator, and 𝑙𝑙(𝑎𝑎𝐸𝐸 , 𝑎𝑎) is the 
margin function that is positive if 𝑎𝑎 ≠ 𝑎𝑎𝐸𝐸, and 0 if 𝑎𝑎 = 𝑎𝑎𝐸𝐸.  

A simulated environment is also utilized to enable faster 
training of the deep Q-network. This environment offers the 
benefits of allowing the agent to take actions and observe the 
results much faster than it could from direct physical 
interactions. The agent explores actions that it may take based 
upon what is available in the action space. It is penalized for 
nonsensical actions, such as attempting to select an assembly 
piece that has already been taken, and rewarded for proper ones 
that align with the demonstrated data. These transitions are 
organized in the replay buffer, and each time it is sampled to 
train the model, a random subset of the demonstration data is 
inserted into it as they are prioritized experiences. By training 
the model in this way, it becomes more robust and less likely to 
act improperly when physically interacting with the human.  

In real-world HRI, the human’s part in teaching the robot 
involves more processes. Small adjustments may need to be 
made to the agent’s behavior that the simulated training may 
not have accounted for. Thus, the collaborative phase of the 
HRI may still permit learning to take place, if necessary. In this 
work, the human teaching and robot learning algorithm is 
shown in Algorithm 1, which has been adapted from [16]. The 
definitions of the symbols used in Algorithm 1 are δ𝑑𝑑: expert-
demonstrated assembly task transitions data set, δ𝑟𝑟:  replay 
buffer, θ𝑡𝑡: target network weights, θ𝑚𝑚: main network weights, 
𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠: simulated environment, 𝐸𝐸𝑝𝑝ℎ𝑦𝑦: physical environment, k: pre-
training steps, μ: target model update frequency, τ𝑠𝑠𝑠𝑠𝑠𝑠: simulated 
environment training steps, τ𝑝𝑝ℎ𝑦𝑦: physical environment training 
steps, and π: behavior policy. 

Algorithm 1 Human teaching and robot learning for human-robot 
collaborative tasks through deep Q-learning   

1: “Teaching phase” in which assembly task methods are 
demonstrated to the robot, which are organized as 
transitions in δ𝑑𝑑. δ𝑑𝑑 is used to fill δ𝑟𝑟 

2: Main and target models are initialized with Xavier 
uniform initializer and 1D convolution layers, an LSTM 
layer, and Dense layers 

3: Simulated environment 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 that mimics physical 
environment 𝐸𝐸𝑝𝑝ℎ𝑦𝑦 is initialized 

4: for i = 0 to k 
5: Sample δ𝑟𝑟 for a batch of n transitions 
6: Use the target model and main model to compute the 

loss 
7: Use the calculated loss to perform gradient descent and 

update the weights of the main model θ𝑚𝑚 
8: if i mod μ = 0 then  
9: θ𝑡𝑡 ← θ𝑚𝑚 
10: end if 
11: end for 
12: for i = 0 to τ𝑠𝑠𝑠𝑠𝑠𝑠 

13: Select action from epsilon-greedy policy π 
14: Perform action in 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 and examine result (s’, r, d) 
15: Place transition (s, s’, r, a, d) into replay buffer δ𝑟𝑟. 

Replace oldest transition if capacity is reached 
16: Sample δ𝑟𝑟 for a batch of n transitions 
17: Use the target model and main model to compute the 

loss 
18: Use the calculated loss to perform gradient descent and 

update the weights of the main model θ𝑚𝑚 
19: if i mod μ = 0 then  
20: θ𝑡𝑡 ← θ𝑚𝑚 
21: end if 
22:    end for 
23: for i = 0 to τ𝑝𝑝ℎ𝑦𝑦 
24: Select an action from predicted good actions 
25: Perform action in 𝐸𝐸𝑝𝑝ℎ𝑦𝑦 and examine result (s’, r, d) 
26: Place transition (s, s’, r, a, d) into replay buffer δ𝑟𝑟. 

Replace oldest transition if capacity is reached 
27: Sample δ𝑟𝑟 for a batch of n transitions and δ𝑑𝑑 for a 

mini-batch of transitions 
28: Use the target model and main model to compute the 

loss 
29: Use the calculated loss to perform gradient descent 

and update the weights of the main model θ𝑚𝑚 
30: if i mod μ = 0 then  
31: θ𝑡𝑡 ← θ𝑚𝑚 
32: end if 
33: end for 

IV. EXPERIMENTAL DESIGN 

As shown in Fig. 2, the experimental setup for our human-
robot collaborative experiment utilizes several components. 
The platform being used is a Franka Emika Panda robot with 
seven degrees of freedom to enable greater flexibility of 
movement [17, 18]. Fifteen letter blocks are placed within the 
workspace that represent assembly parts. These parts may be 
selected from the workspace in the user’s desired order and 
length. This permits a greater degree of task customization for 
the participant than what has been offered in our previous 
studies, and we believe that this improvement will enhance the 
quality of the collaboration. Additionally, the robot is equipped 
with an Intel RealSense D435i depth camera mounted to the 
end effector that allows it to view the workspace. The code that 
executes Algorithm 1 is run from a Lenovo P520 ThinkStation 
and utilizes the MoveIt Commander Python API to plan and 
execute trajectory commands [19, 20]. Those trajectories are 
calculated using deprojected points from the RealSense camera, 
which has a YOLOv8 model trained on the assembly parts 
performing labeling on its collected frames. 

 
Fig. 2. Experimental setup. 
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The task design of our human-robot collaborative 
experiment is outlined in Fig. 3. The human first demonstrates 
three assembly sequences to the robot, which collects this data 
with an end-effector-mounted vision system. The demonstration 
data is pre-processed to transitions and organized within a 
priority replay buffer separate from the standard one. This 
completes step 1 of Algorithm 1. Before the assembly process 
begins, steps 2-22 of Algorithm 1 are run to prepare the model 
for physical human-robot interaction. The next steps shown in 
Fig. 3 are representative of steps 23-33 in Algorithm 1. The 
human takes the first part of their desired assembly sequence, 
which provides a starting point for the robot’s prediction and 
collaboration. This process of prediction and collaboration 
aligned with the final stage of the TLPC framework continues 
until the task is completed. Actions taken in this phase produce 
transitions that are saved in the replay buffer and trained on, 
reinforcing the user’s desired behavior of the robot. 

 
Fig. 3. Experimental task design. 

 
Fig. 4. The participant demonstrates the word ROBOTICS to the 

collaborative robot. 

 
Fig. 5. The participant demonstrates the word MACHINES to the 

collaborative robot. 

 
Fig. 6. The participant demonstrates the word INFOTECH to the 

collaborative robot. 

Figs. 4, 5, and 6 present the human teaching phase of the 
above diagram (Fig. 3), in which the participant demonstrates 
assembly sequences to the collaborative robot. The human uses 
the letter blocks to assemble three words (ROBOTICS (Fig. 4), 
MACHINES (Fig. 5), and INFOTECH (Fig 6)) representing 
three different products according to working preference. The 
end-effector-mounted camera observes the selection space 
while the parts are assembled in the desired order to build its 
prerequisite task knowledge. 

V. RESULTS AND ANALYSIS 

A. Learning Performance and Analysis 
Preliminary testing of this framework has yielded promising 

results. The training and execution performance of the model is 
shown in Fig. 7, which outlines the time taken for policy 
convergence for three tested sequences: ROBOTICS, 
MACHINES, and INFOTECH. The agent receives a reward of 
1 for appropriate actions, and a reward of -1 for those that are 
wrong. Actions are taken for the transition between letters, and 
thus a maximum reward of n-1 may be gained for a word of 
length n. The selected words above are each of length 8, 
establishing a “perfect score” as 7. 

 
Fig. 7. Training and execution results. 

The above results present the reward per episode both for a 
pre-trained model (red) and for a non-pre-trained model (blue) 
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for 150 episodes. Additionally, the epsilon parameter is graphed 
as well, which begins at the max value of 1.0 and decreases to 
the minimum value of 0.5 as a function of, 

𝜀𝜀 = max(𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚 − 𝜁𝜁 × 𝑒𝑒, 𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚),  (5) 

per episode, where the current episode number is denoted by e, 
and 𝜁𝜁 represents the epsilon decay rate, defined as, 

𝜁𝜁 = (𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚−𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚)
𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

,      (6) 

where, 𝑒𝑒𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 represents the total number of episodes that are 
being run. This ensures a uniform reduction of the epsilon value 
as exploration progresses and encourages slightly more 
exploitation as time goes on. It should be noted that epsilon is 
forced to zero at episode 50, which is also where both models 
begin to show improvements in their per-episode rewards. This 
is to be expected, as every action being taken is that which is 
deemed best. By episode 100, the model that had been pre-
trained on the demonstration dataset had converged to the 
optimal policy and received consistent results. This is in 
contrast to the non-pre-trained model which fails to do so 
consistently, demonstrating the clear advantage of the 
developed solution, particularly in this context where humans 
either cannot or simply do not want to train the robot for an 
excessive amount of time. 

It should also be noted that, due to the finite steps of the 
assembly tasks, the model is capable of converging on the 
optimal policy rather quickly. Given more complex tasks or 
even a non-expert demonstrator, the model’s performance would 
undoubtedly be impacted and thus demand longer training 
times to converge. Additionally, we note that this framework 
may have trouble with similar demonstrated sequences that start 
the same way, as in this instance there would be several “optimal” 
actions that may be taken, and as a result, the wrong part may 
be predicted. In this scenario, however, the user would simply 
reject the part, and the next best one would be offered instead. 

B. Implementation in Real-World Human-Robot 
Collaborative Contexts 
Figs. 8, 9, and 10 present the human-robot collaborative 

process in action for the words ROBOTICS, MACHINES, and 
INFOTECH. The human demonstrations for each word in the 
selection area are shown in steps Figs. 8(1a), 9(1b), and 10(1c), 
respectively. Following this demonstration, the model is pre-
trained with the collected data. During this time, the parts are 
placed back within the workspace and the user is instructed to 
take the first of the parts of any of the demonstrated sequences. 
Once the training is completed, the robot will examine the 
selection area to determine the current state and will proceed to 
make a prediction for the participant’s next desired part and move 
to acquire that part for them. This is represented in step 2 of all 
relevant Figs. Following the part acquisition, the collaborating 
human will decide if that part is what they require or not. If it 
is, they will add it to the selection area and the robot will 
recognize that this was a good decision, and the agent will 
receive a positive reward. This is shown in steps 3a and 3b. 
Conversely, should the model make a bad prediction and the 
robot attempt to hand off the incorrect part, as shown in step 3c, 
the participant may simply add the part back to the workspace so 
that the agent can learn that this was a poor choice and may try 

again. This process of collaboration continues as seen in all 
stages through 6 until the task is ultimately complete.  

 
Fig. 8. Human-robot co-assembly for the “ROBOTICS” word. 

 
Fig. 9. Human-robot co-assembly for the “MACHINES” word. 

 
Fig. 10. Human-robot co-assembly for the “INFOTECH” word. 

VI. CONCLUSIONS AND FUTURE WORK 

In this study, we have established a framework for human 
teaching and robot learning in HRI through deep Q-learning. 
The developed approach allows effective robot learning not 
only with human demonstration data, but also with direct 
feedback from the collaborating user. We have experimentally 
implemented the proposed solution in real-world human-robot 
collaborative tasks. Results and analysis suggest the 
competitive performance of the developed approach. 
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 Based on the experimental setup, we plan to further 
evaluate the performance of the proposed approach with multiple 
metrics to be gathered from the opinions of participants of the 
study. These metrics will be used to identify areas of strengths 
and weaknesses in the approach as well as user comfort, trust, 
and acceptance of the system. This data will be employed to 
make improvements to the framework as well as to gather 
insights into how varying demographics view it. In addition, the 
evaluation results will be compared against those which were 
previously collected for our prior study in order to determine 
which method better satisfies the TLPC framework. 

We believe that the improvement in the maximum 
complexity of the task from our previous study will be a major 
contributing factor to the foreseen improvements in user ratings 
of the experience. This complexity serves to enhance the user 
experience by providing further customizability of the task, 
while also simplifying their efforts in teaching the robot. It is 
important to note that this complexity is entirely at the user’s 
discretion and is not designed to overcomplicate the process, 
but rather to allow participants to demonstrate tasks according 
to their comfort or trust levels [21]. As such, we anticipate higher 
performance of human-robot teams, especially in the context of 
Industry 5.0, which will be investigated in our future study. 
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