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Abstract— Learning from both successes and failures is key to 

developing robust and efficient policies in reinforcement learning 

(RL). Traditional RL excels at learning from rewards but often 

neglects non-rewarding states, especially those leading to negative 

outcomes. This paper introduces a novel approach that integrates 

a modified Gaussian distribution into a Deep Q-Network (DQN) 

framework to learn from failures. By penalizing state-action pairs 

near historical failure points, the model guides the agent away 

from pitfalls. The optimized DQN shows improved learning speed 

and stability, achieving higher and more consistent scores than a 

standard DQN. This approach highlights the potential of hybrid 

RL models that combine value-based methods with failure-aware 

mechanisms to accelerate learning and enhance decision-making. 

Keywords—robotics, reinforcement learning, machine learning, 

learning from failure 

I. INTRODUCTION 

Reinforcement learning (RL), despite its advances, often 
relies on brute-force exploration to discover optimal strategies. 
This approach, though effective in simulations where multiple 
scenarios can be tested in fractions of a second, still has some 
gaps in real-world applications [1]. In scenarios involving robotics 
and industrial machinery, training RL models can be time-
consuming and often requires supervision, leading to increased 
costs and extended development cycles [2]. This inefficiency 
highlights the need for more sophisticated methods that enable 
machines to learn from past experiences, particularly failures, to 
accelerate and refine the learning process. In a world increasingly 
driven by data and digital interactions, the ability to learn from 
failures and adapt accordingly is a necessity for the advancement 
of intelligent systems. The rapid growth of artificial intelligence 
and machine learning has seen robots and automated systems 
become integral across various industries [3-5].  

The concept of learning from failure is not new [2, 6, 7], but 
it has gained renewed interest in the context of reinforcement 
learning. While Grollman and Billard’s work on Gaussian 
models for learning from failed demonstrations laid the 
groundwork [7], recent studies have expanded on these ideas 
[8, 9]. For instance, approaches such as Hindsight Experience 
Replay have been developed to use failed episodes by 
reinterpreting goals, thereby improving learning efficiency [9]. 
Other methods focus on dynamically adjusting exploration 
strategies based on past failures to avoid redundant or harmful 

979-8-3315-3100-3/24/$31.00 ©2024 IEEE

actions. By situating the Deep Q-Network-Donut Mixture 
Model (DQN-DMM) within this broader context, our work 
contributes to the growing body of research that seeks to 
enhance RL by systematically incorporating failure data, 
offering a robust alternative to traditional exploration methods.  

By integrating these techniques into a variety of fields, we 
seek to enhance the generalizability and practical utility of 
learning from failure and exploratory trajectory generation. 
This expansion is essential for developing more versatile and 
adaptive AI systems capable of operating in diverse 
environments and contexts. We hypothesize that by 
incorporating these advanced learning techniques, we can 
significantly improve the efficiency and effectiveness of RL in 
real-world applications, where the stakes are often higher and 
the margin for error is minimal. 

This paper will begin by discussing the theoretical 
underpinnings of the Donut Mixture Model (DMM), a novel 
approach that incorporates modified Gaussian distributions to 
penalize actions leading to known failures. We will then explore 
the integration of DMM into the Deep Q-Network (DQN) 
framework, providing detailed mathematical formulations and 
implementation strategies. Following this, we will present 
experimental results showing the effectiveness of DMM-
enhanced DQN in a robotic arm simulation tasked with complex 
object manipulation. Finally, we will compare our approach 
with traditional RL methods, highlighting the advantages of 
learning from failure in reducing training time and improving 
performance in real-world scenarios. 

By the end of this study, we aim to show that integrating 
DMM into RL algorithms offers a robust solution for enhancing 
learning efficiency, particularly in environments where trial-
and-error methods are impractical. This work contributes to the 
broader field of AI by providing insights into how learning from 
failure can be generalized across different domains, paving the 
way for more adaptive and intelligent systems. 

II. METHODOLOGY

A. Learning From Failure

We build upon the previous work of Billard and Grollman,
specifically employing our novel version of the "Donut Mixture 
Model", a modified Gaussian Mixture Model [7, 10] as 
illustrated in Fig. 1. Our Donut Mixture Model is implemented 
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as a strategic enhancement to the reinforcement learning process, 
designed to help an agent systematically avoid repeating past 
failures. Unlike traditional reinforcement learning approaches 
that primarily focus on maximizing rewards, our DMM 
introduces a mechanism that penalizes actions based on their 
proximity to previously recorded failures. This model derives its 
name from its unique ability to "carve out" low-probability 
regions around these failures in the action space, creating a 
safeguard reminiscent of a donut's hole [2]. 

 

Fig. 1. Standard Gaussian distribution (left) and modified Donut Distribution 
(right). The Donut Distribution lowers the probability density at the center, 
representing a failure point, creating a "donut" shape that encourages the agent 
to avoid failure-prone areas. 

Figs. 2 and 3 illustrate the impact of the Donut Mixture 
Model (DMM) on reinforcement learning. Fig. 2 shows how 
multiple failure points create "donut"-shaped penalty 
distributions, guiding the agent away from known failures. In 
Fig. 3, the left subplot shows the original reward function, while 
the right subplot demonstrates how the DMM modifies this 
reward by subtracting penalties near failure-prone regions, 
reshaping the reward landscape to steer the agent toward new 
and likely more rewarding actions. 

 

Fig. 2. The combined effect of multiple failure points. Each failure point contributes 
a "donut" distribution, and the overall penalty is the sum of these distributions.  

 

Fig. 3.  Original reward and modified reward. The left image shows the original 
reward function, which might be high near a goal state or some optimal 
configuration. The right image shows how the DMM modifies this reward by 
subtracting penalties, creating a new reward landscape that steers the agent away 
from failure-prone regions. 

At the core of our DMM is the Gaussian penalty function, 
which computes the penalty for a given state-action ,  based 
on its distance from known failure points  , . Each failure 
point contributes to the overall penalty, with closer failure points 
having a greater impact. The penalty ,  for a state-action 
pair is defined as:  

,   ∑ exp  ||||||||

 
 ,  (1) 

where σ is the standard deviation of the Gaussian, N is the 
number of known failure points, and || || denotes the Euclidean 
distance.  

The DMM can be integrated into the reinforcement learning 
framework by modifying the reward function. The standard 
reward is adjusted by subtracting the penalty from the DMM: 

,   ,    ⋅ , ,              (2) 

where   is the scaling factor that controls the impact of the 
DMM penalty on the reward. In the context of a Deep Q-
Network, the Q-value update rule is modified to account for the 
penalized reward: 

,   ,    ,    max
  ,   , ,   (3) 

where   is the learning rate,   is the discount factor, and 

max
  ,  represents the maximum Q-value for the next 

state. This update rule integrates the DMM penalty into the Q-
value computation, steering the learning process away from 
failure-prone regions in the state-action space. This improved 
reward function ensures that the agent is discouraged from 
taking actions that lead to states near known failure points, 
effectively incorporating learning from failure into the 
reinforcement learning process.  

B. DQN Implementation 

 We selected a Deep Q-Network for our project due to its 
advanced reinforcement learning capabilities, which are well-
suited for handling the complexities of learning optimal policies 
in environments with high-dimensional state spaces. The Q-
network is constructed as a deep neural network using the Keras 
framework, comprising three hidden layers. The network’s input 
layer accepts the state vector representing the current 
environment. The network uses two hidden layers, with 512 and 
256 nodes respectively, applying Rectified Linear Unit (ReLU) 
activation functions to introduce non-linearity and improve its 
ability to model complex functions. The output layer contains 
several nodes corresponding to the action space, each 
representing the Q-value associated with a specific action [11].  

 To stabilize the learning process, the agent employs an 
experience replay buffer, which stores transitions as tuples 
(state, action, reward, next state, done). During training, the 
agent randomly samples mini-batches of these transitions from 
the buffer. This random sampling helps break the correlation 
between consecutive transitions, reducing update variance and 
minimizing the risk of overfitting to recent experiences. The 
agent employs an epsilon-greedy policy for action selection 
[11]. Under this policy, the agent selects actions randomly with 
a probability epsilon, facilitating exploration of the action space. 
As training progresses, epsilon is gradually decreased, shifting 
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the agent's behavior from exploration to exploitation, where 
actions are chosen based on the highest predicted Q-values. This 
approach balances the need for exploring new strategies with the 
refinement of known successful actions, ultimately leading to 
the convergence of the learning process. 

C. Training 

The agent samples mini-batches from the experience replay 
buffer and updates the Q-network using the Bellman equation 
[12]. The loss function is computed as the mean squared error 
between the target Q-values and the predicted Q-values: 

θ      , ; θ,   (4) 

where    ,   γ max
  , ; θ is the target Q-

value, with   representing the parameters of the target 

network.  , ;   is the predicted Q-value based on the 

current network parameter  . The agent interacts with the 
environment over multiple episodes, collecting experiences and 
periodically updating the Q-network. The training loop 
continues until the agent reaches a predefined performance 
threshold or the maximum number of episodes is completed, 
which varies based on testing. 

III. RESULTS AND ANALYSIS 

A. Cartpole Testing 

We first implemented the DMM process in the CartPole-v1 
environment from OpenAI Gym to evaluate our approach. The 
goal in this environment is to balance a pole on a moving cart by 
applying forces to keep the pole upright for as long as possible. 
The state space consists of the cart's position, velocity, pole 
angle, and angular velocity, while the action space allows the 
cart to be moved either left or right, as shown in Fig. 4. An 
episode ends when the pole falls beyond a certain angle or the 
cart goes out of bounds. The primary objective is to maximize 
the time the pole remains balanced. Our training loop continued 
either until the episode reward reached five hundred or the agent 
completed one thousand episodes.  

 

Fig. 4. Visual cartpole environment. 

To evaluate the effectiveness of our approach, we conducted 
three tests using a standard DQN and three tests using our DQN-
DMM method. Figs. 5a and 5b present the training-reward 
graphs comparing the performance of the DQN and DQN-DMM 
models. The DQN-DMM model demonstrated faster 
convergence, requiring approximately 14,000 steps to achieve 
optimal performance, compared to the baseline DQN, which 
required 20,000 steps. Moreover, the DQN-DMM model 
exhibited a more consistent increase in episode rewards, 

reflecting steady learning progress, whereas the baseline DQN 
displayed sporadic learning patterns. 

Figs. 5c and 5d illustrate the testing performance over 10 
episodes for the baseline DQN and the DQN-DMM models, 
respectively. The DQN-DMM model consistently achieved the 
maximum possible score of 500, indicating a highly effective 
learning process. In contrast, the baseline DQN managed a 
maximum reward of only 253, with significant variability in its 
performance. The results clearly demonstrate the superior and 
more efficient learning capability of the DQN-DMM model 
compared to the baseline DQN. 

Baseline DQN DQN-DMM 

a) Training b) Training 

c) Testing d) Testing 

Fig. 5. Comparison of training and testing rewards for the CartPole environment 
using the baseline DQN and DQN-DMM models. a) Shows the training-reward 
graph of the baseline DQN model for approximately 20,000 steps. b) Shows the 
training-reward graph of the DQN-DMM model for approximately only 14000 
steps. c) Shows the testing-reward graph of the baseline DQN model for 10 
episodes in total, with a maximum reward of 223. d) Shows the testing-reward 
graph of the DQN-DMM model for 10 episodes in total, with it consistently 
scoring the maximum score available, 500.  

B. Shower Testing 

Following the success in the CartPole environment, we 
extended our testing to a custom environment: a shower 
simulation. The objective of this environment was to maintain 
the shower temperature between 37 and 39 degrees Celsius, 
which is considered the optimal range for showering. Each 
episode allowed for a maximum of 60 actions before the state 
reset. The state was defined solely by the current temperature 
of the shower, and the available actions were to increase the 
temperature, decrease the temperature, or do nothing. At the 
start of each episode, the starting temperature would be 
randomized, making the connections and the learning more 
difficult for the model to manage.  

Like the CartPole environment, we conducted 3 tests using 
a DQN and 3 tests using our DQN-DMM method. Fig. 6 
illustrates the reward graph comparing the performance of the 
DQN and DQN-DMM models. Remarkably, the DQN-DMM 
model outperformed the DQN model even more than the 
Cartpole test, exceeding our expectations. This further 
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demonstrates the effectiveness of the DQN-DMM approach in 
diverse and custom environments.  

 

Fig. 6. The training-reward results of the baseline DQN model over 15000 steps, 
showing its struggle to achieve consistent improvements in performance. 

 
Fig. 7. The training-reward results of the DQN-DMM model after successfully 
completely training in only five thousand steps, demonstrating significantly 
faster and more stable learning compared to the baseline DQN. 

Figs. 6 and 7 depict the training processes of the baseline 
DQN and DQN-DMM models, respectively. The baseline DQN 
struggled to develop a functional model even after 250 trials, 
which equates to around 14,000 steps, indicating significant 
challenges in learning and model formation. In stark contrast, 
the DQN-DMM model successfully trained a model in 
approximately 5,000 steps, demonstrating a remarkable 
improvement in learning speed—almost 300% faster than the 
baseline DQN. This substantial acceleration underscores the 
DQN-DMM’s enhanced capability to establish connections and 
efficiently learn complex tasks, showcasing its clear superiority 
over traditional DQN methods.  

C. Real-world Robot Application 

Fig. 8 illustrates the setup of the robotic arm used in this 
experiment [13-16]. The objective was for the robotic arm to 
determine the correct combination of hole shape and angle for a 
square, using the force value, hole number, and degree of 
rotation as the state inputs. The environment provided 5 discrete 
actions for the robotic arm: rotate left by 2 degrees, rotate right 
by 2 degrees, switch to the square hole, switch to the circular 
hole, and switch to the triangular hole. Like previous tests, we 
conducted comparisons between 3 DQN models and 3 DQN-
DMM models to evaluate the effectiveness of our approach in 
this new context. 

 

Fig. 8. Robot environment setup. 

 

Fig. 9. The training-reward results for the DQN-DMM model over a span of 
175 episodes.  

 
Fig. 10. The training-reward results for the baseline DQN model over a span of 
4000 episodes.  

Fig. 9 presents the training-reward graph for the DQN-DMM 
model, while Fig. 10 shows the same for the baseline DQN 
model. Consistent with the results from the CartPole and shower 
tests, the DQN-DMM model not only trained more quickly but 
also demonstrated a superior ability to establish correct 
connections throughout the training process.  

D. Discussion 

Figs. 5a and 5b illustrate that the DQN-DMM model reached 
optimal performance in approximately 14,000 steps, compared 
to 20,000 steps for the baseline DQN. This represents a 30% 
reduction in training time, highlighting the efficiency of the 
DQN-DMM. The DQN-DMM also demonstrated a steady 
increase in episode rewards, indicating a more stable learning 
process. In contrast, the baseline DQN showed sporadic 
learning, likely due to repeated exploration of failure-prone 
actions. The DQN-DMM’s ability to penalize such actions 
effectively guided the agent toward more promising strategies, 
leading to faster and more consistent convergence. 
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In the testing phase (Figs. 5c and 5d), the DQN-DMM 
consistently achieved the maximum score of 500 across all 
episodes, showcasing its ability to generalize and perform 
reliably in varied scenarios. The baseline DQN, however, 
struggled with a maximum score of 253 and exhibited 
inconsistent behavior. This inconsistency suggests that the 
baseline DQN failed to adequately learn from failures during 
training, resulting in a less reliable policy. 

The early training stages, as depicted in Figs. 6, 7, 9, and 10 
further emphasize the DQN-DMM’s efficiency. While for the 
shower test, the baseline DQN failed to develop a functional 
model after 14,000 steps, the DQN-DMM achieved this in just 
5,000 steps—nearly 300% faster. For the real-world environment 
test, the baseline DQN achieved a maximum score of only 8 after 
more than 4000 episodes while the DQN-DMM model achieved 
a score of almost 60 in only 175 episodes. This rapid learning 
underscores the DQN-DMM’s ability to effectively utilize failure 
data to accelerate the learning process, leading to quicker and 
more meaningful connections between actions and outcomes.  

      The DMM outperforms the baseline DQN primarily because 
it incorporates a structured approach to learning from failures. 
By penalizing actions near known failure points, the DMM 
enhances exploration, accelerates convergence, stabilizes the 
learning process, and results in the development of more robust 
policies. These improvements address the shortcomings of 
traditional DQN models, making the DMM a powerful tool for 
reinforcement learning, especially in complex environments. 

IV. CONCLUSION AND FUTURE WORK 

To enhance the application of reinforcement learning in 
complex environments, we have developed and assessed a novel 
DQN-DMM model that integrates failure-aware mechanisms 
into the DQN framework. Our experiments, conducted across a 
range of environments from standard simulations like CartPole 
to custom scenarios such as shower temperature control, 
consistently suggest the DQN-DMM’s superior performance in 
terms of training efficiency and robustness. The model’s ability 
to effectively learn from failures positions it as a promising 
solution for real-world applications where traditional RL 
methods face limitations. The DQN-DMM model achieves 
higher accuracy and efficiency, effectively learning and 
adapting to diverse tasks. We have conducted real-world 
validation experiments that highlighted the model's ability to 
optimize decision-making processes in dynamic environments. 

One area for future research is to further enhance the 
scalability and applicability of the DQN-DMM model in more 
challenging and varied environments. While the current model 
shows significant promise, future work should focus on 
streamlining computational efficiency and reducing training 
time for real-time applications. Overall, the DQN-DMM approach 
presents a robust and efficient solution for complex decision-
making tasks, with ongoing research aimed at refining and 
expanding its capabilities for broader use cases. 
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