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Abstract— We consider the problem of content caching at the
wireless edge to serve a set of end users via unreliable wireless
channels so as to minimize the average latency experienced by
end users due to the constrained wireless edge cache capacity.
We formulate this problem as a Markov decision process,
or more specifically a restless multi-armed bandit problem,
which is provably hard to solve. We begin by investigating a
discounted counterpart, and prove that it admits an optimal
policy of the threshold-type. We then show that this result also
holds for average latency problem. Using this structural result,
we establish the indexability of our problem, and employ the
Whittle index policy to minimize average latency. Since system
parameters such as content request rates and wireless channel
conditions are often unknown and time-varying, we further
develop a model-free reinforcement learning algorithm dubbed
as Q

+
-Whittle that relies on Whittle index policy. However,

Q
+
-Whittle requires to store the Q-function values for all state-

action pairs, the number of which can be extremely large for
wireless edge caching. To this end, we approximate the Q-function
by a parameterized function class with a much smaller dimen-
sion, and further design a Q

+
-Whittle algorithm with linear

function approximation, which is called Q
+
-Whittle-LFA.

We provide a finite-time bound on the mean-square error
of Q

+
-Whittle-LFA. Simulation results using real traces

demonstrate that Q+
-Whittle-LFA yields excellent empirical

performance.

Index Terms— Wireless edge caching, restless bandits, whittle
index policy, reinforcement learning, finite-time analysis.

I. INTRODUCTION

THE dramatic growth of wireless traffic due to an enor-
mous increase in the number of mobile devices is

posing many challenges to the current mobile network infras-
tructures. In addition to this increase in the volume of
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traffic, many emerging applications such as Augmented/Virtual
Reality, autonomous vehicles and video streaming, are latency-
sensitive. In view of this, the traditional approach of offloading
the tasks to remote data centers is becoming less attrac-
tive. Furthermore, since these emerging applications typically
require unprecedented computational power, it is not possible
to run them on mobile devices, which are typically resource-
constrained.

To provide such stringent timeliness guarantees, mobile
edge computing architectures have been proposed as a means
to improve the quality of experience (QoE) of end users,
which move servers from the cloud to edges, often wire-
lessly that are closer to end users. Such edge servers are
often empowered with a small wireless base station, e.g., the
storage-assisted future mobile Internet architecture and cache-

assisted 5G systems [1]. By using such edge servers, content
providers are able to ensure that contents such as movies,
videos, software, or services are provided with a high QoE
(with minimal latency). The success of edge servers relies
upon “content caching”, for which popular contents are placed
at the cache associated with the wireless edge. If the content
requested by end users is available at the wireless edge, then
it is promptly delivered to them. Unfortunately, the amount
of contents that can be cached at the wireless edge is often
limited by the wireless edge cache capacity. These issues are
further exacerbated when the requested content is delivered
over unreliable channels.

In this work, we are interested in minimizing the average
latency incurred while delivering contents to end users, which
are connected to a wireless edge via unreliable channels.
We design dynamic policies that decide which contents should
be cached at the wireless edge so as to minimize the average
latency of end users.

A. Whittle Index Policy for Wireless Edge Caching

We pose this problem as a Markov decision process (MDP)

[2] in Section III. Here, the system state is the number of
outstanding requests from end users for each content that
needs to be satisfied, and the cost is measured as the latency
experienced by end users to obtain the requested contents. The
available actions are the choices of caching each content or not
given that the wireless edge cache capacity is much smaller
than the total number of distinct requested contents. This MDP
turns out to be an infinite-horizon average-cost restless multi-

armed bandit (RMAB) problem [3]. Even though in theory this
RMAB can be solved by using relative value iteration [2], this
approach suffers from the curse of dimensionality, and fails
to provide any insight into the solution. Thus, it is desirable
to derive low-complexity solutions and provide guarantees
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on their performance. A celebrated policy for RMAB is the
Whittle index policy [3]. We propose to use the Whittle index
policy to solving the above problem for wireless edge caching.

Following the approach taken by Whittle [3], we begin
by relaxing the hard constraint of the original MDP, which
requires that the number of cached contents at each time
is exactly equal to the cache size. These are relaxed to a
constraint which requires that the number of cached contents
is equal to the cache size on average. We then consider the
Lagrangian of this relaxed problem, which yields us a set of
decoupled average-cost MDPs, which we call the per-content
MDP. Instead of optimizing the average cost (latency) of this
per-content MDP, we firstly consider a discounted per-content
MDP, and prove that the optimal policy for each discounted
per-content MDP has an appealing threshold structure. This
structural result is then shown to also hold for the average
latency problem. We use this structural result to show that our
problem is indexable [3], and then derive Whittle indices for
each content. Whittle index policy then prioritizes contents
in a decreasing order of their Whittle indices, and caches
the maximum number of content constrained by the cache
size. Whittle index policy is computationally tractable since
its complexity increases linearly with the number of contents.

Moreover it is known to be asymptotically optimal [4], [5]
as the number of contents and the cache size are scaled up,
while keeping their ratio as a constant. Our contribution in
Section IV is non-trivial since establishing indexability of
RMAB problems is typically intractable in many scenarios,
especially when the probability transition kernel of the MDP is

convoluted [6], and Whittle indices of many practical problems
remain unknown except for a few special cases.

B. Whittle Index-Based Q-Learning With Linear Function

Approximation for Wireless Edge Caching

The Whittle index policy needs to know the controlled
transition probabilities of the underlying MDPs, which in our
case amounts to knowing the statistics of content request
process associated with end users, as well as the reliability
of wireless channels. However, these parameters are often
unknown and time-varying. Hence in Section V, we design
an efficient reinforcement learning (RL) algorithm to make
optimal content caching decisions dynamically without know-
ing these parameters. We do not directly apply off-the-shelf

RL methods such as UCRL2 [7] and Thompson Sampling [8]
since the size of state-space grows exponentially with the
number of contents, and hence the computational complexity
and the learning regret would also grow exponentially. Thus,
the resulting algorithms would be too slow to be of any
practical use.

To overcome these limitations, we first derive a model-
free RL algorithm dubbed as Q+-Whittle, which is largely

inspired by the recent work [9] that proposed a tabular Whittle
index-based Q-learning algorithm, which we call Q-Whittle
for ease of exposition. The key aspect of Q-Whittle [9]
is that the updates of Q-function values and Whittle indices

form a two-timescale stochastic approximation (2TSA) [10]
with the former operating on a faster timescale and the
latter on a slower timescale. Though [9] provided a rigorous
asymptotic convergence analysis, such a 2TSA usually suffers
from slow convergence in practice (as we numerically verify in
Section VII). To address this limitation, our key insight is that
we can further leverage the threshold-structure of the optimal

policy to each per-content MDP to learn Q-function values
of only those state-action pairs which are visited under the
current threshold policy, rather than all state-action pairs as in
Q-Whittle. This novel update rule enables Q+-Whittle

to significantly improve the sample efficiency of Q-Whittle
using the conventional ϵ-greedy policy.

We note that Q+-Whittle needs to store Q-function
values for all state-action pairs, the number of which can
be very large for wireless edge caching. To address this
difficulty, we further study Q+-Whittle with linear func-
tion approximation (LFA) by using low-dimensional linear
approximation of Q-function. We call this algorithm the
Q+-Whittle-LFA, which can be viewed through the lens
of a 2TSA. We provide a finite-time bound on the mean-
square error of Q+-Whittle-LFA in Section VI. To the
best of our knowledge, our work is the first to consider a
model-free RL approach with LFA towards a Whittle index
policy in the context of wireless edge caching over unreliable
channels, and the first to provide a finite-time analysis of a
Whittle index based Q-learning with LFA. We note that our
model-free framework with LFA and its finite-time analysis
under Markovian noise is of independent interest, and could
be useful for other large-scale network problems.

Finally, we provide extensive numerical results using both
synthetic and real traces to support our theoretical findings
in Section VII, which demonstrate that Q+-Whittle-LFA

produces significant performance gain over state of the arts.

II. RELATED WORK

Although edge caching has received a significant amount
of attentions, we are not aware of any prior work proposing
an analytical model for latency-optimal wireless edge caching
over unreliable channels, designing a computationally efficient
index based policy and a novel RL augmented algorithm in
face to unpredictable content requests and unreliable channels.
We provide an account of existing works in two areas closely
related to our work: content caching and restless bandits.

Content Caching [11] has been studied in numerous
domains with different objectives such as minimizing expected

delay [12], operational costs [13] or maximizing utility [14],

[15]. The joint caching and request routing has also been

investigated, e.g., [16] and [17]. Most prior works formulated
the problem as a constrained/stochastic optimization problem,
etc. None of those works provided a formulation using the
RMAB framework and developed an index based caching
policy. Furthermore, all above works assumed full knowledge
of the content request processes and hence did not incorporate
a learning component. A recent line of works considered

caching from an online learning perspective, e.g., [18] and

[19], and used the performance metric of learning regret or

competitive ratio. Works such as [20], [21], [22], [23], and

[24] used deep RL methods. However, deep RL methods lack
of theoretical performance guarantees. Our model, objective
and formulation significantly depart from those considered
in aforementioned works, where we pose the wireless edge
caching problem as a MDP and develop the Whittle index
policy that can be easily learned through a model-free RL
framework.

Restless Multi-Armed Bandit (RMAB) is a general frame-

work for sequential decision making problems, e.g., [25] and

[26]. However, RMAB is notoriously intractable [27]. One
celebrated policy is the Whittle index policy [3]. However,
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Fig. 1. Wireless edge caching over unreliable channels.

Whittle index is well-defined only when the indexability
condition is satisfied, which is in general hard to verify.
Additionally, the application of Whittle index requires full
system knowledge. Thus it is important to examine RMAB

from a learning perspective, e.g., [28], [29], [30], and [31].
However, these methods did not exploit the special structure
available in RMAB and contended directly with an extremely
high dimensional state-action space yielding the algorithms
to be too slow to be useful. Recently, RL based algorithms
have been developed [9], [32], [33], [34], [35], [36], [37],

[38], [39], [40] to explore the problem structure through index
policies. However, [9], [32], [34], and [35] lacked finite-
time performance analysis and multi-timescale SA algorithms
often suffer from slow convergence. References [33] and [36]
depended on a simulator for explorations which cannot be
directly applied here since it is difficult to build a perfect
simulator in complex wireless edge environments. Reference
[38] leveraged the threshold policy via a deep neural net-
work without finite-time performance guarantees. References
[37], [39], and [40] either studied a finite-horizon setting or
developed model-based RL solutions, while we consider an
infinite-horizon average-cost setting and develop model-free
RL algorithms. Specifically, we propose Q+-Whittle-LFA,
a low-complexity Whittle index based Q-learning algorithm
with linear function approximation. Our finite-time analysis
of Q+-Whittle-LFA further distinguishes our work.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we present the system model and formulate
the average latency minimization problem for wireless edge
caching over unreliable channels.

A. System Model

Consider a wireless edge system as shown in Figure 1,
where the wireless edge is equipped with a cache of size
B units to store contents that are provided to end users.
We denote the set of distinct contents as M = {1, · · · ,M}
with |M| = M . We assume that all contents are of unit size.
End users make requests for different contents to the wireless
edge. If the requested content is available (i.e., cached) at
the wireless edge, then it is delivered to end users directly

through a wireless channel that is unreliable [41]. The goal
of the wireless edge is to decide at each time which contents
to cache so that the cumulative value of the average content
request latency experienced by end users is minimal.

Content Request and Delivery Model. We assume that
requests for content m ∈M arrive at the wireless edge from
end users according to a Poisson process1 with arrival rate

1Poisson arrivals have been widely used in the literature, e.g., [16] and [17]
and references therein. However, our model holds for general stationary pro-

cess [42] and our model-free RL based algorithm and analysis in Sections V
and VI holds for any request process.

¼m. To each content m, we associate a “request queue” at
the wireless edge, which stores the number of outstanding
requests for content m at time t. The queue length associated
with the number of such requests at time t is denoted by
Sm,t. The rationality of this model is that the number of
content requests may be larger than the service capacity of
the wireless edge server. Hence, the content requested from
an end user might not be served immediately so that there
will be a latency associated with the end user getting content.
Another point is due to the fact that the wireless channels
between the edge cache and end users are unreliable. This
motivates us to consider a queuing model which captures the
latency experienced by end users.

The time taken by the wireless edge to deliver the content,
i.e. serve end users’ requests, is modeled by appropriate
random variables, which heavily relies on the wireless channel
quality between the wireless edge and end users.2 More
specifically, we assume that the time taken to deliver content
m to end users is exponentially distributed with mean 1/
¿m [41]. The service times are independent across different
contents and requests. Thus, when Sm,t g 1, the request of
content m departs from the corresponding request queue with
rate ¿m.

Decision Epochs. The decision epochs/times are the
moments when the states of request queues change. At each
decision epoch/time t, the wireless edge determines for each
content whether or not it should be cached, and then delivers
the cached contents to the desired end users.

B. System Dynamics and Problem Formulation

We now formulate the problem of average latency mini-
mization for the above model as a MDP.

States. We denote the state of the wireless edge at time t
as St := (S1,t, · · · , SM,t) ∈ N

M , where Sm,t is the number
of outstanding requests for content m ∈ M. To guarantee
the stability of the Markov chain, we assume that Sm,t ∈
[0, Smax],∀m, t, where Smax can be arbitrarily large but
bounded. For ease of readability, we denote the state-space
associated with St as S.

Actions. At each time t, for each content m, the wireless
edge has to make a decision regarding whether or not to
cache it. We use Am,t to denote the action for content m
at time t. Thus, we let Am,t = 1 if it is cached, and
Am,t = 0 otherwise. We let A := {0, 1} be the set of decisions
available for each content, and let At := (A1,t, · · · , AM,t) be
the vector consisting of decisions for M contents. The cache
capacity constraint implies that At must satisfy the following
constraints,

M∑

m=1

Am,t f B, ∀t. (1)

We aim to design a policy Ã : S 7→ AM maps the state St of
the wireless edge to caching decisions At, i.e., At = Ã(St).

Transition Kernel. The state of the m-th request queue can
change from Sm to either Sm +1, or Sm−1 at the beginning
of each decision epoch. Let em be the M -dimensional vector

2Though the wireless channel can be explicitly modeled as in physical-layer

communication models [43], it requires additional beamforming and channel
estimations, which is out of the scope of this work. With our queue model, the
effect of wireless channel is incorporated in content departure rate as in [41].
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whose m-th component is 1, and all others are 0. Then,

S =

{
S + em, with transition rate bm(Sm, Am),

S− em, with transition rate dm(Sm, Am),
(2)

where bm(Sm, Am) := ¼m. We allow for state-dependent
content delivery rates, which enables us to model realistic
settings [25], [26]. In particular, our setup can cover the classic
M/M/k queue if dm(Sm, Am) = ¿mSmAm. This models
the general multicast scenario in which the wireless edge can
simultaneously serve end users whose requested contents are
cached at the edge.

Average Latency Minimization Problem. It follows from

Little’s Law [44] that the objective of minimizing the average
latency faced by end users is equivalent to that of minimizing
the average number of cumulative outstanding requests in the
system. Let Cm,t(Sm,t, Am,t) := Sm,t be the instantaneous
cost incurred by user m at time t, so that the cumulative cost
incurred in the system at time t is given by

Ct(St,At) =

M∑

m=1

Cm,t(Sm,t, Am,t) =

M∑

m=1

Sm,t. (3)

With this choice of instantaneous cost, the average cost
incurred in the system is proportional to the average latency
faced by end users. Our objective is to derive a policy Ã that
makes content caching decisions at the capacity-constrained
wireless edge for solving the following MDP:

min
Ã∈Π

CÃ := lim sup
T→∞

M∑

m=1

1

T
EÃ

[
∫ T

0

Sm,tdt

]

,

s.t.

M∑

m=1

Am,t f B, ∀t, (4)

where the subscript denotes the fact that the expectation is
taken with respect to the measure induced by the policy Ã,
and Π is the set of all feasible wireless edge caching policies.
Henceforth, we refer to (4) as the “original MDP.” Since it
is an infinite-horizon average-cost problem, in principle it can
be solved via the relative value iteration [2]. More specifically,
there exists a value function, and an average cost value for the
above MDP [2, Theorem 8.4.3]:

Lemma 1: Consider the MDP (4) whose transition kernel
is described in (2). There exists a ´∗ and a function V :
S 7→ R that satisfy the following dynamic programming (DP)
equation:

´∗ = min∑
m AmfB

(
M∑

m=1

[

Sm + ¼mV (S + em)

+ ¿mSmAmV (S−em)−(¼m+¿mSmAm)V (S)
]
)

.

(5)
Though one can obtain an optimal policy Ã∗ using relative

value iteration, this approach suffers from the curse of dimen-
sionality, i.e., the computational complexity grows linearly
with the size of state space S, the latter quantity in turn grows
exponentially with the number of contents M . This renders
such a solution impractical. Furthermore, this approach fails
to provide insight into the solution structure. Thus, our focus
will be on developing computationally appealing solutions.

C. Lagrangian Relaxation

We now discuss Lagrangian relaxation of the original
MDP (4), and introduce the corresponding “per-content MDP.”
The Lagrangian multipliers together with these per-content
problems form the building block of our Whittle index policy,
that will be formally introduced in Section IV.

Following Whittle’s approach [3], we first consider the fol-
lowing “relaxed problem,” which relaxes the “hard” constraint
in (4) to an average constraint:

min
Ã∈Π

lim sup
T→∞

M∑

m=1

1

T
EÃ

[
∫ T

0

Sm,tdt

]

,

s.t. lim sup
T→∞

M∑

m=1

1

T
EÃ

[
∫ T

0

Am,tdt

]

f B. (6)

Next, we consider the Lagrangian associated with (6),

L(Ã,W )

:= lim sup
T→∞

1

T
EÃ

∫ T

0

{
M∑

m=1

Sm,t−W

(

B−

M∑

m=1

Am,t

)}

, (7)

where W is the Lagrangian multiplier, and Ã is a wireless edge
caching policy. The corresponding dual function is defined as

D(W ) := min
Ã
L(Ã,W ). (8)

The dual problem corresponding to W is to optimize the
Lagrangian L(Ã,W ) over the choice of Ã. For a fixed value
of W , the dual problem (8) corresponding to the relaxed
problem (6) decouples the original problem (4) into M “per-
content MDPs,” each of them involving only a single content.
Specifically, the per-content MDP corresponding to the m-th
content is given as follows,

min
Ãm

C̄m := lim sup
T→∞

1

T
EÃm

[
∫ T

0

C̄(Sm,t, Am,t)dt

]

, (9)

where C̄(Sm,t, Am,t) := Sm,t−W (1−Am,t) is the instanta-
neous cost incurred by m-th content, and Ãm is a policy that
makes decisions (only) for the m-th content. It then follows
that in order to evaluate the dual function (8) at W , it suffices
to solve all M independent per-content MDPs (9) [2]. The
relaxed problem (6) can be solved by solving each of these
M per-content MDPs, and then combining their solutions.

Unfortunately, this solution does not always provide a feasi-
ble wireless edge caching policy for the original problem (4),
which requires that the cache capacity constraint (1) must be
met at all times, rather than just in the average sense as in the
constraint (6). Whittle index policy, which we discuss next,
combines these solutions corresponding to per-content MDPs
in such a way that the resulting policy is also feasible for the
original problem (4), i.e, it satisfies the hard constraint.

IV. WHITTLE INDEX POLICY

We now describe the Whittle index policy that will be
utilized for making decisions for wireless edge caching. To the
best of our knowledge, Whittle index policy has not been
used previously to solve this problem. More specifically, the
wireless edge caching problem (4) can be posed as a RMAB
problem in which each content m ∈ M can be viewed as an
arm m, and playing arm m would correspond to cache content
m. At each time t, the queue length Sm,t of the corresponding

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on October 31,2024 at 20:05:03 UTC from IEEE Xplore.  Restrictions apply. 



4290 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 5, OCTOBER 2024

request queue is the state of arm m, and Am,t is the action
taken for content m. Am,t = 1 denotes that content m is
cached at time t, and Am,t = 0 otherwise. It is well-known that
Whittle index policy is a computationally tractable solution to
the RMAB problem since its computational complexity scales
linearly with the number of arms M . For ease of readability,
we relegate all proofs in this section to Appendix A.

A. Indexability and Whittle Index

Whittle index policy is defined for a RMAB only when
the underlying problem is “indexable” [3]. Thus, we begin by
showing that our MDP is indexable. Loosely speaking, to show
that the problem is indexable, we need to consider the single-
arm (per-content) MDP (9) and then need to show that the
set of states in which the optimal action is passive (i.e., not
to cache) increases as the Lagrangian multiplier W increases.
We definite it formally here for completeness.

Definition 1 (Indexability): Consider the per-content
MDP (9) for the m-th content. Let Dm(W ) be the set
of states in which the optimal action for the per-content
MDP (9) is to choose the passive action, i.e., Am = 0. Then
the m-th MDP is said to be indexable if Dm(W ) increases
with W , i.e., if W > W ′, then Dm(W ) § Dm(W ′). The
original MDP (4) is indexable if all of the M per-content
MDPs (9) are indexable.
In case that a MDP is indexable, the Whittle index for each
content/arm is defined as follows.

Definition 2 (Whittle Index): If the per-content MDP (9)
for the m-th content is indexable, the Whittle index in state S
is the smallest value of the Lagrangian multiplier W such that
the optimal policy is indifferent towards actions Am = 0 and
Am = 1 when the Lagrange multiplier is set equal to this
value. We denote this Whittle index by Wm(S), satisfying
Wm(S) := infWg0{S ∈ Dm(W )}.

B. The Per-Content MDP (9) Is Indexable

Our proof of indexability relies on the “threshold” property
of the optimal policy for each per-content MDP (9), i.e.,
for each content ∀m ∈ M, it is optimal to cache this
content only when the number of outstanding requests for
it is above a certain threshold; this threshold might depend
upon m. We begin by analyzing this MDP for a fixed m, and
thus drop the subscript m in the rest of this subsection for
ease of exposition. One key observation is that although the
inherent MDP in (9) operates in continuous time, decisions are
made only at those time instants when either a new content
request arrives, or a content delivery occurs. Otherwise, there
is no state transition (see Section III-A for details). With
this observation, those time instants together can be treated
as in the discrete-time domain (samples from the original
time domain). Hence, for the per-content MDP in (9), the
state transitions under an action are sampled on discrete-time
instants. For example, the MDP transitions from state s to state
s+1 with probability ¼

¼+¿sa , and from state s to state s−1 with

probability 1 − ¼
¼+¿sa , according to the controlled birth-and-

death process. This reduces our considered continuous-time
“per-content” MDP (9) to a discrete-time MDP problem and
each time instance when a state transition occurs corresponds
to one step in the discrete-time MDP problems. To this end,
we show the threshold property by analyzing the per-content
MDP (9) in its discrete-time equivalently.

1) Threshold Property of an Optimal Policy: We start by
analyzing an associated discounted cost MDP, rather than
the average latency problem. After analyzing the discounted
MDP, we extend our results to the case of average latency
problem (9). The discounted latency problem corresponding
to (9) is given as follows,

min
Ã

EÃ

[

lim
T→∞

T∑

t=1

³t−1C̄(St, At)|S0 = s

]

, (10)

where ³ ∈ (0, 1) is a discount factor. It is well-known that
there exists an optimal stationary deterministic policy for this
discounted latency problem [2], and hence we will restrict
ourselves to the class of stationary deterministic policies while
solving this problem. We apply the value iteration method to
find the optimal policy.

Let U denote the Banach space of bounded real-value
functions on N with supremum norm. Define the operator
T : U → U as follows,

(T u)(s) := min
a∈{0,1}

C̄(s, a) + ³E[u(s′)], (11)

where u(·) ∈ U and the expectation is taken with respect
to the distribution of state s′ which results when action a is
applied in state s. Let J³(s) denote the optimal expected total
discounted cost incurred by the system when it starts in state s.
Then we have that J³(s) = T J³(s), i.e., J³(s) is a solution
of the Bellman equation satisfying

J³(s) = min
a∈{0,1}

C̄(s, a) + ³E[J³(s′)]. (12)

As is described in (2), s′ can only assume values from the set
{s− 1, s+ 1}. Let Ps,a := ¼

¼+¿sa , so that (12) can be written

compactly as J³(s) =

min
a∈{0,1}

C̄(s, a)+³
(

Ps,aJ
³(s+1)+(1−Ps,a)J³(s−1)

)

. (13)

Define the state-action value function ∀s ∈ S, a ∈ {0, 1} as:

Q³(s, a) := C̄(s, a)+³
(

Ps,aJ
³(s+1)+(1−Ps,a)J³(s−1)

)

.

(14)

Therefore, we have J³(s) = mina∈{0,1}Q
³(s, a).

We need the following assumption on the underlying MDPs
in order to ensure that the Whittle indices W (s) are finite.

Assumption 1: For each state s, there exists a finite W (s) >
0 such that the optimal action is of equal preference in
activating and not activating the arm (caching or not caching
the content), i.e. Q³(s, 1) = Q³(s, 0).

We now show that for each value of W , the optimal policy
for the per-content MDP (10) is of threshold-type.

Proposition 1: Consider the discounted latency MDP (10)
with a fixed W g 0. There exists an optimal policy for (10)
that is of threshold-type with the threshold depending on W .

Remark 1: Existing works [45], [46] among others have
also used the threshold structure of an optimal policy in order
to show that the underlying MDP is indexable. The key is
to show that if the optimal action for state s is to keep
the arm active (a = 1), i.e., Q³(s, 1) f Q³(s, 0), then the
optimal action for state s + 1 is also to keep it active, i.e.,
Q³(s+ 1, 1) f Q³(s+ 1, 0). The threshold structure in turn
is shown by considering the corresponding discounted MDP,
and proving for this discounted problem that its value function
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Q³(·) of the underlying MDP is convex [45], or monotone
[46]. Works such as [45] and [46] showed that these proper-
ties hold, but then the associated MDPs in these works have
transition rates that are not a function of state. In contrast,
the transition rates in our MDPs are a function of state, and
hence we cannot use existing results directly.

The following proposition extends our results in Proposi-
tion 1 for the discounted latency problem in (10) to the original
average latency problem in (9).

Proposition 2: There exists an optimal stationary policy of
the threshold-type for the average latency problem in (9).

2) Indexability of the Per-Content MDP (9): We now show
that the per-content MDP (9) is indexable.

Proposition 3: The per-content MDP (9) is indexable.

Proposition 4: Let {ϕR(s)}Smax
s=0 be the stationary distribu-

tion of the Markov process which results when the threshold
policy with threshold value R is applied. If the function∑

s sϕR(s)−
∑

s sϕR−1(s)
∑R

s=0
ϕR(s)−

∑R−1

s=0
ϕR−1(s)

is non-decreasing in R, then the

Whittle indices of the per-content MDP (9) are given as
follows,

W (R) :=

∑

s sϕR(s)−
∑

s sϕR−1(s)
∑R

s=0 ϕR(s)−
∑R−1

s=0 ϕR−1(s)
. (15)

From (15), it is clear that the stationary distribution of the
threshold policy is required to compute the Whittle indices.

Proposition 5: The stationary distribution {ϕR(s)}Smax
s=0 of

the threshold policy with threshold value R satisfies

ϕR(s) = 0, s = 0, 1, . . . , R− 1,

ϕR(R) =
¿(R+ 1)

¼+ ¿(R+ 1)
· ϕR(R+ 1),

ϕR(R+ 1) = 1/

(

1 +
¿(R+ 1)

¼+ ¿(R+ 1)

+

Smax−R∑

l=2

l∏

j=2

¼

¼+¿(R+j−1)

¼+¿(R+j)

¿(R+j)

)

,

ϕR(R+ l) = ϕR(R+ 1)

l∏

j=2

¼

¼+ ¿(R+ j − 1)

·
¼+ ¿(R+ j)

¿(R+ j)
, l = 2, · · · , Smax −R. (16)

C. Whittle Index Policy

We now describe how the solutions to the relaxed prob-
lem (6) are used to obtain a policy for the original problem (4).
Whittle index policy assigns an index Wm(Sm,t) to the queues
of each content m ∈M. This index Wm(Sm,t) depends upon
current state Sm,t and current time. The Whittle index policy
then activates (caches) B arms (contents) with the highest
value of the indices Wm(Sm,t). Although this policy need
not to be optimal for the original problem (4), it has been
shown to be asymptotically optimal [4], [5] as the number of
contents M and the cache size B are scaled up, while keeping
their ratio as a constant.

V. WHITTLE INDEX BASED Q-LEARNING WITH LFA

In order to implement the Whittle index policy that was
discussed in Section IV, one needs to know the controlled
transition probabilities of each of the M per-content MDPs.

Since this information is often not available, and moreover
these parameters are time-varying, we now develop rein-
forcement learning algorithms that learn the Whittle index
policy for wireless edge caching. Specifically, we design
a model-free reinforcement learning augmented algorithm
with linear function approximation (LFA), which we call
Q+-Whittle-LFA, which leverages the threshold structure
of the optimal policy developed in Section IV while learn-
ing Q-functions for different state-action pairs. Similar to
Section IV, we focus on learning the Whittle index for each
per-content MDP, and hence drop the subscript m for ease
of presentation. Again, as discussed in Section IV, though
the whole system (the content caching process) operates in
continuous time, decisions are made only at those time instants
when either a new content request arrives, or a content delivery
occurs (see Section III-A). Those time instants can be treated
as in the discrete-time domain. Hence, in this section, samples
are made on discrete time instants.

A. Preliminaries

We first review some preliminaries for Q-learning for Whit-
tle index policy, which was first proposed in [32] for the
discounted cost setup and further generalized in [9] for average
cost setup.

Consider the dynamic programming equations associated
with the per-content MDP in (9),

V (s)+ ˜́∗ = min
a∈{0,1}

{

a
(

s+
∑

s′

p(s′|s, 1)V (s′)
)

+ (1− a)
(

s−W +
∑

s′

p(s′|s, 0)V (s′)
)
}

,

(17)

where ˜́∗ ∈ R is the optimal value of the long-term average
cost of the MDP with the Lagrange multiplier set equal to
W , and V (·) is the relative value function. The corresponding

Q-function is given as follows [47],

Q(s, a)+ ˜́∗= s−(1− a)W (s)+
∑

s′

p(s′|s, a)V (s′), (18)

where value function V (·) satisfies V (s) =
mina∈{0,1}Q(s, a). We now discuss a relation satisfied
by the Whittle indices {W (s)}s∈S , that was derived in [32].
When the Lagrange multiplier W is set equal to the Whittle
index W (s), actions 0 and 1 are equally favorable in state
s, i.e., Q(s, 0) = Q(s, 1). Substituting for Q(s, a) from (18)
into the relation Q(s, 0) = Q(s, 1), we obtain the following
relation for W (s),

W (s) =
∑

s′

p(s′|s, 0)V (s′)−
∑

s′

p(s′|s, 1)V (s′). (19)

The work [9] proposed a tabular Whittle index-based Q-
learning algorithm, which we call Q-Whittle for ease of
exposition. The key aspect of Q-Whittle is that the updates
of Q-function values and Whittle indices form a two-timescale
stochastic approximation (2TSA), where the Q-function values
are updated at a faster timescale for a given W (s), and
the Whittle indices are updated at a slower timescale. More
precisely, the Q-function values are updated as follows,

Qn+1(s, a)=Qn(s, a)+µn1{Sn=s,An=a}

(

s− (1− a)W (s)
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+ max
a

Qn(Sn+1, a)−I(Qn)−Qn(s, a)
)

,

n=0, 1, . . . , (20)

where the subscript n denotes the decision epoch for the per-

content MDP in (9), and I(·) is a reference function [2], [48].
Recall that decision epoch represents the moment when state
of the per-content MDP changes. Note that reference functions
are used only when performing relative Q-learning iterations
for the average cost setup, and not used while optimizing
cumulative discounted rewards. {µn} is a step-size sequence
satisfying

∑

n µn = ∞ and
∑

n µ
2
n < ∞. Accordingly, the

Whittle indices are updated as follows,

Wn+1(s) = Wn(s) + ¸n(Qn(s, 0)−Qn(s, 1)), (21)

with the step-size sequence {¸n} satisfying
∑

n ¸n = ∞,
∑

n ¸
2
n < ∞ and ¸n = o(µn). The coupled iterates (20)

and (21) form a 2TSA, and a rigorous asymptotic convergence
guarantee is provided in [9].

B. Q+-Whittle

While [9] proposed a Q-learning based algorithm for learn-
ing Whittle indices, Q-Whittle requires a reference function

I(Qn) in order to approximate the unknown parameter ˜́∗.
It is not clear how one should choose the reference function,
since there is no unique choice and this function might be
problem dependent. To circumvent this problem, a widely-
adopted approach is to instead learn an optimal policy for
the corresponding discounted-cost MDP, that differs from
the average cost MDP only in that the future rewards are

discounted. It follows from classical results on MDPs [49] that
there exists a stationary deterministic policy that is optimal for
all values of discount factor ³ that are sufficiently close to 1.
Moreover this policy is also optimal for the average-cost MDP.
This policy is known as the Blackwell optimal policy. Such a
technique has been applied to the study of average-cost MDP

in [32] and [50]. We will adopt a similar approach, and hence
now focus on the discounted Q-learning.

We now use the structural result regarding an optimal policy
for the per-content MDP (9) in order to reduce the explo-
ration overhead associated with the updates of Q-functions.
Specifically, by specializing the Q-learning iterations for a
threshold policy with threshold R, one needs to update the
Q-function values Q(s, 0) only for states s = 1, 2, . . . , R − 1
(and not for states s g R), while all other state-action values
are left unchanged since the optimal action for all s < R is
deterministic, i.e., a = 0. Similarly, for action a = 1, we only
need to update the Q-function values Q(s, 1) for s > R.
When the arm is in state R, it randomizes between actions
0 and 1. To keep the discussion simple, we assume that these
two actions are chosen with equal probability when state is
R. This key observation drastically reduces the complexity
of Q-learning when it is applied to learn Whittle indices,
as compared with the existing Q-Whittle [9]. Towards this
end, we call this improved version of Q-Whittle algorithm,
one which leverages the threshold structure of the optimal
policy, as Q+-Whittle.

Specifically, we consider the problem of learning the Whittle
index for state s = R, and develop a recursive update scheme
for learning it. Let QR

n (Sn, An) be the Q-function value during
iteration n with dependence on R. The Q-function updates of
Q+-Whittle are given as follows:

Case 1: When Sn > R, we have

QR
n+1(Sn, 1)← (1− µn)QR

n (Sn, 1) + µnSn

+ µn

(

³1(Sn+1>R)Q
R
n (Sn+1, 1)

︸ ︷︷ ︸

Term11

+³1(Sn+1<R)Q
R
n (Sn+1, 0)

︸ ︷︷ ︸

Term12

+ ³1(Sn+1=R) min
a
QR

n (Sn+1, a)
︸ ︷︷ ︸

Term13

)

, (22)

where the step-size sequence {µn} satisfies
∑

n µn = ∞
and

∑

n µ
2
n < ∞. Term11 follows from the above insight

that only Q-function values for states greater than R, i.e.
QR

n (Sn, 1), Sn > R need to be updated. This differs sig-
nificantly from Q-Whittle [9], where both QR

n (·, 1) and
QR

n (·, 0) need to be updated when Sn > R. This is due to
the fact that our Q+-Whittle leverages the threshold-type
optimal policy while performing Q-function updates, which
either does not exist or is not leveraged in [9] and [32]. Similar
insights lead to the updates of Term12 and Term13.

Case 2: When Sn < R, we have

QR
n+1(Sn, 0)← (1− µn)QR

n (Sn, 0) + µn(Sn −Wn(R))

+ µn

(

³1(Sn+1>R)Q
R
n (Sn+1, 1)

︸ ︷︷ ︸

Term21

+³1(Sn+1<R)Q
R
n (Sn+1, 0)

︸ ︷︷ ︸

Term22

+ ³1(Sn+1=R) min
a
QR

n (Sn+1, a)
︸ ︷︷ ︸

Term23

)

, (23)

where the updates of Term21, Term22 and Term23 leverage
similar insights as those in Case 1.

Case 3: When Sn = R, QR
n (Sn, An) gets updated according

to either (22) or (23) with equal probability.
In summary, the Q-function updates of Q+-Whittle are

given as

QR
n+1(s, a)=

{
(22) or (23), if (s, a)=(Sn, An),

QR
n (s, a), otherwise.

(24)

With the above Q-function updates, the parameter W under
the threshold policy with threshold R is updated as follows,

Wn+1(R) = Wn(R) + ¸n

(

QR
n (R, 0)−QR

n (R, 1)
)

, (25)

where the step-size sequence {¸n} satisfies
∑

n ¸n = ∞,
∑

n ¸
2
n <∞ and ¸n = o(µn).

Q+-Whittle is summarized in Algorithm 1. Since we
are learning the Whittle index for every state, the algorithm
will loop for all states. Q-function and W updates discussed
above remain the same for all M contents (lines 4-8). Since
the wireless edge can cache at most B contents, an easy
implementation is to find the possible activation set C := {m ∈
M|Sm(t) g R} for threshold R at time/epoch t and activate
min(B, |C|) arms with highest Whittle indices Wm,t(Sm,t).
Note that t is the moment when the state of any of the M
per-content MDPs changes.

Remark 2: Some definitions (e.g., W (s)) in this paper are
similar to those in [9] and [32], which studied Q-Whittle

through a two-timescale update. However, our Q+-Whittle

differs from those in [9] and [32] from two perspectives. First,
[9] and [32] adopted the conventional ϵ-greedy rule for Q-
function value updates. In contrast, we leverage the property
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Algorithm 1 Q+-Whittle for Per-Content MDP

1: Initialize: Qs′

0 (s, a) = 0, W0(s) = 0, ∀s, s′ ∈ S.

2: for R ∈ S do

3: Set the threshold policy as Ã = R.

4: for n = 1, 2, . . . , T do

5: Update QR
n (sn, an) according to (24).

6: Update Wn(R) according to (25).

7: end for

8: W0(R+ 1) = WT (R), QR+1
0 (s, a) = QR

T (s, a).
9: end for

10: Return: W (s),∀s ∈ S.

of optimal threshold-type policy into Q-function value updates
as in (22) and (23). Such a threshold-type Q-function value
update dramatically reduces the computational complexity
since each state only has a fixed action to explore. Second,
the threshold policy further enables us to update Whittle
indices in an incremental manner, i.e., the converged Whittle
index in state s can be taken as the initial value for the
subsequent state s + 1 (line 8 in Algorithm 1), instead of
being randomly initiated as in [9] and [32]. This further
speeds up the learning process. In addition, [32] lacked

convergence guarantee. Recently, another line of work [51]
leveraged Q-learning to approximate Whittle indices through
a single-timescale SA, where Q-function and Whittle indices
were learned independently. Reference [51] considered the
finite-horizon MDP and cannot be directly applied to infinite-
horizon discounted or average cost MDPs considered in this
paper.

C. Q+-Whittle With Linear Function Approximation

When the number of state-action pairs is very large, which
is often the case for wireless edge caching, Q+-Whittle

can be intractable due to the curse of dimensionality. A closer
look at (25) further reveals that the Whittle index is updated
only when state s is visited. This can significantly slow down
the convergence process of the corresponding 2TSA when
the state space is large. To overcome this difficulty, we fur-
ther study Q+-Whittle with linear function approximation
(LFA) by using low-dimensional linear approximation of Q
on a linear subspace with dimension dj |S||A|. We call this
algorithm as Q+-Whittle-LFA.

Specifically, given a set of basis functions ϕℓ : S × A 7→
R, ℓ = 1, · · · , d, the approximation of the Q-function Q̃¹(s, a)
parameterized by a unknown weight vector ¹ ∈ R

d, is given

by Q̃¹(s, a) = ϕ(s, a)⊺¹, ∀s ∈ S, a ∈ A, where ϕ(s, a) =
(ϕ1(s, a), · · · , ϕd(s, a))

⊺. The feature vectors are assumed to
be linearly independent and are normalized so that ∥ϕ(s, a)∥ f
1,∀s ∈ S, a ∈ A.

Similar to Q+-Whittle, we consider the problem of
learning the Whittle index for state s = R, which can
be equivalently formulated as the problem of learning the
coefficient ¹. Let ¹R

n be its value during iteration n, which
depends on the value of R. Leveraging the same ideas for
Q-function updates in (24), Q+-Whittle-LFA iteratively
updates ¹R

n as follows:
Case 1: When Sn > R, we have

¹R
n+1←¹R

n + µnϕ(Sn, 1)

[

Sn + ³1(Sn+1>R)ϕ(Sn+1, 1)⊺¹R
n

Algorithm 2 Q+-Whittle-LFA for Per-Content MDP

1: Initialize: ϕ(s, a), ¹0,W0(s) = 0 for ∀s ∈ S, a ∈ A.

2: for R ∈ S do

3: Set the threshold policy as Ã = R.

4: for n = 1, 2, . . . , T do

5: Update ¹R
n according to (28).

6: Update Wn(R) according to (29).

7: end for

8: W0(R+ 1) = WT (R), ¹R+1
0 (s, a) = ¹R

T (s, a).
9: end for

10: Return: W (s),∀s ∈ S.

+ ³1(Sn+1<R)ϕn(Sn+1, 0)⊺¹R
n

+ ³1(Sn+1=R) min
a
ϕ(Sn+1, a)

⊺¹R
n−ϕ(Sn, 1)⊺¹R

n

]

.

(26)

Case 2: When Sn < R, we have,

¹R
n+1←¹R

n + µnϕ(Sn, 0)
[

(Sn −W ) + ³1(Sn+1>R)ϕn(Sn+1, 1)⊺¹R
n

+ ³1(Sn+1<R)ϕn(Sn+1, 0)⊺¹R
n

+ ³1(Sn+1=R) min
a
ϕn(Sn+1, a)

⊺¹R
n−ϕ(Sn, 0)⊺¹R

n

]

.

(27)

Case 3: When Sn = R, the update occurs either according
to (26) or (27) with an equal probability.

The iterations can be summarized as follows,

¹R
n+1 =







(26) if Sn > R,

(27) if Sn < R,

(26) or (27), if Sn = R.

(28)

We now derive a similar iterative scheme for learning
the Whittle indices. To do this, we consider the Whittle
index update in (25), and replace the Q-function values
QR

n (R, 0), QR
n (R, 1) by their linear function approximations

ϕ(R, 0)⊺¹R
n and ϕ(R, 1)⊺¹R

n , respectively. This gives us the
following iterations,

Wn+1(R) = Wn(R) + ¸n(ϕ(R, 0)⊺¹R
n − ϕ(R, 1)⊺¹R

n ). (29)

We summarize Q+-Whittle-LFA in Algorithm 2, which is
one of our key contributions in this paper.

VI. FINITE-TIME PERFORMANCE ANALYSIS

In this section, we provide a finite-time analysis of our
Q+-Whittle-LFA algorithm, which can be viewed through

the lens of 2TSA. Our key technique is motivated by [52],
which deals with a general nonlinear 2TSA. To achieve this
goal, we first need to rewrite our Q+-Whittle-LFA updates
in (28) and (29) in the form of a 2TSA. Throughout this
section, we will perform the analysis for any threshold policy
Ã = R, and hence we drop the superscript R for ease of
presentation.
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A. Two-Timescale Stochastic Approximation

Given the threshold policy Ã = R, the corresponding true
Whittle index associated with the threshold state R is W (R).
Denote ¹R as the optimal ¹ obtained by Q+-Whittle-LFA

in Algorithm 2. Following the conventional ODE method [10],
we begin by converting Q+-Whittle-LFA in (28) and (29)
into a standard 2TSA. In particular, we rewrite the updates (28)
and (29) as follows,

¹n+1 = ¹n + µn[h(¹n,Wn) + Àn+1], (30)

Wn+1 = Wn + ¸n[g(¹n,Wn) + Èn+1], (31)

where {Àn} is an appropriate martingale difference
sequence with respect to the filtration Ã-field Fn =
{¹0,W0, À0, . . . , ¹n,Wn, Àn}, n = 1, 2, . . .; {Èn} is a suitable
error sequence; h and g are appropriate Lipschitz functions
defined below that satisfy the conditions needed for our
ODE analysis, and the step sizes µn, ¸n satisfy Assumption 5
below. Note that the ¹n and Wn iterations are coupled.
By using the operator defined in (11), we rewrite the ¹ update
in (28) as follows,

¹n+1 = ¹n + µnϕ(Sn, An)
[

[T ¹n](Sn, An)

− ϕ(Sn, An)⊺¹n + Àn+1(Sn, An)
]

,

∀(S,A) ∈ S ×A, (32)

where,

[T ¹n](Sn, An) = Sn − (1−An)Wn

+ ³
∑

s′

p(s′|Sn, An) min
a′

ϕ(s′, a′)⊺¹n,

(33)

Àn+1(Sn, An)=Sn−(1−An)Wn+³min
a
ϕ(Sn+1, a)

⊺¹n

− [T ¹n](Sn, An). (34)

Hence, we have h(¹n,Wn) in (30) as

h(¹n,Wn) := [T ¹n](Sn, An)− ϕ(Sn, An)⊺¹n, (35)

which is Lipschitz in both ¹ and W . Similarly, we have

g(¹n,Wn) := ϕ(R, 0)⊺¹n − ϕ(R, 1)⊺¹n, (36)

which is Lipschitz in ¹. W.l.o.g., we assume Èn = 0 for
all n since the update of W in (29) is deterministic. After
having identified these two functions, i.e., (35) and (36), the
asymptotic convergence of our 2TSA can be established by

using the ODE method [9], [10], [52], [53]. For ease of
exposition, we temporally assume fixed step size here, then
the 2TSA is reduced to the following differential equations:

¹̇(t) = h(¹(t),W (t)), Ẇ (t) =
¸

µ
g(¹(t),W (t)), (37)

where the ratio ¸/µ represents the difference in timescale
between these two updates. Our focus here is on characterizing
the finite-time convergence rate of (¹n,Wn) to the globally
asymptotically optimal equilibrium point (¹R,W (R)) of (37)
for each R. Using an idea of [52], the key part of our analysis
is based upon an appropriate choice of two step sizes ¸n, µn,
and a Lyapunov function. We first define the following two
“error terms,”

¹̃n : = ¹n − f(Wn), W̃n := Wn −W (R), (38)

which characterizes the coupling between ¹n and Wn. If we

are able to show that ¹̃n and W̃n simultaneously converge
to zero, then we would have shown (¹n,Wn)→ (¹R,W (R)).
Thus, to prove the convergence of (¹n,Wn) of our 2TSA to its
true value (¹R,W (R)), we instead study the convergence of

(¹̃n, W̃n) by providing the finite-time analysis for the mean
squared error generated by (30)-(31). In order to simultane-

ously study the properties of ¹̃n and W̃n, we consider the
following Lyapunov function

M(¹n,Wn) :=
¸n

µn
∥¹̃n∥

2 + ∥W̃n∥
2

=
¸n

µn
∥¹n − f(Wn)∥2 + ∥Wn −W (R)∥2. (39)

We make the following assumptions while analyzing (30)-(31).
Assumption 2: Provided any W ∈ R, there exists an

operator f such that ¹ = f(W ) is the unique solution to
h(¹,W ) = 0, where h and f are Lipschitz continuous with
positive constants Lh and Lf such that

∥f(W )− f(W ′)∥ f Lf∥W −W
′∥,

∥h(¹,W )−h(¹′,W ′)∥ f Lh(∥¹−¹′∥+∥W−W ′∥). (40)

The operator g in (31) is Lipschitz continous with constant
Lg , i.e.,

∥g(¹,W )− g(¹′,W ′)∥ f Lg(∥¹ − ¹
′∥+ ∥W −W ′∥). (41)

Remark 3: The Lipschitz continuity of the functions f, g, h
guarantees the existence of solutions to the ODEs (37). Note
that when h and g are linear functions of ¹ and W , Assump-
tion 2 is automatically satisfied. This assumption is widely

used for both linear and nonlinear 2TSA [52], [54], [55].
Assumption 3: There exist µ1 > 0 and µ2 > 0 such that

¹̃⊺h(¹,W ) f −µ1∥¹̃∥
2, ∀¹, ¹̃ ∈ R

d, W ∈ R,

W̃ g(¹,W ) f −µ2∥W̃∥
2, ∀W̃ ,W ∈ R, ¹ ∈ R

d. (42)
Remark 4: Assumption 3 guarantees the uniqueness of the

solution to the ODEs (37). This assumption can be viewed
as a relaxation of the monotone property of the nonlinear
mappings [52], [54], since it is automatically satisfied if h
and g are strongly monotone as is assumed in [52].

Assumption 4: Random variables Àn are independent of
each other and across time, with zero mean and bounded
variances

E[Àn|Fn−1] = 0, E[∥Àn∥
2|Fn−1] f Λ,

where Λ > 0.
Assumption 5: The step sizes µn and ¸n satisfy

∑∞
n=0 µn =

∑∞
n=0 ¸n = ∞,

∑∞
n=0 µ

2
n < ∞,

∑∞
n=0 ¸

2
n < ∞, ¸n/µn is

non-increasing in n and limn→∞ ¸n/µn = 0.
Remark 5: These assumptions are standard in SA literature

[9], [10], [52], [53]. Assumption 4 holds since Àn(s, a) =
s − (1 − a)Wn + ³mina ϕ(Sn+1, a)

⊺¹n − [T ¹n](s, a), thus
E[Àn|Fn−1] = 0.

B. Finite-Time Analysis of Q+-Whittle-LFA

Theorem 1: Consider the iterates {¹n} and {Wn} gener-
ated by (28) and (29) for learning the Whittle indices, and
suppose that Assumptions 2-5 hold true. Let the step-sizes be
chosen as µn = µ0

(n+1)5/9 , ¸n = ¸0

(n+1)10/9 . Then we have

E[M(¹n+1,Wn+1)|Fn]

f
E[M(¹0,W0)]

(n+ 1)2
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+
C1(∥¹̃0∥

2 + ∥W̃0∥
2)

(n+ 1)2/3
+

µ0¸0Λ

(n+ 1)2/3
, n = 1, 2, . . . , (43)

where C1 = (L2
h + L2

f + 2L2
g(Lf + 1)2)³0¸0 + 2L2

g(Lf +

1)2
(

L2
f + (1 + Lh³0)

2
)

¸3
0

µ3
0

.

The first term of the right hand side of (43) corresponds to the
bias due to the initialization, which goes to zero at a rate O(1/
n2). The second term corresponds to the accumulated estima-
tion error of the nonlinear 2TSA. The third term stands for
the error introduced due to the fluctuations of the martingale
difference noise sequence {Àn} in (30). The second and third

terms in the right hand side of (43) decay at a rate O(1/n2/3),
and hence dominate the overall convergence rate in (43). The
proof is presented in Appendix B.

Remark 6: Our finite-time analysis of Q+-Whittle-LFA

consists of two steps. First, we rewrite Q+-Whittle-LFA

updates into a 2TSA in (30)-(31). The key is to identify two
critical terms h and g. Second, we prove a bound on finite-time
convergence rate of Q+-Whittle-LFA by leveraging and
generalizing the machinery of nonlinear 2TSA [52]. The key
is the choice of two step sizes (as characterized in Theorem 1)
and a Lyapunov function given in (39). Though the main steps
of our proof are motivated by [52], we need to characterize
the specific requirements for our settings as aforementioned.
Need to mention that we do not need the assumption that h
and g are strongly monotone as in [52], and hence requires
a re-derivation of the main results.

VII. NUMERICAL RESULTS

In this section, we numerically evaluate the performance of
our Q+-Whittle-LFA algorithm using both synthetic and
real traces.

A. Baselines and Experiment Setup

We compare Q+-Whittle-LFA to existing learning based
algorithms for wireless edge caching. In particular, we focus
on both Q-learning based Whittle index policy for wireless
edge caching (see Remark 2) such as Q-learning Whittle
Index Controller (QWIC) [32], Q-Whittle3 [9], Whittle
Index Q-learning (WIQL) [51] and Deep Threshold Optimal
Policy Training (DeepTOP) [38]; and existing learning based
algorithms for wireless edge caching such as Follow-the-

Perturbed-Leader (FTPL) [56], Deep Q-Learning (DQL) [57]

and Deep Actor-Critic (DAC) [58]. We also compare these
learning based algorithms to our Whittle index policy (see
Section IV), which is provably asymptotically optimal when
system parameters are known. For the above algorithms using
neural networks, we consider two hidden layers with size (64,
32), with external memory size being 10,000 and batch size
being 10. The discount factor is ³ = 0.98. The learning rates
are initialized to be µ0 = 0.1 and ¸0 = 0.01, and are decayed
by 1.1 every 1, 000 time steps. In LFA, we set d = 20.
In addition, we consider the normalized/standardized features,
where features ϕ(s, a),∀s, a are normalized or standardized to
have certain properties like zero mean and unit variance.

3For Q-Whittle, we use the same reference function as indicated in
Eq. (13) in [9], i.e., I(Q) := 1

2|S|

∑
s∈S Q(s, 0) + Q(s, 1), with |S| being

the cardinality of S.

Fig. 2. Accumulated cost (latency) using synthetic traces.

Fig. 3. Convergence in terms of iterations of Whittle index based Q-learning
algorithms for two randomly selected contents.

B. Evaluation Using Synthetic Traces

We simulate a system with the number of distinct contents
M ranging from 200 to 10, 000 with a step size of 200. In each
case, content requests are drawn from a Zipf distribution with
Zipf parameters » of 0.9 and 1.2. As we consider a state-
dependent delivery rate in our model (2), we set the “unit
rate” ¿ = 18 with the true delivery rate of ¿SA, and the total
number of requests varies across each M . The cache size is
B = M/10.

Accumulated Cost (Latency). The accumulated costs
of above learning based algorithms are presented in
Figure 2, where we use the Monte Carlo simulation with
2, 000 independent trails. From Figure 2, it is clear that our
Q+-Whittle-LFA consistently outperforms its counterparts.
In addition, WIQL outperforms QWIC and Q-Whittle,
which is consistent with the observations made in [51].
Moreover, our Q+-Whittle and Q+-Whittle-LFA per-
form close to the Whittle index policy. This is due to the
fact that both leverage the asymptotically optimal Whittle
index policy to make decisions for wireless edge caching.
Finally, we remark that Q+-Whittle-LFA is much more
computationally efficient compared to Q+-Whittle, and
Q-Whittle in [9], especially when the state space is large.
This observation is further pronounced when we compare their
convergence as illustrated below.

Convergence and Running Time. We demonstrate the
convergence of Whittle index based Q-learning algorithms in
terms of the number of iterations in Figure 3, and in terms of
running time in Figure 4. The running time are obtained via
averaging over 2,000 Monte Carlo runs of a single-threaded
program on Ryzen 7 5800 × 3D desktop with 64 GB RAM.
In both figures, we randomly draw two contents from the trace
with Zipf parameter 0.9 due to the decoupled nature of our
framework (see Section V). For ease of exposition, we only
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Fig. 4. Convergence in terms of running time of Whittle index based
Q-learning algorithms for two randomly selected contents.

Fig. 5. Cumulative distribution function (CDF) of inter-arrival time for a
randomly selected content from real traces.

show results of Whittle indices of two states for these two
particular contents.

We observe that the Whittle indices obtained by our
Q+-Whittle and Q+-Whittle-LFA converge to the
true Whittle indices, which are obtained under the assump-
tion that system parameters are known. More impor-
tantly, Q+-Whittle-LFA converges much faster than
Q+-Whittle both in terms of iterations and running time,
as motivated earlier. In addition, Q-Whittle in [9] is
provably convergent to the true Whittle index, however, the
multi-timescale nature of Q-Whittle makes it converge
slowly in practice (see discussions in Section II). As shown in
Figure 3, Q-Whittle still cannot converge to the true Whittle
indices after 10,000 iterations while our Q+-Whittle-LFA

converges only after 1,000 iterations. We note that Deep-
TOP [38] also leverages a threshold policy to learn Whittle
indices, which converges to the true Whittle indices in a
smaller number of iterations as shown in Figure 3 but at the
cost of a much larger running time as shown in Figure 4. This
is due to its intrinsic nature of training a deep neural network in
each iteration for making decisions. Finally, neither QWIC nor
WIQL are guaranteed to converge to the true Whittle indices
as observed in Figure 3. Similar observations hold for other
contents in other traces, and hence are omitted here.

C. Evaluation Using Real Traces

We further evaluate Q+-Whittle-LFA using two real

traces: (i) Iqiyi [59], which contains mobile video behaviors;

and (ii) YouTube [60], which contains trace data about user
requests for specific content collected from a campus network.
For the Iqiyi (resp. YouTube) trace, there are more than 67
(resp. 0.6) million requests for more than 1.4 million (resp.
0.3) unique contents over a period of 335 (resp. 336) hours.

Fig. 6. Accumulated cost (latency) for theoretical and empirical results in
real traces.

Fig. 7. Accumulated cost (latency) using real traces.

We evaluate the accumulated cost over rough 14 days for
each trace with a cache size of B = 4, 000 (resp. 2, 000)
for Iqiyi (resp. YouTube). We choose these values based on
the observation of average number of active contents in the
traces.4

Non-Poisson arrivals in real traces. We first show that
the real traces do not have strict Poisson arrivals for any
content. To that end, we generate a synthetic trace based on
the real trace, where each content follows Poisson arrivals
with the same average arrival rate as in the corresponding
trace. We analyze the distribution of the inter-arrival times for
the corresponding contents from the real and synthetic traces.
In particular, Figure 5 presents the comparison for a randomly
selected content from the trace. It is clearly from Figure 5 that
they are visibly different. Similar trends hold for other contents
in real traces considered in this paper, i.e., real traces do not
have strict Poisson arrivals for any content.

Comparisons between theoretical and empirical results.
We now show that despite the fact that real traces may
not be strictly Poisson, our proposed solutions with Poisson
assumption works well in practice. Specifically, we compare
(i) E-sync: the empirical accumulated cost (latency) for the
synthetic Poisson trace with same content arrival rates as in the
real trace as described earlier; and (ii) E-real: empirical accu-
mulated cost (latency) for the real trace. Figure 6 compares
the curves of these two cases for our Q+-Whittle-LFA.
We observe that the theoretical and empirical accumulated
costs only differ slightly. Similar observations hold for all
baseline methods considered in this paper and hence are
omitted here. We then present the theoretical accumulated
cost comparisons of our Q+-Whittle-LFA and all base-
line methods in Figure 7, from which we observe that

4A content is said to be active at time t if t lies between the first and the
last requests for the content.
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Q+-Whittle-LFA outperforms all baselines. Importantly,
despite the slight differences between theoretical and empirical
results for each baseline method, the trend shown in Figure 7
also holds for comparisons when using the corresponding
empirical accumulated cost and hence are omitted. Finally,
we note that Q+-Whittle-LFA can quickly learn the system
dynamics and perform close to the Whittle index policy, which
matches well with our theoretical results.

VIII. CONCLUSION

In this paper, we studied the content caching problem at
the wireless edge with unreliable channels. Our goal is to
derive an optimal policy for making content caching decisions
so as to minimize the average content request latency from
end users. We posed the problem in the form of a Markov
decision process, and showed that the optimal policy has
a simple threshold-structure and presented a closed form
of Whittle indices for each content. We then developed a
novel model-free reinforcement learning algorithm with linear
function approximation, which is called Q+-Whittle-LFA

that can fully exploit the structure of the optimal policy
when the system parameters are unknown. We mathematically
characterized the performance of Q+-Whittle-LFA and
also numerically demonstrated its empirical performance.

APPENDIX A

PROOF OF PROPOSITIONS IN SECTION IV-B

A. Proof of Proposition 1

Proof: According to Assumption 1, we denote the
smallest state with no preference5 over active and passive
actions as R, i.e, Q³(R, 1) = Q³(R, 0). This implies the
following two facts. First, for state s < R, the optimal action
is 0, i.e.,

J³(R− 1) = R− 1−W + ³J³(R). (44)

Second, equal preference over two actions at state R implies

R−W + ³J³(R+ 1) = R+ ³PR,1J
³(R+ 1)

+ ³(1− PR,1)J
³(R− 1),

from which we have

W = ³(1− PR,1)(J
³(R+ 1)− J³(R− 1)). (45)

From (44), we establish the connection between value func-
tions of states R− 1 and R+ 1, i.e.,

J³(R− 1) = R−1−W+³(R−W + ³J³(R+ 1)). (46)

Substituting (46) into (45), we have

J³(R+ 1) =

W
³(1−PR,1)

+ (R− 1−W + ³(R−W ))

1− ³2
.

As a result, J³(R+ 1) can be updated as
{
R+ 1−W + ³J³(R+ 2), if a = 0,

R+1+ ³PR+1,1J
³(R+ 2) + ³(1− PR+1,1)J

³(R), o.w.

5For an arbitrary subsidy W , it is possible that in states 1, 2, . . . , R − 1,
the passive action is the only optimal action, and in states R, R + 1, . . ., the
active action is the only optimal action. Unfortunately, such a W value is not
the Whittle index for any state. Since we are considering the Whittle index for
each state s, which is defined as the value of W such that Q(s, 0) = Q(s, 1).
Hence, with loss of generality, we can always modify the current W value to
make Q(R, 1) = Q(R, 0).

In the following, we show that it is optimal to choose action
1 at state R + 1. We first show that a = 0 is not optimal by
contradiction, and then verify that a = 1 is optimal. Assume
that the optimal action at state R+1 is a = 0. Then, we have

W g ³(1− PR+1,1)(J
³(R+ 2)− J³(R))

= ³(1− PR+1,1)
(J³(R+ 1)− (R+ 1−W )

³

− (R−W + ³J³(R+ 1))
)

=
1− PR+1,1

³(1− PR,1)
W, (47)

where the inequality is due to the fact that optimal action is 0 at
state R+1 and the last equality directly comes by plugging the

closed-form expression of J³(R+1). Since
1−PR+1,1

³(1−PR,1)
> 1, the

inequality does not hold and it occurs an contradiction. This
means that action 0 is not optimal for state R+ 1. We further
verify that a = 1 is optimal. When the optimal action at state
R+ 1 is a = 1, we have

W
(a)

f³(1−PR+1,1)

(

J³(R+ 1)−(R+ 1−W )

³

− (R−W + ³J³(R+ 1))

)

(b)

f³(1−PR+1,1)

(

J³(R+1)−(R+1)−³(1−PR+1,1)J
³(R)

³PR+1,1

− (R−W+³J³(R+ 1))

)

= ³(1− PR+1,1)
(

J³(R+ 2)− J³(R)
)

, (48)

where (a) directly follows from the contradiction implied

by (47), and (b) holds as
Jα(R+1)−(R+1)−³(1−PR+1,1)J

α(R)
³PR+1,1

g
Jα(R+1)−(R+1−W )

³ . Thus the optimal action for R+ 1 is 1.
Following the same idea, the above results can be easily

generalized to any state s g R + 1, and hence we omit the
detail here. To this end, the optimal policy of the discounted
MDP (10) is of the threshold-type.

B. Proof of Proposition 2

Proof: According to [61], the optimal expected total
discounted latency JÃ∗

α
under the optimal policy Ã∗

³ with dis-
count factor ³, and the optimal average latency JÃ∗ under the
optimal policy Ã∗ satisfy lim³→1(1−³)J³

Ã∗

α
(s) = JÃ∗(s),∀s.

Since our action set is finite, there exists an optimal stationary
policy for the average latency problem such that Ã∗

³ → Ã∗

[61]. This shows that the optimal policy for (9) is of the
threshold-type.

C. Proof of Proposition 3

Proof: Since the optimal policy for (9) is of the threshold-
type, for a given W , the optimal average cost under a threshold
R satisfies

h(W ) :=min
R

{

hR(W ) :=
∞∑

s=0

sϕR(s)−W
R∑

s=0

ϕR(s)

}

, (49)
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where ϕR(s) is the stationary probability of state s under the
threshold policy Ã = R. It is easy to show that hR(W ) is
concave non-increasing in W since it is a lower envelope of
linear non-increasing functions in W , i.e., hR(W ) > hR(W ′)
if W < W ′. Thus we can choose a larger threshold R when W
increases to further decrease the total cost according to (49),
i.e, D(W ) ¦ D(W ′) when W < W ′.

D. Proof of Proposition 4

Proof: Following from the definition of Whittle index,
the performance of a policy with threshold R equals to the
performance of a policy with threshold R+ 1 [25], [26], i.e.,

ER[s]−W (R)ER[1{A(s)=0}]

= ER+1[s]−W (R)ER+1[1{A(s)=0}], (50)

where the subscript denotes the fact that the associated quanti-
ties involve a threshold policy with the value of threshold equal
to this value. Since the evolution of per-content is described by
the transition kernel (a birth-and-death process) in (2), we have

ER[1{A(s)=0}] =
∑R

s=0 ϕR(s).

E. Proof of Proposition 5

Proof: Given the transition kernel in (2), the transition
rate satisfies q(S + 1|S, 0) = q(S + 1|S, 1) = ¼ and
q(S1|S, 0) = 0 for S f R, and q(S − 1|S, 1) = ¿S for
S > R. It is clear that ∀S < R is transient because the state
keeps increasing. Therefore, ϕR(S) = 0, ∀S < R. Note that
for threshold state R, the stationary probability satisfies

ϕR(R) =
¿(R+ 1)

¼+ ¿(R+ 1)
ϕR(R+ 1).

Based on the birth-and-death process, the stationary probabil-
ities for states R+ l,∀l = 2, · · · , Smax −R satisfy

ϕR(R+ l)
¼

¼+ ¿(R+ l)
=

¿(R+ l + 1)

¼+ ¿(R+ l + 1)
ϕR(R+ l + 1).

Therefore, we have the following relation

ϕR(R+ l)=ϕR(R+ 1)

l∏

j=2

¼

¼+ ¿(R+ j − 1)

¼+ ¿(R+ j)

¿q(R+ j)
.

Since ϕR(R) + ϕR(R+ 1) + · · ·+ ϕR(Smax) = 1, we have

ϕR(R+ 1)

= 1/

(

1 +
¿(R+ 1)

¼+ ¿(R+ 1)

+

Smax−R∑

l=2

l∏

j=2

¼

¼+ ¿(R+ j − 1)

¼+ ¿(R+ j)

¿(R+ j)

)

.

APPENDIX B

PROOF OF THEOREM 1

To prove Theorem 1, we need the following three key lem-
mas regarding the error terms defined in (38). First, we study

the property of ¹̃n.
Lemma 2: Consider the iterates {¹n} and {Wn} generated

by (30)-(31). Under Assumptions 2-5, we have for all n g 0,

E

[

∥¹̃n+1∥
2|Fn

]

f µ2
nΛ + (1− 2µnµ1 + L2

hµ
2
n)∥¹̃n∥

2

+ 2L2
fL

2
g¸

2
n∥¹̃n∥

2 + 2L2
fL

2
g(Lf + 1)2¸2

n∥W̃n∥
2

+

(

L2
fµ

2
n +

2(1 + Lhµn)2¸2
nL

2
g

µ2
n

)

∥¹̃n∥
2

+
2(1 + Lhµn)2¸2

nL
2
g(Lf + 1)2

µ2
n

∥W̃n∥
2. (51)

Proof: According to the definition in (38), we have

¹̃n+1 = ¹n+1 − f(Wn+1)

= ¹̃n + µnh(¹n,Wn) + µnÀn + f(Wn)− f(Wn+1),

which leads to

∥¹̃n+1∥
2

= ∥¹̃n+µnh(¹n,Wn)+µnÀn + f(Wn)−f(Wn+1)∥
2

= ∥¹̃n + µnh(¹n,Wn)∥2
︸ ︷︷ ︸

Term1

+ ∥µnÀn + f(Wn)− f(Wn+1)∥
2

︸ ︷︷ ︸

Term2

+ 2
(

¹̃n + µnh(¹n,Wn)
)T

(f(Wn)− f(Wn+1))
︸ ︷︷ ︸

Term3

+ 2µn

(

¹̃n + µnh(¹n,Wn)
)T

Àk
︸ ︷︷ ︸

Term4

, (52)

where the second equality is due to the fact that ∥x + y∥2 =
∥x∥2 + ∥y∥2 + 2xT

y.
We next analyze the conditional expectation of each term

in ∥¹̃n+1∥
2 on Fn. We first focus on Term1.

E

[

Term1|Fn

]

= ∥¹̃k∥
2 + 2µn¹̃

⊺

nh(¹n,Wn) + ∥µnh(¹n,Wn)∥2

(a1)
= ∥¹̃n∥

2 + 2µn¹̃
⊺

nh(¹n,Wn)

+ µ2
n∥h(¹n,Wn)− h(f(Wn),Wn)∥2

(a2)

f ∥¹̃n∥
2 − 2µnµ1∥¹̃n∥

2 + L2
hµ

2
n∥¹̃n∥

2,

where (a1) follows from h(f(Wn),Wn) = 0, and (a2) holds
due to the Lipschitz continuity of h in Assumption 2 and

µn¹̃
T
nh(¹n,Wn) f −µ1∥¹̃n∥

2. For Term2, we have

E

[

Term2|Fn

]

= E[∥f(Wn)− f(Wn+1) + µnÀn∥
2|Fn]

(b1)
= E[∥f(Wn)− f(Wn+1)∥

2|Fn] + µ2
nE[∥Àn∥

2|Fn]

(b2)

f L2
fE[∥Wn −Wn+1∥

2|Fn] + µ2
nΛ

= L2
fE[∥¸ng(¹n,Wn)∥2|Fn] + µ2

nΛ

= L2
f¸

2
n∥g(¹n,Wn)∥2 + µ2

nΛ

(b3)

f 2L2
f¸

2
n∥g(¹n,Wn)− g(f(Wn),Wn)∥2 + µ2

nΛ

+ 2L2
f¸

2
n∥g(f(Wn),Wn)− g(f(W (R)),W (R))∥2

(b4)

f 2L2
gL

2
f¸

2
n∥¹̃n∥

2 + 2L2
gL

2
f¸

2
n

(

∥f(Wn)− f(W (R))∥

+ ∥Wn −W (R)∥
)2

+ µ2
nΛ

(b5)

f 2L2
fL

2
g¸

2
n∥¹̃n∥

2+2L2
fL

2
g(Lf +1)2¸2

n∥W̃n∥
2+µ2

nΛ, (53)
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where (b1) is due to E[Àn|Fn] = 0, (b2) is due to the Lips-
chitz continuity of f , and (b3) holds since ∥g(¹n,Wn)∥2 f
2∥g(¹n,Wn) − g(f(Wn),Wn)∥2 + 2∥g(f(Wn),Wn) −
g(f(W (R)),W (R))∥2 when g(f(Wn),Wn) = 0, (b4) and
(b5) hold because of the Lipschitz continuity of g and f . Next,
we have the conditional expectation of Term3 as

E

[

Term3|Fn

]

f 2E∥¹̃n + µnh(¹n,Wn)∥ · ∥f(Wn)− f(Wn+1)∥

(c1)

f 2Lf¸n∥¹̃n + µnh(¹n,Wn)∥ · ∥g(¹n,Wn))∥

f 2Lf¸n(1 + Lhµn)∥¹̃n∥
(

Lg∥¹̃n∥+ Lg(Lf + 1)∥W̃n∥
)

(c2)

f L2
fµ

2
n∥¹̃n∥

2 +
(1 + Lhµn)2¸2

n

µ2
n

·
(

Lg∥¹̃n∥
2 + Lg(Lf + 1)∥W̃n∥

)2

f

(

L2
fµ

2
n +

2(1 + Lhµn)2¸2
nL

2
g

µ2
n

)

∥¹̃n∥
2

+
2(1 + Lhµn)2¸2

nL
2
g(Lf + 1)2

µ2
n

∥W̃n∥
2, (54)

where (c1) is due to the Lipschitz continuity of f and (c2)
holds because 2xT

y f ´∥x∥2 + 1/´∥y∥2,∀´ > 0. Since

E

[

Term4|Fn

]

= 0, combining all terms leads to the final

expression in (51).
Lemma 3: Consider the iterates {¹n} and {Wn} generated

by (30)-(31). Under Assumptions 2-5, for any n g 0, we have

E

[

∥W̃n+1∥
2|Fn

]

f∥W̃n∥
2 + 2¸2

nL
2
g∥Q̃n∥

2

+ 2¸2
nL

2
g(Lh + 1)2∥W̃n∥

2. (55)

Proof: According to (38), we have W̃n+1 = Wn+1 −
W (R) = W̃n + ¸ng(¹n,Wn), which leads to

E

[

∥W̃n+1∥
2|Fn

]

= ∥W̃n∥
2 + 2¸nW̃

T
n g(¹n,Wn) + ¸2

n∥g(¹n,Wn)∥2

(d1)

f ∥W̃n∥
2 − 2¸nµ2∥W̃n∥

2 + ¸2
n∥g(¹n,Wn)|2

(d2)

f ∥W̃n∥
2 − 2¸nµ2∥W̃n∥

2

+ 2¸2
nL

2
g∥¹̃n∥

2 + 2¸2
nL

2
g(Lf + 1)2∥W̃n∥

2, (56)

where (d1) is due to 2¸nW̃
T
n (g(¹n,Wn)) f −2µ2∥W̃n∥

2 and
(d2) is due to (b3)-(b5).

Lemma 4: Consider the iterates {¹n} and {Wn} gener-

ated by (30)-(31). Assume that µn f min
(

1
2µ1

, 2µ1

L2
h+L2

f

)

,

¸n f min
(

1
2µ2

, µ2

L2
g(Lf +1)2(L2

f +1)

)

and ¸n j µn. Then under

Assumptions 2-5, we have

lim
n→∞

E

[

∥¹̃n∥
2 + ∥W̃n∥

2|Fn

]

→ 0 almost surely.

Proof: Providing Lemma 2 and Lemma 3, we have
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Since ¸n f min
(

1
2µ2

, µ2

L2
g(Lf +1)2(L2

f +1)

)

, µn f
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(

1
2µ1

, 2µ1

L2
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f

)

and ¸n j µn, we have

−1 f D1 : = −2µnµ1 +

(
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(
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f 0.

Define xn = min(D1, D2). Then, we have

E

[
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Since 0 f 1 + xn f 1,∀n and limn→∞ µn → 0,

limn→∞ E

[

∥¹̃n∥
2 + ∥W̃n∥

2|Fn

]

→ 0 almost surely.

Now we are ready to prove Theorem 1. Providing Lem-
mas 2-4, if ¸n

³n
is non-increasing, we have
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(e1)
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(57)

Since (n+ 1)2 · µn¸n = µ0¸0(n+ 1)1/3 and (n+ 1)2 ·
¸3

n

µ2
n

=
¸2
0

µ2
0

(n + 1)1/3, multiplying both sides of (57) with (n + 1)2,

we have
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where C1 = (L2
h + L2

f + 2L2
g(Lf + 1)2)³0¸0 + 2L2

g(Lf +

1)2
(

L2
f + (1 + Lh³0)

2
)

¸3
0

³3
0

. Summing (58) from time step

0 to time step n, we have

(n+ 1)2E

[

M(¹n+1,Wn+1)
∣
∣
∣Fn

]

f E

[

M(¹0,W0)
]

+ (n+ 1)4/3C1(∥¹̃0∥
2 + ∥W̃0∥

2)

+ (n+ 1)4/3µ0¸0Λ. (59)

Finally, dividing both sides by (n + 1)2 yields the results in
Theorem 1.
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