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Abstract—Collaborative robots, affectionately referred to as
“cobots,” serve to function alongside their human counterparts to
help them complete a specific task. This differs from traditional
systems in which the machines are set about their own jobs and
are often locked behind cages so as to prevent human access in
favor of safety. By removing these walls and introducing
collaborative systems, a new level of versatility and productivity is
opened within the contexts that they are often employed. This
focus of human-robot interaction has grown in recent years, and
alongside it the topic of teaching and learning from demonstration
has been investigated. Several methods of implementation for this
topic have been developed, and while they are potentially effective,
they still have gaps in versatility. Thus, we propose a different
method of robot learning from demonstrations through the
employment of deep Q-networks. These networks permit effective
learning not only with human demonstration data, but also with
direct feedback from the collaborating user. The proposed
solution is experimentally implemented in real-world human-
robot collaborative tasks. Preliminary results and analysis suggest
the competitive performance of the proposed approach. Future
work of this study is also discussed.

Keywords—robotics, human-robot interaction, learning from
human demonstrations, collaborative tasks, algorithm

I. INTRODUCTION

Autonomous robotic systems have been rapidly developed
and employed in many contexts as part of the rise of Industry
4.0 [1-3]. The primary focus in the context of robotics within
Industry 4.0 is the development of smart factories equipped with
multitudes of sensors and advanced robotics designed to enhance
safety, cost efficiency, and productivity [4-6]. These advanced
robotics are often employed not only as those with designated
tasks to perform within their own areas, but also as collaborative
robots designed to function alongside human workers. Several
methods exist for the development of these systems so that they
may collaborate appropriately. One such approach is the
Teaching-Learning-Prediction-Collaboration (TLPC) framework
[7]. Tt involves task demonstrations that the robot learns from,
then predicts human intentions, and collaborates with its human
partner accordingly. In this way, the desired behavior is learned
rather than rigidly hardcoded in human-robot interaction (HRI).

There are a multitude of studies regarding the refinement and
implementation of deep Q-learning models, which are built on
the reinforcement learning paradigm [8]. Several methods exist
that seek to improve training times and, of course, the agent’s
score and therefore performance in its task. Deep Q-learning is
slow compared to other learning paradigms, requiring the agent
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to select and perform an action, examine the results, store that
experience, and learn from previous ones. It is for this reason
that there has been much focus on speeding along training times
in order to enhance its feasibility.

Notably, a large area of application for deep Q-learning
networks is that of simulated environments, such as Atari 2600
games [9, 10]. Simulations prove to be an excellent training
ground for the learning agent due to the speed at which it may
learn, being unburdened by any physical restrictions that may
slow the process down. For instance, the model receives the
frame data from the game and produces estimated Q-values from
that data. Thus, it is hindered often only by the speed of the game
itself, provided there is sufficient computational power for it and
the training. Deep Q-learning for robotics differs in the speed of
its execution. An agent is limited by the time that it takes to
execute an action and receive feedback in a physical space due
to time of movement, calculations from sensor data, etc.

It should be noted, however, that deep Q-networks are
consistently applied in the field of robotics, despite potential
delays in the learning process. To circumvent this issue, simulated
environments are still often used. Gu et. al, for instance, made
use of a simulated environment for their experiments prior to
physical, real-world experiments in their deep learning task for
robotic manipulation, which they note, in particular, enables
faster comparisons of design choices [11]. We implement a
similar approach in our work, which will be discussed later.
Similarly, a study conducted by Mohanty et al. utilized deep Q-
learning for mobile robot navigation [12]. Specifically, the
design focused on the topic of path planning in an environment
consisting of obstacles that must be avoided while reaching a
goal point. Much like the previous study, a simulated
environment in addition to a physical environment was used for
the production of the agent and its learned experiences.

The training time of the agent is not simply a matter of
convenience, but of necessity as well, particularly in collaborative
robotics tasks. A method of addressing the latency of physical
systems in collaborative deep reinforcement learning tasks is
proposed by Ghadirzadeh [13]. This approach leans heavily on the
concept of human intention prediction and determines the correct
time for the robot to act and begin executing its actions based on
gathered human motion data in addition to the current state of a
developed behavior tree. It does so by integrating the Q-function
as a node within the behavior tree itself to make its proactive
decisions. In doing so, the model gains a “head start” on acting,
cutting out some of the inevitable delays of physical systems.
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In this work, we employ a deep Q-network to facilitate robot
learning and enhance versatility in the TLPC framework in
human-robot collaborative contexts. This solution allows the robot
to explore its action space and receive direct feedback from its
human partner for each action taken, thus “reinforcing” its task
knowledge to further assist the human in collaborative tasks. By
utilizing this method, the instruction of the robot shifts from
static teaching to a dynamic relationship in which feedback can
be consistently given to help the robot improve its behaviors.

II. RECAP OF TLPC FRAMEWORK

As noted previously, this study extends the development of
the TLPC framework [7], which is outlined in distinct segments
as shown in Fig. 1. First, a human teammate teaches the robot
how to perform a task. This step is notably minimally demanding
of the user, simply requiring them to perform the task as they
normally would. From this demonstration, the robot handles the
learning process in which it takes this demonstration data and
applies it in a way that permits it to build and optimize its task
strategies. The learned knowledge permits the robot to predict
human intentions in shared tasks, and as a result, to collaborate
effectively with its human partner.

= ™ SIS
£ = e
Learning
' Robot cbserves demonstration
and uses collected data to modify
‘ . ‘ behavior accordingly -

Prediction -
Collaboration

Robot employs learned behavior
lo predict operator's next aclions

and collaborate properly
Fig. 1. The TLPC Framework.

III. METHODOLOGY
A. Deep Q-Learning

Reinforcement learning is a learning paradigm designed to
permit an agent to learn the optimal policy for sequential
decision problems [14]. This process involves the computation
of the appropriate action value for a given policy [8]. The learning
performance is improved with the development and refinement
of this policy, which comes as a result of consistent exploration
and exploitation within an agent’s environment where the agent
is the learner of the policy and executor of the actions, and the
environment is the space that it is learning within.

The structure for a typical reinforcement learning setup is
comprehensively introduced in [8]. In the learning process, at
time ¢, the agent observes a state s; from its environment
(where s, is in state space S) and performs an action a, selected
from action space 4. This action selection is based upon the
policy that defines the agent’s behavior, usually denoted as =,
which maps states to actions. Following the action, a reward of
1 is provided to the agent according to the quality of the action
taken, and the current state transitions to the state s;,; according
to the state transition probability P(s;,|S;, a;) [8]. Naturally,
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good actions produce a positive reward, and bad actions
produce negative ones. This is defined by the reward function
R(s,a). The agent progresses through the transitions until a
done state is reached, at which point a new episode is begun.

The goal of the agent is to gain the highest reward possible
from its environment, and this process involves the estimation
of the maximum Q-values possible for a given state and action.
These values are derived from the Bellman equation [15]:

Q(s,a) =r(s,a) + y max Q(s',a’). (1

In Eq. (1), the Q-value for state s and action « is calculated
by the immediate reward for taking action a in state s plus the
maximum reward for the next state s’ over all possible actions
a'. The discount factor y is applied to this to offset future
rewards against immediate ones, where y € (0,1] [8, 15].

Our implementation of deep Q-learning in the TLPC
framework consists of two deep neural networks — a main and
target network — as is typical for a double Q-learning setup [14].
The main network is used for the predictions of the Q-values
for a given state, and the target network is used for the
calculation of loss at each step [16]. These models are built with
a combination of one-dimensional convolution layers, dense
layers, and an LSTM layer, as our data is sequential in nature.
The input state representation is a two-dimensional one-hot
array of shape (L7, NA), where LT denotes the maximum length
of a given task, and NA represents the number of possible
actions. From this representation, the sequence of the task is
effectively modeled for each state.

B. Modeling of Robot Learning for HRI

As shown in [16], the efficacy of pre-training the agent with
demonstration data prior to giving it access to the environment
is promising. With this, it is possible to effectively cut down on
the training time in which a human is required to be present for
explicit feedback. This pre-training phase makes use of four
loss types for updates to the network: a one-step double Q-
learning loss, an n-step double Q-learning loss, a supervised large
margin classification loss, and finally an L2 regularization loss.

The one- and n-step double Q-learning loss are forms of
temporal difference (TD) loss, and in our implementation, we
use the Huber loss function which utilizes both mean squared
error and mean absolute error, as defined below [15]:

S —y)? iflf) -yl <6

EOPTD =151 60—y~ 26t i) -yl > o

2)
where L represents the Huber loss function, 6 represents the
delta parameter that establishes the threshold for switching
between the two components of the function, y is the target
value, and f(x) is the predicted value. Implementing n step
returns helps to propagate the expert’s trajectory values to
earlier states, thus producing more effective pre-training [16].
The returns are calculated as:

e+ ¥ t+ Vn_lrt+n—1 + maxqy"Q(Spn, @), (€))

where 1; is the reward at timestep ¢, ¥ is the discount factor, n
is the number of steps into the future that are being considered,
and the final part of the equation determines the maximum
estimated Q-value for the state at timestep ¢+n for all actions a.
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The large margin classification loss is crucial to the pre-
training phase of the algorithm, as it forces non-demonstrator
actions to be at least a margin lower than those taken by the
expert [16]. In other words, this encourages the network to
prioritize demonstrator actions above others. The loss is
calculated as:

J(Q) = max[Q(s, a) + l(ag, a)] — Q(s, ag), “4)

where ag is the action of the demonstrator, and l(ag, a) is the
margin function that is positive if a # ag, and 0 if a = aj.

A simulated environment is also utilized to enable faster
training of the deep Q-network. This environment offers the
benefits of allowing the agent to take actions and observe the
results much faster than it could from direct physical
interactions. The agent explores actions that it may take based
upon what is available in the action space. It is penalized for
nonsensical actions, such as attempting to select an assembly
piece that has already been taken, and rewarded for proper ones
that align with the demonstrated data. These transitions are
organized in the replay buffer, and each time it is sampled to
train the model, a random subset of the demonstration data is
inserted into it as they are prioritized experiences. By training
the model in this way, it becomes more robust and less likely to
act improperly when physically interacting with the human.

In real-world HRI, the human’s part in teaching the robot
involves more processes. Small adjustments may need to be
made to the agent’s behavior that the simulated training may
not have accounted for. Thus, the collaborative phase of the
HRI may still permit learning to take place, if necessary. In this
work, the human teaching and robot learning algorithm is
shown in Algorithm 1, which has been adapted from [16]. The
definitions of the symbols used in Algorithm 1 are §,: expert-
demonstrated assembly task transitions data set, §,: replay
buffer, 0,: target network weights, 0,,: main network weights,
Eim: simulated environment, Ey,p,,: physical environment, k: pre-
training steps, : target model update frequency, Ty, simulated
environment training steps, Tppy: physical environment training
steps, and m: behavior policy.

Algorithm 1 Human teaching and robot learning for human-robot
collaborative tasks through deep Q-learning

1: “Teaching phase” in which assembly task methods are
demonstrated to the robot, which are organized as
transitions in §,4. 84 is used to fill 5,

2: Main and target models are initialized with Xavier
uniform initializer and 1D convolution layers, an LSTM
layer, and Dense layers

3: Simulated environment E;,, that mimics physical
environment Epp,y, is initialized

4: fori=0tok

5: Sample §, for a batch of n transitions

6: Use the target model and main model to compute the
loss

7: Use the calculated loss to perform gradient descent and
update the weights of the main model 6,

8: if i mod p =0 then

9: 0, «— 0O,

10: end if

11:  end for

12: fori=0to Ty,
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13: Select action from epsilon-greedy policy ©

14: Perform action in Eg;;;, and examine result (s, 7, d)

15: Place transition (s, s’, r, a, d) into replay buffer §,..
Replace oldest transition if capacity is reached

16: Sample §,- for a batch of » transitions

17: Use the target model and main model to compute the
loss

18: Use the calculated loss to perform gradient descent and

update the weights of the main model 8,,
19: if i mod p =0 then

20: 6, «— 0y,

21: end if

22: end for

23: for i = 0 to Tppy

24: Select an action from predicted good actions

25: Perform action in Ejp,, and examine result (s, 7, d)

26: Place transition (s, s, 7, a, d) into replay buffer §,.
Replace oldest transition if capacity is reached

27: Sample 6, for a batch of n transitions and &, for a
mini-batch of transitions

28: Use the target model and main model to compute the
loss

29: Use the calculated loss to perform gradient descent
and update the weights of the main model 6,,

30: if i mod p =0 then

31: 0, «— 0B,

32: end if

33:  end for

IV. EXPERIMENTAL DESIGN

As shown in Fig. 2, the experimental setup for our human-
robot collaborative experiment utilizes several components.
The platform being used is a Franka Emika Panda robot with
seven degrees of freedom to enable greater flexibility of
movement [17, 18]. Fifteen letter blocks are placed within the
workspace that represent assembly parts. These parts may be
selected from the workspace in the user’s desired order and
length. This permits a greater degree of task customization for
the participant than what has been offered in our previous
studies, and we believe that this improvement will enhance the
quality of the collaboration. Additionally, the robot is equipped
with an Intel RealSense D435i depth camera mounted to the
end effector that allows it to view the workspace. The code that
executes Algorithm 1 is run from a Lenovo P520 ThinkStation
and utilizes the Movelt Commander Python API to plan and
execute trajectory commands [19, 20]. Those trajectories are
calculated using deprojected points from the RealSense camera,
which has a YOLOvV8 model trained on the assembly parts
performing labeling on its collected frames.

Fig. 2. Experimental setup.
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The task design of our human-robot collaborative
experiment is outlined in Fig. 3. The human first demonstrates
three assembly sequences to the robot, which collects this data
with an end-effector-mounted vision system. The demonstration
data is pre-processed to transitions and organized within a
priority replay buffer separate from the standard one. This
completes step 1 of Algorithm 1. Before the assembly process
begins, steps 2-22 of Algorithm 1 are run to prepare the model
for physical human-robot interaction. The next steps shown in
Fig. 3 are representative of steps 23-33 in Algorithm 1. The
human takes the first part of their desired assembly sequence,
which provides a starting point for the robot’s prediction and
collaboration. This process of prediction and collaboration
aligned with the final stage of the TLPC framework continues
until the task is completed. Actions taken in this phase produce
transitions that are saved in the replay buffer and trained on,
reinforcing the user’s desired behavior of the robot.

REEL EEm SR
SR e HEE
E

Repeat until task is completed

Fig. 3. Experimental task design.

s

Fig. 4. The participant demonstrates the word ROBOTICS to the
collaborative robot.

_—

Fig. 5. The participant demonstrates the word MACHINES to the
collaborative robot.
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Fig. 6. The participant demonstrates the word INFOTECH to the
collaborative robot.

Figs. 4, 5, and 6 present the human teaching phase of the
above diagram (Fig. 3), in which the participant demonstrates
assembly sequences to the collaborative robot. The human uses
the letter blocks to assemble three words (ROBOTICS (Fig. 4),
MACHINES (Fig. 5), and INFOTECH (Fig 6)) representing
three different products according to working preference. The
end-effector-mounted camera observes the selection space
while the parts are assembled in the desired order to build its
prerequisite task knowledge.

V. RESULTS AND ANALYSIS

A. Learning Performance and Analysis

Preliminary testing of this framework has yielded promising
results. The training and execution performance of the model is
shown in Fig. 7, which outlines the time taken for policy
convergence for three tested sequences: ROBOTICS,
MACHINES, and INFOTECH. The agent receives a reward of
1 for appropriate actions, and a reward of -1 for those that are
wrong. Actions are taken for the transition between letters, and
thus a maximum reward of n-1 may be gained for a word of
length n. The selected words above are each of length 8,
establishing a “perfect score” as 7.

Reward per Episode

B
2 o
&
24
—4
—— Rewards (pre-train)
—6 —— Rewards (no pre-train)
Epsilon
T T T T T T T T
0 20 40 60 80 100 120 140

Episode
Fig. 7. Training and execution results.

The above results present the reward per episode both for a
pre-trained model (red) and for a non-pre-trained model (blue)
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for 150 episodes. Additionally, the epsilon parameter is graphed
as well, which begins at the max value of 1.0 and decreases to
the minimum value of 0.5 as a function of,

e =max(Emax — ¢ X €, Emin)» ®)

per episode, where the current episode number is denoted by e,
and ¢ represents the epsilon decay rate, defined as,

( — (Emax_amin)’ (6)

€total

where, e;,:4; represents the total number of episodes that are
being run. This ensures a uniform reduction of the epsilon value
as exploration progresses and encourages slightly more
exploitation as time goes on. It should be noted that epsilon is
forced to zero at episode 50, which is also where both models
begin to show improvements in their per-episode rewards. This
is to be expected, as every action being taken is that which is
deemed best. By episode 100, the model that had been pre-
trained on the demonstration dataset had converged to the
optimal policy and received consistent results. This is in
contrast to the non-pre-trained model which fails to do so
consistently, demonstrating the clear advantage of the
developed solution, particularly in this context where humans
either cannot or simply do not want to train the robot for an
excessive amount of time.

It should also be noted that, due to the finite steps of the
assembly tasks, the model is capable of converging on the
optimal policy rather quickly. Given more complex tasks or
even a non-expert demonstrator, the model’s performance would
undoubtedly be impacted and thus demand longer training
times to converge. Additionally, we note that this framework
may have trouble with similar demonstrated sequences that start
the same way, as in this instance there would be several “optimal”
actions that may be taken, and as a result, the wrong part may
be predicted. In this scenario, however, the user would simply
reject the part, and the next best one would be offered instead.

B. Implementation in Real-World Human-Robot
Collaborative Contexts

Figs. 8, 9, and 10 present the human-robot collaborative
process in action for the words ROBOTICS, MACHINES, and
INFOTECH. The human demonstrations for each word in the
selection area are shown in steps Figs. 8(1a), 9(1b), and 10(1c),
respectively. Following this demonstration, the model is pre-
trained with the collected data. During this time, the parts are
placed back within the workspace and the user is instructed to
take the first of the parts of any of the demonstrated sequences.
Once the training is completed, the robot will examine the
selection area to determine the current state and will proceed to
make a prediction for the participant’s next desired part and move
to acquire that part for them. This is represented in step 2 of all
relevant Figs. Following the part acquisition, the collaborating
human will decide if that part is what they require or not. If it
is, they will add it to the selection area and the robot will
recognize that this was a good decision, and the agent will
receive a positive reward. This is shown in steps 3a and 3b.
Conversely, should the model make a bad prediction and the
robot attempt to hand off the incorrect part, as shown in step 3c,
the participant may simply add the part back to the workspace so
that the agent can learn that this was a poor choice and may try
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again. This process of collaboration continues as seen in all
stages through 6 until the task is ultimately complete.

pit e - X

Fig. 10. Human-robot co-assembly for the “INFOTECH” word.
VI. CONCLUSIONS AND FUTURE WORK

In this study, we have established a framework for human
teaching and robot learning in HRI through deep Q-learning.
The developed approach allows effective robot learning not
only with human demonstration data, but also with direct
feedback from the collaborating user. We have experimentally
implemented the proposed solution in real-world human-robot
collaborative tasks. Results and analysis suggest the
competitive performance of the developed approach.
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Based on the experimental setup, we plan to further
evaluate the performance of the proposed approach with multiple
metrics to be gathered from the opinions of participants of the
study. These metrics will be used to identify areas of strengths
and weaknesses in the approach as well as user comfort, trust,
and acceptance of the system. This data will be employed to
make improvements to the framework as well as to gather
insights into how varying demographics view it. In addition, the
evaluation results will be compared against those which were
previously collected for our prior study in order to determine
which method better satisfies the TLPC framework.

We believe that the improvement in the maximum
complexity of the task from our previous study will be a major
contributing factor to the foreseen improvements in user ratings
of the experience. This complexity serves to enhance the user
experience by providing further customizability of the task,
while also simplifying their efforts in teaching the robot. It is
important to note that this complexity is entirely at the user’s
discretion and is not designed to overcomplicate the process,
but rather to allow participants to demonstrate tasks according
to their comfort or trust levels [21]. As such, we anticipate higher
performance of human-robot teams, especially in the context of
Industry 5.0, which will be investigated in our future study.
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