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Chiral edge waves in a dance-based human

topological insulator
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Topological insulators are insulators in the bulk but feature chiral energy propagation along the boundary. This
property is topological in nature and therefore robust to disorder. Originally discovered in electronic materials,
topologically protected boundary transport has since been observed in many other physical systems. Thus, it is
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natural to ask whether this phenomenon finds relevance in a broader context. We choreograph a dance in which
a group of humans, arranged on a square grid, behave as a topological insulator. The dance features unidirec-
tional flow of movement through dancers on the lattice edge. This effect persists when people are removed from
the dance floor. Our work extends the applicability of wave physics to dance.

INTRODUCTION

A topological property of an object is one that is unchanged as the
object undergoes continuous deformation, which includes transla-
tion, rotation, stretching/compression, and bending but excludes
puncturing, tearing, and gluing (together different parts of it). More
than just a theoretical concept, this notion can have real-life applica-
tions. Consider a physical material with a topological property. The
latter is resistant to material imperfections that constitute continu-
ous deformations (although not necessarily in real space). Because
of this robustness, such materials, which are known as topological
materials, have garnered widespread attention over the past several
decades (1-3).

To date, the most studied topological material has been the topo-
logical insulator (1). A topological insulator is insulating in the bulk
but conducting on the boundary. The earliest known topological
insulators are two-dimensional electronic materials that exhibit the
integer quantum Hall effect (4), in which the (transverse Hall) con-
ductance along the sample edge is proportional to a nonzero integer
v, known as the Chern number (1, 5). Reflecting the net number of
edge states that support clockwise (or counterclockwise) current, v
and thus the edge conductance are topological properties (5). These
characteristics of the edge are intimately related to properties of the
material bulk. Such bulk-boundary correspondence is a hallmark of
topological insulators.

Since their discovery, topological insulators have been observed
in a plethora of other physical media (6). Examples include tradi-
tional wave media, both natural [e.g., oceanic and atmospheric flu-
ids (7)] and synthetic [e.g., photonic (8, 9) and acoustic (10, 11)
lattices]. Topological insulators have also been reported in settings
that have less in common with electronic materials: systems gov-
erned by Newton’s equations of motion (11-14), molecular enantio-
mers (15, 16), amorphous materials (17), active matter (18-25), and
stochastic processes (18, 26-32).
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The ubiquity of topological insulators prompts the question of
whether their physics can manifest in contexts that transcend the
usual boundaries of science. In this work, we present a human to-
pological insulator in the form of a group dance. Functioning liter-
ally as a numerical integrator of the time-dependent Schrodinger
equation (TDSE), the dance features chiral motion through people
along the edge of the dance floor, even when “defects” are intro-
duced by removing dancers. In essence, this dance is distinct from
those that serve as natural examples or purely qualitative represen-
tations of concepts in science and math [including seismic waves
(33), electrical circuits (34), flocking (35), and topology (36)]. Thus,
the dance described in this article serves both as a rigorous realiza-
tion of topological edge modes and an ideal outreach activity to
introduce broader audiences to the universal concepts of topological
protection.

RESULTS

To begin the choreography, we consider the Harper-Hofstadter
Hamiltonian (37, 38) with next-nearest neighbor (NNN) coupling
(39) and magnetic flux ¢ = & per plaquette (Fig. 1A),

H=V Z[(|m+1,n>(m,n|+e’¢”‘|m,n+1)(m,n|

m,n
+ D | 1 1) (m, n |
+e =12 | g1 n+1Ym, n|)+H.c]

1

which models an electron hopping on a square lattice in a magnetic
field. The lattice sites are labeled by r = (m, n), and V(>0 here) is the
magnitude of intersite coupling. Hops to a nearest neighbor (NN)
occur with an amplitude of +V, while hops to a NNN occur with an
amplitude of +iV. Here, H.c. stands for Hermitian conjugate.

The Hamiltonian H gives rise to several dynamical features that
are characteristic of topological insulators, as shown by simulations
on a finite lattice (see Materials and Methods). When exciting an
edge site of a square-shaped lattice, the excitation propagates clock-
wise along the edge (Fig. 1B and movie S1). This chiral transport
persists after introducing lattice defects of various shapes (Fig. 1C
and movie S2). For a lattice with a hole in the middle, which is
known as the Corbino geometry (40, 41), an excitation at the inner
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Fig. 1. Dynamics of a model topological insulator. (A) Pictorial representation of the Harper-Hofstadter Hamiltonian (H) with NNN hopping and magnetic flux ¢ ==
(Eg. 1). (B to E) Dynamics of Hon a 10 x 9 lattice. The system is excited at a site (green box) located (B) on the edge, (C) on the edge of the lattice with site defects, (D) on
the inner edge of the lattice with a 4 x 3 hole in the middle (i.e., Corbino geometry), and (E) in the bulk. Site probabilities at different times are overlaid in chronological
order (i.e., later times on top). The probability of the system being at each site is represented by a circle (area « probability). Excitations move unidirectionally along each

edge, where the chirality of motion is indicated by a green arrow.

edge moves along this edge with opposite handedness, i.e., counter-
clockwise (Fig. 1D and movie S3). The unidirectional conduction on
the edges is drastically different from the dynamics in the bulk, in
which a localized excitation diffuses with little directional selectivity
(Fig. 1E and movie S4).

To capture such dynamics in a dance, we first present an algo-
rithm to (approximately) propagate the wave function |y(#)) = Y
cr(t)|r) in discrete time. The algorithm, hereafter referred to as “nu-
merical TDSE,” goes as follows (Fig. 2, A to H):

1) At the Ith time step, t = t;, the wave function is at site r;:

lw(t)) =c(t)Ir) )
where
+1, G(r,) even
t,) =
(1) {ii, cs(rl)odd @)

and o(r) =m + n (Fig. 2, Aand E).
2) Evolve the wave function forward by time 8¢ < f1;; — f; and
approximate the resulting state up to O(8¢):

(e +80) = (1= 20 ) we) =6, 1) )= 25 1)
reN ()

(4)
where /(1)) is the set of neighbors (NN and NNN) of r; (Fig. 2, Band F).
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3) Determine the neighbor rreceiver (if any) of r; that does not
transfer current to any site (Fig. 2, C and G). Here, the (probabili-
ty) current from r to r’ is represented by the operator Ji_v =
é(HﬂJ r) (r| — Hylr') (r|) (42, 43). We say that r transfers cur-
rent to t’ if (Jy_, (¢ + &t)) > 0.

4) If there is a neighbor rreceiver Of I;, reset the wave function as
(tl + St)] Irreceiver>

I (t1)) =sgn|c, (5)

receiver

where sgn z = z/|z| is the complex sign function, and r11 = Freceiver
(Fig. 2H); return to step 2. If not, then the algorithm terminates
(Fig. 2D).

Crucial to the numerical TDSE is its unconventional use of the
current operator, enabling the probability amplitudes to interfere in
step 3 and ultimately localize at rreceiver in step 4. This makes intuitive
Sense, SINce Ireceiver i the “attractor/sink” of the current field at time
t; + Ot (step 3, Fig. 2G). We have assumed that there is at most one
neighbor Ireceiver Of ¥, Which is true for the lattice geometries appear-
ing in this work (section S2). Notice that conservation of probability,
and thus current, is temporarily violated in step 2 but eventually
enforced in step 4. As shown below, the algorithm can continue in-
definitely for suitable initial conditions. Otherwise, the algorithm
terminates, after which the wave function no longer moves, although
it remains in the excited state; a similar immobilization would be
achieved, for example, if we replace termination with a reset back to
step 1, but this alternative would eventually result in an endless loop
of the last iteration. It turns out that the algorithm is a non-Hermitian
approximation of the actual quantum dynamics (section S3.2).
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Fig. 2. Algorithm to generate discrete-time dynamics of a topological insulator. (A to H) lllustration of the algorithm, referred to as numerical TDSE throughout the
text. The wave function starts an iteration either (A to D) in the bulk or (E to H) on the edge. (A, B, E, F, and H) The probability amplitudes ¢, are illustrated, following the
same color scheme as the hopping amplitudes Hy in Fig. TA. (C and G) For each pair of sites r and r’ such that r transfers current to r’, the current vector (J,_(t; + 5t))
(r" —r) is represented by a purple arrow. There is a bulk-boundary correspondence with respect to the current field (orange triangles) and its chirality (orange arrows).
(Ito L) Dynamics simulated by the algorithm, where the excitation conditions and lattice geometries are those of Fig. 1 (B to E), respectively. For each simulation, the wave
function starts at the site indicated by the green box. A purple arrow represents the movement of the wave function from r, (tail) at time step / to ;1 (head) at time step
I+ 1.The discrete-time dynamics shows unidirectional motion along each edge, where the chirality of motion is indicated by a green arrow.

Regardless, the topological features are preserved (44, 45), as we will
see below. In particular, because the current operator depends on H
(Eq. 1) by definition (see step 3), the interference in step 3 respects
the topological properties of the Hamiltonian.

In Fig. 2 (I to L), we show the dynamics generated by the numeri-
cal TDSE. The results are in excellent qualitative agreement with the
exact dynamics (Fig. 1, B to E, respectively; see also movies S1 to 4,
respectively). Notably, the algorithm reproduces the confinement of
an edge excitation to the edge, the chirality with which this excita-
tion moves, and the robustness of these properties to site defects.
Also captured is the diagonal movement of an edge excitation as it
travels around the defects (cf. Figs. 1C and 2J) and, in the Corbino
geometry, past the corners of the inner edge (cf. Figs. 1D and 2K).
That a bulk excitation does not move in the approximate dynamics
(Fig. 2L) reflects its diffusive (and not ballistic) nature in the exact
quantum dynamics (Fig. 1E). In contrast, an excitation initialized on
the edge propagates indefinitely (Fig. 2, I to K). We stress that, while
the edge and bulk motions produced by the numerical TDSE are

Duetal, Sci. Adv. 10, eadh7810 (2024) 28 August 2024

very different, they arise from the same steps. In contrast, the dy-
namics will be the same (i.e., no propagation) starting in any bulk
site and for any system size. Therefore, the algorithm allows one to
qualitatively reproduce the edge and bulk dynamics of large systems
using small lattices (see dance below).

Underlying the accuracy of the numerical TDSE is its use of the
site currents (step 3), which give rise to the dynamical signatures of
topological insulators, particularly the chiral edge motion. For an
iteration starting at a bulk site (Fig. 2A), current flows to and from
all neighbors of the initial site (Fig. 2C). As a result, the algorithm
ends (Fig. 2, D and L), reflecting the absence of unidirectional prop-
agation in the bulk. The current vectors form a vortex with a well-
defined chirality (i.e., counterclockwise; see Fig. 2C, purple arrows).
By considering an appropriate subset of this current field (Fig. 2C,
orange dotted triangle), one can obtain the current field for an itera-
tion beginning at an edge (Fig. 2G, orange dotted triangle). This
subfield (Fig. 2G, purple arrows) determines the site that the wave
function will occupy at the start of the next iteration (Fig. 2H). Thus,
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the currents of a bulk-localized wave function indicate how an edge-
localized wave function would propagate. In particular, the subset
relation between edge and bulk current fields (Fig. 2, G and C, or-
ange dotted triangles) and the structure of the latter (Fig. 2C, purple
arrows) explain why edge excitations are confined to the edge. Fur-
thermore, the chirality of the bulk currents (Fig. 2C, orange arrow)
is directly correlated with the chirality of the edge dynamics (Fig. 2G,
orange arrow). These properties constitute a dynamical form of
bulk-boundary correspondence. In particular, they closely resemble
the classical picture of an electron in a magnetic field, where the
circular orbits of a free particle manifest as unidirectional skipping
motion along an edge (1).

As further evidence that the topological physics is preserved in
the approximate dynamics, it can be shown that the Chern num-
ber (1, 5), v =1 for Hamiltonian 1, naturally arises from the bulk
currents. Specifically, the sum of the currents, over loops (fig. S7)
enclosing an integer number of unit cells (Fig. 1A), is propor-
tional to v (section S4). This result, plus the correspondence be-
tween bulk currents and edge dynamics, imply that the chirality
of edge propagation is exactly given by v. Given that the Chern
number is a bulk quantity, the connection between the topologi-
cal invariant and bulk currents is not totally unexpected, al-
though we are unable to provide further intuition for it at present
(section S7.3).

To convert the algorithm to a dance, we have remarkably found a
dynamics-preserving transformation of the wave function from the
complex plane to the real numbers. To see that this mapping is pos-
sible, notice that, at all times, t explicitly considered in the algorithm
(i-e., t, t; + dt), the probability amplitude at each r satisfies

{IR, o(r) even
=
iR, o(r)odd

This property results from the choice of initial state (Eq. 3),
which depends on whether o(r) is even or odd; the update rule of
step 4 (Eq. 4); and the structure of the Hamiltonian (Eq. 1), which
has purely real NN couplings and purely imaginary NNN cou-
plings. Moreover, since all hopping amplitudes have the same mag-
nitude (Eq. 1), then |¢(t; + 8t)| = [cr(#; + Ot)| for all neighboring
sites r, r’ of r;. It follows that only the signs of these coefficients are
necessary to capture the dynamics (Fig. 2, I to L), where the signs

are given by
o= |

Thus, applying f to all probability amplitudes ¢, recasts the nu-
merical TDSE in terms of real numbers (section S5), i.e., the trans-
formed amplitudes ¢, = f(¢;) and “effective Hamiltonian”

(6)

sgn(z), z€R

. ) (7)
sgn(z/i), z€iR

H, = {—f(Hr,r), G(r’) odd and o(r) even )
f( ), else

Hr’ r

By definition, ¢, and H,,, each takes the values 0 and +1. We call

the reformulated algorithm “real-valued TDSE.” We emphasize that

the site probabilities at times t;, and hence the dynamics (Fig. 2, I to

L), remain unchanged from the numerical TDSE (section S5.3). The

connections to the Chern number also survive the reformulation
(section S5.4).
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We proceed to choreograph a dance, which is an implementation
of the real-valued TDSE. The probability amplitudes are represented
by dance moves:

1 —up
¢ =49 0 —standstill 9)
—1 —down

“Up” and “down” refer to the waving of flags with arms pointed
in the indicated direction (Fig. 3B, blue and red, respectively). In
contrast, “stand still” is exactly as the name suggests, with arms re-
laxed at the sides of the dancer (Fig. 3B, gray). The (nonzero) hop-
ping amplitudes are represented as

1 —same
Hr’r = { .
—1 — opposite

The above redefinitions result in the following rules for multiply-
ing the probability amplitudes with the hopping amplitudes

(10)

up X same =up
up Xopposite ~ =down

CI'XHI”I’: (11)
down X same =down

down X opposite =up

With this “human representation” of the wave function and “ef-
fective Hamiltonian” #, the real-valued TDSE is readily implement-
ed as a dance, described as follows. The dance floor (Fig. 3A) is a
finite square grid, where the squares contain blue and red lines. Each
square represents a lattice site r. The blue/red lines within that
square represent the amplitudes ., = same/opposite of hopping to
neighboring sites r’ (Fig. 3A, zoom-in). For each site that the elec-
tron can occupy, a dancer is placed in the corresponding square.
Given this setup, the dance is performed in rounds, where each
round has the steps below (Fig. 3D):

(Command) The person designated as the “commander” is danc-
ing up or down. The commander tells each neighbor to dance in the
same or opposite way, according to the line in the commander’s
square that points to this neighbor (Fig. 3D, circled lines). The
neighbors start dancing as commanded.

(Command-to-Match transition) The commander stands still.

(Match) Within the neighbors of the commander, each person
scans across the others, looking for a “match” As demonstrated in
Fig. 3C, the person at r matches with the person at r’ if the dance
move of the former, times H,,,, equals the dance move of the latter,
where H,,, is given by the line in square r that points to square r'.

(Match-to-Command transition) All people with a match stop
dancing. If there is a person without a match, then this person con-
tinues dancing and becomes the commander; return to the Com-
mand step. If everyone has a match, the dance ends.

In a round (equivalent to an iteration of the algorithm), the site
and dance move (up or down) of the commander denote the site and
phase of the initially localized excitation, respectively (see steps 1
and 4 of the algorithm). The Command step (equivalent to step 2 of
the algorithm) represents the spreading of the wave function to
neighboring sites. The probability amplitudes at these sites interfere
during the Match step (equivalent to step 3 of the algorithm) and
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Fig. 3. Mechanics of the dance. (A) Dance floor. As shown in the zoom-in of the unit cell, the squares represent the lattice sites, and the colored lines represent the matrix
elements of H (Eq. 8), the “effective Hamiltonian” that generates the dance dynamics. (B) Dance moves. (C) Example of what a “match”is and is not. (D) lllustration of the

dance steps for one round of the dance.

Match-to-Command transition (equivalent to step 4 of the algo-
rithm). Rather than having to memorize the values of H,,, for Com-
mand and Match, the dancers simply consult the blue and red lines
in their respective squares.

As a science outreach event, we taught the dance to students at
Orange Glen High School in Escondido, California (see Materials
and Methods). Overall, the students mastered the dance steps
(Fig. 4A) in under 1 hour. The students (plus some of us) then per-
formed the dance for various initial conditions and lattice geome-
tries (see Materials and Methods). To engage more students, some
performances began with two people dancing (as commander) on
the same dance floor; two concurrent dances ensued independently
(see, for example, Fig. 4B and movie S5) for all but one dance round
(see below). A designated leader (one of us) helped students transi-
tion between Command and Match (see Materials and Methods),
similar to how the “caller” in contra dancing reminds the dancers of
which figure to perform next. The performances display key dynam-
ical features of topological insulators, namely, those generated by
the algorithm on which the choreography is based. When the initial
dancers are at an edge, the dancing propagates unidirectionally
along this edge: clockwise on the outer edge of a square-shaped lat-
tice (Fig. 4B and movie S5) and counterclockwise on the inner edge
of a lattice with Corbino geometry (Fig. 4D and movie S7). For the
former lattice, we introduced site defects by removing people at the
edge of the dance floor. Still, the lattice sustains an edge-confined
and clockwise-oriented “dance wave,” which maneuvers around the
vacancies (Fig. 4C and movie S6) and even persists through the in-
terference of two concurrent dances (movie S6). The dance is also

Duetal, Sci. Adv. 10, eadh7810 (2024) 28 August 2024

robust to some forms of human error (section S6). As expected
(Fig. 2L), the dance only lasts one round when an initial dancer is in
the bulk (Fig. 4E and movie S8).

DISCUSSION

In summary, we have choreographed a dance in which a group
of people behave as a topological insulator. The choreography in-
volves developing an algorithm for approximate wave function prop-
agation and mapping the wave function first to the real numbers and
then to human movements. The resulting dance, which operates as a
numerical integrator of the TDSE, exhibits the salient dynamics of
topological insulators. In principle, the dance dynamics can be im-
plemented using any system that can carry out computation. This
work provides a blueprint for creating a classical simulator of topo-
logical insulators. Achieving this task for additional Hamiltonians
(section S7) would mark an intriguing and unique frontier at the in-
terface of wave physics, science education, and dance. Overall, we
have contributed an advancement that is both scientific and artistic,
revealing a class of systems that support topological physics while
inspiring content that can be expressed through dance.

MATERIALS AND METHODS
Calculating the dynamics generated by H
At time ¢ = 0, the system is excited (i.e., initialized) at site r;, and the

wave function is given by
lw(0)) =[r) (12)
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Command Match Command

a4

B Excite edge (white arrows propagate in O direction)
Round 1 Round 4 Round 7 7 Round

)

Round 6 Round 7 Round 8 Round 9

D Excite inner edge (Corbino geometry) (white arrow propagates in Q direction)
Round 1 Round 2 Round 3

E Excite bulk  (white arrow does not propagate)
Round 1 No round 2

Fig. 4. Dynamics of a dance-based human topological insulator. (A) Snapshots from one round of the dance. (B to E) Snapshots of the dance where the initial (round 1)
dancers (commanders) are (B) on the lattice edge, (C) on the edge of a lattice with site defects, (D) on the inner edge of a lattice with a hole in the middle (i.e., Corbino
geometry), and (E) in the lattice bulk. For dances where the initial dancers are on the edge, the green arrow indicates the chirality with which the dancing propagates. White
dashed boxes indicate sites without a dancer. In (A) to (E), white arrows indicate commanders. Notice how the white arrows evolve according to the chirality of the corre-
sponding green arrow. In (A), the white circles indicate neighbors (NN and NNN) of the commander who are dancing up or down.

To calculate the wave function at later times, we first move to the

eigenbasis [w(t) = 2 Co(0)e™Et T o) (14)
[w(©0)) =, c(0)a)
; (13) Changing back to the position basis,
where |a) is the eigenstate of H with energy E,. We then calculate ly(t)) = 2 ¢ (H)r) (15)
the wave function at time ¢ as r
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we obtain the site probabilities |c,(t)|2. Fig. 1 (B to E) and movies S1
to S4 plot the site probabilities as a function of time using a time step
of 0.1 A4/ V.

Science outreach: Topological dance

In this section, we describe the science outreach event at Orange
Glen High School on 27 April 2022, in which we taught the dance to
its students. A dance lesson was held during each of three physics
classes in lieu of the normal class activities. In the lesson, students
learned, practiced, and performed the dance. The lesson took most
of the class period, which was 100 min long. Since class sizes were
around 20 or less, we (the school teachers and dance instructors)
joined the students in the dance performances. We recommend that
the dance be carried out with at least 25 people, so that the human
lattice has a well-defined bulk (i.e., people who will never dance up
or down if the initial dancers are at the edge).

Before the lesson, we set up (fig. S1A) a big dance floor (6 by 6
square grid; figs. S1B and S2A) and several small dance floors (2 by
2 square grid; figs. SIC and S2C). The dance floors had grid lines
made of beige masking tape (1" thick) and squares measuring ap-
proximately 1 m by 1 m (fig. S2). Pieces of blue and red painters tape
(1" thick and 4 to 10" long) were placed in each square according to
the structure of “effective Hamiltonian” x (fig. S2; compare to
Fig. 3A). In the big dance floor, the squares were enumerated from 1
to 36 (figs. S1B and S2B) to assist in the execution of the dance per-
formances (see below).

Following a brief introduction to topological insulators and the
lesson, the students were divided into groups of four. Each group
moved to a practice dance floor, where one of us taught them the
mechanics of the dance. The students first learned the dance moves.
Figure S3 shows what the dance moves look like in real life (see car-
toon version in Fig. 3B). To make the moves more distinguishable,
dancers are encouraged to cover their flags with their hands when
doing stand still (fig. S3B) and crouch when doing down (fig. S3D).
The students then learned the Command step. After each student
had a chance to practice being commander, they learned the Match
step. Last, the students practiced both steps together (including the
transitions between the steps) until mastery was achieved. Most stu-
dents had mastered the dance steps after 30 to 45 min.

Next, the students moved to the main dance floor to rehearse and
perform the dance for two to three sets of initial conditions (i.e.,
who the commanders are in the first round of the dance) and ar-
rangements of students (e.g., square-shaped lattice, Corbino ge-
ometry). Accompanied by music, each performance proceeded as
follows. We first called out the number(s) of the student(s) who
would serve as the commanders in the first round of the dance. To
begin the dance, we blew a whistle and announced “Command,” sig-
naling for the assigned commanders to carry out Command. Once
all neighbors of the commander(s) had begun dancing, we blew a
whistle and announced “Match,” initiating the transition from Com-
mand to Match. After 15 to 20 s, which was enough for students to
carry out Match, we blew a whistle and announced “Command” to
switch to Command of the next round. This cycle was repeated for
each round of the dance.

We note that the whistling simply serves to help the dancers
switch between Command and Match and is not a necessary ele-
ment of the dance. If there were more time allotted for the outreach
event, then we could have taught the students to transition between
the phases on their own.

Duetal, Sci. Adv. 10, eadh7810 (2024) 28 August 2024

Supplementary Materials
The PDF file includes:
Supplementary Text

Figs.S1t0 517

Legends for movies S1 to S8

References

Other Supplementary Material for this manuscript includes the following:
Movies 51 to S8

REFERENCES AND NOTES

1. M.Z.Hasan, C. L. Kane, Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045-3067
(2010).

2. X-L.Qi, S-C. Zhang, Topological insulators and superconductors. Rev. Mod. Phys. 83,
1057-1110 (2011).

3. B.Yan, C. Felser, Topological materials: Weyl semimetals. Annu. Rev. Condens. Matter Phys.
8,337-354(2017).

4. K.von Klitzing, G. Dorda, M. Pepper, New method for high-accuracy determination of the
fine-structure constant based on quantized hall resistance. Phys. Rev. Lett. 45, 494-497
(1980).

5. D.J.Thouless, M. Kohmoto, M. P. Nightingale, M. den Nijs, Quantized hall conductance in
a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405-408 (1982).

6. C.-A.Palma, Topological dynamic matter. J. Phys. Chem. Lett. 12, 454-462 (2020).

7. P.Delplace, J. B. Marston, A. Venaille, Topological origin of equatorial waves. Science 358,
1075-1077 (2017).

8. Z.Wang, Y. Chong, J. D. Joannopoulos, M. Solja¢i¢, Observation of unidirectional
backscattering-immune topological electromagnetic states. Nature 461, 772-775
(2009).

9. L.Lu,J. D.Joannopoulos, M. Soljaci¢, Topological photonics. Nat. Photonics 8,821-829 (2014).

10. C.He, X.Ni, H. Ge, X.-C. Sun, Y.-B. Chen, M.-H. Lu, X.-P. Liu, Y.-F. Chen, Acoustic topological
insulator and robust one-way sound transport. Nat. Phys. 12, 1124-1129 (2016).

11. G.Ma, M. Xiao, C. T. Chan, Topological phases in acoustic and mechanical systems. Nat.
Rev. Phys. 1,281-294 (2019).

12. R.Susstrunk, S. D. Huber, Observation of phononic helical edge states in a mechanical
topological insulator. Science 349, 47-50 (2015).

13. L.M.Nash, D. Kleckner, A. Read, V. Vitelli, A. M. Turner, W. T. M. Irvine, Topological
mechanics of gyroscopic metamaterials. Proc. Natl. Acad. Sci. U.S.A. 112, 14495-14500
(2015).

14. T.Kariyado, Y. Hatsugai, Manipulation of dirac cones in mechanical graphene. Sci. Rep. 5,
18107 (2016).

15. K. Schwennicke, J. Yuen-Zhou, Enantioselective topological frequency conversion. J. Phys.
Chem. Lett. 13, 2434-2441 (2022).

16. A.F.Ordonez, D. Ayuso, P. Decleva, O. Smirnova, Geometric fields and new enantio-
sensitive observables in photoionization of chiral molecules. arXiv:2106.14264 [physics.
chem-ph] (2021).

17. N.P. Mitchell, L. M. Nash, D. Hexner, A. M. Turner, W. T. M. Irvine, Amorphous
topological insulators constructed from random point sets. Nat. Phys. 14, 380-385
(2018).

18. K. Dasbiswas, K. K. Mandadapu, S. Vaikuntanathan, Topological localization in
out-of-equilibrium dissipative systems. Proc. Natl. Acad. Sci. U.S.A. 115, E9031-E9040
(2018).

19. S.Shankar, A. Souslov, M. J. Bowick, M. C. Marchetti, V. Vitelli, Topological active matter.
Nat. Rev. Phys. 4, 380-398 (2022).

20. D.Shapira, D. Meidan, D. Cohen, Localization due to topological stochastic disorder in
active networks. Phys. Rev. £ 98,012107 (2018).

21. K.Sone,Y. Ashida, T. Sagawa, Exceptional non-hermitian topological edge mode and its
application to active matter. Nat. Commun. 11, 5745 (2020).

22. L.Yamauchi, T. Hayata, M. Uwamichi, T. Ozawa, K. Kawaguchi, Chirality-driven edge flow
and non-hermitian topology in active nematic cells. arXiv:2008.10852 [cond-mat.soft]
(2020).

23. J.Loehr, D. de las Heras, A. Jarosz, M. Urbaniak, F. Stobiecki, A. Tomita, R. Huhnstock,

1. Koch, A. Ehresmann, D. Holzinger, T. M. Fischer, Colloidal topological insulators.
Commun. Phys. 1,4 (2018).

24. Q.Yang, H. Zhu, P. Liy, R. Liu, Q. Shi, K. Chen, N. Zheng, F. Ye, M. Yang, Topologically
protected transport of cargo in a chiral active fluid aided by odd-viscosity-enhanced
depletion interactions. Phys. Rev. Lett. 126, 198001 (2021).

25. H.Feng, J. Wang, Potential and flux decomposition for dynamical systems and
non-equilibrium thermodynamics: Curvature, gauge field, and generalized fluctuation-
dissipation theorem. J. Chem. Phys. 135, 234511 (2011).

26. A.Murugan, S.Vaikuntanathan, Topologically protected modes in non-equilibrium
stochastic systems. Nat. Commun. 8, 13881 (2017).

70of 8

$20T ‘01 Joquiaydag uo 0391(] ULS BIUIOJI[E)) JO AJISIOATU() & SI0°00UDIOS" MMM//:Sd)Y WOy PapeO[uMO


https://arxiv.org/abs/2106.14264
https://arxiv.org/abs/2008.10852

SCIENCE ADVANCES | RESEARCH ARTICLE

27.
28.
29.
30.
31

32.

33.
34.
35.

36.

37.
38.

39.

40.

41.

42.

43.

Duetal., Sci. Adv. 10, eadh7810 (2024)

E.Tang, J. Agudo-Canalejo, R. Golestanian, Topology protects chiral edge currents in
stochastic systems. Phys. Rev. X 11,031015 (2021).

J. Knebel, P. M. Geiger, E. Frey, Topological phase transition in coupled rock-paper-scissors
cycles. Phys. Rev. Lett. 125, 258301 (2020).

T. Yoshida, T. Mizoguchi, Y. Hatsugai, Chiral edge modes in evolutionary game theory: A
kagome network of rock-paper-scissors cycles. Phys. Rev. E 104, 025003 (2021).

T. Yoshida, Y. Hatsugai, Bulk-edge correspondence of classical diffusion phenomena. Sci.
Rep. 11,888 (2021).

P. Mehta, J. Rocks, Thermodynamic origins of topological protection in nonequilibrium
stochastic systems. arXiv:2206.07761 [cond-mat.stat-mech] (2022).

H. Hu, S. Han, Y.Yang, D. Liu, H. Xue, G. G. Liu, Z. Cheng, Q. J. Wang, S. Zhang, B. Zhang,

Y. Luo, Observation of topological edge states in thermal diffusion. Adv. Mater. 34,
2202257 (2022).

K. Miller, Demonstrating P and S seismic waves (2012); https://youtube.com/
watch?v=gjRGIpP-Qfw&ab%005Fchannel=KeithMiller.

NOVA PBS Official, How dancing can help you learn science (2016); https://youtube.com/
watch?v=d-7AZprWORw&ab%005Fchannel=NOVAPBSOfficial.

J. L. Silverberg, M. Bierbaum, J. P. Sethna, I. Cohen, Collective motion of humans in mosh
and circle pits at heavy metal concerts. Phys. Rev. Lett. 110, 228701 (2013).

G. M. Graf, Bulk-edge duality for topological insulators. Presented at Quantum Spectra
and Transport, Jerusalem, Israel, 30 June - 4 July, 2013; http://math.huji.ac.
il/%7Eavronfest/Graf.pdf.

P. G. Harper, Single band motion of conduction electrons in a uniform magnetic field.
Proc. Phys. Soc. A 68, 874-878 (1955).

D. R. Hofstadter, Energy levels and wave functions of bloch electrons in rational and
irrational magnetic fields. Phys. Rev. B 14, 2239-2249 (1976).

Y. Hatsugai, M. Kohmoto, Energy spectrum and the quantum hall effect on the

square lattice with next-nearest-neighbor hopping. Phys. Rev. B 42, 8282-8294

(1990).

0. M. Corbino, Azioni elettromagnetiche doyute agli ioni dei metalli deviati dalla
traiettoria normale per effetto di un campo. Atti R. Accad. Lincei 1, 397-420 (1911).

B. 1. Halperin, Quantized Hall conductance, current-carrying edge states, and the
existence of extended states in a two-dimensional disordered potential. Phys. Rev. B 25,
2185-2190 (1982).

H. U. Baranger, D. P. DiVincenzo, R. A. Jalabert, A. D. Stone, Classical and quantum
ballistic-transport anomalies in microjunctions. Phys. Rev. B 44, 10637-10675 (1991).

T. N. Todorov, Tight-binding simulation of current-carrying nanostructures. J. Phys.
Condens. Matter 14, 3049-3084 (2002).

28 August 2024

44,

V. M. Alvarez, J. B. Vargas, L. F. Torres, Non-hermitian robust edge states in one dimension:
Anomalous localization and eigenspace condensation at exceptional points. Phys. Rev. B

97,121401 (2018).

45. Z.Gong, Y. Ashida, K. Kawabata, K. Takasan, S. Higashikawa, M. Ueda, Topological phases

of non-hermitian systems. Phys. Rev. X 8,031079 (2018).

46. J.). Sakurai, J. Napolitano, Modern Quantum Mechanics (Addison-Wesley, 2011).

47. S.Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford Univ. Press, 1995).

48. F.D. M. Haldane, Model for a quantum Hall effect without Landau levels: Condensed-
matter realization of the “parity anomaly”. Phys. Rev. Lett. 61,2015-2018 (1988).

49. W.P.Su, J. R. Schrieffer, A. J. Heeger, Solitons in polyacetylene. Phys. Rev. Lett. 42,
1698-1701 (1979).

Acknowledgments: M.D. would like to thank R. Ribeiro for discussions on topological

insulators at the beginning of this project. M.D. also acknowledges C. Gentry for discussions on

contra dancing and C. Floyd for introducing C. Gentry to M.D. We are grateful to the UCSD
Chem 126a Fall 2019 undergraduate students for participating in the trial lesson for a

preliminary version of the dance and to L. Martinez-Martinez and L. Calderdn for helping run

that trial lesson. We thank M. Edwards, H. Frank, M. Gonzalez, E. Palos, R. Rashmi, M. Reiss,

S. Sinha, L. Andreuccioli, B. Huang, and C. van den Wildenberg for pariticipating in the practice
lessons for the final version of the dance. Regarding the official dance performances, we are

grateful to D. Monroy and the students of D.K. for participation. We thank A. Booth,

S. Chamberlin, and S. Yonezawa for help in organizing the outreach event. Funding: The
scientific and outreach components of this work were funded by the NSF grant no. CAREER
CHE 1654732. Author contributions: J.Y.-Z. conceptualized and supervised the study. M.D.

designed the wave function propagation algorithms and ran simulations. M.D. choreographed
the dance, with input from J.B.P-S., J.A.C.-G-A,, AK,, FM,, S.P-S., Y.R.P, K.Sc, K.Su., Sv.d.W.,, and
JY-Z.M.D, DK, AB. and J.Y.-Z. organized the outreach event. M.D., J.B.P-S,, JA.C-G-A, AK,
F.M., S.P-S., YR.P, K.Sc, KSu,, S.v.d.W,, J.Y.-Z, and D.K. ran the event. J.B.P-S. and S.v.d.W. took

pictures and recorded videos of the dance lessons and performances. M.D. and J.B.P-S.
analyzed the dance performances. M.D. and J.Y.-Z. wrote the manuscript. Competing
interests: The authors declare that they have no competing interests. Data and materials

availability: All data needed to evaluate the conclusions in the paper are present in the paper

and/or the Supplementary Materials.

Submitted 31 October 2023
Accepted 25 July 2024
Published 28 August 2024
10.1126/sciadv.adh7810

8of8

$20T ‘01 Joquiaydag uo 0391(] ULS BIUIOJI[E)) JO AJISIOATU() & SI0°00UDIOS" MMM//:Sd)Y WOy PapeO[uMO


https://arxiv.org/abs/2206.07761
https://www.youtube.com/watch?v=gjRGIpP-Qfw&ab%005Fchannel=KeithMiller
https://www.youtube.com/watch?v=gjRGIpP-Qfw&ab%005Fchannel=KeithMiller
https://www.youtube.com/watch?v=d-7AZprW0Rw&ab%005Fchannel=NOVAPBSOfficial
https://www.youtube.com/watch?v=d-7AZprW0Rw&ab%005Fchannel=NOVAPBSOfficial
http://math.huji.ac.il/%7Eavronfest/Graf.pdf
http://math.huji.ac.il/%7Eavronfest/Graf.pdf

Science Advances
RAYAAAS

Supplementary Materials for
Chiral edge waves in a dance-based human topological insulator

Matthew Du et al.

Corresponding author: Joel Yuen-Zhou, joelyuen@ucsd.edu

Sci. Adv. 10, eadh7810 (2024)
DOI: 10.1126/sciadv.adh7810

The PDF file includes:

Supplementary Text

Figs. S1to S17

Legends for movies S1 to S8
References

Other Supplementary Material for this manuscript includes the following:

Movies S1 to S8



Supplementary Text
S1 A useful property of the current operator

Consider the operator J,_,,» (see main text for definition) representing the current from r to r’.

With respect to wavefunction |¢(t)) = > c.(t)|r), the expectation value of this current is
2 *k
(Jeyw () = ﬁlm [c (t) Hprper (1)) (S1)

We use this property later in the supplementary text.

S2 Cases when there are multiple sites rpecejver

In the numerical TDSE (see main text), we assume that there is at most one neighbor (NN or
NNN) receiver Of ; that does not transfer current to another neighbor of r;. The assumption is
true for the lattice geometries (e.g., square shaped, Corbino) employed in our simulations and
dances. In this section, we discuss cases featuring multiple neighbors ryeceiver-

For a given r;, there are multiple sites r'yeciver When the neighbors of r; are a union of non-
neighboring sets of sites (Fig. S4). Here, we denote sets S1, S5, . .. of sites as non-neighboring
if none of r™™ r® ... are neighbors for any r) ¢ §,r® € S,,.... Fora given lattice
geometry, the presence of multiple sites ri.civer can occur if a site and its neighbors form an
arrangement of Fig. S4.

To accommodate the case of multiple sites Iieceiver 1N the numerical TDSE, one would need

to change how the wavefunction localizes in Step 4 (see main text). One possible extension is

to have the wavefunction be the normalized superposition (compare to Eq. 5)

W(tz+1)> (08 Z sgn [Crrcccivcr (tl + 6t)] ‘rreceiver>- (Sz)

Treceiver
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Fig. S1. Sketch of the dance floors. (A to C) Sketch of (A) the full setup of 1 big dance floor
and 9 small dance floors, (B) the big dance floor, (C) a small dance floor. The arrows indicate
the orientation of the dance floors in the full setup (A). Note that the lines are not drawn to scale;

see Materials and Methods for the actual dimensions and Fig. S2 for the actual dance floors.



Fig. S2. Pictures of the dance floors. (A and B) Picture (A) and zoom-in (B) of the big dance
floor. (C) Picture of a small dance floor.



B stand still

D down
(crouching)

Fig. S3. Pictures of the dance moves. (A) Up. (B) Stand still. (C) Down (regular version, i.e.,
while standing). (D) Down while crouching.



The other steps would then be carried out in their original form. However, it is not clear how
well the approximate dynamics would capture the exact dynamics.

Complications may also arise when mapping the wavefunction to real numbers, for the
purpose of designing a dance. For example, a site that neighbors multiple excited sites (i.e.,
which have nonzero probability amplitude) can have a larger or smaller probability amplitude
than a site that neighbors a single excited site. Thus, the relative magnitudes (and not just the
signs) of the amplitudes may matter. This would require a modification to the function f (Eq.
7), which maps the complex amplitudes to real ones.

We defer to future studies a more detailed exploration of having multiple sites receiver-

S3 Nonunitary time evolution operator and non-Hermitian
Hamiltonian for numerical TDSE

In this section, we write down a time evolution operator corresponding to the numerical TDSE.
We show that the corresponding dynamics is nonunitary. We then identify a corresponding non-
Hermitian, time-periodic Hamiltonian that generates the dynamics. Thus, we should be able to

study the system by applying Floquet theory, a calculation that we leave to future work.

S3.1 Nonunitary time evolution operator

Define t as the initial time, ¢; = [At as the time at the [th time step (iteration of the algorithm),
and At as the time step size. Introduce the time evolution operator U (t, t,), which determines

the dynamics according to
[¥(8)) = UL, to) |4 (to))- (S3)

For the numerical TDSE, we can write

Ut to) =U ((t —to) mod At) [U(AL))H0)/ A (S4)



r

r;

r

2 neighbors

oilac
L] L

3 neighbors

r

I

Nl

|

I

—

I

4 neighbors

r

r

0O

r; ‘

I

rounding r;.

I

I

[ |
g

[

T

] L

5 neighbors

BN

I

Y]

r;

| L

]

6 neighbors

Iy

r;

|

L L

Fig. S4. Site arrangements leading to multiple sites r ... Arrangements of sites surround-
ing r; where the neighbors of r; are a union of non-neighboring sets of sites, leading to multiple
Sites Treceiver- 1he arrangements are listed in increasing order of the number of neighbors sur-

T




where | -] is the floor function. The operator

1, 0<t<dt,
U(t) = < Uy, ot <t < At, (S5)
Us_ally, t = At,

determines the evolution within a single time step, ¢ € [0, At]. Step 2 of the algorithm is carried
out by
0t
Up=1— - H, (S6)

Steps 3-4 are carried out by the operator Us_,, which acts on a state |¢) according to

Us-4|9) = 5N (Creiner)

I'rex:eiver) ) (87)

where Tyeceiver and ¢y, are determined by applying these two steps to |¢). If no site is Ireceivers
then Us_, = U, ' (note: by Eq. S6, Us is invertible due to the Hermiticity of H), which reverts
the state back to what it was in the most recent instance of Step 1 and (see main text) can be viewed
as having largely the same effect (i.e., halting of propagation) as the termination of the algorithm.
We note that the action of U45_4 is well defined only when the opeartor acts on states generated by

Step 2 from a localized excitation, i.e., |¢) o Us|r) for some site r; defining how Us_4 transforms

superpositions of such states could require, for example, extending Steps 3 and 4 to handle
delocalized initial excitations (see Step 1 in main text) and multiple I eceiver Sites; hence Us_4 s not a
linear operator.

It is straightforward to show that U (¢, ty) (Eq. S4) produces nonunitary time evolution. Using
the Hermiticity of H (Eq. 1), we find that ugug =1+ 6t*H?/h?+# 1, i.e., Uy is nonunitary. Given the
fact that there exist multiple |¢) which yield the same |r'receiver), We conclude that U3 4 does not have
a well-defined inverse, implying that {/3_, is nonunitary. From the nonunitarity of i/, and Us_4, as

well as Egs. S4-S5, it can be readily seen that U (t, t) is nonunitary for general time ¢.



S3.2 Non-Hermitian, time-periodic Hamiltonian

By inspection of Eqgs. S4-S5, we can write the time evolution operator (Eq. S4) for the numeri-

cal TDSE as a Dyson series (46) or a positive-time ordered exponential (47),
0 N\ koot t1 te—1
—1
Ultit) =1+ (—) / dt, / dts - -- / dtyH(t ) H(ts) - - - H(ty)
k—1 h to to to

— exp, [_%/t: dTH(T)] ,

where
H(t) = ihé ([(t —to) mod At] — 0t)Inlds + ihé ((t —t9) mod At)Inls_4

is the corresponding Hamiltonian. Note that H(#) is periodic in time with period At. Further-
more, by the nonunitarity of Us and Us_4, we find that H(¢) is also non-Hermitian for general

t.

S4 Connection between the numerical TDSE and the Chern
number

Consider the currents in Step 3 of the numerical TDSE, the algorithm presented in the main text,
when a bulk site is excited (Fig. 2C). Here, we show that the Chern number of the underlying
Hamiltonian emerges naturally when calculating the currents involved in the dance.

First, consider a more general form (39) (see text above their Eq. 5.1) of our Hamiltonian

(Eq. 1):

H = Z |:(‘/a’m + 1,n)(m, n| + V3e™|m,n + 1) (m, n|

m,n

+Vee YD m 4 1, n 4 1) (m, )

+V/ e — 10+ 1) (m, n|) + Hee.|, (S8)



where ¢ = 7, V, > 0, and V;, V., V! € R. The (magnetic) unit cell of the system is shown in

Fig. S5.

NN
|2

Ja, Yo | Yo, Yo

—’L‘/c r Hr’r Hrr/ r _Z‘/c/

/vl N v\
unit cell

Fig. SS. Unit cell of generalized Hamiltonian. Unit cell of system described by Hamiltonian
S8, consisting of two sites r and r’'.

Now turn to Algorithm 1. Suppose the /th iteration begins with the excitation in a bulk site
r; (Fig. 2A of manuscript). Without loss of generality, let r; = (0,0). In Step 3, the current
from a (nearest or next-nearest) neighbor r of (0, 0) to another neighbor r’ can be expressed as

(Egs. 4 and S5 of manuscript)

(Joswr) = (Wt + 68)|Jessw [ (t + 61))
2(0t)*
]‘:L3

Im (H(O,O)r’Hr’rHr(0,0)> . (89)

Figs. S6A and S6B show the couplings and currents, respectively, for (0, 0) and its neighbors.
Consider counterclockwise-oriented loops L = r(;)y — r(g) — -+ — ry) O (“O” means

go back to r()) passing at most once through neighbors r(yy, . . ., r(ar) of (0, 0), encircling (0, 0),

and enclosing an area equal to an integer multiple of unit cells. There are 2 such loops: (Fig.

S7A)

L, = (170) — (07 1) - (_LO) — (07 _1) o, (510)
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Fig. Seé. Coupllngs and associated currents. (A) Couplings (H,,) and (B) currents
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) for the site (0,0) and its neighbors.

L2 - (1,0) —

— (=

1,0) —

(1,1) —

— (—1,1)

(—1,—-1) — (0,—1) — (1,

r(z‘>—>r<i+1)>

Spy =2VaVy (Ve + V)

Sta = 4Vl (Ve + V).

~1) o,

)- Then (Fig. S7TA)

(S11)

(S12)

(S13)

(S14)




‘ "',',7 ",{/ \” \[’ \
A% % Voo Ve o A
Y
(7170) (070) (170) (7170) (070) (170)
A A V., Vil N
’ AN VoV Ve
v
Vo VilVe Va ViV
(-1,-1) (0,-1) (1,-1) (=L, -———> (0,-1) —F—>(1,-1)
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their respective currents ({(J; ) [ } ), as reproduced from Fig. S6B.

Since V, > 0, we thus have
sgn(Sr,) = sgn(Sr,) = v, (S15)
where (39) (see their Eq. 5.22)

v =sgn[V,(V, + V)] (S16)

is the Chern number, which clearly showcases the chirality (counterclockwise or clockwise) of
the edge dynamics (Fig. 2, I to L), given the correspondence between the bulk currents and the

edge dynamics (see main text).

SS Real-valued TDSE: generating real-valued, discrete-time
dynamics of a topological insulator

The numerical TDSE, the algorithm in the main text, propagates the (complex-valued) wave-

function in discrete time for the model topological insulator with (complex-valued) Hamilto-



nian A (Eq. 1). In this section, we present the real-valued TDSE, the algorithm that results
from transforming the probability amplitudes according to ¢, — ¢, = f(c;), where f is the
real-valued function defined in Eq. 7. So, this algorithm is written in terms of real-valued
quantities. The real-valued TDSE is described in Section S5.1 and derived from the numerical
TDSE in Section S5.2. We then show that the transformed algorithm has the same dynamics
(Section S5.3) and connections to the Chern number (Section S5.4) as the original algorithm.
These correspondences therefore exist between the numerical TDSE and the dance, which is an

implementation of the real-valued TDSE.

S5.1 Algorithm
Here are the steps of the real-valued TDSE (Fig. S8):

1. At the [th time step, ¢ = t;, the wavefunction is at site r;:
[h(t)) =, (t)|r1) = £|ry). (S17)

2. Evolve the wavefunction forward by time 0t < ¢;,1 — ;:

[t +01)) = (t) | ey + D HarfIr) |- (S18)
reN(r;)

3. Determine the neighbor 1, maen (if any) of r; that does not match with another neighbor
of r;. We say that r matches with r’ if the probability amplitude of the former equals that

of the latter after multiplication by H,y., i.e., HyprCl(t; + 6t) = L. (t; + dt).

4. If there is a neighbor 1, maen Of 17, reset the wavefunction as

|¢(tl+1)> - Ci-(tl + 5t>|rno match> (S19)

and r; 1 = Ty maech; return to Step 2. If not, the algorithm terminates.



t=1

t=1t;+ 6t

t=1t41

1. Start at r;

2. Move to neighbors
r of r;:
Cr (tl + (5t) = Hrrl Cr, (tl)

3. Determine the neighbor

4. Set I'i+1 = Tno match
(or end algorithm if
I'no match dOES NOt exist)

I'no match (If anY)
that does not
have a match

T ®

ri41

T'no match

Fig. S8. Real-valued TDSE. Illustration of the algorithm referred to as “real-valued TDSE”.

S5.2 Derivation

In this section, we show that applying f (Eq. 7) to the probability amplitudes ¢, allows us to

write each step of the numerical TDSE as the same step of the real-valued TDSE.

The derivation goes as follows:

1. By definition of ¢, (t;) (Eq. 3),

f e () = £1.

(S20)

Comparing this equation to Eq. S17 for [¢(¢;)) of the real-valued TDSE, we see that

applying f to all ¢.(t;) converts Step 1 of the numerical TDSE to the same step of the

real-valued TDSE.

2. Notice that H (Eq. 1) has purely real NN couplings and purely imaginary NNN couplings,

1.€.,

Hrr’ S

o(r) even, o(r') odd,
, (S21)
o(r) even, o(r’) even,

(r)
o(r) odd, o(r’) even,
(r)
o(r) odd, o(r") odd.



Using this equation, one can show that (see Eq. 4)

ReH,,,, o(r) even, o(r;) odd,
(5t - R Hrr ) dd, )
ety + A1) = [ (e (1) Y x § TIREHem, o) 0dd, o(r) even (S22)
h ImH,,,, o(r) even, o(r;) even,
ilmH,,,, o(r)odd, o(r;) odd
forr € N (r;). It follows that
f (Cr(tl + (St)) = f (Crl (tl)) Hrr“ rc N(I‘l), (523)
where H is defined in Eq. 8. Moreover, since ¢, (t; + 6t) = ¢, (t;) (Eq. 4), then
f e (ti+0t)) = [ (en(t)) - (S24)

Comparing Eqs. S23-S24 to Eq. S18 for |¢(t;)) of the real-valued TDSE, we see that
applying f to all ¢,(t; + 0t) converts Step 2 of the numerical TDSE to the same step of

the real-valued TDSE.

. Using Eq. S1, property S21 of H, and definition 8 of H, we can write the current at time

t; 4+ ot from neighbor r of r; to another neighbor r’ of r; as

et +00) = 200 f o t 4 61) e f (et 4 01)) . (525)

Since |f (ep(t 4 01))| = [Here| = | f (ex(t + t))| = 1, the condition (J, . (t + 6t)) > 0

is equivalent to %(J,Hrr (t+dt)) =1,0r

Huef (colt +61)) = [ (o (t + 1)) (526)
With this result and renaming T'eceiver S T'no match, WE can rewrite Step 3 of the numerical
TDSE as the same step of the real-valued TDSE.
. Using
[ (sgnler(ti 4 0t)]) = f (ce(ti + 1)) (827)

for all r and renaming T eceiver @S Tno match, W€ can rewrite Step 4 of the numerical TDSE as

the same step of the real-valued TDSE.



S5.3 Proof: the real-valued TDSE has the same dynamics as the numeri-
cal TDSE

Here, we prove that the dynamics (i.e., the wavefunction at each ¢;) of the real-valued TDSE is
the same (up to a global phase) as the dynamics (Fig. 2, I to L) of the numerical TDSE.
Consider the [th time step (i.e., iteration) of the algorithms. Step 3 of the numerical TDSE
(see main text) can be rewritten as follows: determine the neighbor r(= rieceiver) Of T; Such
that (J._,»(t + dt)) > 0 for no site r’, where (J._,.(t + dt)) is computed from | (t; + dt))
(Eq. 4), the wavefunction resulting from Steps 1 and 2. Similarly, Step 3 of the real-valued
TDSE (Section S5.1) can be rephrased as follows: determine the neighbor r(= r,h) of r; such
that Hyp f (e (t; 4 0t)) = f (ew(t; + 6t)), where the amplitudes ¢, correspond to [1)(t; + 0t))
of the numerical TDSE. As noted in item 3 of Section S5.2, the criterion for determining r is

equivalent for both algorithms. Thus, reverting to the original wording of the algorithms, either
. Treceiver Of the numerical TDSE is equal to ry,, of the real-valued TDSE, or
2. neither ryeceiver NOT T'paren EXISt.

In Case 1, the wavefunction at the next time step, |1/(¢;11)), is the same (up to a global phase)
for both algorithms, as seen by comparing Step 4 of each algorithm. In Case 2, the algorithm
terminates for both numerical and real-valued TDSEs.

Therefore, the real-valued TDSE has the same dynamics as the numerical TDSE.

S5.4 Connections to the Chern number

In Section S4, we found that the Chern number naturally emerges from the currents computed
in Step 3 of the numerical TDSE (see main text). This result, and the dynamical bulk-boundary
correspondence of the numerical TDSE (see main text), imply that the chirality of the edge

dynamics is given by the Chern number. However, since the real-valued TDSE (Section S5.1) is



obtained by applying a nontrivial transformation (f, Eq. 7) to the wavefunction in the numerical
TDSE, one is led to ask: are the connections to the Chern number maintained in the real-valued
TDSE? Below, we answer the question in the affirmative.

Consider Step 3 of both algorithms. As discussed in Section S5.3, the criterion for deter-
mining r,nin the real-valued TDSE (Section S5.1) is equivalent to that for determining receiver
in the numerical TDSE (see main text). Thus, Step 3 of the real-valued TDSE implicitly carries
out the same calculation of currents as in the numerical TDSE. Because of this identification,
the dynamic bulk-boundary correspondence (see main text) and the connection to the Chern
number (Section S5.4) also hold for the real-valued TDSE. Hence, in this algorithm too, the
chirality of the edge dynamics is given by the Chern number. Trivially, the Chern number also
characterizes such edge chirality in the dance, which is an implementation of the real-valued

TDSE.

S6 Robustness of the dance to human error

In this section, we briefly explore the robustness of the dance to human error. It is hard to say,
in general, how such errors affect the dance. However, we can comment on specific types error.
The discussion below highlights that the dance is robust to some forms of error but not all.

For example, suppose that someone incorrectly identifies a match with one neighbor (but
does everything correctly thereafter). If there actually is a match with another neighbor, then
the error would not affect the dance. In contrast, if there actually is no match, then the incorrect
match would cause the dance to end when it really should not.

We can also consider the opposite type of error, where someone misses a match (but does
everything correctly thereafter). In this case, an extra commander would arise in the next round
of the dance; this additional dancer need not affect the chirality nor the edge-localized nature

of the dynamics, as demonstrated in the dance performances that begin with two commanders



(see Fig. 4, B-D, and accompanying Movies S5-S6).

S7 Extending the dance to other Hamiltonians

Throughout this work, we have choreographed a dance to approximate the TDSE for the Harper-
Hofstadter Hamiltonian with next-nearest-neighbor coupling (Eq. 1) (39). In this section, we

discuss the extension to other Hamiltonians.

S7.1 Ciriteria for applying the approach reported here

Using the approach reported here, we should be able to create a dance for a number of Hamil-

tonians where
1. each neighbor of a bulk site is coupled to at least one other neighbor,
2. the phases of the couplings (H,,) are either purely real and purely imaginary,
3. on-site energies are zero (i.e., Hy, = 0),

4. for general excitations, at most one site is determined to be I'eceiver in Step 3 of the numer-

ical TDSE,

5. in the numerical TDSE, the amplitude at each site remains either real or imaginary at all

times (i.e., ¢; and ¢; + 0t).

Conditions 1 and 4 are a prerequisite for the numerical TDSE (see main text) to work. As we
discuss in Section S7.4, Condition 3 reflects the fact that the numerical TDSE cannot
handle on-site energies, though the algorithm could still work if the on-site energies are
nonzero but sufficiently small compared to the couplings. Conditions 2 and 5 are a prerequisite
for the real-valued TDSE (Section S5.1), and thus the dance, which is an implementation of the

real-valued TDSE.



In the following sections, we explore the validity of the above conditions. We show that the
numerical TDSE can be applied to other Hamiltonians that meet the above conditions: Hamil-
tonian 1 without some of its NNN couplings (Section S7.2) and the Haldane model (48) with
inversion symmetry (Section S7.3). In Section S7.4, we explain why the numerical TDSE can-
not handle on-site energies (Condition 3), e.g., in the Haldane model (48) with broken inversion
symmetry. In Section S7.5, we consider an example, namely, Hamiltonian 1 with real-valued
next-next-nearest-neighbor (NNNN) couplings, for which the numerical TDSE is not suitable
due to violation of Condition 4. Finally, in Section S7.6, we discuss extending the various

algorithms reported here to cases where these conditions are not met.

S7.2 Example: applying the numerical TDSE to Hamiltonian 1 without
some NNN couplings

As an example, we show that the numerical TDSE (see main text) can be applied to Hamiltonian

1 without some of its NNN couplings (Fig. S9A). Specifically, we consider the removal of the

(m,n) <> (m+ 1,n+ 1) couplings (Eq. 1, third term in big parentheses).

Fig. S9, B to E, shows the exact dynamics for various initial conditions and lattice geome-
tries. The dynamics are qualitatively similar to those of the original Hamiltonian 1 (compare
to Fig. 1, B to E, respectively). In particular, the dynamics feature the same key signatures of
topological insulators (see main text).

Fig. S10 illustrates the numerical TDSE when applied to the modified Hamiltonian. For the
most part, the algorithm qualitatively reproduces the exact dynamics (compare Fig. S10, I to
L, and Fig. S9, B to E, respectively). However, a noteworthy discrepancy can be found in the
edge dynamics in the presence of site defects: the excitation travels less in the numerical TDSE
(Fig. S10J) than in the exact dynamics (Fig. S9C). In the algorithm, the excitation encounters

a site defect that leads to two sites I'ieceiver (S€€ the two arrows starting at the same site in Fig.



NT NT NT ST NT N1 NN
-- = - - = - .- V-V — T =0 —
SRS CRE RS Wl h SINEEN
A MRS MR M MU A Voo Hee|Her AT
[ANENANENAVENAY BNANEN AN —iV —_ 0 ==t =
ST NT NT N1 T LI I RN [N PN
IDL 1AL I 1M TN 1S unit cell magnetic flux
p=r
B Excite edge Cc Excite edge D Excite inner edge E Excite bulk
(with site defects) (Corbino geometry)
L] - . . . . . . [ ] . . . L]
L] . e «|® o|c|@|(@|0|0| - . o|e|e e|leo]e
° . . oo ] ) o lw]|e . o] e .
o| ] . . ol B Tel [+]+ = . . .
3 . ° o - Tl [Te]s . o
[ ] el |® LK) o|® . . . | .
° ® o o |® . K .
. cle]e]|® ° sle|le|@® ool |-]- . o e efe]c|o]efe
ofc[eJefee]o[e]e] [@[e[e]e]e]e
Time (A/V) Time (A/V) Time (A/V) Time (h/V)
. - - -
0 19 0 23 0 7 0 8

Fig. S9. Dynamics of Hamiltonian 1 without some NNN couplings. Same as Fig. 1 except
for Hamiltonian 1 without the (m,n) <> (m + 1,n + 1) couplings (Eq. 1, third term in big
parentheses). See Fig. 1 for more details.



S10J), a situation that the numerical TDSE is currently unable to handle (see main text); thus,
the algorithm is terminated. Note that this site defect is an arrangement of sites that does not
produce multiple rieceiver When applying the numerical TDSE to the original Hamiltonian 1
(Section S2).

For further insight, we can analyze the site currents, as we have done for the original Hamil-
tonian 1 (see main text). With some NNN couplings removed, we see that the bulk currents still
form a chiral structure (Fig. S10C), from which the edge dynamics can be predicted (Fig. S10,
G and H). Thus, the dynamical bulk-boundary correspondence (see main text) holds.

Interestingly, the bulk currents form a loop (Fig. S10C) from which the Chern number
naturally emerges. Following Section S4 (in particular, Eq. S8, Fig. S5, and Fig. S6A), we
let the horizontal, vertical, and (remaining) NNN hoppings have strength V, > 0, V;, and V/,
respectively (Fig. S11A). Summing the currents around the loop in counterclockwise fashion
(Fig. S11B), and using V,, > 0, we find that the sum is proportional to the Chern number
v = sgn(V,V!) (Eq. S16 and (39)).

Since the removal of NNN couplings simply sets site amplitudes to zero, rather than change
them from real to imaginary (or vice versa), we can also apply the real-valued TDSE (Section
S5.1) to the modified Hamiltonian. Further note that the above results would be qualitatively
unchanged if we instead remove the (m,n) <> (m — 1,n + 1) NNN couplings (Eq. 1, fourth

term in big parentheses).

S7.3 Example: applying the numerical TDSE to the Haldane model with
inversion symmetry

As another example, we show that the numerical TDSE (see main text) can, with some success,

simulate the dynamics of the Haldane model (48) where inversion symmetry is obeyed (see

Section S7.4 for the case of broken inversion symmetry) but time-reversal symmetry is broken.
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Fig. S10. Numerical TDSE applied to Hamiltonian 1 without some NNN couplings. Same
as Fig. 2 except for Hamiltonian 1 without the (m, n) <> (m + 1,n+ 1) couplings (Eq. 1, third
term in big parentheses). See Fig. 2 for more details. (J) In contrast to the original Hamiltonian
1 (Fig. 2J), the algorithm is ended before the excitation can make it back to the initial site, since
multiple sites are determined to be Iieceiver 10 the last iteration (see the two arrows starting at the

same site).
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and (B) associated currents ({.J; ) [

Specifically, we consider the Hamiltonian that is pictorially represented in Fig. S12. All hop-
ping amplitudes are taken to have identical magnitude. NNN hopping amplitudes have phase
+7/2. Therefore, all hopping amplitudes are either purely real or purely imaginary. Also, it is
straightforward to show that, in the numerical TDSE, one sublattice will always have real site
amplitudes and the other imaginary. These two properties (see Section S7.1, Conditions 2 and
5) should allow converting the numerical TDSE to the real-valued TDSE (Section S5.1).

Fig. S13 shows the exact dynamics of a localized excitation on a finite lattice (see Materials
and Methods). The top and bottom edges have a bearded configuration, while the left and right
edges have an armchair configuration. When starting at one end of a bearded edge (Fig. S13A),
the excitation primarily propagates down this edge. In contrast, when starting at the other end

(Fig. S13B), the excitation spreads considerably down this edge (towards the first end) and the



ARANNALAENARANNALYS
qqi?gyou¢you¢yo\
V4
1N/ k/|>_y \@J k@)
AXTA W 43T W A32A W 4324
YR "YL‘\:\ IXL\\:\ 'XL‘\:\ ) ’\B
71\ / / / /
1N/ \A}) \A}} \L} i1
T4 NI/ AL0A W 4324 NI A 304 W/ 404
YA GYAD GYAL GYAYD.
Z1S Z1\ Z1N Z1N

Fig. S12. Hamiltonian of the Haldane model. Pictorial representation of the Hamiltonian ()
of the Haldane model with inversion symmetry obeyed (i.e., without onsite energy) but time-
reversal symmetry violated (i.e., with NNN coupling). The gray lines indicate pairs of NNNs.
All hopping amplitues have magnitude V' > 0 (¢; = to = V in (48)). NNN hopping amplitudes
have phase +£7/2 (¢ = 7/2 in (48)).
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Fig. S13. Edge dynamics of the Haldane model. Dynamics of the Hamiltonian of Fig. S12
on a finite | attice. The top and bottom edges have a bearded configuration, while the left and
right edges have an armchair configuration. The system is excited at a site (green box) located
at the (A) left and (B) right end of the top edge. Site probabilities at different times are overlaid
in chronological order (i.e., later times on top). The probability of the system being at each
site is represented by a circle (area o< probability). The relative extent to which the excitation
propagates in selected directions is qualitatively represented by green arrows.

nearest armchair edge, with a slight preference for the latter edge. An excitation in the bulk
(Fig. S14) diffuses with little directional selectivity.

For the same lattice geometry and excitation conditions, we now (approximately) simulate
the dynamics using the numerical TDSE (see main text and Fig. S15). For an excitation at one
end of a bearded edge, the algorithm qualitatively reproduces the edge-localized and largely
unidirectional propagation across this edge (compare Figs. S16A and S13A). However, the
numerical TDSE does not capture the multidirectional spreading of an excitation on the other
end (compare Figs. S16B and S13B). Nevertheless, the slight preference for going down the

armchair edge versus the bearded edge (Fig. S13B) seems to appear in the algorithm-generated
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Fig. S14. Bulk dynamics of the Haldane model. Dynamics of the Hamiltonian of Fig. S12 on
a finite lattice. The system is excited at a bulk site (green box). See Fig. S13 for more details.

dynamics (Fig. S16B), i.e., as a short-lived trajectory in the preferred direction. Indeed, the
absence of bulk propagation as predicted by the numerical TDSE (Fig. S15) is reflective of
the low directional selectivity in the exact bulk dynamics (Fig. S14, A to D), as we have also
observed for the Harper-Hofstader Hamiltonian of Eq. 1 (see main text). Overall, the numerical
TDSE captures some, but not all, qualitative features of the exact dynamics.

As we have pointed out for the Harper-Hofstader Hamiltonian of Eq. 1 (see main text), there
exists a dynamical bulk-boundary correspondence when the numerical TDSE is applied to the
Haldane model of Fig. S12. This relation can be seen from the current fields generated in Step
3 of the algorithm (see main text and Fig. S16, C, G, and K). Specifically, for an excitation
at any bulk site (i.e., surrounded by all possible NNs and NNNs), the current field exhibits a
chirality, which is the direction of flow about the excited site from a 3-neighbor cluster to the

next (counterclockwise for the Hamiltonian of Fig. S12; see Fig. S15C). For an excitation at
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Fig. S15. Numerical TDSE applied to Haldane model. Illustration of the numerical TDSE
algorithm when applied to the Haldane model (Fig. S12). The wavefunction starts an iteration
at (A to D) a bulk site, (E to H) an edge site where the wavefunction moves to a new site, and

(Ito L) an edge site where the algorithm ends at the end of the iteration. See Fig. 2, A to H, for
more details.
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Fig. S16. Discrete-time dynamics of the Haldane model. (A and B) Dynamics simulated by
the numerical TDSE, where the excitation conditions and lattice geometry are those of Fig. S13.
For each simulation, the wavefunction starts at the site indicated by the green box. A purple
arrow represents the movement of the wavefunction from r; (tail) at time step [ to r;.; (head) at
time step [ + 1. The relative extent to which the excitation propagates in selected directions is
qualitatively represented by green arrows.



any edge site (i.e., not surrounded by all possible NNs and NNNs), the current field (Fig. S16,
G and K) is a subset of the bulk current field ( Fig. S 16C). T hus, the edge current field and
resulting dynamics inherit the chirality of the bulk current field (orange arrows in Fig. S16, C,
G, and K).

We also demonstrate a connection between the Chern number and the bulk current field. We
do this for a more general Hamiltonian, where the NN hopping amplitudes have magnitude 1}
and the NNN hopping amplitudes have magnitude V5; the Hamiltonian that we have considered
up til now (Fig. S12) corresponds to the special case of V), = V, = V. For the general
Hamiltonian, the Chern number is known to be v = sgn(V3) (48). Following Section S4,
we consider counterclockwise-oriented loops of neighboring sites, where the loop encloses a
bulk site and an integer multiple of the unit cell. Fig. S17 shows representative loops and the
corresponding subset of the bulk current field. If we take the sum of the current over loops
enclosing two unit cells (Fig. S17, A and B), we see that the sign of the sum is equal to v,
the Chern number. However, if we do the same calculation for a loop enclosing three unit
cells (Fig. S17, C), we find that the sum v anishes. Therefore, we have related the bulk current
field to the Chern number, though this connection is different from that found for the Harper-
Hofstadter Hamiltonian of Eq. S17, where all possible loops enclosing an interger multiple of
the unit cell give rise to the Chern number. Given this discrepancy, we would need to explore

the correspondence for additional models to understand it intuitively.

S7.4 Why the numerical TDSE cannot handle on-site energies

In this section, we first discuss w hy the numerical T DSE c annot d eal with on-site energies,
e.g., in the Haldane model (48) with broken inversion symmetry. Specifically, we show that
on-site energies have no effect on the current and thus the determination of the site rieceiver N

Step 3 of the algorithm. We then argue that the numerical TDSE can still be used if the on-site



Fig. S17. Loops and associated currents for the Haldane model. Loops (Section S4)
for the Haldane model of Fig. S12. The arrows are labeled with their respective currents
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energies are nonzero but sufficiently small compared to the couplings (off-diagonal terms of the
Hamiltonian).
If on-site energies are included, then the wavefunction after Step 2 becomes (compare to

Eq. 4)

95t + 6) = (1) (h%ﬂrm) o) =00 Hal | ©2)
rEN(rl

From Eqgs. S28 and S1, it is evident that the currents between neighbors of the initial site, r;,
are unaffected by on-site energies, namely, /,,,. Thus, the site determined to be TI'yeceiver 1N
Step 3 also remains unchanged. The outcome would be the same even if, for example, Step 3
were modified such that ry.eiver could (in principle) be r; itself. Indeed, the current from r; to a

neighbor r is

2 iot i it
<Jrz—>r(tl + 5t>> = ﬁlm {(_?Hrrz) Hrl"z (1 - ?Hrlrl>:|
2

ot)?
= (h3) |Hrrl|27 (829)

which means that not only does r; transfer current to r (i.e., I'receiver 7 I7), but also the magnitude
of the current does not depend on H,,.
Despite the numerical TDSE not being able to account for the effect of on-site energies,

the alogorithm could still work if these terms are not too large. For example, consider the



Haldane model (48) with broken inversion symmetry, where this symmetry breaking is induced
by nonzero on-site energies. Below a certain magnitude, these terms do not affect the Chern
number (+1) (48) and thus the existence of edge states. In this regime, the numerical TDSE
can be used as is, at least for the prediction of edge states. However, once the on-site energies
become strong enough compared to the coupling (off-diagonal) terms, they must be considered
to accurately capture the Chern number going from nonzero to zero, and the current algorithm

cannot in its present form account for this topological phase transition.

S7.5 Example: numerical TDSE does not work for Hamiltonian 1 with
real NNNN couplings
We consider Hamiltonian 1 with NNNN couplings added. Since the Harper-Hofstadter Hamil-
tonian is on a square lattice, NNNN couplings correspond to hopping 2 sites horizontally,
(m,n) — (m £ 2,n), or vertically, (m,n) — (m,n £ 2). Specifically, we c onsider arbi-
trary real-valued NNNN couplings. Carrying out the numerical TDSE for both bulk and edge
excitations, we find that there is no current between each NNNN of the initial site and any other
neighbor. Thus, all NNNNs are reiver Sites (see main text, numerical TDSE, Step 3), which do
not transfer current to any site. For general excitations, this situation corresponds to having mul-
tiple T'receiver Sites and therefore cannot be handled by the present form of the numerical TDSE
(see main text). In addition, the currents between non-NNNN neighbors of the initial site are
the same as for the original Hamiltonian 1, suggesting that the numerical TDSE cannot properly
account for real NNNN couplings. These findings result from an “accidental alignment” of the

real- or imaginary-valuedness of each type of coupling (NN, NNN, and NNNN).

S7.6 Extending the approach reported here

With some modifications to the algorithms (i.e., numerical and real-valued TDSE), we expect

that a dance can be designed for other Hamiltonians, which do not meet the criteria discussed



in Section S7.1.

Consider systems where Condition 1 is not satisfied, i.e., the neighbors of a bulk site are not
coupled to each other. Examples include the standard Harper-Hofstadter Hamiltonian (37, 38)
(i.e., with only nearest-neighbor coupling) and the 1-dimensional Su-Schrieffer-Heeger Hamil-
tonian (49). In these cases, one should modify Step 2 of the numerical TDSE such that the
next-nearest neighbors of r; are also excited. One possible change is to expand the wavefunc-

tion to O ((6t)?) (compare to Eq. 4):

ot -+ 60 = (1= - S ) pota), (530)

Despite the wavefunction being slightly more complicated, the conversion of the numerical
TDSE to the real-valued TDSE, and therefore the dance, should remain straightforward.

If Condition 2 is not satisfied, one should still be able to design a dance, so long as the
Hamiltonian satisfies the following generalization of Condition 2: the phases of the couplings
(H,) make up the nth roots of unity for some even integer 1. For the Hamiltonian studied here
(Eq. 1), n = 4, and the probability amplitudes (c;) take 2 = 4/2 possible values after applying
f (Eq. 7) to the wavefunction. For general 7, one should devise a function, in analogy to f, that

maps the probability amplitudes to one of 1/2 values.



Movie S1. Dynamics generated by H for the parameters used in Fig. 1B. The probability of

the system being at each site is represented by a circle (area ox probability).

Movie S2. Dynamics generated by H for the parameters used in Fig. 1C. The probability

of the system being at each site is represented by a circle (area o< probability).

Movie S3. Dynamics generated by H for the parameters used in Fig. 1D. The probability

of the system being at each site is represented by a circle (area o< probability).

Movie S4. Dynamics generated by H for the parameters used in Fig. 1E. The probability

of the system being at each site is represented by a circle (area o< probability).

Movie S5. The dance where the initial dancers are on the lattice edge. Snapshots are shown in

Fig. 4B. The chiral edge propagation is indicated by the red arrows moving clockwise over time.

Movie S6. The dance where the initial dancers are on the edge of a lattice with site defects.
Snapshots are shown in Fig. 4C. The chiral edge propagation is indicated by the red arrows

moving clockwise over time.

Movie S7. The dance where the initial dancer is on the inner edge of a lattice with a hole
in the middle (i.e., Corbino geometry). Snapshots are shown in Fig. 4D. The chiral edge prop-

agation is indicated by the red arrow moving counterclockwise over time.

Movie S8. The dance where the initial dancer is in the lattice bulk. Snapshots are shown in

Fig. 4E. The lack of bulk propagation is indicated by the red arrow not moving over time.
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