
Du et al., Sci. Adv. 10, eadh7810 (2024)     28 August 2024

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

1 of 8

P H Y S I C S

Chiral edge waves in a dance-based human 
topological insulator
Matthew Du1, Juan B. Pérez-Sánchez1, Jorge A. Campos-Gonzalez-Angulo1, Arghadip Koner1, 
Federico Mellini1, Sindhana Pannir-Sivajothi1, Yong Rui Poh1, Kai Schwennicke1, Kunyang Sun1, 
Stephan van den Wildenberg1, Dylan Karzen2, Alec Barron3, Joel Yuen-Zhou1*

Topological insulators are insulators in the bulk but feature chiral energy propagation along the boundary. This 
property is topological in nature and therefore robust to disorder. Originally discovered in electronic materials, 
topologically protected boundary transport has since been observed in many other physical systems. Thus, it is 
natural to ask whether this phenomenon finds relevance in a broader context. We choreograph a dance in which 
a group of humans, arranged on a square grid, behave as a topological insulator. The dance features unidirec-
tional flow of movement through dancers on the lattice edge. This effect persists when people are removed from 
the dance floor. Our work extends the applicability of wave physics to dance.

INTRODUCTION
A topological property of an object is one that is unchanged as the 
object undergoes continuous deformation, which includes transla-
tion, rotation, stretching/compression, and bending but excludes 
puncturing, tearing, and gluing (together different parts of it). More 
than just a theoretical concept, this notion can have real-life applica-
tions. Consider a physical material with a topological property. The 
latter is resistant to material imperfections that constitute continu-
ous deformations (although not necessarily in real space). Because 
of this robustness, such materials, which are known as topological 
materials, have garnered widespread attention over the past several 
decades (1–3).

To date, the most studied topological material has been the topo-
logical insulator (1). A topological insulator is insulating in the bulk 
but conducting on the boundary. The earliest known topological 
insulators are two-dimensional electronic materials that exhibit the 
integer quantum Hall effect (4), in which the (transverse Hall) con-
ductance along the sample edge is proportional to a nonzero integer 
ν, known as the Chern number (1, 5). Reflecting the net number of 
edge states that support clockwise (or counterclockwise) current, ν 
and thus the edge conductance are topological properties (5). These 
characteristics of the edge are intimately related to properties of the 
material bulk. Such bulk-boundary correspondence is a hallmark of 
topological insulators.

Since their discovery, topological insulators have been observed 
in a plethora of other physical media (6). Examples include tradi-
tional wave media, both natural [e.g., oceanic and atmospheric flu-
ids (7)] and synthetic [e.g., photonic (8, 9) and acoustic (10, 11) 
lattices]. Topological insulators have also been reported in settings 
that have less in common with electronic materials: systems gov-
erned by Newton’s equations of motion (11–14), molecular enantio-
mers (15, 16), amorphous materials (17), active matter (18–25), and 
stochastic processes (18, 26–32).

The ubiquity of topological insulators prompts the question of 
whether their physics can manifest in contexts that transcend the 
usual boundaries of science. In this work, we present a human to-
pological insulator in the form of a group dance. Functioning liter-
ally as a numerical integrator of the time-dependent Schrödinger 
equation (TDSE), the dance features chiral motion through people 
along the edge of the dance floor, even when “defects” are intro-
duced by removing dancers. In essence, this dance is distinct from 
those that serve as natural examples or purely qualitative represen-
tations of concepts in science and math [including seismic waves 
(33), electrical circuits (34), flocking (35), and topology (36)]. Thus, 
the dance described in this article serves both as a rigorous realiza-
tion of topological edge modes and an ideal outreach activity to 
introduce broader audiences to the universal concepts of topological 
protection.

RESULTS
To begin the choreography, we consider the Harper-Hofstadter 
Hamiltonian (37, 38) with next-nearest neighbor (NNN) coupling 
(39) and magnetic flux ϕ = π per plaquette (Fig. 1A),

which models an electron hopping on a square lattice in a magnetic 
field. The lattice sites are labeled by r = (m, n), and V(>0 here) is the 
magnitude of intersite coupling. Hops to a nearest neighbor (NN) 
occur with an amplitude of ±V, while hops to a NNN occur with an 
amplitude of ±iV. Here, H.c. stands for Hermitian conjugate.

The Hamiltonian H gives rise to several dynamical features that 
are characteristic of topological insulators, as shown by simulations 
on a finite lattice (see Materials and Methods). When exciting an 
edge site of a square-shaped lattice, the excitation propagates clock-
wise along the edge (Fig. 1B and movie S1). This chiral transport 
persists after introducing lattice defects of various shapes (Fig. 1C 
and movie S2). For a lattice with a hole in the middle, which is 
known as the Corbino geometry (40, 41), an excitation at the inner 
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edge moves along this edge with opposite handedness, i.e., counter-
clockwise (Fig. 1D and movie S3). The unidirectional conduction on 
the edges is drastically different from the dynamics in the bulk, in 
which a localized excitation diffuses with little directional selectivity 
(Fig. 1E and movie S4).

To capture such dynamics in a dance, we first present an algo-
rithm to (approximately) propagate the wave function ∣ψ(t)〉 = ∑r  
cr(t)∣r〉 in discrete time. The algorithm, hereafter referred to as “nu-
merical TDSE,” goes as follows (Fig. 2, A to H):

1) At the lth time step, t = tl, the wave function is at site rl:

where

and σ(r) = m + n (Fig. 2, A and E).
2) Evolve the wave function forward by time δt < tl+1 − tl and 

approximate the resulting state up to O(δt):

where 𝒩(rl) is the set of neighbors (NN and NNN) of rl (Fig. 2, B and F).

3) Determine the neighbor rreceiver (if any) of rl that does not 
transfer current to any site (Fig. 2, C and G). Here, the (probabili-
ty) current from r to r′ is represented by the operator Jr→r�

= 
i

ℏ
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 (42, 43). We say that r transfers cur-

rent to r′ if 〈Jr→r′(tl + δt)〉 > 0.
4) If there is a neighbor rreceiver of rl, reset the wave function as

where sgn z = z/∣z∣ is the complex sign function, and rl+1 = rreceiver 
(Fig.  2H); return to step 2. If not, then the algorithm terminates 
(Fig. 2D).

Crucial to the numerical TDSE is its unconventional use of the 
current operator, enabling the probability amplitudes to interfere in 
step 3 and ultimately localize at rreceiver in step 4. This makes intuitive 
sense, since rreceiver is the “attractor/sink” of the current field at time 
tl + δt (step 3, Fig. 2G). We have assumed that there is at most one 
neighbor rreceiver of rl, which is true for the lattice geometries appear-
ing in this work (section S2). Notice that conservation of probability, 
and thus current, is temporarily violated in step 2 but eventually 
enforced in step 4. As shown below, the algorithm can continue in-
definitely for suitable initial conditions. Otherwise, the algorithm 
terminates, after which the wave function no longer moves, although 
it remains in the excited state; a similar immobilization would be 
achieved, for example, if we replace termination with a reset back to 
step 1, but this alternative would eventually result in an endless loop 
of the last iteration. It turns out that the algorithm is a non-Hermitian 
approximation of the actual quantum dynamics (section S3.2). 
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Fig. 1. Dynamics of a model topological insulator. (A) Pictorial representation of the Harper-Hofstadter Hamiltonian (H) with NNN hopping and magnetic flux ϕ = π 
(Eq. 1). (B to E) Dynamics of H on a 10 × 9 lattice. The system is excited at a site (green box) located (B) on the edge, (C) on the edge of the lattice with site defects, (D) on 
the inner edge of the lattice with a 4 × 3 hole in the middle (i.e., Corbino geometry), and (E) in the bulk. Site probabilities at different times are overlaid in chronological 
order (i.e., later times on top). The probability of the system being at each site is represented by a circle (area ∝ probability). Excitations move unidirectionally along each 
edge, where the chirality of motion is indicated by a green arrow.
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Regardless, the topological features are preserved (44, 45), as we will 
see below. In particular, because the current operator depends on H 
(Eq. 1) by definition (see step 3), the interference in step 3 respects 
the topological properties of the Hamiltonian.

In Fig. 2 (I to L), we show the dynamics generated by the numeri-
cal TDSE. The results are in excellent qualitative agreement with the 
exact dynamics (Fig. 1, B to E, respectively; see also movies S1 to S4, 
respectively). Notably, the algorithm reproduces the confinement of 
an edge excitation to the edge, the chirality with which this excita-
tion moves, and the robustness of these properties to site defects. 
Also captured is the diagonal movement of an edge excitation as it 
travels around the defects (cf. Figs. 1C and 2J) and, in the Corbino 
geometry, past the corners of the inner edge (cf. Figs. 1D and 2K). 
That a bulk excitation does not move in the approximate dynamics 
(Fig. 2L) reflects its diffusive (and not ballistic) nature in the exact 
quantum dynamics (Fig. 1E). In contrast, an excitation initialized on 
the edge propagates indefinitely (Fig. 2, I to K). We stress that, while 
the edge and bulk motions produced by the numerical TDSE are 

very different, they arise from the same steps. In contrast, the dy-
namics will be the same (i.e., no propagation) starting in any bulk 
site and for any system size. Therefore, the algorithm allows one to 
qualitatively reproduce the edge and bulk dynamics of large systems 
using small lattices (see dance below).

Underlying the accuracy of the numerical TDSE is its use of the 
site currents (step 3), which give rise to the dynamical signatures of 
topological insulators, particularly the chiral edge motion. For an 
iteration starting at a bulk site (Fig. 2A), current flows to and from 
all neighbors of the initial site (Fig. 2C). As a result, the algorithm 
ends (Fig. 2, D and L), reflecting the absence of unidirectional prop-
agation in the bulk. The current vectors form a vortex with a well-
defined chirality (i.e., counterclockwise; see Fig. 2C, purple arrows). 
By considering an appropriate subset of this current field (Fig. 2C, 
orange dotted triangle), one can obtain the current field for an itera-
tion beginning at an edge (Fig.  2G, orange dotted triangle). This 
subfield (Fig. 2G, purple arrows) determines the site that the wave 
function will occupy at the start of the next iteration (Fig. 2H). Thus, 

Fig. 2. Algorithm to generate discrete-time dynamics of a topological insulator. (A to H) Illustration of the algorithm, referred to as numerical TDSE throughout the 
text. The wave function starts an iteration either (A to D) in the bulk or (E to H) on the edge. (A, B, E, F, and H) The probability amplitudes cr are illustrated, following the 
same color scheme as the hopping amplitudes Hrr′ in Fig. 1A. (C and G) For each pair of sites r and r′ such that r transfers current to r′, the current vector 〈Jr→r′(tl + δt)〉
(r′ − r) is represented by a purple arrow. There is a bulk-boundary correspondence with respect to the current field (orange triangles) and its chirality (orange arrows). 
(I to L) Dynamics simulated by the algorithm, where the excitation conditions and lattice geometries are those of Fig. 1 (B to E), respectively. For each simulation, the wave 
function starts at the site indicated by the green box. A purple arrow represents the movement of the wave function from rl (tail) at time step l to rl+1 (head) at time step 
l + 1. The discrete-time dynamics shows unidirectional motion along each edge, where the chirality of motion is indicated by a green arrow.

D
ow

nloaded from
 https://w

w
w

.science.org at U
niversity of C

alifornia San D
iego on Septem

ber 10, 2024



Du et al., Sci. Adv. 10, eadh7810 (2024)     28 August 2024

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

4 of 8

the currents of a bulk-localized wave function indicate how an edge-
localized wave function would propagate. In particular, the subset 
relation between edge and bulk current fields (Fig. 2, G and C, or-
ange dotted triangles) and the structure of the latter (Fig. 2C, purple 
arrows) explain why edge excitations are confined to the edge. Fur-
thermore, the chirality of the bulk currents (Fig. 2C, orange arrow) 
is directly correlated with the chirality of the edge dynamics (Fig. 2G, 
orange arrow). These properties constitute a dynamical form of 
bulk-boundary correspondence. In particular, they closely resemble 
the classical picture of an electron in a magnetic field, where the 
circular orbits of a free particle manifest as unidirectional skipping 
motion along an edge (1).

As further evidence that the topological physics is preserved in 
the approximate dynamics, it can be shown that the Chern num-
ber (1, 5), ν = 1 for Hamiltonian 1, naturally arises from the bulk 
currents. Specifically, the sum of the currents, over loops (fig. S7) 
enclosing an integer number of unit cells (Fig.  1A), is propor-
tional to ν (section S4). This result, plus the correspondence be-
tween bulk currents and edge dynamics, imply that the chirality 
of edge propagation is exactly given by ν. Given that the Chern 
number is a bulk quantity, the connection between the topologi-
cal invariant and bulk currents is not totally unexpected, al-
though we are unable to provide further intuition for it at present 
(section S7.3).

To convert the algorithm to a dance, we have remarkably found a 
dynamics-preserving transformation of the wave function from the 
complex plane to the real numbers. To see that this mapping is pos-
sible, notice that, at all times, t explicitly considered in the algorithm 
(i.e., tl, tl + δt), the probability amplitude at each r satisfies

This property results from the choice of initial state (Eq.  3), 
which depends on whether σ(r) is even or odd; the update rule of 
step 4 (Eq. 4); and the structure of the Hamiltonian (Eq. 1), which 
has purely real NN couplings and purely imaginary NNN cou-
plings. Moreover, since all hopping amplitudes have the same mag-
nitude (Eq. 1), then ∣cr(tl + δt)∣ = ∣cr′(tl + δt)∣ for all neighboring 
sites r, r′ of rl. It follows that only the signs of these coefficients are 
necessary to capture the dynamics (Fig. 2, I to L), where the signs 
are given by

Thus, applying f to all probability amplitudes cr recasts the nu-
merical TDSE in terms of real numbers (section S5), i.e., the trans-
formed amplitudes cr′ ≡ f(cr) and “effective Hamiltonian”

 

By definition, cr′ and r′r each takes the values 0 and ±1. We call 
the reformulated algorithm “real-valued TDSE.” We emphasize that 
the site probabilities at times tl, and hence the dynamics (Fig. 2, I to 
L), remain unchanged from the numerical TDSE (section S5.3). The 
connections to the Chern number also survive the reformulation 
(section S5.4).

We proceed to choreograph a dance, which is an implementation 
of the real-valued TDSE. The probability amplitudes are represented 
by dance moves:

“Up” and “down” refer to the waving of flags with arms pointed 
in the indicated direction (Fig.  3B, blue and red, respectively). In 
contrast, “stand still” is exactly as the name suggests, with arms re-
laxed at the sides of the dancer (Fig. 3B, gray). The (nonzero) hop-
ping amplitudes are represented as

The above redefinitions result in the following rules for multiply-
ing the probability amplitudes with the hopping amplitudes

With this “human representation” of the wave function and “ef-
fective Hamiltonian” , the real-valued TDSE is readily implement-
ed as a dance, described as follows. The dance floor (Fig. 3A) is a 
finite square grid, where the squares contain blue and red lines. Each 
square represents a lattice site r. The blue/red lines within that 
square represent the amplitudes r′r = same/opposite of hopping to 
neighboring sites r′ (Fig. 3A, zoom-in). For each site that the elec-
tron can occupy, a dancer is placed in the corresponding square. 
Given this setup, the dance is performed in rounds, where each 
round has the steps below (Fig. 3D):

(Command) The person designated as the “commander” is danc-
ing up or down. The commander tells each neighbor to dance in the 
same or opposite way, according to the line in the commander’s 
square that points to this neighbor (Fig.  3D, circled lines). The 
neighbors start dancing as commanded.

(Command-to-Match transition) The commander stands still.
(Match) Within the neighbors of the commander, each person 

scans across the others, looking for a “match.” As demonstrated in 
Fig. 3C, the person at r matches with the person at r′ if the dance 
move of the former, times r′r, equals the dance move of the latter, 
where r′r is given by the line in square r that points to square r′.

(Match-to-Command transition) All people with a match stop 
dancing. If there is a person without a match, then this person con-
tinues dancing and becomes the commander; return to the Com-
mand step. If everyone has a match, the dance ends.

In a round (equivalent to an iteration of the algorithm), the site 
and dance move (up or down) of the commander denote the site and 
phase of the initially localized excitation, respectively (see steps 1 
and 4 of the algorithm). The Command step (equivalent to step 2 of 
the algorithm) represents the spreading of the wave function to 
neighboring sites. The probability amplitudes at these sites interfere 
during the Match step (equivalent to step 3 of the algorithm) and 
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Match-to-Command transition (equivalent to step 4 of the algo-
rithm). Rather than having to memorize the values of r′r for Com-
mand and Match, the dancers simply consult the blue and red lines 
in their respective squares.

As a science outreach event, we taught the dance to students at 
Orange Glen High School in Escondido, California (see Materials 
and Methods). Overall, the students mastered the dance steps 
(Fig. 4A) in under 1 hour. The students (plus some of us) then per-
formed the dance for various initial conditions and lattice geome-
tries (see Materials and Methods). To engage more students, some 
performances began with two people dancing (as commander) on 
the same dance floor; two concurrent dances ensued independently 
(see, for example, Fig. 4B and movie S5) for all but one dance round 
(see below). A designated leader (one of us) helped students transi-
tion between Command and Match (see Materials and Methods), 
similar to how the “caller” in contra dancing reminds the dancers of 
which figure to perform next. The performances display key dynam-
ical features of topological insulators, namely, those generated by 
the algorithm on which the choreography is based. When the initial 
dancers are at an edge, the dancing propagates unidirectionally 
along this edge: clockwise on the outer edge of a square-shaped lat-
tice (Fig. 4B and movie S5) and counterclockwise on the inner edge 
of a lattice with Corbino geometry (Fig. 4D and movie S7). For the 
former lattice, we introduced site defects by removing people at the 
edge of the dance floor. Still, the lattice sustains an edge-confined 
and clockwise-oriented “dance wave,” which maneuvers around the 
vacancies (Fig. 4C and movie S6) and even persists through the in-
terference of two concurrent dances (movie S6). The dance is also 

robust to some forms of human error (section S6). As expected 
(Fig. 2L), the dance only lasts one round when an initial dancer is in 
the bulk (Fig. 4E and movie S8).

DISCUSSION
In summary, we have choreographed a dance in which a group 
of people behave as a topological insulator. The choreography in-
volves developing an algorithm for approximate wave function prop-
agation and mapping the wave function first to the real numbers and 
then to human movements. The resulting dance, which operates as a 
numerical integrator of the TDSE, exhibits the salient dynamics of 
topological insulators. In principle, the dance dynamics can be im-
plemented using any system that can carry out computation. This 
work provides a blueprint for creating a classical simulator of topo-
logical insulators. Achieving this task for additional Hamiltonians 
(section S7) would mark an intriguing and unique frontier at the in-
terface of wave physics, science education, and dance. Overall, we 
have contributed an advancement that is both scientific and artistic, 
revealing a class of systems that support topological physics while 
inspiring content that can be expressed through dance.

MATERIALS AND METHODS
Calculating the dynamics generated by H
At time t = 0, the system is excited (i.e., initialized) at site rI, and the 
wave function is given by

∣ψ(0)⟩ =∣ rI⟩ (12)

Fig. 3. Mechanics of the dance. (A) Dance floor. As shown in the zoom-in of the unit cell, the squares represent the lattice sites, and the colored lines represent the matrix 
elements of  (Eq. 8), the “effective Hamiltonian” that generates the dance dynamics. (B) Dance moves. (C) Example of what a “match” is and is not. (D) Illustration of the 
dance steps for one round of the dance.

D
ow

nloaded from
 https://w

w
w

.science.org at U
niversity of C

alifornia San D
iego on Septem

ber 10, 2024



Du et al., Sci. Adv. 10, eadh7810 (2024)     28 August 2024

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

6 of 8

To calculate the wave function at later times, we first move to the 
eigenbasis

where ∣α〉 is the eigenstate of H with energy Eα. We then calculate 
the wave function at time t as

Changing back to the position basis,
∣ψ(0)⟩ =

�

α

cα(0) ∣α⟩ (13)

∣ψ(t)⟩ =
�

α

cα(0)e
−iEαt∕ℏ ∣α⟩ (14)

∣ψ(t)⟩ =
�

r

c
r(t) ∣r⟩ (15)

Fig. 4. Dynamics of a dance-based human topological insulator. (A) Snapshots from one round of the dance. (B to E) Snapshots of the dance where the initial (round 1) 
dancers (commanders) are (B) on the lattice edge, (C) on the edge of a lattice with site defects, (D) on the inner edge of a lattice with a hole in the middle (i.e., Corbino 
geometry), and (E) in the lattice bulk. For dances where the initial dancers are on the edge, the green arrow indicates the chirality with which the dancing propagates. White 
dashed boxes indicate sites without a dancer. In (A) to (E), white arrows indicate commanders. Notice how the white arrows evolve according to the chirality of the corre-
sponding green arrow. In (A), the white circles indicate neighbors (NN and NNN) of the commander who are dancing up or down.
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we obtain the site probabilities |cr(t)|2. Fig. 1 (B to E) and movies S1 
to S4 plot the site probabilities as a function of time using a time step 
of 0.1 ℏ/V.

Science outreach: Topological dance
In this section, we describe the science outreach event at Orange 
Glen High School on 27 April 2022, in which we taught the dance to 
its students. A dance lesson was held during each of three physics 
classes in lieu of the normal class activities. In the lesson, students 
learned, practiced, and performed the dance. The lesson took most 
of the class period, which was 100 min long. Since class sizes were 
around 20 or less, we (the school teachers and dance instructors) 
joined the students in the dance performances. We recommend that 
the dance be carried out with at least 25 people, so that the human 
lattice has a well-defined bulk (i.e., people who will never dance up 
or down if the initial dancers are at the edge).

Before the lesson, we set up (fig. S1A) a big dance floor (6 by 6 
square grid; figs. S1B and S2A) and several small dance floors (2 by 
2 square grid; figs. S1C and S2C). The dance floors had grid lines 
made of beige masking tape (1″ thick) and squares measuring ap-
proximately 1 m by 1 m (fig. S2). Pieces of blue and red painters tape 
(1″ thick and 4 to 10″ long) were placed in each square according to 
the structure of “effective Hamiltonian”  (fig.  S2; compare to 
Fig. 3A). In the big dance floor, the squares were enumerated from 1 
to 36 (figs. S1B and S2B) to assist in the execution of the dance per-
formances (see below).

Following a brief introduction to topological insulators and the 
lesson, the students were divided into groups of four. Each group 
moved to a practice dance floor, where one of us taught them the 
mechanics of the dance. The students first learned the dance moves. 
Figure S3 shows what the dance moves look like in real life (see car-
toon version in Fig. 3B). To make the moves more distinguishable, 
dancers are encouraged to cover their flags with their hands when 
doing stand still (fig. S3B) and crouch when doing down (fig. S3D). 
The students then learned the Command step. After each student 
had a chance to practice being commander, they learned the Match 
step. Last, the students practiced both steps together (including the 
transitions between the steps) until mastery was achieved. Most stu-
dents had mastered the dance steps after 30 to 45 min.

Next, the students moved to the main dance floor to rehearse and 
perform the dance for two to three sets of initial conditions (i.e., 
who the commanders are in the first round of the dance) and ar-
rangements of students (e.g., square-shaped lattice, Corbino ge-
ometry). Accompanied by music, each performance proceeded as 
follows. We first called out the number(s) of the student(s) who 
would serve as the commanders in the first round of the dance. To 
begin the dance, we blew a whistle and announced “Command,” sig-
naling for the assigned commanders to carry out Command. Once 
all neighbors of the commander(s) had begun dancing, we blew a 
whistle and announced “Match,” initiating the transition from Com-
mand to Match. After 15 to 20 s, which was enough for students to 
carry out Match, we blew a whistle and announced “Command” to 
switch to Command of the next round. This cycle was repeated for 
each round of the dance.

We note that the whistling simply serves to help the dancers 
switch between Command and Match and is not a necessary ele-
ment of the dance. If there were more time allotted for the outreach 
event, then we could have taught the students to transition between 
the phases on their own.
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Supplementary Text
S1 A useful property of the current operator

Consider the operator Jr→r′ (see main text for definition) representing the current from r to r′.

With respect to wavefunction |ψ(t)⟩ =
∑

r cr(t)|r⟩, the expectation value of this current is

⟨Jr→r′(t)⟩ =
2

ℏ
Im [c∗r′(t)Hr′rcr(t)] . (S1)

We use this property later in the supplementary text.

S2 Cases when there are multiple sites rreceiver

In the numerical TDSE (see main text), we assume that there is at most one neighbor (NN or

NNN) rreceiver of rl that does not transfer current to another neighbor of rl. The assumption is

true for the lattice geometries (e.g., square shaped, Corbino) employed in our simulations and

dances. In this section, we discuss cases featuring multiple neighbors rreceiver.

For a given rl, there are multiple sites rreceiver when the neighbors of rl are a union of non-

neighboring sets of sites (Fig. S4). Here, we denote sets S1, S2, . . . of sites as non-neighboring

if none of r(1), r(2), . . . are neighbors for any r(1) ∈ S1, r
(2) ∈ S2, . . . . For a given lattice

geometry, the presence of multiple sites rreceiver can occur if a site and its neighbors form an

arrangement of Fig. S4.

To accommodate the case of multiple sites rreceiver in the numerical TDSE, one would need

to change how the wavefunction localizes in Step 4 (see main text). One possible extension is

to have the wavefunction be the normalized superposition (compare to Eq. 5)

|ψ(tl+1)⟩ ∝
∑
rreceiver

sgn [crreceiver(tl + δt)] |rreceiver⟩. (S2)



Fig. S1. Sketch of the dance floors. (A to C) Sketch of (A) the full setup of 1 big dance floor 
and 9 small dance floors, (B) the big dance floor, (C) a small dance floor. The arrows indicate 
the orientation of the dance floors in the full setup (A). Note that the lines are not drawn to scale; 
see Materials and Methods for the actual dimensions and Fig. S2 for the actual dance floors.



Fig. S2. Pictures of the dance floors. (A and B) Picture (A) and zoom-in (B) of the big dance
floor. (C) Picture of a small dance floor.



Fig. S3. Pictures of the dance moves. (A) Up. (B) Stand still. (C) Down (regular version, i.e.,
while standing). (D) Down while crouching.



The other steps would then be carried out in their original form. However, it is not clear how

well the approximate dynamics would capture the exact dynamics.

Complications may also arise when mapping the wavefunction to real numbers, for the

purpose of designing a dance. For example, a site that neighbors multiple excited sites (i.e.,

which have nonzero probability amplitude) can have a larger or smaller probability amplitude

than a site that neighbors a single excited site. Thus, the relative magnitudes (and not just the

signs) of the amplitudes may matter. This would require a modification to the function f (Eq.

7), which maps the complex amplitudes to real ones.

We defer to future studies a more detailed exploration of having multiple sites rreceiver.

S3 Nonunitary time evolution operator and non-Hermitian
Hamiltonian for numerical TDSE

In this section, we write down a time evolution operator corresponding to the numerical TDSE.

We show that the corresponding dynamics is nonunitary. We then identify a corresponding non-

Hermitian, time-periodic Hamiltonian that generates the dynamics. Thus, we should be able to

study the system by applying Floquet theory, a calculation that we leave to future work.

S3.1 Nonunitary time evolution operator

Define t0 as the initial time, tl = l∆t as the time at the lth time step (iteration of the algorithm),

and ∆t as the time step size. Introduce the time evolution operator U(t, t0), which determines

the dynamics according to

|ψ(t)⟩ = U(t, t0)|ψ(t0)⟩. (S3)

For the numerical TDSE, we can write

U(t, t0) = U ((t− t0) mod ∆t) [U(∆t)]⌊(t−t0)/∆t⌋ , (S4)



Fig. S4. Site arrangements leading to multiple sites rreceiver. Arrangements of sites surround-
ing rl where the neighbors of rl are a union of non-neighboring sets of sites, leading to multiple
sites rreceiver. The arrangements are listed in increasing order of the number of neighbors sur-
rounding rl.



where ⌊·⌋ is the floor function. The operator

U(t) =


1, 0 ≤ t < δt,

U2, δt ≤ t < ∆t,

U3−4U2, t = ∆t,

(S5)

determines the evolution within a single time step, t ∈ [0,∆t]. Step 2 of the algorithm is carried

out by

U2 = 1− iδt

ℏ
H. (S6)

Steps 3-4 are carried out by the operator U3−4, which acts on a state |ϕ⟩ according to

U3−4|ϕ⟩ = sgn (crreceiver) |rreceiver⟩, (S7)

where rreceiver and crreceiverare determined by applying these two steps to |ϕ⟩. If no site is rreceiver,

then U3−4 = U−1
2 (note: by Eq. S6, U2 is invertible due to the Hermiticity of H), which reverts

the state back to what it was in the most recent instance of Step 1 and (see main text) can be viewed 

as having largely the same effect (i.e., halting of propagation) as the termination of the algorithm. 

We note that the action of U3−4 is well defined only when the opeartor acts on states generated by 

Step 2 from a localized excitation, i.e., |ϕ⟩ ∝ U2|r⟩ for some site r; defining how U3−4 transforms 

superpositions of such states could require, for example, extending Steps 3 and 4 to handle 

delocalized initial excitations (see Step 1 in main text) and multiple rreceiver sites; hence U3−4 is not a 

linear operator.

It is straightforward to show that U(t, t0) (Eq. S4) produces nonunitary time evolution. Using 

the Hermiticity of H (Eq. 1), we find that U2U2
† = 1 + δt2H2/ℏ2 ̸= 1, i.e., U2 is nonunitary. Given the 

fact that there exist multiple |ϕ⟩ which yield the same |rreceiver⟩, we conclude that U3−4 does not have 

a well-defined inverse, implying that U3−4 is nonunitary. From the nonunitarity of U2 and U3−4, as 

well as Eqs. S4-S5, it can be readily seen that U(t, t0) is nonunitary for general time t.



S3.2 Non-Hermitian, time-periodic Hamiltonian

By inspection of Eqs. S4-S5, we can write the time evolution operator (Eq. S4) for the numeri-

cal TDSE as a Dyson series (46) or a positive-time ordered exponential (47),

U(t, t0) = 1 +
∞∑
k=1

(
−i
ℏ

)k ∫ t

t0

dt1

∫ t1

t0

dt2 · · ·
∫ tk−1

t0

dtkH(t1)H(t2) · · ·H(tk)

≡ exp+

[
− i

ℏ

∫ t

t0

dτ H(τ)

]
,

where

H(t) = iℏδ ([(t− t0) mod ∆t]− δt) lnU2 + iℏδ ((t− t0) mod ∆t) lnU3−4

is the corresponding Hamiltonian. Note that H(t) is periodic in time with period ∆t. Further-

more, by the nonunitarity of U2 and U3−4, we find that H(t) is also non-Hermitian for general

t.

S4 Connection between the numerical TDSE and the Chern
number

Consider the currents in Step 3 of the numerical TDSE, the algorithm presented in the main text,

when a bulk site is excited (Fig. 2C). Here, we show that the Chern number of the underlying

Hamiltonian emerges naturally when calculating the currents involved in the dance.

First, consider a more general form (39) (see text above their Eq. 5.1) of our Hamiltonian

(Eq. 1):

H =
∑
m,n

[(
Va|m+ 1, n⟩⟨m,n|+ Vbe

iϕm|m,n+ 1⟩⟨m,n|

+Vce
iϕ(m+1/2)|m+ 1, n+ 1⟩⟨m,n|

+V ′
c e

iϕ(m−1/2)|m− 1, n+ 1⟩⟨m,n|
)
+ H.c.

]
, (S8)



where ϕ = π, Va > 0, and Vb, Vc, V ′
c ∈ R. The (magnetic) unit cell of the system is shown in

Fig. S5.

unit cell

Fig. S5. Unit cell of generalized Hamiltonian. Unit cell of system described by Hamiltonian
S8, consisting of two sites r and r′.

Now turn to Algorithm 1. Suppose the lth iteration begins with the excitation in a bulk site

rl (Fig. 2A of manuscript). Without loss of generality, let rl = (0, 0). In Step 3, the current

from a (nearest or next-nearest) neighbor r of (0, 0) to another neighbor r′ can be expressed as

(Eqs. 4 and S5 of manuscript)

⟨Jr→r′⟩ ≡ ⟨ψ(tl + δt)|Jr→r′ |ψ(tl + δt)⟩

=
2(δt)2

ℏ3
Im

(
H(0,0)r′Hr′rHr(0,0)

)
. (S9)

Figs. S6A and S6B show the couplings and currents, respectively, for (0, 0) and its neighbors.

Consider counterclockwise-oriented loops L = r(1) → r(2) → · · · → r(M) ⟲ (“⟲” means

go back to r(1)) passing at most once through neighbors r(1), . . . , r(M) of (0, 0), encircling (0, 0),

and enclosing an area equal to an integer multiple of unit cells. There are 2 such loops: (Fig.

S7A)

L1 = (1, 0) → (0, 1) → (−1, 0) → (0,−1) ⟲, (S10)



A B

Fig. S6. Couplings and associated currents. (A) Couplings (Hrr′) and (B) currents

(⟨Jr→r′⟩
[
2(δt)2

ℏ3

]−1

) for the site (0,0) and its neighbors.

a square enclosing 1 unit cell, and (Fig. S7B)

L2 = (1, 0) → (1, 1) → (0, 1) → (−1, 1)

→ (−1, 0) → (−1,−1) → (0,−1) → (1,−1) ⟲, (S11)

a square enclosing 2 unit cells.

Define

SL =
M∑
i=1

⟨Jr(i)→r(i+1)
⟩ (S12)

as the sum of the currents over loop L, where r(M+1) = r(1). Then (Fig. S7A)

SL1 = 2VaVb (Vc + V ′
c ) (S13)

and (Fig. S7B)

(S14)SL2 = 4VaVb (Vc + Vc
′) . 



A B

Fig. S7. Loops and associated currents. Loops (a) L1 and (b) L2. The arrows are labeled with

their respective currents (⟨Jr→r′⟩
[
2(δt)2

ℏ3

]−1

), as reproduced from Fig. S6B.

Since Va > 0, we thus have

sgn(SL1) = sgn(SL2) = ν, (S15)

where (39) (see their Eq. 5.22)

ν = sgn[Vb(Vc + V ′
c )] (S16)

is the Chern number, which clearly showcases the chirality (counterclockwise or clockwise) of

the edge dynamics (Fig. 2, I to L), given the correspondence between the bulk currents and the

edge dynamics (see main text).

S5 Real-valued TDSE: generating real-valued, discrete-time
dynamics of a topological insulator

The numerical TDSE, the algorithm in the main text, propagates the (complex-valued) wave-

function in discrete time for the model topological insulator with (complex-valued) Hamilto-



nian H (Eq. 1). In this section, we present the real-valued TDSE, the algorithm that results

from transforming the probability amplitudes according to cr → c′r = f(cr), where f is the

real-valued function defined in Eq. 7. So, this algorithm is written in terms of real-valued

quantities. The real-valued TDSE is described in Section S5.1 and derived from the numerical

TDSE in Section S5.2. We then show that the transformed algorithm has the same dynamics

(Section S5.3) and connections to the Chern number (Section S5.4) as the original algorithm.

These correspondences therefore exist between the numerical TDSE and the dance, which is an

implementation of the real-valued TDSE.

S5.1 Algorithm

Here are the steps of the real-valued TDSE (Fig. S8):

1. At the lth time step, t = tl, the wavefunction is at site rl:

|ψ(tl)⟩ = c′rl(tl)|rl⟩ = ±|rl⟩. (S17)

2. Evolve the wavefunction forward by time δt < tl+1 − tl:

|ψ(tl + δt)⟩ = c′rl(tl)

|rl⟩+
∑

r∈N (rl)

Hrrl |r⟩

 . (S18)

3. Determine the neighbor rno match (if any) of rl that does not match with another neighbor

of rl. We say that r matches with r′ if the probability amplitude of the former equals that

of the latter after multiplication by Hr′r, i.e., Hr′rc
′
r(tl + δt) = c′r′(tl + δt).

4. If there is a neighbor rno match of rl, reset the wavefunction as

|ψ(tl+1)⟩ = c′r(tl + δt)|rno match⟩ (S19)

and rl+1 = rno match; return to Step 2. If not, the algorithm terminates.



Fig. S8. Real-valued TDSE. Illustration of the algorithm referred to as “real-valued TDSE”.

S5.2 Derivation

In this section, we show that applying f (Eq. 7) to the probability amplitudes cr allows us to

write each step of the numerical TDSE as the same step of the real-valued TDSE.

The derivation goes as follows:

1. By definition of crl(tl) (Eq. 3),

f (crl(tl)) = ±1. (S20)

Comparing this equation to Eq. S17 for |ψ(tl)⟩ of the real-valued TDSE, we see that

applying f to all cr(tl) converts Step 1 of the numerical TDSE to the same step of the

real-valued TDSE.

2. Notice thatH (Eq. 1) has purely real NN couplings and purely imaginary NNN couplings,

i.e.,

Hrr′ ∈


R, σ(r) even, σ(r′) odd,
R, σ(r) odd, σ(r′) even,
iR, σ(r) even, σ(r′) even,
iR, σ(r) odd, σ(r′) odd.

(S21)



Using this equation, one can show that (see Eq. 4)

cr(tl +∆t) = f (crl(tl))
δt

ℏ
×


ReHrrl , σ(r) even, σ(rl) odd,
−iReHrrl , σ(r) odd, σ(rl) even,
ImHrrl , σ(r) even, σ(rl) even,
iImHrrl , σ(r) odd, σ(rl) odd

(S22)

for r ∈ N (rl). It follows that

f (cr(tl + δt)) = f (crl(tl))Hrrl , r ∈ N (rl), (S23)

where H is defined in Eq. 8. Moreover, since crl(tl + δt) = crl(tl) (Eq. 4), then

f (crl(tl + δt)) = f (crl(tl)) . (S24)

Comparing Eqs. S23-S24 to Eq. S18 for |ψ(tl)⟩ of the real-valued TDSE, we see that

applying f to all cr(tl + δt) converts Step 2 of the numerical TDSE to the same step of

the real-valued TDSE.

3. Using Eq. S1, property S21 of H , and definition 8 of H, we can write the current at time

tl + δt from neighbor r of rl to another neighbor r′ of rl as

⟨Jr→r′(t+ δt)⟩ = 2(δt)2

ℏ3
f (cr′(t+ δt))Hr′rf (cr(t+ δt)) . (S25)

Since |f (cr′(t+ δt))| = |Hr′r| = |f (cr(t+ δt))| = 1, the condition ⟨Jr→r′(t+ δt)⟩ > 0

is equivalent to ℏ3
2(δt)2

⟨Jr→r′(t+ δt)⟩ = 1, or

Hr′rf (cr(t+ δt)) = f (cr′(t+ δt)) . (S26)

With this result and renaming rreceiver as rno match, we can rewrite Step 3 of the numerical

TDSE as the same step of the real-valued TDSE.

4. Using

f (sgn [cr(tl + δt)]) = f (cr(tl + δt)) (S27)

for all r and renaming rreceiver as rno match,we can rewrite Step 4 of the numerical TDSE as

the same step of the real-valued TDSE.



S5.3 Proof: the real-valued TDSE has the same dynamics as the numeri-
cal TDSE

Here, we prove that the dynamics (i.e., the wavefunction at each tl) of the real-valued TDSE is

the same (up to a global phase) as the dynamics (Fig. 2, I to L) of the numerical TDSE.

Consider the lth time step (i.e., iteration) of the algorithms. Step 3 of the numerical TDSE

(see main text) can be rewritten as follows: determine the neighbor r(≡ rreceiver) of rl such

that ⟨Jr→r′(t + δt)⟩ > 0 for no site r′, where ⟨Jr→r′(t + δt)⟩ is computed from |ψ(tl + δt)⟩

(Eq. 4), the wavefunction resulting from Steps 1 and 2. Similarly, Step 3 of the real-valued

TDSE (Section S5.1) can be rephrased as follows: determine the neighbor r(≡ rmatch) of rl such

that Hrr′f (cr(tl + δt)) = f (cr′(tl + δt)), where the amplitudes cr correspond to |ψ(tl + δt)⟩

of the numerical TDSE. As noted in item 3 of Section S5.2, the criterion for determining r is

equivalent for both algorithms. Thus, reverting to the original wording of the algorithms, either

1. rreceiver of the numerical TDSE is equal to rmatch of the real-valued TDSE, or

2. neither rreceiver nor rmatch exist.

In Case 1, the wavefunction at the next time step, |ψ(tl+1)⟩, is the same (up to a global phase)

for both algorithms, as seen by comparing Step 4 of each algorithm. In Case 2, the algorithm

terminates for both numerical and real-valued TDSEs.

Therefore, the real-valued TDSE has the same dynamics as the numerical TDSE.

S5.4 Connections to the Chern number

In Section S4, we found that the Chern number naturally emerges from the currents computed 

in Step 3 of the numerical TDSE (see main text). This result, and the dynamical bulk-boundary 

correspondence of the numerical TDSE (see main text), imply that the chirality of the edge 

dynamics is given by the Chern number. However, since the real-valued TDSE (Section S5.1) is



obtained by applying a nontrivial transformation (f , Eq. 7) to the wavefunction in the numerical 

TDSE, one is led to ask: are the connections to the Chern number maintained in the real-valued 

TDSE? Below, we answer the question in the affirmative.

Consider Step 3 of both algorithms. As discussed in Section S5.3, the criterion for deter-

mining rmatchin the real-valued TDSE (Section S5.1) is equivalent to that for determining rreceiver 

in the numerical TDSE (see main text). Thus, Step 3 of the real-valued TDSE implicitly carries 

out the same calculation of currents as in the numerical TDSE. Because of this identification, 

the dynamic bulk-boundary correspondence (see main text) and the connection to the Chern 

number (Section S5.4) also hold for the real-valued TDSE. Hence, in this algorithm too, the 

chirality of the edge dynamics is given by the Chern number. Trivially, the Chern number also 

characterizes such edge chirality in the dance, which is an implementation of the real-valued 

TDSE.

S6 Robustness of the dance to human error

In this section, we briefly explore the robustness of the dance to human e rror. It is hard to say, 

in general, how such errors affect the dance. However, we can comment on specific types error. 

The discussion below highlights that the dance is robust to some forms of error but not all.

For example, suppose that someone incorrectly identifies a  match with one neighbor (but 

does everything correctly thereafter). If there actually is a match with another neighbor, then 

the error would not affect the dance. In contrast, if there actually is no match, then the incorrect 

match would cause the dance to end when it really should not.

We can also consider the opposite type of error, where someone misses a match (but does 

everything correctly thereafter). In this case, an extra commander would arise in the next round 

of the dance; this additional dancer need not affect the chirality nor the edge-localized nature 

of the dynamics, as demonstrated in the dance performances that begin with two commanders



(see Fig. 4, B-D, and accompanying Movies S5-S6).

S7 Extending the dance to other Hamiltonians

Throughout this work, we have choreographed a dance to approximate the TDSE for the Harper-

Hofstadter Hamiltonian with next-nearest-neighbor coupling (Eq. 1) (39). In this section, we

discuss the extension to other Hamiltonians.

S7.1 Criteria for applying the approach reported here

Using the approach reported here, we should be able to create a dance for a number of Hamil-

tonians where

1. each neighbor of a bulk site is coupled to at least one other neighbor,

2. the phases of the couplings (Hrr′) are either purely real and purely imaginary,

3. on-site energies are zero (i.e., Hrr = 0),

4. for general excitations, at most one site is determined to be rreceiver in Step 3 of the numer-

ical TDSE,

5. in the numerical TDSE, the amplitude at each site remains either real or imaginary at all

times (i.e., tl and tl + δt).

Conditions 1 and 4 are a prerequisite for the numerical TDSE (see main text) to work. As we 

discuss in Section S7.4, Condition 3 reflects  the fact that the numerical TDSE cannot 

handle on-site energies, though the algorithm could still work if the on-site energies are 

nonzero but sufficiently small compared to the couplings. Conditions 2 and 5 are a prerequisite 

for the real-valued TDSE (Section S5.1), and thus the dance, which is an implementation of the 

real-valued TDSE.



In the following sections, we explore the validity of the above conditions. We show that the

numerical TDSE can be applied to other Hamiltonians that meet the above conditions: Hamil-

tonian 1 without some of its NNN couplings (Section S7.2) and the Haldane model (48) with

inversion symmetry (Section S7.3). In Section S7.4, we explain why the numerical TDSE can-

not handle on-site energies (Condition 3), e.g., in the Haldane model (48) with broken inversion

symmetry. In Section S7.5, we consider an example, namely, Hamiltonian 1 with real-valued

next-next-nearest-neighbor (NNNN) couplings, for which the numerical TDSE is not suitable

due to violation of Condition 4. Finally, in Section S7.6, we discuss extending the various

algorithms reported here to cases where these conditions are not met.

S7.2 Example: applying the numerical TDSE to Hamiltonian 1 without
some NNN couplings

As an example, we show that the numerical TDSE (see main text) can be applied to Hamiltonian 

1 without some of its NNN couplings (Fig. S9A). Specifically, we consider the removal of the 

(m, n) ↔ (m + 1, n + 1) couplings (Eq. 1, third term in big parentheses).

Fig. S9, B to E, shows the exact dynamics for various initial conditions and lattice geome-

tries. The dynamics are qualitatively similar to those of the original Hamiltonian 1 (compare 

to Fig. 1, B to E, respectively). In particular, the dynamics feature the same key signatures of 

topological insulators (see main text).

Fig. S10 illustrates the numerical TDSE when applied to the modified Hamiltonian. For the 

most part, the algorithm qualitatively reproduces the exact dynamics (compare Fig. S10, I to 

L, and Fig. S9, B to E, respectively). However, a noteworthy discrepancy can be found in the 

edge dynamics in the presence of site defects: the excitation travels less in the numerical TDSE 

(Fig. S10J) than in the exact dynamics (Fig. S9C). In the algorithm, the excitation encounters 

a site defect that leads to two sites rreceiver (see the two arrows starting at the same site in Fig.



Fig. S9. Dynamics of Hamiltonian 1 without some NNN couplings. Same as Fig. 1 except
for Hamiltonian 1 without the (m,n) ↔ (m + 1, n + 1) couplings (Eq. 1, third term in big
parentheses). See Fig. 1 for more details.



S10J), a situation that the numerical TDSE is currently unable to handle (see main text); thus,

the algorithm is terminated. Note that this site defect is an arrangement of sites that does not

produce multiple rreceiver when applying the numerical TDSE to the original Hamiltonian 1

(Section S2).

For further insight, we can analyze the site currents, as we have done for the original Hamil-

tonian 1 (see main text). With some NNN couplings removed, we see that the bulk currents still

form a chiral structure (Fig. S10C), from which the edge dynamics can be predicted (Fig. S10,

G and H). Thus, the dynamical bulk-boundary correspondence (see main text) holds.

Interestingly, the bulk currents form a loop (Fig. S10C) from which the Chern number

naturally emerges. Following Section S4 (in particular, Eq. S8, Fig. S5, and Fig. S6A), we

let the horizontal, vertical, and (remaining) NNN hoppings have strength Va > 0, Vb, and V ′
c ,

respectively (Fig. S11A). Summing the currents around the loop in counterclockwise fashion

(Fig. S11B), and using Va > 0, we find that the sum is proportional to the Chern number

ν = sgn(VbV ′
c ) (Eq. S16 and (39)).

Since the removal of NNN couplings simply sets site amplitudes to zero, rather than change

them from real to imaginary (or vice versa), we can also apply the real-valued TDSE (Section

S5.1) to the modified Hamiltonian. Further note that the above results would be qualitatively

unchanged if we instead remove the (m,n) ↔ (m − 1, n + 1) NNN couplings (Eq. 1, fourth

term in big parentheses).

S7.3 Example: applying the numerical TDSE to the Haldane model with
inversion symmetry

As another example, we show that the numerical TDSE (see main text) can, with some success, 

simulate the dynamics of the Haldane model (48) where inversion symmetry is obeyed (see 

Section S7.4 for the case of broken inversion symmetry) but time-reversal symmetry is broken.



Fig. S10. Numerical TDSE applied to Hamiltonian 1 without some NNN couplings. Same 
as Fig. 2 except for Hamiltonian 1 without the (m, n) ↔ (m + 1, n + 1) couplings (Eq. 1, third 
term in big parentheses). See Fig. 2 for more details. (J) In contrast to the original Hamiltonian 
1 (Fig. 2J), the algorithm is ended before the excitation can make it back to the initial site, since 
multiple sites are determined to be rreceiver in the last iteration (see the two arrows starting at the 
same site).



A B

Fig. S11. Couplings and associated currents for the Hamiltonian without some NNN cou-
plings. (A) Couplings (Hrr′) for Hamiltonian without the (m,n) ↔ (m + 1, n + 1) couplings

and (B) associated currents (⟨Jr→r′⟩
[
2(δt)2

ℏ3

]−1

) for the site (0,0) and its neighbors.

Specifically, we consider the Hamiltonian that is pictorially represented in Fig. S12. All hop-

ping amplitudes are taken to have identical magnitude. NNN hopping amplitudes have phase

±π/2. Therefore, all hopping amplitudes are either purely real or purely imaginary. Also, it is

straightforward to show that, in the numerical TDSE, one sublattice will always have real site

amplitudes and the other imaginary. These two properties (see Section S7.1, Conditions 2 and

5) should allow converting the numerical TDSE to the real-valued TDSE (Section S5.1).

Fig. S13 shows the exact dynamics of a localized excitation on a finite lattice (see Materials 

and Methods). The top and bottom edges have a bearded configuration, while the left and right 

edges have an armchair configuration. When starting at one end of a bearded edge (Fig. S13A), 

the excitation primarily propagates down this edge. In contrast, when starting at the other end 

(Fig. S13B), the excitation spreads considerably down this edge (towards the first end) and the



Fig. S12. Hamiltonian of the Haldane model. Pictorial representation of the Hamiltonian (H)
of the Haldane model with inversion symmetry obeyed (i.e., without onsite energy) but time-
reversal symmetry violated (i.e., with NNN coupling). The gray lines indicate pairs of NNNs.
All hopping amplitues have magnitude V > 0 (t1 = t2 = V in (48)). NNN hopping amplitudes
have phase ±π/2 (ϕ = π/2 in (48)).



Fig. S13. Edge dynamics of the Haldane model. Dynamics of the Hamiltonian of Fig. S12 
on a finite l attice. The top and bottom edges have a  bearded configuration, while the left and 
right edges have an armchair configuration. The system is excited at a site (green box) located 
at the (A) left and (B) right end of the top edge. Site probabilities at different times are overlaid 
in chronological order (i.e., later times on top). The probability of the system being at each 
site is represented by a circle (area ∝ probability). The relative extent to which the excitation 
propagates in selected directions is qualitatively represented by green arrows.

nearest armchair edge, with a slight preference for the latter edge. An excitation in the bulk 

(Fig. S14) diffuses with little directional selectivity.

For the same lattice geometry and excitation conditions, we now (approximately) simulate 

the dynamics using the numerical TDSE (see main text and Fig. S15). For an excitation at one 

end of a bearded edge, the algorithm qualitatively reproduces the edge-localized and largely

unidirectional propagation across this edge (compare Figs. S16A and S13A). However, the 

numerical TDSE does not capture the multidirectional spreading of an excitation on the other 

end (compare Figs. S16B and S13B). Nevertheless, the slight preference for going down the

armchair edge versus the bearded edge (Fig. S13B) seems to appear in the algorithm-generated



Fig. S14. Bulk dynamics of the Haldane model. Dynamics of the Hamiltonian of Fig. S12 on 
a finite lattice. The system is excited at a bulk site (green box). See Fig. S13 for more details.

dynamics (Fig. S16B), i.e., as a short-lived trajectory in the preferred direction. Indeed, the 

absence of bulk propagation as predicted by the numerical TDSE (Fig. S15) is reflective of 

the low directional selectivity in the exact bulk dynamics (Fig. S14, A to D), as we have also 

observed for the Harper-Hofstader Hamiltonian of Eq. 1 (see main text). Overall, the numerical 

TDSE captures some, but not all, qualitative features of the exact dynamics.

As we have pointed out for the Harper-Hofstader Hamiltonian of Eq. 1 (see main text), there 

exists a dynamical bulk-boundary correspondence when the numerical TDSE is applied to the 

Haldane model of Fig. S12. This relation can be seen from the current fields generated in Step 

3 of the algorithm (see main text and Fig. S16, C, G, and K). Specifically, for an excitation 

at any bulk site (i.e., surrounded by all possible NNs and NNNs), the current field exhibits a 

chirality, which is the direction of flow about the excited site from a  3-neighbor cluster to the 

next (counterclockwise for the Hamiltonian of Fig. S12; see Fig. S15C). For an excitation at



Fig. S15. Numerical TDSE applied to Haldane model. Illustration of the numerical TDSE
algorithm when applied to the Haldane model (Fig. S12). The wavefunction starts an iteration
at (A to D) a bulk site, (E to H) an edge site where the wavefunction moves to a new site, and
(I to L) an edge site where the algorithm ends at the end of the iteration. See Fig. 2, A to H, for
more details.



Fig. S16. Discrete-time dynamics of the Haldane model. (A and B) Dynamics simulated by
the numerical TDSE, where the excitation conditions and lattice geometry are those of Fig. S13.
For each simulation, the wavefunction starts at the site indicated by the green box. A purple
arrow represents the movement of the wavefunction from rl (tail) at time step l to rl+1 (head) at
time step l + 1. The relative extent to which the excitation propagates in selected directions is
qualitatively represented by green arrows.



any edge site (i.e., not surrounded by all possible NNs and NNNs), the current field ( Fig. S16, 

G and K) is a subset of the bulk current field ( Fig. S16C). T hus, t he edge current field and 

resulting dynamics inherit the chirality of the bulk current field (orange arrows in F ig. S16, C, 

G, and K).

We also demonstrate a connection between the Chern number and the bulk current field. We 

do this for a more general Hamiltonian, where the NN hopping amplitudes have magnitude V1 

and the NNN hopping amplitudes have magnitude V2; the Hamiltonian that we have considered 

up til now (Fig. S12) corresponds to the special case of V1 = V2 ≡ V . For the general 

Hamiltonian, the Chern number is known to be ν = sgn(V2) (48). Following Section S4, 

we consider counterclockwise-oriented loops of neighboring sites, where the loop encloses a 

bulk site and an integer multiple of the unit cell. Fig. S17 shows representative loops and the 

corresponding subset of the bulk current field. I f we t ake t he sum of t he current over loops 

enclosing two unit cells (Fig. S17, A and B), we see that the sign of the sum is equal to ν, 

the Chern number. However, if we do the same calculation for a loop enclosing three unit 

cells (Fig. S17, C), we find that the sum v anishes. Therefore, we have related the bulk current 

field to the Chern number, though this connection is different from that found for the Harper-

Hofstadter Hamiltonian of Eq. S17, where all possible loops enclosing an interger multiple of 

the unit cell give rise to the Chern number. Given this discrepancy, we would need to explore 

the correspondence for additional models to understand it intuitively.

S7.4 Why the numerical TDSE cannot handle on-site energies

In this section, we first d iscuss w hy t he n umerical T DSE c annot d eal w ith o n-site energies, 

e.g., in the Haldane model (48) with broken inversion symmetry. Specifically, we show that 

on-site energies have no effect on the current and thus the determination of the site rreceiver in 

Step 3 of the algorithm. We then argue that the numerical TDSE can still be used if the on-site



Fig. S17. Loops and associated currents for the Haldane model. Loops (Section S4)
for the Haldane model of Fig. S12. The arrows are labeled with their respective currents

(⟨Jr→r′⟩
[
2(δt)2

ℏ3

]−1

).

energies are nonzero but sufficiently small compared to the couplings (off-diagonal terms of the

Hamiltonian).

If on-site energies are included, then the wavefunction after Step 2 becomes (compare to

Eq. 4)

|ψ(tl + δt)⟩ = crl(tl)

(1− iδt

ℏ
Hrlrl

)
|rl⟩ −

iδt

ℏ
∑

r∈N (rl)

Hrrl |r⟩

 . (S28)

From Eqs. S28 and S1, it is evident that the currents between neighbors of the initial site, rl,

are unaffected by on-site energies, namely, Hrlrl . Thus, the site determined to be rreceiver in

Step 3 also remains unchanged. The outcome would be the same even if, for example, Step 3

were modified such that rreceiver could (in principle) be rl itself. Indeed, the current from rl to a

neighbor r is

⟨Jrl→r(tl + δt)⟩ = 2

ℏ
Im

[(
− iδt

ℏ
Hrrl

)∗

Hrrl

(
1− iδt

ℏ
Hrlrl

)]
=

2(δt)2

ℏ3
|Hrrl |2, (S29)

which means that not only does rl transfer current to r (i.e., rreceiver ̸= rl), but also the magnitude 

of the current does not depend on Hrlrl .

Despite the numerical TDSE not being able to account for the effect of on-site energies, 

the alogorithm could still work if these terms are not too large. For example, consider the



Haldane model (48) with broken inversion symmetry, where this symmetry breaking is induced

by nonzero on-site energies. Below a certain magnitude, these terms do not affect the Chern

number (±1) (48) and thus the existence of edge states. In this regime, the numerical TDSE

can be used as is, at least for the prediction of edge states. However, once the on-site energies

become strong enough compared to the coupling (off-diagonal) terms, they must be considered

to accurately capture the Chern number going from nonzero to zero, and the current algorithm

cannot in its present form account for this topological phase transition.

S7.5 Example: numerical TDSE does not work for Hamiltonian 1 with
real NNNN couplings

We consider Hamiltonian 1 with NNNN couplings added. Since the Harper-Hofstadter Hamil-

tonian is on a square lattice, NNNN couplings correspond to hopping 2 sites horizontally,

(m, n) → (m ± 2, n), or vertically, (m, n) → (m, n ± 2). Specifically, w e c onsider arbi-

trary real-valued NNNN couplings. Carrying out the numerical TDSE for both bulk and edge 

excitations, we find that there is no current between each NNNN of the initial site and any other 

neighbor. Thus, all NNNNs are rreceiver sites (see main text, numerical TDSE, Step 3), which do 

not transfer current to any site. For general excitations, this situation corresponds to having mul-

tiple rreceiver sites and therefore cannot be handled by the present form of the numerical TDSE 

(see main text). In addition, the currents between non-NNNN neighbors of the initial site are 

the same as for the original Hamiltonian 1, suggesting that the numerical TDSE cannot properly 

account for real NNNN couplings. These findings result from an “accidental alignment” of the 

real- or imaginary-valuedness of each type of coupling (NN, NNN, and NNNN).

S7.6 Extending the approach reported here

With some modifications to the algorithms (i.e., numerical and real-valued TDSE), we expect 

that a dance can be designed for other Hamiltonians, which do not meet the criteria discussed



in Section S7.1.

Consider systems where Condition 1 is not satisfied, i.e., the neighbors of a bulk site are not

coupled to each other. Examples include the standard Harper-Hofstadter Hamiltonian (37, 38)

(i.e., with only nearest-neighbor coupling) and the 1-dimensional Su-Schrieffer-Heeger Hamil-

tonian (49). In these cases, one should modify Step 2 of the numerical TDSE such that the

next-nearest neighbors of rl are also excited. One possible change is to expand the wavefunc-

tion to O ((δt)2) (compare to Eq. 4):

|ψ(tl + δt)⟩ ≈
(
1− iδt

ℏ
H − (δt)2

ℏ2
H2

)
|ψ(tl)⟩. (S30)

Despite the wavefunction being slightly more complicated, the conversion of the numerical

TDSE to the real-valued TDSE, and therefore the dance, should remain straightforward.

If Condition 2 is not satisfied, one should still be able to design a dance, so long as the

Hamiltonian satisfies the following generalization of Condition 2: the phases of the couplings

(Hrr′) make up the ηth roots of unity for some even integer η. For the Hamiltonian studied here

(Eq. 1), η = 4, and the probability amplitudes (cr) take 2 = 4/2 possible values after applying

f (Eq. 7) to the wavefunction. For general η, one should devise a function, in analogy to f , that

maps the probability amplitudes to one of η/2 values.



Movie S1. Dynamics generated by H for the parameters used in Fig. 1B. The probability of 

the system being at each site is represented by a circle (area ∝ probability).

Movie S2. Dynamics generated by H for the parameters used in Fig. 1C. The probability 

of the system being at each site is represented by a circle (area ∝ probability).

Movie S3. Dynamics generated by H for the parameters used in Fig. 1D. The probability 

of the system being at each site is represented by a circle (area ∝ probability).

Movie S4. Dynamics generated by H for the parameters used in Fig. 1E. The probability 

of the system being at each site is represented by a circle (area ∝ probability).

Movie S5. The dance where the initial dancers are on the lattice edge. Snapshots are shown in 

Fig. 4B. The chiral edge propagation is indicated by the red arrows moving clockwise over time.

Movie S6. The dance where the initial dancers are on the edge of a lattice with site defects. 

Snapshots are shown in Fig. 4C. The chiral edge propagation is indicated by the red arrows 

moving clockwise over time.

Movie S7. The dance where the initial dancer is on the inner edge of a lattice with a hole 

in the middle (i.e., Corbino geometry). Snapshots are shown in Fig. 4D. The chiral edge prop-

agation is indicated by the red arrow moving counterclockwise over time.

Movie S8. The dance where the initial dancer is in the lattice bulk. Snapshots are shown in 

Fig. 4E. The lack of bulk propagation is indicated by the red arrow not moving over time.
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