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Abstract—We study the data packet transmission problem
(mmDPT) in dense cell-free millimeter wave (mmWave) networks,
i.e., users sending data packet requests to access points (APs) via
uplinks and APs transmitting requested data packets to users
via downlinks. Our objective is to minimize the average delay in
the system due to APs’ limited service capacity and unreliable
wireless channels between APs and users. This problem can
be formulated as a restless multi-armed bandits problem with
fairness constraint (RMAB-F). Since finding the optimal policy
for RMAB-F is intractable, existing learning algorithms are
computationally expensive and not suitable for practical dynamic
dense mmWave networks. In this paper, we propose a structured
reinforcement learning (RL) solution for mmDPT by exploiting
the inherent structure encoded in RMAB-F. To achieve this, we
first design a low-complexity and provably asymptotically optimal
index policy for RMAB-F. Then, we leverage this structure infor-
mation to develop a structured RL algorithm called mmDPT-TS,

which provably achieves an Õ(
√
T ) Bayesian regret. More impor-

tantly, mmDPT-TS is computation-efficient and thus amenable to
practical implementation, as it fully exploits the structure of index
policy for making decisions. Extensive emulation based on data
collected in realistic mmWave networks demonstrate significant
gains of mmDPT-TS over existing approaches.

Index Terms—Data Packet Transmission, Dense mmWave Net-
works, Structured Reinforcement Learning, Index Policy, Restless
Multi-Armed Bandits

I. INTRODUCTION

M ILLIMETER wave (mmWave) is a key technology for

current 5G and beyond wireless networks [1]–[3]. It

offers multi-GHz bandwidth of licensed and unlicensed spec-

trum for communications. As expected, it will play a crucial

role in dealing with increased multimedia traffic, and emerging

applications such as multi-user wireless virtual reality (VR) for

education, multi-player games and professional training, where

high bandwidth data must be streamed to each user with low

latency [4], [5].

Realizing this vision requires a dense deployment of many

access points (APs) in a mmWave network and an efficient

data packet transmission policy. Such a policy determines

to send the data packet requests from users to the mmWave

APs via uplink communication, which in turn transmit the

requested data packets to users via downlink communication.
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Fig. 1: A dense mmWave network in a small conference room,

where the dashed lines indicate communications between APs

and users, i.e., users sending data packet requests to APs and

APs transmitting real data packets to users. See Section V for

more details on our mmWave testbed.

Data packet transmission plays a pivotal role in enhancing load

balancing, spectrum efficiency, energy efficiency of mmWave

networks, and hence has gained much interest in recent years

for the purpose of maximizing spectral [6]–[8] and energy

efficiencies [9], [10]. Unfortunately, mmWave communication

does not perform well in dynamic environments due to its vul-

nerability to blockage, sensitivity to mobility, and time-varying

channel conditions. These factors lead to an intermittent link

connectivity between a user and an AP, necessitating a dense

deployment of APs to maintain communication reliability [11],

[12].

In this paper, we consider such a dense, cell-free mmWave

network where a set of APs serve a population of users in one

area (e.g., a conference room, a concert hall, or a classroom).

Suppose that all APs are reachable for all users. At each time,

each user generates a data packet request, which is sent to

one AP via the uplink communication. The corresponding AP

then transmits the requested data packet to the user via the

downlink communication. Since only the data packet request

is sent from users to APs through uplinks while the real

data packets are transmitted from APs to users via downlinks,

we assume that the uplink communication is reliable [11]–

[13] and the downlink communication is unreliable. Then, an

important problem is: for each data packet request generated

by a user, which AP should it be sent to so as to minimize the

average delay due to the AP’s limited service capacity and the

unreliable downlink communications via which the requested

data packet is transmitted from AP to the user?

Consider the example shown in Figure 1 of a conference
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room with 4 APs and 30 users. This will be used as our

running motivation and our mmWave testbed environments in

Section V, but our model and proposed solutions will not be

limited to this scenario. We are interested in designing a data

packet transmission policy to minimize the average delay in

the system due to APs’ limited service capacity and unreliable

wireless channels between APs and users. In addition to

minimizing the average delay, ensuring fairness among users

is also a key design concern in wireless networks [14]–[17]. To

this end, we model the above data packet transmission problem

(mmDPT) in a dense mmWave network as a restless multi-

armed bandits problem with fairness guarantee (RMAB-F)1,

which is a generalization of the classical restless multi-armed

bandits problem (RMAB) [18]. Our objective is to develop low-

complexity reinforcement learning (RL) algorithms to solve

this RMAB-F without the knowledge of system dynamics (e.g.,

the unknown data packet arrivals and time-varying mmWave

channel qualities).

Limitations of Existing Methods. Although online RMAB has

gained many efforts, existing solutions cannot be directly ap-

plied to our RMAB-F. A key challenge is that off-the-shelf RL

algorithms, e.g., colored-UCRL2 [19] and Thompson sampling

methods [20], [21], suffer from an exponential computational

complexity, and their regret bounds grow exponentially with

the size of state space. This is due to the fact that these

algorithms need to repeatedly solve complicated Bellman

equations for making decisions, and hence appear too slow for

practical use, especially in highly dynamic mmWave environ-

ments. Many recent efforts have been devoted to developing

low-complexity RL algorithms with order-of-optimal regret

for online RMAB [22]–[28]; however, many challenges remain

unsolved. For example, multi-timescale stochastic approxima-

tion algorithms [22]–[24] suffer from slow convergence and

have no regret guarantee, and [25], [26] considered a finite-

horizon setting while we focus on an infinite-horizon average-

award setting in this paper. Exacerbating these limitations

is the fact that none of them were designed with fairness

constraints in mind. For example, [25]–[28] only focused on

minimizing costs/delay in RMAB, and many existing RL or

deep RL based policies for mmWave focused on maximizing

throughput [29]–[32] with no finite-time performance analysis,

while the controller in our RMAB-F faces a new dilemma on

how to manage the balance between minimizing average delay

and satisfying the fairness requirement. This adds a new layer

of challenge to designing low-complexity RL algorithms for

RMAB that is already quite challenging.

Structured RL for mmDPT. The lack of theoretical under-

standing on how to design efficient RL algorithms for RMAB-F

or mmDPT motivates us to fill this gap by proposing structured

RL solutions in this paper. Specifically, our structured RL

solutions operate on a much smaller dimensional subspace by

exploiting the inherent structure encoded in RMAB-F. This

requires us to first design a low-complexity yet provably

optimal index policy for RMAB-F, and then RL algorithms that

leverage the structure of index policies for making decisions

1We refer to our mmDPT problem as a RMAB-F, and will interchange-
ably/equivalently use these two terms in the rest of this paper.

(a) Experimental scenario. (b) 60GHz mmWave RF and planar antenna. (c) Decoded signal

Fig. 2: Measurement setup and experiment scenario for data

packet transmission in dense mmWave networks.

to reduce the high computational complexity and exponential

factor in regret analysis. We summarize our contributions as

follows:

• Provably Optimal Index Policy. We first develop a

low-complexity index policy for RMAB-F to address the

dimensional concerns when the system dynamics are

known in Section III. Specially, we leverage a linear

programming (LP) based approach to obtain a relaxed

problem of RMAB-F, which is formulated as a LP using

occupancy measures [33]. We then construct a mmDPT

Index based on the occupancy measures obtained from

the LP. Finally, we propose a low-complexity mmDPT

Index Policy by carefully coupling the scheduling

and fairness constraints to address the new dilemma via

the above mmDPT Index. We offer a proof to show that

mmDPT Index Policy is asymptotically optimal.

• Structured RL Algorithm. We further develop a low-

complexity RL algorithm for RMAB-F without the knowl-

edge of system dynamics in Section IV. Different from

aforementioned off-the-shelf RL algorithms that either

contend directly with an extremely large state space

or do not incorporate the fairness constraint, we pro-

pose mmDPT-TS, a structured Thompson sampling (TS)

method that learns to leverage the inherent structure in

RMAB-F via our near-optimal mmDPT Index Policy

for making decisions. We show that mmDPT-TS achieves

an optimal sub-linear Bayesian regret with a low compu-

tational complexity, and hence can be easily implemented

in realistic mmWave networks. To the best of our knowl-

edge, our work is the first to develop a structured RL al-

gorithm with low-complexity and order-of-optimal regret

in the context of delay-optimal data packet transmission

in dense, cell-free mmWave networks. We note that our

proposed frameworks of designing low-complexity index

policies and structured RL algorithms are very general,

and can be applied to various large-scale combinatorial

problems with fairness constraints.

• Evaluations on 60GHz mmWave Testbed. We build

a 60GHz mmWave testbed using software-defined radio

(SDR) devices. The mmWave device is equipped with a

planar antenna with 4×8 patch elements. Our evaluation

is conducted in a conference room, and Figure 2 shows

a photo of our testbed, see Section V for details. Exper-

imental results using data collected from our mmWave

testbed demonstrate that our mmDPT-TS produces sig-

nificant performance gains over existing approaches.
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Fig. 3: The measured error vector magnitude (EVM) of

decoded signal constellations at users which receive data

packet from APs (via downlinks) in our mmWave testbed

(See Section V). The three curves correspond to the three

transmissions in Figure 1.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we present the system model and formulate

the delay minimization problem of data packet transmission

in dense, cell-free mmWave networks (mmDPT).

A. System Model

We consider a dense, cell-free mmWave network with a set

of N = {1, · · · , N} mmWave APs serving one area (e.g., a

conference room, a concert hall, or a classroom), where there

is a set of M = {1, · · · ,M} users. Consider the example

shown in Figure 1 of a conference room with 4 APs and 30

users. This will be used as our running motivation and our

mmWave testbed environments in Figure 2, but our model

and proposed solutions will not be limited to this scenario.

Time is divided into multiple units with each unit called

a “slot”, which is indexed by t ∈ T = {1, · · · , T}. At time

slot t, user m generates a data packet request with probability

pm, which is sent to one AP for processing through uplinks

available between APs and users. Since only requests are sent

from users to APs, we assume that the uplink communication

is reliable without delay. The rationality of this assumption is

that only the request signal is sent via uplink communication,

and the request indicator is very small-sized (typically in

the order of a few bits to a few tens of bits). The exact

size may depend on the network configuration or technology

leverage. As a result, the delay due to uplink communication

is negligible [11]–[13], [34], [35].

Without loss of generality (W.l.o.g.), we assume that re-

quests generated by each user are independent of each other

in each time slot. Upon receiving the request, the AP processes

and transmits the requested data packet to that user through

downlinks, which are often unreliable. A centralized controller

is in charge of such a data packet transmission problem in

the dense mmWave network in consideration. This is mainly

due to the fact that we mainly focus on a dense mmWave

network such as a conference room as shown in Figure 1.

Similar assumption applied to user association [34], [35] and

beam alignment [36], [37] in a dense mmWave network.

In our system model, we add a “request queue” to each AP

n for each user m to store the number of data packet requests

sent to AP n at time slot t. We denote the queue length as

St
mn. The rationality of our model (i.e., each AP maintaining a

request queue for each user) is that the number of data packet

requests to one AP may be larger than its service capacity

limited by both computation and communication resources due

to the dense nature of mmWave networks, and the data packet

requests may not be processed immediately and hence there

will be a service delay for users. Another point is due to the

fact that the wireless channels between APs and users are

unreliable. As a result, the time that AP n takes to transmit

the requested data packet to user m is a random variable,

which heavily relies on the mmWave channel quality, denoted

as qtmn, between AP n and user m at time slot t. For example,

Figure 3 shows the error vector magnitude (EVM) measured at

the receiver on our mmWave testbed, which vary significantly

over time. Assume each processed packet is equally sized

with Q bits. Let Dt
mn be the number of data packets that

is successfully delivered from AP n to user m via downlinks

at time slot t. We model Dt
mn as a random variable with

probability distribution P(·|qtmn) to reflect the randomness

of wireless fading. Denote C(qtmn) as the throughput of the

wireless channel between AP n and user m at time slot t.
Therefore, the distribution of Dt

mn can be formally given by

P(Dt
mn = d|qtmn) = P((d+ 1)Q > C(qtmn) ≥ dQ). (1)

B. MDP-based Problem Formulation

We formulate the delay minimization problem for mmDPT

for the above model as a Markov decision process (MDP) [38].

State. We denote the queue length of data packet requests

from user m at time slot t as S
t
m := (St

m1, · · · , St
mN ), where

St
mn is the number of data packet requests from user m

sent to AP n at time slot t as described above. Let S
t :=

(St
1, · · · ,St

M ). W.l.o.g., we assume St
mn ≤ Smax, ∀m,n, t,

where Smax is the maximum number of data packet requests

from a user sent to an AP, and can be arbitrarily large but

bounded. For ease of readability, we denote the finite state

space in our model as S.
Action. Action At

mn = 1 means that the centralized

controller determines to send the data packet request from

user m to AP n via the uplink channel at time slot t;
and At

mn = 0, otherwise. Denote A = {0, 1} and let

A
t
m := (At

m1, · · · , At
mN ), A

t := (At
1, · · · ,At

M ). Since at

most one data packet request can be sent from a user to an

AP at each time slot, we have
∑

n∈N

At
mn ≤ 1, ∀m ∈M, t ∈ T . (2)

In addition, we impose a fairness constraint among APs

(e.g., due to resource constraints). Specifically, at most B data

packet requests can be simultaneously sent to any AP at any

time slot, i.e.,
∑

m∈M

At
mn ≤ B, ∀n ∈ N , t ∈ T . (3)

A data packet transmission policy Ã in a dense mmWave

network maps the states of all queues S
t to transmission

decisions A
t, i.e., At = Ã(St). Denote the set of all feasible

policies as Π.
Controlled Transition Kernel. As aforementioned, when

there are St
mn = S data packet requests in the queue, AP

n may process and successfully transmit d ≤ S packets to

user m, which occurs with probability P(Dt
mn = d|qtmn) as



IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, SEPTEMBER 2023 4

defined in (1). If a new data packet request is generated, and

sent to AP n at the same time, then the length of corresponding

request queue becomes S + 1 − d. More precisely, for ∀d ∈
[0, St

mn], we have P(St+1
mn = S+1−d|St

mn = S,At
mn = 1) =

pmP(Dt
mn = d|qtmn). Otherwise, the queue length becomes

S−d, i.e., P(St+1
mn = S−d|St

mn = S,At
mn = 0) = P(Dt

mn =
d|qtmn). Similarly, if AP n can successfully transmit more than

St
mn packets, i.e., d > St

mn, then we have P(St+1
mn = 1|St

mn =

S,At
mn = 1) = pm

(

1−∑St
mn

d=0 P(Dt
mn = d|qtmn)

)

, when a

new data packet request from user m is sent to AP n at the

same time; and otherwise P(St+1
mn = 0|St

mn = S,At
mn = 0) =

1−∑St
mn

d=0 P(Dt
mn = d|qtmn). The overall transition probability

from user m to AP n is denoted as Pmn(s|s′, a′).
Data Packet Transmission Problem. Our objective is to

design a policy Ã that minimizes the average delay in a

dense, cell-free mmWave network due to APs’ limited service

capacity and unreliable wireless channels between APs and

users, while ensuring that each data packet request can only

be sent to one AP, and no more than B data packet requests can

be sent to any AP at any time slot. By Little’s Law, the average

delay minimization problem is equivalent to minimizing the

average total number of requests in the system. Therefore, the

data packet transmission problem in dense mmWave networks

(mmDPT) can be formulated as the following MDP:

mmDPT : min
Ã∈Π

lim sup
T→∞

EÃ

[

1

T

T∑

t=1

(
N∑

n=1

M∑

m=1

St
mn

)]

subject to Constraints (2) and (3), (4)

where the subscript denotes the fact that the expectation is

taken with respect to the measure induced by policy Ã. Prob-

lem mmDPT (4) is an example of the RMAB-F, and in theory

it can be solved optimally as an infinite-horizon average cost

per stage problem using relative value iteration [38]. However,

this approach suffers from the curse of dimensionality, i.e., the

computational complexity grows exponentially in the size of

state space as a function of the number of user M , rendering

such a solution impractical. In addition, this approach lacks

insight for the solution structure. We overcome this difficulty

by developing an index-based policy that is computationally

appealing and provably optimal.

III. INDEX POLICY DESIGN AND ANALYSIS

We now propose an index policy for Problem mmDPT (4).

We begin by introducing a so-called “relaxed problem”, which

can be posed as a LP problem. The solution to this LP forms

the building block of our proposed index policy, which we

prove to be asymptotically optimal.

A. The Relaxed Problem

Following Whittle’s approach [18], we first relax the in-

stantaneous constraints in Problem mmDPT (4) to average

constraints, and obtain the following “relaxed problem”:

min
Ã∈Π

lim sup
T→∞

EÃ

[

1

T

T∑

t=1

(
N∑

n=1

M∑

m=1

St
mn

)]

s.t. lim sup
T→∞

EÃ

[

1

T

T∑

t=1

N∑

n=1

At
mn

]

≤ 1, ∀m ∈M,

lim sup
T→∞

EÃ

[

1

T

T∑

t=1

M∑

m=1

At
mn

]

≤ B, ∀n ∈ N . (5)

It is clear that the optimal value achieved by (5) is a lower

bound of that achieved by Problem mmDPT (4). It is also

known that the relaxed problem (5) can be reduced to an

equivalent LP using occupancy measures [33].

Definition 1. The occupancy measure ΩÃ of a stationary pol-

icy Ã for the infinite-horizon MDP is defined as the expected

average number of visits to each state-action pair (s, a), i.e.,

ΩÃ=

{

Émn(s, a) ≜ lim
T→∞

1

T
EÃ

(
T∑

t=1

1(St
mn=s,At

mn=a)

)

: ∀m ∈M, n ∈ N , s ∈ S, a ∈ A
}

. (6)

It can be easily checked that the occupancy measure satisfies
∑

s∈S

∑

a∈A Émn(s, a) = 1, and hence Émn, ∀m ∈ M, n ∈
N is a probability measure. Using this definition, the relaxed

problem (5) can be equivalently reformulated as a LP [33]:

min
Émn∈ΩÃ

N∑

n=1

M∑

m=1

∑

s∈S

∑

a∈A

Émn(s, a)s (7a)

s.t.

N∑

n=1

∑

s∈S

Émn(s, 1) ≤ 1, ∀m ∈M, (7b)

M∑

m=1

∑

s∈S

Émn(s, 1) ≤ B, ∀n ∈ N , (7c)

∑

s′∈S

∑

a∈A

Émn(s, a)Pmn(s
′|s, a),

=
∑

s′∈S

∑

a∈A

Émn(s
′, a)Pmn(s|s′, a), ∀s ∈ S, (7d)

∑

s∈S

∑

a∈A

Émn(s, a) = 1, ∀m ∈M, n ∈ N , (7e)

where (7b) and (7c) are restatements of constraints (2) and (3),

respectively; (7d) represents the fluid transition of the oc-

cupancy measure, which holds due to the ergodic theorem

for finite MDPs [38], [39], that under optimal solutions, the

occupancy measure will be stable under the transition, where

fluid in rate for a state-action occupancy measure equals to the

fluid out rate; and (7e) follows from the fact that the occupancy

measure is a probability measure.

Let É∗ = {É∗
mn(s, a) : ∀m ∈M, n ∈ N , s ∈ S, a ∈ A} be

an optimal solution to the above LP (7a)-(7e). We now con-

struct a Markovian stationary policy Ç∗ = {Ç∗
mn(s, a), ∀m ∈

M, n ∈ N} from É∗ as follows: if the number of requests

in the queue from user m at AP n at time slot t is s, then

Ç∗
mn(s, a) chooses action a with a probability equal to

Ç∗
mn(s, a) :=

É∗
mn(s, a)

∑

a∈A É∗
mn(s, a)

. (8)

Unfortunately, the above policy (8) does not always provide

a feasible solution to Problem mmDPT (4). This is due to the
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fact that both request transmission constraints in (4) must be

strictly met at each time slot, instead of just in the average

sense as in (5). Exacerbating this issue is that with a random-

ized policy, both relaxed constraints may be violated severely

during each time slot, resulting in poor performance. To

overcome this challenge, we next introduce a computationally

appealing index policy for Problem mmDPT (4).

B. The mmDT Index Policy

Conventional index policies including Whittle index policy

[18] and many others [13], [25], [26], [28], [29], [39]–[44]

simply schedule a request to the highest indexed AP, i.e.,

AP n∗ = argmaxn Ç
∗
mn(s, 1) forms channel, through via

a request from user m at time slot t is sent to AP n∗.

Unfortunately, such a simple index policy will not work for

Problem mmDPT (4) since it only accounts for constraint (2)

but ignores the new dilemma faced by the controller in our

RMAB-F, which is introduced by the fairness constraint (3),

i.e., at most B requests can be sent to one AP at each time

slot. Intuitively, to capture both constraints, the transmission

decisions should involve some couplings between requests and

APs. For simplicity, we denote

ϕmn(s) = Ç∗
mn(s, 1), (9)

and call it the mmDPT Index for requests from user m at

AP n when its state is s. To address the aforementioned issue

when applying existing index policies, our mmDPT Index

Policy prioritizes the request from user m at time slot t to

AP n according to a decreasing order of their mmDPT Index,

and transmits requests to APs based on mmDPT Index as

long as both constraints (2) and (3) are satisfied.

Specifically, at each time slot t, we first locate the users with

new generated requests, and denote the set of these users as

Mt := {m|user m generates new requests}. We construct the

mmDPT Index set I(t) := {ϕmn(S
t
mn), ∀m ∈ Mt, n ∈ N}

with all elements in I(t) sorted in a decreasing order. Denote

the largest index in I(t) as ϕm′n′(St
m′n′). Then we check if

B requests have been sent to AP n′, which leads two cases: i)

if not, AP n′ activateS channel with user m′ and remove all

indices related with m′, i.e., I(t) = I(t)\{ϕm′n(S
t
m′n), ∀n ∈

N}; ii) otherwise, we remove all indices related with AP n′

such that I(t) = I(t) \ {ϕmn′(St
mn′), ∀M ∈Mt}. We repeat

this process until I(t) is empty (i.e. all requests are satisfied).

Remark 1. Unlike Whittle-based policies [18], [40], [45],

[46], our mmDPT Index Policy does not require the in-

dexability condition, which is often hard to establish [47]. Like

Whittle-based policies, our mmDPT Index Policy is com-

putationally efficient since it is merely based on solving a LP,

which can be efficiently solved in polynomial time [48]–[50],

and we leverage the Gurobi Optimizer [51] in our experiments.

A line of works [25], [26], [41]–[43] designed index policies

without indexability requirement for finite-horizon RMAB, and

hence cannot be applied to our infinite-horizon average-cost

formulation in Problem mmDPT (4). We note that the design of

our index policy is largely inspired by the LP based approach

in [28]. However, [28] only accounted for constraint (2), while

our mmDPT Index Policy faces the new dilemma due to

Algorithm 1 mmDPT Index Policy

1: Construct LP (7a)-(7e) and solve the occupancy measure

É∗
mn(s, a), ∀m,n, s, a;

2: Compute Ç∗
mn(s, a) according to (8) and construct mmDPT

Index ϕmn(s) = Ç∗
mn(s, 1) in (9);

3: for At each time slot t do

4: Locate Mt := {m|user m generates new requests};
5: Construct the mmDPT Index set I(t) :=
{ϕmn(S

t
mn), ∀m ∈ Mt, n ∈ N} with elements

sorted in a decreasing order;

6: while I(t) is non-empty do

7: Find the largest index ϕm′n′(St
m′n′) in I(t);

8: if Fewer than B requests transmitted to AP n′ then

9: AP n′ activates channel and transmit request

from user m′, and remove all indices related with m′,

i.e., I(t) = I(t) \ {ϕm′n(S
t
m′n), ∀n ∈ N};

10: else

11: Remove all indices related with n′ such that

I(t) = I(t) \ {ϕmn′(St
mn′), ∀M ∈Mt}.

12: end if

13: end while

14: end for

fairness constraint (3). Further distinguishing our work is that

we propose a structured RL algorithm via Thompson sampling

with a provably sub-linear Bayesian regret in Section IV.

C. Asymptotic Optimality

We now show that our mmDPT Index Policy is

asymptotically optimal in the same asymptotic regime as

that in Whittle [18] and many others [39], [40], [52]. With

some abuse of notation, let the number of users and APs

be ÄM and ÄN, and the resource constraint be ÄB in the

asymptotic regime with Ä→∞. In other words, we consider

M classes of users with each class containing Ä, and similarly

for the APs and fairness constraint. Denote XÄ
mn(Ã

∗, s, a; t)
as the number of requests from class-m users with the

state at class-n APs being s and action a being taken at

time slot t under mmDPT Index Policy Ã∗. We will be

interested in the this fluid-scaling process with parameter Ä,

and define the expected long-term average cost as V Ä
Ã∗ :=

lim supT→∞
1
T EÃ∗

∑T
t=1

∑N
n=1

∑M
m=1

∑

(s,a) s
XÄ

mn(Ã
∗,s,a;t)
Ä .

Our mmDPT Index Policy Ã∗ is asymptotically optimal

only when V Ä
Ã∗ ≤ V Ä

Ã , ∀Ã ∈ Π. W.l.o.g., we let Ãopt denote

the optimal policy for Problem mmDPT (4). Before presenting

our main result in this section, we first state the following

technical condition called “global attractor” [52].

Definition 1. An equilibrium point XÄ,∗/Ä under mmDPT

Index Policy Ã∗ is a global attractor for the process

XÄ(Ã∗; t)/Ä, if, for any initial point XÄ(Ã∗; 0)/Ä, the process

XÄ(Ã∗; t)/Ä converges to XÄ,∗/Ä.

The global attractor indicates that all trajectories converge

to XÄ,∗. Though it may be difficult to establish analytically

that a fixed point is a global attractor for the process [39], such

an assumption has been widely made in [39], [40], [45], [52]
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and is only verified numerically. Our experimental results in

Section V show that such convergence indeed occurs for our

mmDPT Index Policy Ã∗.

Theorem 1. Our mmDPT Index Policy Ã∗ is asymptoti-

cally optimal under Definition 1, i.e., limÄ→∞ V Ä
Ã∗−V Ä

Ãopt = 0.

IV. STRUCTURED REINFORCEMENT LEARNING

The computation of mmDPT Index Policy requires the

knowledge of transition probabilities associated with MDPs

(see Section II-B). Unfortunately, the mmWave environments

are highly dynamic and these parameters are often unknown

and time varying. Hence, we now consider to learn the mmDPT

(i.e., RMAB-F) without the knowledge of system dynamics.

Our goal is to develop a low-complexity structured RL algo-

rithm and characterize its finite-time performance.

A. Structured RL Algorithm: mmDPT-TS

Algorithm Overview. We adapt the Thompson Sampling

(TS) method to our problem. Specifically, we design a

structured TS algorithm via mmDPT Index Policy aware-

ness, entitled mmDPT-TS, as summarized in Algorithm 2.

For ease of expression, denote the true transition kernel

of the MDP associated with requests from user m at

AP n, i.e., Pmn(s
′|s, a), ∀s, a as ¹∗mn, ∀m ∈ M, n ∈

N , which is unknown to the controller. Let ht
mn =

(S1
mn, A

1
mn, S

2
mn, A

2
mn, · · · , St

mn, A
t
mn) be the history of

states and actions up to time slot t, ∀m ∈ M, n ∈ N .
We focus on a Bayesian framework, and denote µ1

mn as

the prior distribution for ¹∗mn, ∀m ∈ M, n ∈ N , i.e.,

P(¹∗mn ∈ Θ) = µ1
mn(Θ) for any arbitrary set Θ. mmDPT-TS

operates in episodes and decomposes the total operating time

T into K episodes (the value of K will be specified later).

Let tk be the start time of episode k and Tk = tk+1 − tk be

the length of the episode, satisfying T =
∑

k Tk. W.l.o.g., we

set T0 = 1. Each episode consists of two phases: posterior

updates and policy execution.

Posterior Updates. At time slot t, the posterior distribution

µt
mn, ∀m,n can be computed based on the history ht

mn, i.e.,

µt
mn(Θ) = P(¹∗mn ∈ Θ|ht

mn), for any set Θ. After applying

action At
mn and observing the next state St+1

mn , the posterior

distribution µt+1
mn can be updated using Bayes’ rule as:

µt+1
mn (d¹) =

¹mn(S
t+1
mn |St

mn, A
t
mn)µ

t
mn(d¹)

∫
¹̃mn(S

t+1
mn |St

mn, A
t
mn)µ

t
mn(d¹̃)

, ∀m,n. (10)

To execute the constructed mmDPT Index Policy, we

need to determine when episode k terminates. Let Ct
mn(s, a)

be the number of visits to state-action pairs (s, a) until t for the

MDP associated with requests from user m at AP n, satisfying

Ct
mn(s, a) = Ct−1

mn (s, a)+1(St
mn = s,At

mn = a), ∀s, a,m, n.
Inspired by [53], episode k ends if its length is no less than

that of episode k − 1, or the number of visits to some state-

action pairs (s, a) satisfies C
tk+1
mn (s, a) > 2Ctk

mn(s, a), ∀m,n.

Thus, t0 = 1 and tk+1, k ≥ 1 is given by tk+1 = min{t >
tk : t > tk+Tk−1 or C

tk+1
mn (s, a) > 2Ctk

mn(s, a), ∀m,n, s, a}.
Policy Execution. At the policy execution phase of each

episode, mmDPT-TS constructs and executes mmDPT Index

Algorithm 2 mmDPT-TS

Input: Prior distribution µ1
mn, ∀m,n;

1: Initialize C1
mn(s, a) = 0, ∀m,n, s, a; t = 1, T0 = 0, t1 =

1; Ã∗,1 to be any policy;

2: for episodes k = 1, 2, · · · do

3: while t ≤ tk + Tk−1 and Ct
mn(s, a) ≤ 2Ctk

mn(s, a),
∀m,n, s, a do

4: Execute policy Ã∗,k and observe new state St+1
mn ;

5: Update µt+1
mn according to (10);

6: Tk ← t− tk, t← t+ 1;

7: end while

8: tk+1 ← t;
9: Sample ¹k+1

mn from µ
tk+1
mn , compute É∗,k+1

mn via (11);

10: Construct the mmDPT Index Policy Ã∗,k+1 ac-

cording to Algorithm 1 using É∗,k+1
mn .

11: end for

Policy. This is the key contribution and novelty of our

proposed structured RL algorithm mmDPT-TS, which lever-

ages our proposed near-optimal mmDPT Index Policy for

making decisions, instead of contending directly with an ex-

tremely large state-action space (e.g., via solving complicated

Bellman equations). These together contribute to the sub-

linear Bayesian regret of mmDPT-TS with a low computational

complexity, which will be discussed in detail later. Specifically,

at the beginning of episode k, the parameters {¹kmn, ∀m,n}
are sampled from the posterior distributions {µtk

mn, ∀m,n}.
Using these samples, mmDPT-TS solves the following LP:

min
{Émn}

N∑

n=1

M∑

m=1

∑

s∈S

∑

a∈A

Ék
mn(s, a)s

s.t.
∑

s′∈S

∑

a∈A

Ék
mn(s, a)¹

k
mn(s

′|s, a)

=
∑

s′∈S

∑

a∈A

Ék
mn(s

′, a)¹kmn(s|s′, a), ∀s ∈ S,

Constraints (7b), (7c), and (7e). (11)

We denote the optimal solution to the above LP (11) as

{É∗,k
mn(s, a), ∀m,n, s, a}, using which mmDPT-TS computes

the mmDPT Index in (9), and then constructs the mmDPT

Index Policy according to Algorithm 1. We denote the

policy as Ã∗,k, and then execute this policy in this episode.

We summarize this process in Algorithm 2.

Remark 2. mmDPT-TS leverages the low-complexity provably

optimal mmDPT Index Policy for making decisions, and

hence only needs to solve a LP (11) at each episode (in

polynomial time [48]–[50]). This differentiates mmDPT-TS

from state of the arts, which are often computationally expen-

sive. For example, [53] proposed a TS method for MDPs and

the optimal policy is approximated via solving complicated

Bellman equations. [21] extended [53] to RMAB, however, the

computation of Whittle index policy also relies on repeatedly

solving Bellman equations. Another line of deep RL based

approaches, e.g., [29]–[32] neither incorporate fairness con-

straint, nor have finite-time performance analysis.
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B. The Learning Regret

We characterize the finite-time performance of mmDPT-TS

using the Bayesian regret. Specifically, the Bayesian regret of

a learning policy Ã is defined as

R(T ) = EÃ,µ1

[
T∑

t=1

N∑

n=1

M∑

m=1

St
mn − TJ(¹¹¹∗)

]

, (12)

where J(¹¹¹∗) is performance of mmDPT Index Policy

under the perfect knowledge of the true transition kernel

¹¹¹∗ := {¹∗mn, ∀m,n}; and the expectation is taken with respect

to prior distributions µ1 := {µ1
mn, ∀m,n} and policy Ã. We

follow RMAB literature, e.g., [21], [25] to define the Bayesian

regret with respect to the mmDPT Index Policy, which is

asymptotically optimal.

Assumption 1. Let J(¹¹¹k) be the average cost for mmDPT

Index Policy under ¹¹¹k := {¹kmn, ∀m,n}. For ∀¹¹¹k, J(¹¹¹k)
does not depends on the initial state and satisfies the average

cost Bellman equation ∀t ∈ [tk, tk+1]:

C(St,At) = J(¹¹¹k) + V¹¹¹k(St)−
∑

S′

¹¹¹k(S′|St,At)V¹¹¹k(S′),

(13)

where V¹¹¹k(St) is the bias value function [38] and unique up

to a constant.

Assumption 1 is standard in TS-based methods [21], [53],

[54], which ensures that the average cost of mmDPT Index

Policy is well defined. The span of the bias value function

V under transition kernel ¹¹¹k is defined as [54]:

Span(V¹¹¹k) := max
S∈SMN×1

V¹¹¹k(S)− min
S∈SMN×1

V¹¹¹k(S), (14)

which is an essential factor for bounding the Bayesian regret

of mmDPT-TS. Under Assumption 1 and the span definition,

our main result in this section is stated as follows:

Theorem 2. The Bayesian regret of mmDPT-TS satisfies

R(T ) = O(S3
maxM

2N2
√

T log T ). (15)

The high level idea of the proof is similar to [21], [53], but

we provide an explicit upper bound on the span with respect to

the dimension of state space Smax, the number of APs N , and

the number of users M , by leveraging the structure encoded in

our RMAB-F. This is one of main contributions in this work.

For ease of readability, we present a proof outline below, and

relegate the details to Appendix VII.

C. Proof Sketch of Theorem 2

Regret Decomposition. Let KT be the number of episodes

until time horizon T. Given the average cost Bellman equation

(13), the Bayesian regret (12) can be decomposed as

R(T ) = E

[
KT∑

k=1

TkJ(¹¹¹
k)

]

− TE[J(¹¹¹∗)]

︸ ︷︷ ︸

R1: regret due to Bayesian estimating error

AP

User 1 2 3 4

1 0.09,0.07,0.03,0.01 0.095,0.075,0.025,0.005 0.08,0.06,0.04,0.02 0.085,0.065,0.045,0.025

21 0.08,0.07,0.06,0.05 0.085,0.075,0.065,0.055 0.07,0.06,0.05,0.04 0.075,0.065,0.055,0.045

41 0.07,0.06,0.05,0.04 0.075,0.065,0.055,0.045 0.06,0.05,0.04,0.03 0.065,0.055,0.045,0.035

61 0.06,0.05,0.04,0.03 0.065,0.055,0.045,0.035 0.05,0.04,0.03,0.02 0.055,0.045,0.035,0.025

81 0.05,0.04,0.03,0.02 0.055,0.045,0.035,0.025 0.04,0.03,0.02,0.01 0.045,0.035,0.025,0.015

TABLE I: The probability of successfully delivering 1, 2, 3, 4
packets over frames in synthetic traces for some users.

+ E

[
KT∑

k=1

tk+1−1
∑

t=tk

[V¹¹¹k(St)− V¹¹¹k(St+1)]

]

︸ ︷︷ ︸

R2: regret due to time-varying policies between episodes

+ E

[
KT∑

k=1

tk+1−1
∑

t=tk

[V¹¹¹k(St+1)−
∑

S′

¹¹¹k(S′|St,At)V¹¹¹k(S′)]

]

︸ ︷︷ ︸

R3: regret due to model mismatch

.

We then proceed to derive bounds on KT and R1, R2, R3.
Bounding KT : Since we consider dynamic episodes as

inspired by [53], the number of episodes KT can be upper

bounded by 2
√
SmaxMNT log T .

Bounding R1: Following the monotone convergence theo-

rem, R1 ≤
∑∞

k=1 E[1tkfT (Tk−1 + 1)J(¹¹¹k)] − TE[J(¹¹¹∗)] =

E[
∑KT

k=1(Tk−1 + 1)J(¹¹¹∗)]− TE[J(¹¹¹∗)] ≤ E[KT ].
Bounding R2: Similar to [53], R2 can be upper bounded

by the value of span and KT as E[Span(V )KT ].
Bounding R3: R3 is the regret part due to model mismatch,

which is one key contribution of our proof compared to

existing results [21], [53]. We first construct a confidence

ball in each episode which characterizes the distance between

the true transition kernel and the sampled transition kernel.

We show that with high probability the true transition kernel

lies in the confidence ball and the complementary event is a

rare event. Bounding these two regrets leads to the bound on

R3 ≤ Span(V )SmaxMN
√
T log T .

Bounding Span(V ): The value of span plays a critical

role in the Bayesian regret analysis, which is characterized

in Lemma 1. This is another key contribution in this work.

Lemma 1. The span of V under ¹¹¹k, ∀k is upper bounded by

Span(V ) := Span(V¹¹¹k) ≤ (S2
max + Smax)MN/2.

Remark 3. mmDPT-TS achieves a sub-linear Bayesian regret

Õ(√T log T ) as state-of-the-art TS-based methods [53] for

MDPs and [21] for RMAB. Different from them, we provide

an explicit upper bound on the span of the bias value function

in Lemma 1. In contrast, the span is assumed to be upper

bounded by a constant in [53], and the bound in [21] relies on

an “ergodicity coefficient”, which is a unknown parameter and

varies across different MDP realizations. This assumption is

not necessary in our analysis since we leverage the underlying

structure in RMAB-F to bound the span.

V. EXPERIMENTS

In this section, we numerically evaluate the performance

of our proposed mmDPT Index Policy and mmDPT-TS

using both real traces collected from a 60GHz mmWave

testbed and synthetic traces.
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Fig. 4: Asymptotic optimality: 60GHz

mmWave testbed.
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Fig. 5: Asymptotic optimality: Synthetic

data traces.
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A. Evaluation Setup

60GHz mmWave Testbed. Since commodity off-the-shelf

(COTS) 802.11ad devices can generate the desirable data

traces for our simulations, we build a 60GHz mmWave

communication testbed using software-defined radio (SDR)

devices. Specifically, the testbed is emulation based and mea-

sured repeatedly through one transmitter and one receiver,

both of which are built using one computer, one ADI EVAL-

HMC6300 Board (60GHz RF Frontend), one USRP X310,

and one planar antenna. The planar antenna has 4×8 patch

elements for beam steering to compensate the high path loss

of mmWave signal propagation. We implement a simplified

version of IEEE 802.11ad protocol [55] on the testbed for data

packet transmission. The instantaneous bandwidth of signal

transmission is 100MHz. The FFT size of OFDM symbols

is 512, and the modulation scheme is QPSK. All signal

processing modules are implemented in the computer using

C++. Figure 2(c) shows a snapshot of received/decoded signal

constellation at the receiver using the testbed in Figure 2(a).

We consider a dense, cell-free mmWave network in a

conference room, which consists of 4 APs and 30 user devices

as shown in Figure 2(a) with an example snapshot in Figure 1.

The APs are placed on two-side walls, while 30 user devices

are uniformly distributed over the whole conference room.

Using this mmWave testbed, we conduct real-time data packet

transmissions from each AP to each user devices to collect

data traces for our simulation. We measure the error vector

magnitude (EVM) of the decoded signal constellations at the

user device (receiver) for every packet (0.128ms). A total

of 468,750 EVM samples are recorded over 60 seconds for

each AP-user pair. Figure 3 shows three instances of EVM

traces, where we draw 1,000 samples for each instance out

of the total samples with a step-size of 468 for ease of

illustration. To the end, we collect 4 × 30 EVM traces for

those 4 APs and 30 user devices. The measured EVM samples

are used to infer their corresponding packet error rate (PER)

based on the selected modulation and coding scheme (MCS)

and other parameters specified in the 802.11ad standard [55].

Specifically, the simulation time is divided into 60 frames,

each of which consists of EVM samples recorded in 1 second.

For simplicity, we use EVMs in each framework to infer PER

and further the transition probabilities in Section II based on

[56]. These inferred values over time are used as the input of

our simulation to evaluate our proposed algorithms.

Synthetic Traces. We simulate a dense mmWave network

with 4 APs and 100 users. The request arrival probability is

drawn from a Poisson process. The mass function is defined

as f(1000; 2000), and normalized with an average of 0.5. To

model the dynamic nature of mmWave channels, we divide

the simulation time into frames, each of which consists of

104 time slots, and the distribution over the number of packets

successfully delivered from an AP to one user (defined in (1))

is fixed in one frame but varies across frames. We assume

that at most d = 4 packets can be transmitted and the

corresponding distribution of selected user 1, 21, 41, 61, 81
is presented in Table I. The distribution of user with index

number between them are arithmetic sequences. For exam-

ple, (0.09, 0.07, 0.03, 0.01) corresponds to the probabilities of

(1, 2, 3, 4) packets transmitted from AP 1 to user 1 in frame 1,

respectively. Hence the remaining 0.8 probability corresponds

to no packet delivery. We set the maximum queue size as

Smax = 15 and the fairness constraint as B = 20.

Baselines. We compare our mmDPT Index Policy with

(a) Whittle index based (Whittle) [13]; and (b) priority index

based (Priority) [29]. We note that none of these policies can

be directly applied to Problem mmDPT (4) since their problems

were cast as a RMAB without the fairness constraint (3). To this

end, we augment them with the sorting step as in the design

of mmDPT Index Policy (see Section III-B), and refer to

the resulting algorithms as Whittle and Priority, respectively.

Correspondingly, when the system dynamics are unknown,

we compare our mmDPT-TS with (a) a TS method [21] to

learn the above Whittle policy (TS-Whittle); (b) the above

priority index enabled learning policy (IDEA) for packet

scheduling in mmWave networks [29]; (c) Deep Q-network

(DQN) based packet scheduling policy [32]; and (d) soft actor-

critic (SAC) based scheduling policy [31]. Again, the design of

these (deep) RL based scheduling policies did not incorporate

the fairness constraint (3). For sake of fair comparison, we

augment them in the same manner as aforementioned, and

the prior µt
mn is sampled from a Dirichlet distribution for

mmDPT-TS.

B. Evaluation Results

Asymptotic Optimality. We first validate the asymptotic

optimality of mmDPT Index Policy (see Theorem 1). We
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compare the cumulative cost (measured in average delay)

suffered by all users under different policies, with that obtained

from the theoretical lower bound obtained via solving the

LP (7a)-(7e). We call this difference the optimality gap. The

average optimality gap, which is the ratio of the optimality gap

and the scaling parameter Ä (see Section III-C), is presented

in Figure 4 using the real traces collected from our mmWave

testbed and Figure 5 using synthetic traces. We observe that

the average optimality gap decreases significantly and closes

to zero as Ä increases. This verifies the asymptotic optimality

in Theorem 1. An interesting observation is that though

Whittle and Priority scheduling policies did not incorporate the

fairness constraint, when augmented with our proposed sorting

step as aforementioned, their asymptotic performance can be

guaranteed. This further validates the independent interest of

our proposed framework for designing index policies.

Global Attractor. The asymptotic optimality of mmDPT

Index Policy is under the definition of global attractor.

For ease of illustration, we randomly pick three state-action

pairs: (5, 1) for requests from user 1 at AP 3, (5, 0) for requests

from user 20 at AP 2, and (13, 0) for requests from user 70 at

AP 4, all in frame 1 with 104 time slots. As shown in Figures 6,

the occupancy measure of requests from user 1 at AP 3 for

state-action pair (5, 1) indeed converges using synthetic traces.

Similar observations can be made for the other two cases.

Therefore, the convergence indeed occurs for mmDPT Index

Policy and hence we verify the global attractor condition.

Learning Regret and Running Time. The learning regret

of mmDPT-TS and other baselines under real and synthetic

traces in any particular frame are shown in Figure 7(a) and

(b), respectively, where we use the Monte Carlo simulation

with 2,000 independent trails of a single-threaded program on

Ryzen 7 7800X3D desktop with 32 GB RAM. We observe

that mmDPT-TS consistently achieves a much smaller regret

compared to other baselines. The corresponding running time

is shown in Figure 8(a) and (b), respectively, where the

error bars are drawn based on the standard deviation. Note

that although TS-Whittle is also an index-aware TS based

method, there is often no explicit expression for its intrinsic

index policy, i.e., the Whittle index policy, which is often

computed through numeral methods [13], [57]. In particular,

we use value iteration to compute the Whittle index for TS-

Whittle in our experiments. We observe that the running time

of mmDPT-TS is similar to that of SAC and outperforms

all others. However, SAC has a much larger regret than

mmDPT-TS as shown in Figure 7. These observations are

consistent with our motivation that existing learning polices

either do not incorporate fairness constraint and hence cannot

be directly applied to mmDPT, or do not have a finite-time

(regret) performance guarantee, or are computationally expen-

sive, while our mmDPT-TS achieves all at once.

VI. CONCLUSION

We studied the data packet transmission problem (mmDPT)

in a dense, cell-free mmWave network to minimize the average

delay experienced by all users in the system. We proposed a

low-complexity structured RL solution mmDPT-TS for mmDPT

(a) 60GHz mmWave testbed. (b) Synthetic data traces.

Fig. 7: Accumulated regret.
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Fig. 8: Average running time.

by exploiting the inherent problem structure. We proved that

mmDPT-TS achieved a sub-linear Bayesian regret. Experimen-

tal results based on the data collected from realistic mmWave

networks corroborate our theoretical analysis.

VII. APPENDIX

A. Proof of Theorem 1

Since limÄ→∞ V Ä
Ã∗ − V Ä

Ãopt is non-negative, ∀Ã∗ from Al-

gorithm 1, we only need to show that it is non-positive. Let

XÄ
mn(Ã

∗, s, a) be the average number of class-m users with

state at class-n APs being s with action a taken under Ã∗,

which is the global attractor based on Definition 1. The key

is then to show [39]

lim
Ä→∞

XÄ
mn(Ã

∗, s, a)/Ä = Émn(s, a), ∀n,m.

We denote AÃ∗

mn(s) as the set of all combinations

(m′, j),m′ ∈ N , j ∈ S such that class-m′ users with state

at class-n APs being j have larger indices than those of class-

m users with state at class-n APs being s under the mmDPT

Index index policy Ã∗. The transition rates of the process

XÄ
mn(Ã

∗, t)/Ä are then defined as

x→ x− emn,s

Ä
+

emn,s′

Ä
(16)

at rate
∑

a Pmn(s
′|s, a)xÄ

mn(s, a), where xÄ
mn(s, 1) =

min
(

ÄB −∑(m′,j)∈AÃ∗

mn(s)
xÄ
m′n(j, 1), 0

)

and emn,s ∈
R

S×1 is unit vector with the s-th position being 1. It follows

from [58] that there exists a continuous function fℓ(x) to

model the transition rate of the process XÄ
mn(Ã

∗; t) from state

x to x + ℓ/Ä, ∀ℓ ∈ L according to (16), with L being the

set composed of a finite number of vectors in N
SN . Hence,

the process XÄ
mn(Ã

∗; t)/Ä is a density dependent population
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processes as in [39], [58]. Note that the process XÄ
mn(Ã

∗; t)
can be expressed as

dXÄ
mn(Ã

∗; t)/dt = F (XÄ
mn(Ã

∗; t)),

with F (·) being Lipschitz continuous and satisfying

F (XÄ
mn(Ã

∗; t)) =
∑

ℓ∈L ℓfℓ(X
Ä
mn(Ã

∗; t)). Under the con-

dition that the considered MDP is unichain, the process
XÄ

mn(Ã
∗;t)

Ä has a unique invariant probability distribution ·ÄÃ⋆ ,

which is tight [39]. Thus, we have ·ÄÃ⋆

(
XÄ

mn(Ã
∗;t)

Ä

)

converge

to the Dirac measure in XÄ,∗
mn/Ä when Ä → ∞, which is a

global attractor of
XÄ

mn(Ã
∗;t)

Ä , i.e., Émn(s, a), ∀s ∈ S, a ∈ A.

Combing these together, we have

lim
Ä→∞

V Ä
Ã∗

(a)
= lim

Ä→∞

∑

n

∑

m

∑

(s,a)

sDÄ,∗
mn(s, a)/Ä

(b)
=
∑

n

∑

m

∑

(s,a)

sÉ∗
mn(s, a)

(c)

≤ lim
Ä→∞

V Ä
Ãopt ,

where (a) is from the definition of DÄ,∗
mn(s, a), (b) holds since

limÄ→∞ DÄ,∗
mn(s, a)/Ä = Émn(s, a), and (c) is because the

optimal value of (7a)-(7e) is a lower bound of that of (4).

B. Proof of Lemma 1.

Since V¹¹¹k , ∀k is unique up to a constant ¶, hence V¹¹¹k + ¶
also satisfies (13) [38]. Define the stationary distribution over

S under transition kernel ¹¹¹k with mmDPT Index Policy

as ¸¹¹¹k . W.l.o.g, we assume that V¹¹¹k satisfies ¸⊺
¹¹¹kV¹¹¹k = J(¹¹¹k)−

SmaxMN. Following [38], V¹¹¹k is computed as the asymptotic

bias of policy Ã∗,k under ¹¹¹k as

V¹¹¹k(S) =

∞∑

t=0

∑

S′

{¹¹¹k(St+1 = S
′|St,At)[C(St+1,At+1)

− SmaxMN
]

|S0 = S}.

Since at each time slot, we have that
∑

S′

¹¹¹k(St+1 = S
′|St,At)[C(St+1,At+1)− SmaxMN ] ≤ 0,

it leads to V¹¹¹k(S) ≤ 0, ∀S. The equality holds when the

current state is S = Smax[1, 1, . . .]
1×MN and the stationary

distribution is ¸¹¹¹k(S) = 1 when S = Smax[1, 1, . . .]
1×MN

and 0 otherwise. By leveraging ¸⊺
¹¹¹kV¹¹¹k = J(¹¹¹k) −

SmaxMN , we still consider the MDP under ¹¹¹k with

J(¹¹¹k) := SmaxMN , which implies that ¸¹¹¹k(S) = 1
when S = Smax[1, 1, . . .]

1×MN and 0 otherwise. This leads

to the fact that V¹¹¹k(S) ≥ −(S2
max + Smax)MN/2, ∀S.

Hence, Span(V¹¹¹k) = maxS V¹¹¹k(S) − minS V¹¹¹k(S) ≤
(S2

max + Smax)MN/2.

C. Proof of Theorem 2

We will first decompose the regret into three terms, cor-

responding to sampling error, time-varying policy and model

mismatch. Define KT = argmax {k : tk ≤ T} be the number

of episodes of mmDPT-TS until time T . Recall tt as the start

time of episode k, for tk ≤ t < tk+1, the Bellman equation

(Assumption 1) holds:

C(St,At) = J(¹¹¹k) + V¹¹¹k(St)−
∑

S′

¹¹¹k(S′|St,At)V¹¹¹k(S′).

We use S
t,At to represent the state and action matrix of time

t and also simplify ¹¹¹km,n to ¹¹¹k and V is the value function.

By rearranging the Bellman equation we can have:

R(T, Ã) = E

[ T∑

t=1

[C(St,At)− J(¹¹¹∗)]

]

= E

[
KT∑

k=1

tk+1−1
∑

t=tk

C(St,At)

]

− TE[J(¹¹¹∗)]

= E

[
KT∑

k=1

TkJ(¹¹¹
k)

]

− TE[J(¹¹¹∗)]

+ E

[
KT∑

k=1

tk+1−1
∑

t=tk

[V¹¹¹k(St)−
∑

S′

¹¹¹k(S′|St,At)V¹¹¹k(S′)]

]

= E

[
KT∑

k=1

TkJ(¹¹¹
k)

]

− TE[J(¹¹¹∗)]

︸ ︷︷ ︸

R1

+ E

[
KT∑

k=1

tk+1−1
∑

t=tk

[V¹¹¹k(St)− V¹¹¹k(St+1)]

]

︸ ︷︷ ︸

R2

+ E

[
KT∑

k=1

tk+1−1
∑

t=tk

[V¹¹¹k(St+1)−
∑

S′

¹¹¹k(S′|St,At)V¹¹¹k(S′)]

]

︸ ︷︷ ︸

R3

,

where R1, R2 and R3 corresponds to sampling error, time-

varying policy and model mismatch, respectively. We will

first bound the number of episodes (KT ) then analyze them

individually.

1) Bound on number of episodes KT : Note that KT is

a random variable because the number of visits Ct
m,n(s, a)

depends on the dynamical state trajectory. We provide an upper

bound on KT as follows.

Lemma 2.

KT ≤ 2
√

SmaxMNT log T .

Proof. Define macro episodes with start times tni
, i = 1, 2, ...

where tn1
= t1 and

tni+1
= min{tk > tni

:

Ctk
m,n(s, a) > 2Ctk−1

m,n (s, a)for any (m,n, s, a)}.

This condition is related to the second stopping criterion. Let

µ be the number of macro episodes until time T and define

nµ+1 = KT + 1.

Let T̃i =
∑ni+1−1

k=ni
Tk be the length of the i-th macro

episode. By the definition of macro episodes, any episode

except the last one in a macro episode must be triggered by

the first stopping criterion. Therefore, within the i-th macro
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episode, Tk = Tk−1 + 1 for all k = ni, ni + 1, ..., ni+1 − 2.
Hence,

T̃i =

ni+1−1
∑

k=ni

Tk =

ni+1−ni−1
∑

j=1

(Tni−1 + j) + Tni+1−1

≥
ni+1−ni−1
∑

j=1

(j + 1) + 1 =
(ni+1 − ni)(ni+1 − ni + 1)

2
.

We then obtain

KT = nµ+1 − 1 ≤
µ
∑

i=1

√

2T̃i,

with the fact that
∑µ

i=1 T̃i = T , we have

KT ≤
µ
∑

i=1

√

2T̃i ≤

√
√
√
√µ

µ
∑

i=1

2T̃i =
√

2µT , (17)

where the second inequality is Cauchy-Schwarz. Next we will

bound the number of episodes of µ. The start of micro episodes

can be expressed as:

{tn1
}
⋃
(

⋃

(s,a)∈S×A,m∈M,n∈N

{tk : k ∈ Γ(s,a)
m,n }

)

,

where Γ
(s,a)
m,n = {k ≤ KT : Ctk

m,n(s, a) > 2Ctk−1
m,n (s, a)}.

The size of Γ
(s,a)
m,n satisfies |Γ(s,a)

m,n | ≤ logCT+1
m,n (s, a). This

can be proved by contradiction. Define tKT+1 = T + 1, if

|Γ(s,a)
m,n | ≥ logCT+1

m,n (s, a) + 1,

C
tKT
m,n (s, a) =

∏

kfKT ,C
tk−1
m,n (s,a)g1

Ctk
m,n(s, a)

C
tk−1
m,n (s, a)

>
∏

k∈Γ
(s,a)
m,n ,C

tk−1
m,n (s,a)g1

2 ≥ CT+1
m,n (s, a),

which contradicts with C
tKT
m,n (s, a) ≤ CT+1

m,n (s, a). Therefore

|Γ(s,a)
m,n | ≤ logCT+1

m,n (s, a). We can bound µ with:

µ ≤
∑

M∈M,N∈N

∑

s∈S,a∈A

Γ(s,a)
m,n

≤
∑

M∈M,N∈N

∑

s∈S,a∈A

logCT+1
m,n (s, a)

≤ 2SmaxMN log
∑

s∈S,a∈A

CT+1
m,n (s, a)

2Smax

≤ 2SmaxMN log
∑

s∈S,a∈A

CT+1
m,n (s, a)

= 2SmaxMN log T. (18)

Combine 18 and 17 we complete the proof of Lemma 2.

2) Bound on R1: One key property of Thomspon Sampling

is E[f(¹¹¹k, X)] = E[f(¹¹¹∗, X)], but this is different in dynamic

episode version, we provide the following lemma.

Lemma 3. Under mmDPT-TS, tk is a stopping time for any

episode k. Then for any measurable function f and any ¶(htk)-
measurable random variable X, we have

E[f(¹¹¹k, X)] = E[f(¹¹¹∗, X)].

Proof. The only randomness in f(¹¹¹k, X) is the random sam-

pling in the algorithm, which gives the following equation:

E[f(¹¹¹k, X)|htk ] = E[f(¹¹¹k, X)|htk , tk, µk]

= E[f(¹¹¹∗, X)|htk ],

The result follows by taking the expectation for both sides.

From monotone convergence theorem we have:

R1 = E

[
KT∑

k=1

TkJ(¹¹¹
k)

]

− TE[J(¹¹¹∗)]

= E

[
∞∑

k=1

1tkfTTkJ(¹¹¹
k)

]

− TE[J(¹¹¹∗)]

=
∞∑

k=1

E

[

1tkfTTkJ(¹¹¹
k)

]

− TE[J(¹¹¹∗)]

≤
∞∑

k=1

E

[

1tkfT (Tk−1 + 1)J(¹¹¹k)

]

− TE[J(¹¹¹∗)].

From Lemma 3, we have

E

[

1tkfTTkJ(¹¹¹
k)

]

= E

[

1tkfTTkJ(¹¹¹
∗)

]

,

therefore we obtain

R1 ≤
∞∑

k=1

E

[

1tkfT (Tk−1 + 1)J(¹¹¹k)

]

− TE[J(¹¹¹∗)]

= E

[
KT∑

k=1

Tk−1J(¹¹¹
∗)

]

− TE[J(¹¹¹∗)]

≤ E[KT ].

3) Bound on R2: R2 can be simplified as follows:

R2 =E

[
KT∑

k=1

tk+1−1
∑

t=tk

[V¹¹¹k(St)− V¹¹¹k(St+1)]

]

=E

[
KT∑

k=1

[v(Stk , ¹¹¹k)− v(Stk+1 , ¹¹¹k)]

]

≤E
[

Span(V )KT

]

.

4) Bound on R3:

R3 = E

[
KT∑

k=1

tk+1−1
∑

t=tk

[V¹¹¹k(St+1)−
∑

S′

¹¹¹k(S′|St,At)V¹¹¹k(S′)]

]

= E

[
KT∑

k=1

tk+1−1
∑

t=tk

[
∑

S′

(¹¹¹∗(S′|St,At)−¹¹¹k(S′|St,At))V¹¹¹k(S′)]

]

,

where inner summation is bounded by:
∑

S′

(¹¹¹∗(S′|St,At)− ¹¹¹k(S′|St,At))V¹¹¹k(S′)
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≤ Span(V )
∑

S′

|¹¹¹∗(S′|St,At)− ¹¹¹k(S′|St,At)|

≤ Span(V )
∑

S′

|¹¹¹∗(S′|St,At)− ¹̂¹¹
k
(S′|St,At)|

+ Span(V )
∑

S′

|¹¹¹k(S′|St,At)− ¹̂¹¹
k
(S′|St,At)|.

Define confidence set

Bk
mn ={¹¹¹ :

∑

S′
mn

|¹¹¹(S′
mn|Smn, Smn)− ¹̂¹¹

k
(S′

mn|Smn, Amn)|

≤ ´k
mn(Smn, Amn)},

where ´k
mn(Smn, Amn) =

√
14Smax log 4tkT

max (1,C
tk
mn(Smn,Amn))

. There-

fore we have

R3 ≤ 2Span(V )E

[
KT∑

k=1

tk+1−1
∑

t=tk

∑

m,n

´k
mn(S

t
mn, A

t
mn)

]

︸ ︷︷ ︸

Term 1

+ 2Span(V )E

[
KT∑

k=1

∑

m,n

Tk(1¹¹¹∗

mn /∈Bk
mn

+ 1¹¹¹k
mn /∈Bk

mn
)

]

︸ ︷︷ ︸

Term 2

.

For Term 1, by the above definition of ´k
mn(S

t
mn, A

t
mn), we

have

KT∑

k=1

tk+1−1
∑

t=tk

∑

m,n

´k
mn(S

t
mn,A

t
mn)

=

KT∑

k=1

tk+1−1
∑

t=tk

∑

m,n

√

14Smax log 4tkT

max (1, Ctk
mn(Smn, Amn))

≤
KT∑

k=1

tk+1−1
∑

t=tk

∑

m,n

√

28Smax log 4tkT

max (1, Ct
mn(Smn, Amn))

=

T∑

t=1

∑

m,n

√

28Smax log 4tkT

max (1, Ct
mn(Smn, Amn))

≤
√

56Smax log (T )

T∑

t=1

∑

m,n

1

max (1, Ct
mn(Smn, Amn))

≤
√

56Smax log (T )3MN
√

2SmaxT

= 3MNSmax

√

112T log (T )

≤ 33MNSmax

√

T log (T ),

where the first inequality is due to the fact that

Ct
mn(S

t
mn, A

t
mn) ≤ 2Ctk

mn(S
t
mn, A

t
mn) for all t in the k-th

episode.

For Term 2,

KT∑

k=1

∑

m,n

Tk(1¹¹¹∗

mn /∈Bk
mn

+ 1¹¹¹k
mn /∈Bk

mn
)

= 21¹¹¹k
mn /∈Bk

mn
= 2P(¹¹¹kmn /∈ Bk

mn).

By the definition of confidence ball, we have

P(¹¹¹kmn /∈ Bk
mn) ≤

1

15Tt6k
,

thus we get

2Span(V )E

[
KT∑

k=1

∑

m,n

Tk(1¹¹¹∗

mn /∈Bk
mn

+ 1¹¹¹k
mn /∈Bk

mn
)

]

≤ 4

15
Span(V )

∞∑

k=1

t−6
k ≤ Span(V ).

Combine the above results we have

R3 ≤ 2Span(V )E

[
KT∑

k=1

tk+1−1
∑

t=tk

∑

m,n

´k
mn(S

t
mn, A

t
mn)

]

+ 2Span(V )E

[
KT∑

k=1

∑

m,n

Tk(1¹¹¹∗

mn /∈Bk
mn

+ 1¹¹¹k
mn /∈Bk

mn
)

]

≤ 66Span(V )MNSmax

√

T log (T ) + Span(V ).

The total regret then follows

R(T, Ã) = R1 +R2 +R3

≤ E[KT ] + E[Span(V )KT ]

+ 66Span(V )MNSmax

√

T log (T ) + Span(V )

= 2
√

SmaxMNT log T (Span(V ) + 1)

+ 66Span(V )MNSmax

√

T log (T ) + Span(V )

= O(S3
maxM

2N2
√

T log T ).

where the last equation holds from Lemma 1.
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