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Abstract— Learning from both successes and failures is key to
developing robust and efficient policies in reinforcement learning
(RL). Traditional RL excels at learning from rewards but often
neglects non-rewarding states, especially those leading to negative
outcomes. This paper introduces a novel approach that integrates
a modified Gaussian distribution into a Deep Q-Network (DQN)
framework to learn from failures. By penalizing state-action pairs
near historical failure points, the model guides the agent away
from pitfalls. The optimized DQN shows improved learning speed
and stability, achieving higher and more consistent scores than a
standard DQN. This approach highlights the potential of hybrid
RL models that combine value-based methods with failure-aware
mechanisms to accelerate learning and enhance decision-making.

Keywords—robotics, reinforcement learning, machine learning,
learning from failure

L. INTRODUCTION

Reinforcement learning (RL), despite its advances, often
relies on brute-force exploration to discover optimal strategies.
This approach, though effective in simulations where multiple
scenarios can be tested in fractions of a second, still has some
gaps in real-world applications [1]. In scenarios involving robotics
and industrial machinery, training RL models can be time-
consuming and often requires supervision, leading to increased
costs and extended development cycles [2]. This inefficiency
highlights the need for more sophisticated methods that enable
machines to learn from past experiences, particularly failures, to
accelerate and refine the learning process. In a world increasingly
driven by data and digital interactions, the ability to learn from
failures and adapt accordingly is a necessity for the advancement
of intelligent systems. The rapid growth of artificial intelligence
and machine learning has seen robots and automated systems
become integral across various industries [3-5].

The concept of learning from failure is not new [2, 6, 7], but
it has gained renewed interest in the context of reinforcement
learning. While Grollman and Billard’s work on Gaussian
models for learning from failed demonstrations laid the
groundwork [7], recent studies have expanded on these ideas
[8, 9]. For instance, approaches such as Hindsight Experience
Replay have been developed to use failed episodes by
reinterpreting goals, thereby improving learning efficiency [9].
Other methods focus on dynamically adjusting exploration
strategies based on past failures to avoid redundant or harmful
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actions. By situating the Deep Q-Network-Donut Mixture
Model (DQN-DMM) within this broader context, our work
contributes to the growing body of research that seeks to
enhance RL by systematically incorporating failure data,
offering a robust alternative to traditional exploration methods.

By integrating these techniques into a variety of fields, we
seek to enhance the generalizability and practical utility of
learning from failure and exploratory trajectory generation.
This expansion is essential for developing more versatile and
adaptive Al systems capable of operating in diverse
environments and contexts. We hypothesize that by
incorporating these advanced learning techniques, we can
significantly improve the efficiency and effectiveness of RL in
real-world applications, where the stakes are often higher and
the margin for error is minimal.

This paper will begin by discussing the theoretical
underpinnings of the Donut Mixture Model (DMM), a novel
approach that incorporates modified Gaussian distributions to
penalize actions leading to known failures. We will then explore
the integration of DMM into the Deep Q-Network (DQN)
framework, providing detailed mathematical formulations and
implementation strategies. Following this, we will present
experimental results showing the effectiveness of DMM-
enhanced DQN in a robotic arm simulation tasked with complex
object manipulation. Finally, we will compare our approach
with traditional RL methods, highlighting the advantages of
learning from failure in reducing training time and improving
performance in real-world scenarios.

By the end of this study, we aim to show that integrating
DMM into RL algorithms offers a robust solution for enhancing
learning efficiency, particularly in environments where trial-
and-error methods are impractical. This work contributes to the
broader field of Al by providing insights into how learning from
failure can be generalized across different domains, paving the
way for more adaptive and intelligent systems.

II. METHODOLOGY

A. Learning From Failure

We build upon the previous work of Billard and Grollman,
specifically employing our novel version of the "Donut Mixture
Model", a modified Gaussian Mixture Model [7, 10] as
illustrated in Fig. 1. Our Donut Mixture Model is implemented
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as a strategic enhancement to the reinforcement learning process,
designed to help an agent systematically avoid repeating past
failures. Unlike traditional reinforcement learning approaches
that primarily focus on maximizing rewards, our DMM
introduces a mechanism that penalizes actions based on their
proximity to previously recorded failures. This model derives its
name from its unique ability to "carve out" low-probability
regions around these failures in the action space, creating a
safeguard reminiscent of a donut's hole [2].
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Fig. 1. Standard Gaussian distribution (left) and modified Donut Distribution
(right). The Donut Distribution lowers the probability density at the center,
representing a failure point, creating a "donut" shape that encourages the agent
to avoid failure-prone areas.
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Figs. 2 and 3 illustrate the impact of the Donut Mixture
Model (DMM) on reinforcement learning. Fig. 2 shows how
multiple failure points create "donut"-shaped penalty
distributions, guiding the agent away from known failures. In
Fig. 3, the left subplot shows the original reward function, while
the right subplot demonstrates how the DMM modifies this
reward by subtracting penalties near failure-prone regions,
reshaping the reward landscape to steer the agent toward new
and likely more rewarding actions.

Donut Mixture Model (DMM) with Multiple Failure Points
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Fig. 2. The combined effect of multiple failure points. Each failure point contributes
a "donut" distribution, and the overall penalty is the sum of these distributions.
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Fig. 3. Original reward and modified reward. The left image shows the original
reward function, which might be high near a goal state or some optimal
configuration. The right image shows how the DMM modifies this reward by
subtracting penalties, creating a new reward landscape that steers the agent away
from failure-prone regions.

At the core of our DMM is the Gaussian penalty function,
which computes the penalty for a given state-action (s, @) based
on its distance from known failure points (s;, a;). Each failure
point contributes to the overall penalty, with closer failure points
having a greater impact. The penalty P(s, a) for a state-action
pair is defined as:

_ VN lIs=sill*+lla—a;||*

P(s,a) =YX, exp (——‘ Py I ), (1)
where ¢ is the standard deviation of the Gaussian, N is the
number of known failure points, and || || denotes the Euclidean
distance.

The DMM can be integrated into the reinforcement learning
framework by modifying the reward function. The standard
reward is adjusted by subtracting the penalty from the DMM:

R'(s,a) = R(s,a) —1-P(s,a), )

where 4 is the scaling factor that controls the impact of the
DMM penalty on the reward. In the context of a Deep Q-
Network, the Q-value update rule is modified to account for the
penalized reward:

QGea) =QGpa) +a [R’(Sp a,) + VTT}ZE;IXQ (st41,0) — Q(se, at)]: (3)

where a is the learning rate, y is the discount factor, and
max Q (S¢41,a’) represents the maximum Q-value for the next
a

state. This update rule integrates the DMM penalty into the Q-
value computation, steering the learning process away from
failure-prone regions in the state-action space. This improved
reward function ensures that the agent is discouraged from
taking actions that lead to states near known failure points,
effectively incorporating learning from failure into the
reinforcement learning process.

B. DON Implementation

We selected a Deep Q-Network for our project due to its
advanced reinforcement learning capabilities, which are well-
suited for handling the complexities of learning optimal policies
in environments with high-dimensional state spaces. The Q-
network is constructed as a deep neural network using the Keras
framework, comprising three hidden layers. The network’s input
layer accepts the state vector representing the current
environment. The network uses two hidden layers, with 512 and
256 nodes respectively, applying Rectified Linear Unit (ReLU)
activation functions to introduce non-linearity and improve its
ability to model complex functions. The output layer contains
several nodes corresponding to the action space, each
representing the Q-value associated with a specific action [11].

To stabilize the learning process, the agent employs an
experience replay buffer, which stores transitions as tuples
(state, action, reward, next state, done). During training, the
agent randomly samples mini-batches of these transitions from
the buffer. This random sampling helps break the correlation
between consecutive transitions, reducing update variance and
minimizing the risk of overfitting to recent experiences. The
agent employs an epsilon-greedy policy for action selection
[11]. Under this policy, the agent selects actions randomly with
a probability epsilon, facilitating exploration of the action space.
As training progresses, epsilon is gradually decreased, shifting
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the agent's behavior from exploration to exploitation, where
actions are chosen based on the highest predicted Q-values. This
approach balances the need for exploring new strategies with the
refinement of known successful actions, ultimately leading to
the convergence of the learning process.

C. Training

The agent samples mini-batches from the experience replay
buffer and updates the Q-network using the Bellman equation
[12]. The loss function is computed as the mean squared error
between the target Q-values and the predicted Q-values:

L(®) = E |(ye — Q(sp 2 8)°], “)

where ¥, = R'(sy, a;) + ymax Q (sg44,a’;07) is the target Q-
a

value, with 6~ representing the parameters of the target
network. Q(s;, a;; 0) is the predicted Q-value based on the
current network parameter 8. The agent interacts with the
environment over multiple episodes, collecting experiences and
periodically updating the Q-network. The training loop
continues until the agent reaches a predefined performance
threshold or the maximum number of episodes is completed,
which varies based on testing.

III. RESULTS AND ANALYSIS

A. Cartpole Testing

We first implemented the DMM process in the CartPole-v1
environment from OpenAl Gym to evaluate our approach. The
goal in this environment is to balance a pole on a moving cart by
applying forces to keep the pole upright for as long as possible.
The state space consists of the cart's position, velocity, pole
angle, and angular velocity, while the action space allows the
cart to be moved either left or right, as shown in Fig. 4. An
episode ends when the pole falls beyond a certain angle or the
cart goes out of bounds. The primary objective is to maximize
the time the pole remains balanced. Our training loop continued
either until the episode reward reached five hundred or the agent
completed one thousand episodes.
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Fig. 4. Visual cartpole environment.

To evaluate the effectiveness of our approach, we conducted
three tests using a standard DQN and three tests using our DQN-
DMM method. Figs. 5a and 5b present the training-reward
graphs comparing the performance of the DQN and DQN-DMM
models. The DQN-DMM model demonstrated faster
convergence, requiring approximately 14,000 steps to achieve
optimal performance, compared to the baseline DQN, which
required 20,000 steps. Moreover, the DQN-DMM model
exhibited a more consistent increase in episode rewards,

reflecting steady learning progress, whereas the baseline DQN
displayed sporadic learning patterns.

Figs. 5¢ and 5d illustrate the testing performance over 10
episodes for the baseline DQN and the DQN-DMM models,
respectively. The DQN-DMM model consistently achieved the
maximum possible score of 500, indicating a highly effective
learning process. In contrast, the baseline DQN managed a
maximum reward of only 253, with significant variability in its
performance. The results clearly demonstrate the superior and
more efficient learning capability of the DQN-DMM model
compared to the baseline DQN.
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Fig. 5. Comparison of training and testing rewards for the CartPole environment
using the baseline DQN and DQN-DMM models. a) Shows the training-reward
graph of the baseline DQN model for approximately 20,000 steps. b) Shows the
training-reward graph of the DQN-DMM model for approximately only 14000
steps. ¢) Shows the testing-reward graph of the baseline DQN model for 10
episodes in total, with a maximum reward of 223. d) Shows the testing-reward
graph of the DQN-DMM model for 10 episodes in total, with it consistently
scoring the maximum score available, 500.

B. Shower Testing

Following the success in the CartPole environment, we
extended our testing to a custom environment: a shower
simulation. The objective of this environment was to maintain
the shower temperature between 37 and 39 degrees Celsius,
which is considered the optimal range for showering. Each
episode allowed for a maximum of 60 actions before the state
reset. The state was defined solely by the current temperature
of the shower, and the available actions were to increase the
temperature, decrease the temperature, or do nothing. At the
start of each episode, the starting temperature would be
randomized, making the connections and the learning more
difficult for the model to manage.

Like the CartPole environment, we conducted 3 tests using
a DQN and 3 tests using our DQN-DMM method. Fig. 6
illustrates the reward graph comparing the performance of the
DQN and DQN-DMM models. Remarkably, the DQN-DMM
model outperformed the DQN model even more than the
Cartpole test, exceeding our expectations. This further
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demonstrates the effectiveness of the DQN-DMM approach in
diverse and custom environments.
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Fig. 6. The training-reward results of the baseline DQN model over 15000 steps,
showing its struggle to achieve consistent improvements in performance.
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Fig. 7. The training-reward results of the DQN-DMM model after successfully
completely training in only five thousand steps, demonstrating significantly
faster and more stable learning compared to the baseline DQN.

Figs. 6 and 7 depict the training processes of the baseline
DQN and DQN-DMM models, respectively. The baseline DQN
struggled to develop a functional model even after 250 trials,
which equates to around 14,000 steps, indicating significant
challenges in learning and model formation. In stark contrast,
the DQN-DMM model successfully trained a model in
approximately 5,000 steps, demonstrating a remarkable
improvement in learning speed—almost 300% faster than the
baseline DQN. This substantial acceleration underscores the
DQN-DMM’s enhanced capability to establish connections and
efficiently learn complex tasks, showcasing its clear superiority
over traditional DQN methods.

C. Real-world Robot Application

Fig. 8 illustrates the setup of the robotic arm used in this
experiment [13-16]. The objective was for the robotic arm to
determine the correct combination of hole shape and angle for a
square, using the force value, hole number, and degree of
rotation as the state inputs. The environment provided 5 discrete
actions for the robotic arm: rotate left by 2 degrees, rotate right
by 2 degrees, switch to the square hole, switch to the circular
hole, and switch to the triangular hole. Like previous tests, we
conducted comparisons between 3 DQN models and 3 DQN-
DMM models to evaluate the effectiveness of our approach in
this new context.

Fig. 8. Robot environment setup.
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Fig. 9. The training-reward results for the DQN-DMM model over a span of
175 episodes.
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Fig. 10. The training-reward results for the baseline DQN model over a span of
4000 episodes.

Fig. 9 presents the training-reward graph for the DQN-DMM
model, while Fig. 10 shows the same for the baseline DQN
model. Consistent with the results from the CartPole and shower
tests, the DQN-DMM model not only trained more quickly but
also demonstrated a superior ability to establish correct
connections throughout the training process.

D. Discussion

Figs. 5a and 5b illustrate that the DQN-DMM model reached
optimal performance in approximately 14,000 steps, compared
to 20,000 steps for the baseline DQN. This represents a 30%
reduction in training time, highlighting the efficiency of the
DQN-DMM. The DQN-DMM also demonstrated a steady
increase in episode rewards, indicating a more stable learning
process. In contrast, the baseline DQN showed sporadic
learning, likely due to repeated exploration of failure-prone
actions. The DQN-DMM’s ability to penalize such actions
effectively guided the agent toward more promising strategies,
leading to faster and more consistent convergence.
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In the testing phase (Figs. 5c¢ and 5d), the DQN-DMM
consistently achieved the maximum score of 500 across all
episodes, showcasing its ability to generalize and perform
reliably in varied scenarios. The baseline DQN, however,
struggled with a maximum score of 253 and exhibited
inconsistent behavior. This inconsistency suggests that the
baseline DQN failed to adequately learn from failures during
training, resulting in a less reliable policy.

The early training stages, as depicted in Figs. 6, 7, 9, and 10
further emphasize the DQN-DMM’s efficiency. While for the
shower test, the baseline DQN failed to develop a functional
model after 14,000 steps, the DQN-DMM achieved this in just
5,000 steps—nearly 300% faster. For the real-world environment
test, the baseline DQN achieved a maximum score of only 8 after
more than 4000 episodes while the DQN-DMM model achieved
a score of almost 60 in only 175 episodes. This rapid learning
underscores the DQN-DMM’s ability to effectively utilize failure
data to accelerate the learning process, leading to quicker and
more meaningful connections between actions and outcomes.

The DMM outperforms the baseline DQN primarily because
it incorporates a structured approach to learning from failures.
By penalizing actions near known failure points, the DMM
enhances exploration, accelerates convergence, stabilizes the
learning process, and results in the development of more robust
policies. These improvements address the shortcomings of
traditional DQN models, making the DMM a powerful tool for
reinforcement learning, especially in complex environments.

IV. CONCLUSION AND FUTURE WORK

To enhance the application of reinforcement learning in
complex environments, we have developed and assessed a novel
DQN-DMM model that integrates failure-aware mechanisms
into the DQN framework. Our experiments, conducted across a
range of environments from standard simulations like CartPole
to custom scenarios such as shower temperature control,
consistently suggest the DQN-DMM'’s superior performance in
terms of training efficiency and robustness. The model’s ability
to effectively learn from failures positions it as a promising
solution for real-world applications where traditional RL
methods face limitations. The DQN-DMM model achieves
higher accuracy and efficiency, effectively learning and
adapting to diverse tasks. We have conducted real-world
validation experiments that highlighted the model's ability to
optimize decision-making processes in dynamic environments.

One area for future research is to further enhance the
scalability and applicability of the DQN-DMM model in more
challenging and varied environments. While the current model
shows significant promise, future work should focus on
streamlining computational efficiency and reducing training
time for real-time applications. Overall, the DQN-DMM approach
presents a robust and efficient solution for complex decision-
making tasks, with ongoing research aimed at refining and
expanding its capabilities for broader use cases.
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