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S U M M A R Y 

This paper examines the linear stability of sliding on faults embedded in a 2-D elastic medium 

that obey rate and state friction and have a finite length and/or are near a traction-free surface. 

Results are obtained using a numerical technique that allows for analysis of systems with 

geometrical complexity and heterogeneous material properties; however only systems with 

homogeneous frictional and material properties are examined. Some analytical results are also 

obtained for the special case of a fault that is parallel to a traction-free surface. For velocity- 

weakening faults with finite length, there is a critical fault length L 
∗ for unstable sliding that 

is analogous to the critical wavelength h 
∗ that is usually derived from infinite fault systems. 

Faults longer than L 
∗ are linearly unstable to perturbations of any length. On vertical strike- 

slip faults or faults in a full-space L 
∗ ≈ h 

∗/e, where e is Euler’s number. For dip-slip faults 

near a traction-free surface L 
∗ ≤ h 

∗/e and is a function of dip angle β, burial depth d of the 

fault’s up-dip edge and friction coefficient. In particular, L 
∗ is at least an order of magnitude 

smaller than h 
∗ on shallowly dipping ( β < 10 

◦) faults that intersect the traction-free surface. 

Additionally, L 
∗ ≈ h 

∗/e on dip-slip faults with burial depths d ≥ h 
∗. For sliding systems that 

can be treated as a thin layer, such as landslides, glaciers or ice streams, L 
∗ = h 

∗/ 2 . Finally, 

conditions are established for unstable sliding on infinitely-long, velocity-strengthening faults 

that are parallel to a traction-free surface. 

Key wor ds: F riction; Instability analysis; Earthquake dynamics. 

1  I N T RO D U C T I O N  

How does the geometry of fault systems affect the stability of fric- 

tional sliding? Most knowledge of frictional stability comes from 

analyses of spring-slider systems (e.g. Ruina 1983 ; Gu et al. 1984 ; 

Ranjith & Rice 1999 ) or faults embedded in an infinite elastic 

medium (e.g. Rice & Ruina 1983 ; Dieterich 1992 ; Rice et al. 2001 ; 

Uenishi & Rice 2003 ; Rubin & Ampuero 2005 ; Ampuero & Rubin 

2008 ). These two systems do not include important aspects of fault 

geometry such as proximity to a traction-free surf ace, f ault dip angle 

or finite fault length in many cases. This paper examines the linear 

stability of sliding on finite length faults that obey rate and state 

friction (RSF) and are embedded in a 2-D elastic continuum with 

homogeneous material properties. As in many previous studies, the 

focus here is on the quasi-static regime where inertia is neglected 

(e.g. Rice & Ruina 1983 ; Uenishi & Rice 2003 ; Viesca 2016a , b ; 

Aldam et al. 2017 ; Heimisson et al. 2019 ; Ozawa et al. 2024 ). 

The specific finite length geometries considered are: a fault in an 

infinite full-space; a fault parallel to a traction-free surface and a 

dip-slip fault or vertical strike-slip fault in a half-space. Including 

these features provides more accurate assessments of the sliding 

stability of natural fault systems. First, because all faults have a finite 

length and secondly, because many faults are near the surface of the 

earth or the seafloor. Additionally, landslides (Handwerger et al. 

2016 ), ice streams (Lipovsky & Dunham 2017 ) and glaciers (Zoet 

et al. 2020 ) also exhibit sliding behaviour that can be described by 

frictional processes. The results show that these basic geometrical 

effects cause significant departures from long-standing results on 

linear stability behaviour. 

For a fault in an elastic medium, the stability of sliding can be 

assessed by considering a balance between the rate at which elastic 

stress stored in the fault system can be unloaded, and the rate at 

which shear stress on the fault is reduced (i.e. fault weakening) in 

response to sliding (e.g. Scholz 2019 ). Unstable sliding initiates 

when the fault weakening rate is higher than the elastic unloading 

rate. For frictional sliding, the changes in shear stress on a fault are 

described by the RSF equations wherein the evolution of the friction 

coefficient μ on a surface is a function of the sliding rate v and an 

internal state variable θ

μ( v, θ ) = μ0 + a ln 

(
v 

v 0 

)
+ b ln 

(
v 0 θ

d c 

)
, (1) 

where μ0 is a reference friction coefficient for steady state sliding 

at the reference velocity v 0 , a and b are constitutive parameters, 

and d c is a critical slip distance that is related to the amount of slip 

needed to attain a new steady state after changes in sliding velocity 

(Dieterich 1979 ; Ruina 1983 ; Marone 1998 ). The reference values 

μ0 and v 0 are not arbitrary, but are determined from experimental 
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Stability of dip-slip and finite faults 827 

measurements of how the steady state friction coefficient of a given 

material depends on the sliding v elocity. Howev er, pairs of values 

( μ0 , v 0 ) can be chosen from among a set of such measurements. 

The evolution of the state variable is commonly described using the 

aging or slip laws: 

aging law: 
∂θ

∂t 
= 1 −

vθ

d c 
, slip law: 

∂θ

∂t 
= −

vθ

d c 
ln 

(
vθ

d c 

)
. 

(2) 

For velocity-weakening friction ( a − b < 0 ; or a/b < 1 ), fault 

weakening will occur due to a reduction in the friction coeffi- 

cient as sliding rate increases. On deformable faults, weakening 

can also occur due to a coupling between fault slip and changes in 

normal stress, which can lead to unstable behaviour for velocity- 

strengthening friction below some critical value of a/b. This effect 

has been shown to exist on bimaterial and poroelastic faults (Rice 

et al. 2001 ; Ranjith 2014 ; Heimisson et al. 2019 ), on faults with 

fault-v alve behaviour (Ozaw a et al. 2024 ), and on faults that lack 

geometric reflection symmetry across the sliding surface (Aldam 

et al. 2016 ). Lack of geometric reflection symmetry is a very gen- 

eral feature of fault systems. So too then is the possibility of unstable 

behaviour on velocity-strengthening faults. The results in this paper 

take a first step in establishing the range of parameters where this 

behaviour occurs on faults that are near a traction-free surface. 

Before proceeding, it will be helpful to differentiate between lin- 

ear and nonlinear methods of stability analysis, as well as establish 

some terminology related to frictional sliding stability. Studies of 

frictional sliding stability can be grouped according to the use of 

linear analysis methods (e.g. Rice & Ruina 1983 ; Ruina 1983 ; Rice 

et al. 2001 ; Heimisson et al. 2019 ; Ozawa et al. 2024 ) or nonlinear 

analysis methods (e.g. Gu et al. 1984 ; Dieterich 1992 ; Ranjith & 

Rice 1999 ; Uenishi & Rice 2003 ; Rubin & Ampuero 2005 ; Am- 

puero & Rubin 2008 ; Viesca 2016a ; Ray & Viesca 2017 ). In a linear 

analysis (the subject of this paper), boundary conditions are defined 

such that a spatially uniform steady state exists on the fault and 

the equations governing fault slip are simplified through lineariza- 

tion about this steady state. In addition, the initial conditions must 

be defined to reside within the neighbourhood of the steady state 

in order for the linearized governing equations to remain valid. A 

stability analysis of the linearized equations determines if a set of 

initial conditions, that includes small perturbations to the steady 

state sliding velocity, will grow or decay. If the fault system is lin- 

early stable then the sliding velocity will return to the steady state 

after it is perturbed. If the fault system is linearly unstable then the 

sliding velocity will grow exponentially until the linearized equa- 

tions are no longer valid, at which point the nonlinear governing 

equations must be considered to determine the subsequent evolu- 

tion. Throughout this paper the words ‘instability’ and ‘unstable’ 

are used according to this meaning. The word ‘perturbation’ is also 

used frequently and will al wa ys refer to a deviation from steady 

state. 

Nonlinear stability analysis concerns the full nonlinear governing 

equations. Various initial and boundary conditions can be consid- 

ered since there are no restrictions imposed as in a linear analysis. 

In a nonlinear anal ysis, ‘instability’ usuall y means that slip speeds 

would become infinitely large if they were not restricted by inertia 

(e.g. Rubin & Ampuero 2005 ; Ampuero & Rubin 2008 ). Because 

the results in this paper only concern behaviour in the linear regime, 

the nonlinear meaning of ‘instability’ is not used. 

Linear stability analysis of spring-slider systems leads to the 

classical concept of a critical patch length, that is interpreted as 

the minimum length of a slipping fault patch that is required for 

an unstable sliding event to develop (e.g. Dieterich ; Rice 1993 ; 

Scholz 1998 ). The critical patch length l c is obtained by equating 

the critical stiffness of an RSF spring-slider system to the stiffness 

of a crack embedded in an elastic medium, such that 

l c = 
ηG 

′ d c 

σ ( b − a) 
, (3) 

where G 
′ = G for antiplane sliding and G 

′ = G/ (1 − ν) for in- 

plane sliding, with G the shear modulus and ν the Poisson ratio. In 

eq. ( 3 ), η is a numerical pre-factor of order unity that depends on 

the assumed stress and strain conditions for computing the stiffness 

of the elastic crack (see table 1 in Dieterich 1992 ). 

Ho wever , the stiffness of a fault in an elastic continuum is a quan- 

tity that evolves through space and time as the fault slips (e.g. Rice 

& Ruina 1983 ; Horowitz & Ruina 1989 ), whereas eq. ( 3 ) is obtained 

by assuming the existence of a unique critical stiffness. Linear sta- 

bility analysis of infinitely long faults in elastic continua leads to 

a critical wavelength, rather than a critical stiffness or patch size. 

The critical wavelength h 
∗ can be found analytically for the special 

case of an infinitely long fault with constant frictional properties 

and ef fecti ve normal stress σ , embedded in an infinite, 2-D elastic 

full-space with homogeneous properties. Allowing the fault to be 

infinitely long simplifies the mathematical analysis sufficiently to 

obtain an equation for h 
∗ (Rice & Ruina 1983 ; Rice et al. 2001 ): 

h 
∗
F = 

πG 
′ d c 

σ ( b − a) 
. (4) 

Here the symbol h 
∗
F is used to denote the special value of h 

∗ for 

a homogeneous fault in a full-space. Because the derivation of h 
∗
F 

involves an infinitely long fault, its proper definition is the criti- 

cal wavelength of an infinitely long, sinusoidal perturbation to the 

steady state. 

The fact that the critical wavelength h 
∗
F is identical to the critical 

patch length l c (to within the numerical constant η) naturally leads 

to the conclusion that unstable sliding on velocity-weakening, elas- 

tically deformable faults can only occur when perturbed slipping 

patches are longer than l c . Ho wever , this is not true for sliding be- 

haviour in the linear regime, because any perturbation that contains 

wavelengths larger than h 
∗
F will grow exponentially until the lin- 

earized equations are no longer v alid. Importantl y, since an initial 

perturbation need not have a sinusoidal form, this does not im- 

pose any conditions on the spatial extent of the perturbation (see 

Section 2.1.1 ). 

When faults are not infinitely long or when a spring-slider model 

cannot capture important features of a fault system, then it becomes 

difficult to apply analytical methods of linear stability analysis. 

In this paper these difficulties are overcome by using a numerical 

method for conducting linear stability analysis of 2-D finite length 

fault systems. The method can be applied to any fault system for 

which stress change functions are available (defined in the next sec- 

tion), and can accommodate features such as heterogeneous material 

properties or multiple faults. 

The results of this paper show that the linear stability behaviour 

of finite length faults is properly characterized by a critical fault 

length L 
∗, the value of which is related to the critical wavelength of 

a corresponding infinitely long fault. Once the fault length is larger 

than L 
∗, then a perturbation of any size will grow exponentially 

within the linear regime. Throughout this paper, values of h 
∗ are 

referred to as ‘critical wavelengths’ and the symbol L 
∗ is used to de- 

note a ‘critical fault length’. Subscripts are used for both h 
∗ and L 

∗

to differentiate between specific geometries. On vertical strike-slip 
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828 R.M. Skarbek 

f aults or f aults in a full-space, L 
∗
F ≈ h 

∗
F /e where e is Euler’s num- 

ber. For dip-slip faults near a traction-free surface, L 
∗
D ≤ h 

∗
F /e and 

is a function of dip angle, burial depth of the fault’s up-dip edge and 

friction coef ficient. Howe ver, L 
∗
D ≈ h 

∗
F /e for dip-slip faults where 

the up-dip edge of the fault is buried at a depth greater than or equal 

to h 
∗
F . For sliding systems that can be treated as a thin layer, such as 

landslides, glaciers or ice streams, L 
∗
L = h 

∗
L / 2 , where h 

∗
L is defined 

in Section 3.1 . Conditions are also established for linear instability 

under velocity-strengthening friction on infinitely long faults that 

are parallel to a traction-free surface. Finally, since the focus of this 

paper is on linear stability, behaviour in the nonlinear regime (e.g. 

rupture localization or propagation) is not considered or examined; 

however simulations of the nonlinear governing equations are used 

to confirm some results of the linear analysis in Section 3.2 . 

2  M E T H O D S  

2.1 Linear stability analysis 

Consider a fault of length L that obeys eq. ( 1 ) and either of eqs ( 2 ), 

and denote the position along the fault by ξ . Assume also that the 

fault is embedded in a 2-D homogeneous elastic medium with shear 

modulus G and Poisson ratio ν. A linear stability analysis of the 

fault’s sliding motion can be conducted according to the following 

steps. (1) Write the system of nonlinear equations governing the 

evolution of sliding velocity v( ξ, t) and state variable θ ( ξ, t) along 

the fault. (2) Determine a uniform steady state of the system such 

that v( ξ, t) = v 0 and θ ( ξ, t) = θ0 . Defining such a steady state re- 

quires that constant slip at rate v 0 be imposed on extensions of the 

fault along the ξ -axis (i.e. backslip loading). (3) Obtain a linearized 

system of equations by computing the Jacobian matrix J of the 

nonlinear system and e v aluating it at the uniform steady state so 

that J 0 = J ( v 0 , θ0 ) . (4) Determine the stability of the linear system 

by examining the eigenvalues of J 0 . If any eigenvalue has a positive 

real part then the system is unstable. 

Step 1. For quasi-static sliding, the velocity of the fault is gov- 

erned by a balance between frictional resistance τF = μσ and the 

shear stresses resolved upon the fault τ = τ0 + τE , where τE is the 

change in shear stress due to gradients in slip along the fault, and 

τ0 is the shear stress on the fault in the absence of any slip. As with 

the shear stress, the normal stress on the fault is σ = σ0 + σE . The 

stress balance changes in time as μ̇σ = τ̇E − μσ̇E , and by making 

use of eq. ( 1 ), the sliding velocity of the fault can be written as 

v̇ ( ξ, t) = F ( v, θ ) = 
v 

a 

[
τ̇E − μσ̇E 

σ
−

b ̇θ

θ

]
. (5) 

The evolution of the state variable can simply be written as 

θ̇ ( ξ, t) = H ( v, θ ) , since only the aging and slip laws are consid- 

ered here and both state variable laws have the same linearization 

(e.g. Ruina 1983 ). The nonlinear governing equations for ̇v ( ξ, t) and 

θ̇ ( ξ, t) are now represented by the functions F ( v, θ ) and H ( v, θ ) . 

When sliding is quasi-static, the changes in shear and nor- 

mal stress are functions of the slip distribution δ( ξ, t) , so that 

τE = T ( ξ, δ) and σE = N ( ξ, δ) . The functions T ( ξ, δ) and N ( ξ, δ) 

are the stress change functions mentioned in the Introduction. These 

functions must be determined by solving the appropriate 2-D elas- 

ticity problem for a given fault geometry (see Appendix C for 

example) and contain all necessary information about the elastic 

response of the system. These functions also have the property that 

τ̇E = T ( ξ, v) and σ̇E = N ( ξ, v) (e.g. Viesca 2016a , b ). Both T ( ξ, δ) 

and N ( ξ, δ) are equal to zero if there is no slip gradient. 

Step 2. The uniform steady state of the system satisfies the 

conditions F ( v 0 , θ0 ) = 0 and H ( v 0 , θ0 ) = 0 . Assume that the en- 

tire fault is sliding at steady state with velocity v 0 , such that 

T ( ξ, v 0 ) = N ( ξ, v 0 ) = 0 . This requires that the fault is subject to 

boundary conditions v(0 , t) = v( L , t) = v 0 , and for nonzero v 0 im- 

plies that constant sliding at v 0 pre v ails on extensions of the fault 

along the ξ -axis (see dotted, red lines in Fig. 1 ). For both the aging 

and slip laws, H ( v 0 , θ0 ) = 0 when θ0 = d c /v 0 . These conditions 

satisfy F ( v 0 , θ0 ) = 0 , so the uniform steady state of the nonlinear 

system is ( v 0 , d c /v 0 ) . 

Step 3. To linearize the equations about the uniform steady state, 

first define 

w ( ξ, t) = 

[ 
v( ξ, t) − v 0 

θ ( ξ, t) − θ0 

] 

, (6) 

where w ( ξ, t) is a small perturbation away from ( v 0 , θ0 ) . Now the 

linearized equations can be written as ẇ = J 0 w . The Jacobian ma- 

trix J 0 is most conveniently expressed in terms of the dimensionless 

variables: ˆ t = ( v 0 /d c ) t , ˆ v = v/v o and ˆ θ = ( v 0 /d c ) θ , such that the 

uniform steady state becomes ( ̂ v 0 , ̂  θ0 ) = (1 , 1) . Then J 0 can be 

written as 

J 0 = 

⎡ 

⎣ 

∂ ̂ F 0 
∂ ̂ v 

∂ ̂ F 0 
∂ ̂ θ

∂ ̂  H 0 
∂ ̂ v 

∂ ̂  H 0 
∂ ̂ θ

⎤ 

⎦ = 

[ (
b 
a 

) [ 
1 
b ( ̂

 T ̂ v − μ0 ̂
 N ̂ v ) + 1 

] (
b 
a 

)
I 

−I −I 

] 

, (7) 

where ˆ F 0 = ˆ F ( ̂ v 0 , ̂  θ0 ) , ˆ H 0 = ˆ H ( ̂ v 0 , ̂  θ0 ) , I is the identity matrix and 
ˆ T ̂ v and ˆ N ̂ v denote deri v ati ves with respect to ˆ v . Some additional 

mathematical steps are provided in Appendix A . The dimensions of 

J 0 will depend on whether the Jacobian is treated anal yticall y or 

numerically. 

Step 4. The eigenvalues and eigenvectors of J 0 determine so- 

lutions to the linearized system ( ̇w = J 0 w ) of the form w ( ξ, t) ∝ 

w ( kξ ) e p t . The eigenvectors w ( kξ ) represent small spatial perturba- 

tions of wavenumber k to the uniform steady state. The eigenvalues 

p are the corresponding growth rates of those perturbations. If all 

of the eigenvalues of J 0 have a ne gativ e real part then the system 

is linearly stable. If any eigenvalue has a positive real part then the 

system is linearly unstable (e.g. Strogatz 2018 ). 

2.1.1 Analytical stability analysis 

For analytical results, I → 1 in eq. ( 7 ) and J 0 can be treated as 

a 2 × 2 matrix. Then the eigenv alues are found b y solving the 

characteristic equation of J 0 , such that 

p 2 + 
[
1 − b 

a ( � + 1) 
]

p −
(

b 
a 

)
� = 0 , � = 

1 
b ( ̂

 T ̂ v − μ0 ̂
 N ̂ v ) . (8) 

The eigenvalues do not need to be explicitly determined in cases 

where T v and N v are purely real functions. Instead, the stability of the 

system can be determined from conditions on det ( J 0 ) = −( b/a) �

and Tr ( J 0 ) = ( b/a)( � + 1) − 1 , where det () and Tr() denote the 

determinant and trace of the matrix, respecti vel y. The system is 

unstable if either Tr ( J 0 ) > 0 , or det ( J 0 ) < 0 (e.g. Strogatz 2018 , 

fig. 5.2.8); ho wever , for all of the cases examined in this paper 

det ( J 0 ) > 0 . The trace instability condition can be written as 
(

b 

a 

) [
1 

b 
( ̂  T ̂ v − μ0 ̂

 N ̂ v ) + 1 

]
− 1 > 0 . (9) 

Eq. ( 9 ) can be used to obtain analytical stability results. For example, 

in a spring-slider system N v = 0 and T v = −K , where K is the 

spring stiffness. Then solving eq. ( 9 ) for K will yield the usual 

relation for the critical spring stiffness (see Appendix B1 ). 
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Stability of dip-slip and finite faults 829 

Figure 1. Diagrams of the fault system geometries used in this paper. In each panel a fault of length L is located by the solid red line; the dashed red lines are 

extensions along the ξ -axis. (A) A fault in an infinite full-space, where the x- and ξ -axes coincide. (B) A fault at a depth d, parallel to a traction-free surface; 

both infinite and finite length systems are considered. (C) A fault dipping at an angle β relative to a traction-free surface, with its up-dip edge at a depth d. In 

panels B and C, the traction-free upper surface is defined by y = 0 . 

Analytical results can be obtained for faults in a 2-D medium 

by specifying the functional form of the spatial perturbation w ( kξ ) . 

For infinitely long faults there are no restrictions on the values of 

k because the fault has no boundaries. Then the general solution to 

the linear equations is 

w ( ξ, t) = 

∫ ∞ 

−∞ 

A ( k ) exp ( pt + ik ξ ) dk , (10) 

where A ( k) is determined by a Fourier transform of the initial con- 

ditions w ( ξ, 0) (Pi v ato 2010 ). 

For a finite length fault with a uniform steady state velocity v 0 , 

the sliding velocity must remain v 0 at the boundaries and so w ( kξ ) 

must be equal to zero at the boundaries. If the fault is defined over 

ξ = [0 , L ] , the general solution to the linear equations that satisfies 

these boundary conditions is 

w ( ξ, t) = 

∑ 

n 

A n e 
p t sin ( nπξ/L ) , (11) 

where the constants A n are determined by Fourier series expansion 

of the initial conditions (Pi v ato 2010 ). The allowable wavenumbers 

are k = nπ/L (for n = 1 , 2 , ... ), analogous to the normal modes 

on a vibrating string. Thus, the possible values of k are discrete on 

a finite length fault and scaled by the fault length L , and this has 

important consequences for the stability behaviour. 

The general solutions for an initial perturbation given by eqs ( 10 ) 

and ( 11 ) also reveal why there is no condition on the spatial extent of 

a small perturbation for linearly unstable sliding. Since eqs ( 10 ) and 

( 11 ) both represent a superposition of mode numbers, instability 

will occur for any initial perturbation w ( ξ, 0) that contains wave- 

lengths that have a positive growth rate p. For example, consider 

an infinitely long, velocity-weakening fault such that the critical 

perturbation wavelength is given by eq. ( 4 ). Any set of initial con- 

ditions w ( ξ, 0) that contains wavelengths larger than h 
∗
F will have 

a positive growth rate and so be linearly unstable. Now consider a 

perturbation from steady sliding in the form of a finite delta func- 

tion, such that w ( ξ, 0) = ε at ξ = 0 , where ε is some small constant, 

and otherwise w ( ξ, 0) = 0 . This set of initial conditions is unstable 

because it contains all wavelengths, since its Fourier transform is 

a constant. Since the finite delta function has no width, this means 

that there is no minimum slip patch length required to generate a 

linear instability. The same type of argument applies to finite faults 

as well and is further illustrated in Sections 3.1 and 3.2 . 

2.1.2 Numerical stability analysis 

To conduct a linear stability analysis numerically, the fault can 

be discretized into n e elements of length dξ . Then J 0 becomes 

a 2 n e × 2 n e block matrix where in general the upper-left block 

∂ ̂  F 0 / ∂ ̂  v is dense and the other blocks are sparse diagonal matrices. 

In discrete form, the functions T ( ξ, v) and N ( ξ, v) become linear 

operators on the slip velocity. For example, T ( ξ, v) → 
∑ n e 

j= 1 T i j v j 
and T v → T i j , where T i j is an n e × n e matrix and v j is a vector of 

length n e . All numerical results in this paper were obtained using a 

piecewise constant discretization of the stress change functions by 

assuming that slip is constant over regularly spaced elements along 

the fault. 

The stability condition given by eq. ( 9 ) is only valid for 2 × 2 

matrices (e.g. Lu ́ıs 2021 ). The eigenvalues must be explicitly cal- 

culated for numerical analysis (e.g. Viesca 2016a , b ; Ray & Viesca 

2017 ; V iesca 2023 ). The eigen values and eigen vectors can be di- 

rectly computed using standard numerical routines; here the MAT- 

LAB functions eig and eigs are used. Numerically computing the 

eigenvalues will indicate if a fault system is stable or unstable for 

the specific set of RSF, elastic and geometrical parameters that de- 

fine the system. Determining the conditions (if any) where stability 

changes requires an iterative assessment of the stability for different 

parameter values. In this paper, critical fault lengths are determined 

using a bisection method to locate values of L where the stability 

changes (to within ±dξ/ 2 ) while other properties are held constant. 

2.2 Nonlinear simulations 

In Section 3.2 the results of a limited set of simulations of the full 

nonlinear governing equations are presented to confirm some of 

the linear stability results. In these simulations the fault is loaded 

such that the steady state slip velocity along the entire fault is equal 

to v 0 = 10 −9 m s −1 . These simulations use the aging law for state 

v ariable e volution and rather than eq. ( 1 ), use the regularized form of 

the rate and state friction equation (Rice & Ben-Zion 1996 ; Lapusta 

et al. 2000 ) 

μ( v, θ ) = a sinh −1 

[(
v 

2 v 0 

)
exp 

(
μ0 + b ln ( v 0 θ/d c ) 

a 

)]
. (12) 

In discrete form the stressing rate balance at the centre of each fault 

element is 

μ̇i σi + τ̇I = 

n e ∑ 

j= 1 

T i j ( v j − v 0 ) − μi 

n e ∑ 

j= 1 

N i j ( v j − v 0 ) , (13) 

where μ̇ is found from eq. ( 12 ) and τ̇I is the radiation damping 

approximation for the inertial stressing rate (Rice 1993 ). The gov- 

erning eq. ( 13 ) with eq. ( 12 ) and the aging law were solved along 

the entire length of the fault using a boundary element method im- 

plemented in MATLAB (see Data Availability statement for code 

availability). 
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830 R.M. Skarbek 

(a) (b)

Figure 2. (A) Critical faults lengths L ∗ normalized by h ∗L for the thin layer (cyan) and by h ∗F for strike-slip/full-space (magenta) systems. The dotted lines 

correspond to expressions as shown in the legend; the squares are numerically determined boundaries as described in Section 2.1.2 . Grid spacing for numerical 

calculations: dξ = L b / 80 for full-space and dξ = L bh / 80 for thin la yer. (B) Wa velengths of the highest unstable mode number as a function of the fault length 

for the thin layer system, for a/b = 0 . 5 . Both the wavelengths and the fault lengths are normalized by the critical wavelength h ∗L . The black line shows the 

analytical result given by eq. ( 18 ), the cyan squares show the numerically determined wavelengths. For all calculations L b = 1600 km; for thin layer calculations 

d = 0 . 01 L b . 

3  R E S U LT S  

Results are presented first for a finite length fault that is parallel to a 

traction-free surface, using a thin-layer approximation for the stress 

change functions. Analytical results are obtained for the thin-layer 

system, which provide insight into more complicated systems; re- 

sults from numerical stability analysis for this system are presented 

as well. Next results are obtained numerically and semi-analytically 

for vertical strike-slip faults, as well as faults in an infinite full- 

space. Finally, dip-slip faults of any orientation in a system with a 

traction-free surface are examined. 

3.1 Thin layer appr o ximation 

Consider a fault of length L that is parallel to a traction-free surface 

at a depth d (Fig. 1 B). In general, this system will have a non- 

zero N ( ξ, v) for in-plane sliding (see Section 3.3 ). Ho wever , when 

d � L b = d c G 
′ / ( bσ0 ) then N ( ξ, v) = 0 and the change in shear 

stress is (Viesca 2016a ) 

T ( ξ, v) = (dE 
′ ) 

∂ 2 v 

∂ξ 2 
, E 

′ = 

{ 
2 G 

1 −ν
, in-plane sliding . 

G, anti-plane sliding . 
(14) 

Note that eq. ( 14 ) is a special case of the stress change function 

for a dipping fault geometry illustrated in Fig. 1 (C), as described in 

Section 3.3 . The critical wavelength for an infinitely long fault in 

this system is (Viesca 2016b ) 

h 
∗
L = 2 π

[
dE 

′ d c 

σ0 ( b − a) 

]1 / 2 

= 
2 π L bh 

(1 − a/b) 1 / 2 
, (15) 

where L bh = 
√ 

dE ′ d c / ( bσ0 ) (see Appendix B3.1 ). 

Due to the simplicity of eq. ( 14 ), analytical results for the critical 

fault length and the wavelengths of unstable modes can be obtained 

for finite length faults in this system. By assuming a solution for 

v( ξ, t) of the form of eq. ( 11 ), the normalized deri v ati ve of the 

shear stress change function becomes ˆ T ̂ v /b = −( nπ L bh /L ) 2 (see 

Appendix B3.2 for details). Then via eq. ( 9 ) the instability condition 

for the fault length becomes 

L > 
nπ L bh 

(1 − a/b) 1 / 2 
= 

nh 
∗
L 

2 
. (16) 

Since the right hand side of eq. ( 16 ) is smallest at n = 1 , the critical 

fault length is 

L 
∗
L = 

h 
∗
L 

2 
. (17) 

Eq. ( 17 ) indicates that the fault becomes unstable when it is long 

enough that the wavelength λ of the first mode ( n = 1 ) of eq. ( 11 ) 

becomes equal to λ = 2 π/k = 2 L = h 
∗
L . 

The critical fault length L 
∗
L can also be numerically determined 

using the method described in Section 2.1.2 . In this case by choosing 

a value of a/b then computing the stability of the system for different 

values of L . Then the critical fault length coincides with the value 

of L where the stability changes. Fig. 2 (A) displays the results of 

this process for nine different values of a/b and shows that the 

numerically determined values of L 
∗
L agree with eq. ( 17 ). 

As the fault length increases above L 
∗
L , pro gressi vel y higher mode 

numbers will become unstable and the wavelength of the highest 

unstable mode number will approach h 
∗
L as L → ∞ . From eq. ( 16 ), 

the total number of unstable modes that a fault can host is n T = 

Fl (2 L/h 
∗
L ) , where Fl ( q) giv es the greatest inte ger less than or equal 

to some quantity q . The wavelength of the highest mode number n T 

as a function of the fault length is 

λn T = 
2 L 

Fl (2 L/h 
∗
L ) 

, and lim 
L →∞ 

λn T = h 
∗
L . (18) 

Eq. ( 18 ) predicts that λn T ≥ h 
∗
L and approaches h 

∗
L with a type of 

saw-tooth pattern as L → ∞ (Fig. 2 B). This result can also be 

confirmed numerically by computing the wavelength of the eigen- 

vector for the highest unstable mode as a function of the fault length 
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Stability of dip-slip and finite faults 831 

Figure 3. Normalized maximum slip velocities as a function of normalized fault length for faults in a full-space, or vertical strike-slip faults in a half-space. 

Colours correspond to values of a/b and symbols to values of L b as indicated in the legend. Each symbol corresponds to an individual simulation. The squares 

and diamonds show results from simulations where a single numerical element at the centre of the fault was perturbed; the circles show results where an 

element at the edge of the fault was perturbed. Note that the symbols overlie each other for each value of a/b, so there is no dependence on L b or the location 

of the perturbation. The approximate critical fault lengths are marked by crosses and the vertical black, dashed line indicates L/h ∗F = e −1 . Grid spacing for 

simulations: dξ = L b / 80 . 

for L > L 
∗
L (Fig. 2 B). The close agreement between the analytical 

and numerical analyses both validates the numerical method and 

confirms the behaviour for finite length faults. 

It is important to emphasize again that there is no minimum slip 

patch length required to generate an unstable sliding event for faults 

longer than L 
∗
L . Since eq. ( 11 ) is a sum over all mode numbers, 

instability will occur for any set of initial conditions that contains a 

mode with a positive growth rate p. For example, consider a fault 

in the thin layer geometry with length L = L 
∗
L , so that one unstable 

mode exists with wavelength λ = h 
∗
L . Following the argument at 

the end of Section 2.1.1 , an initial perturbation consisting of a finite 

delta function will be unstable, since the delta function can be rep- 

resented as a sum over all mode numbers and therefore contains the 

unstable mode. This implies that there is no minimum perturbation 

length required to initiate a linear instability. 

3.2 Vertical strike-slip faults in a half-space and full-space 

faults 

Now consider a fault of length L embedded in a homogeneous 

full-space (Fig. 1 A). For this system N ( ξ, v) = 0 and the change in 

shear stress is given by (e.g. Segall 2010 ) 

T ( ξ, v ) = 
G 

′ 

2 π

∫ L/ 2 

−L/ 2 

∂v /∂s 

s − ξ
ds . (19) 

This stress change function is also valid for a vertical strike-slip 

fault in a half-space, in which case the integration is taken over 

[ d, d + L ] and G 
′ = G (Fig. 1 C with β = 90 ◦). Eq. ( 19 ) takes the 

form of a Hilbert transform for an infinitely long fault ( L → ∞ ). 

Then the critical wavelength h 
∗
F given by eq. ( 4 ) can be obtained 

from eq. ( 9 ) after applying a Fourier transform (see Appendix B2.1 ). 

Anal ytical anal ysis using Fourier transforms cannot be applied to 

finite length faults due to the finite integ ration inter val in eq. ( 19 ). 

Ho wever , the critical fault length can be obtained semi-anal yticall y 

by using some results from Uenishi & Rice ( 2003 ) to solve eq. ( 9 ) 

(e.g. Ciardo & Viesca 2024 ). Details are provided in Appendix B2.2 . 

The stability analysis can also be conducted numerically in the same 

manner as for the thin layer system, using the method described 

in Section 2.1.2 . Both the semi-analytical and numerical stability 

analysis (Fig. 2 A) show that the critical fault length for the full-space 

system is 

L 
∗
F ≈ h 

∗
F /e . (20) 

Eq. ( 20 ) is an approximate equality in the absence of fully analytical 

results. 

Eq. ( 20 ) is also supported by simulations of the full nonlinear 

governing equations following Section 2.2 . The goal of these simu- 

lations is not to study nonlinear behaviour, but to confirm the linear 

stability results by using the full governing equations to simulate 

the growth or decay of an initial small perturbation from steady 

state. Fig. 3 shows the results of six sets of simulations using three 

values of a/b and two values of L b . Nine simulations, each with a 

different fault length, were run for each pair of ( a/b, L b ) values. 

In these simulations the initial conditions were set to the uniform 

steady state values, except for one element at the centre of the 

fault where v( ξ = 0 , t = 0) = 0 . 99 v 0 . Hence the spatial extent of 

the initial perturbation is as small as the numerical discretization 

allows. Three additional sets of simulations for L b = 1 . 6 km were 

conducted with the perturbation applied to a single element at the 

edge of the fault. 

The simulations were run until either consistent oscillations of 

maximum slip rate on the fault developed (i.e. a limit cycle), 

or the sliding velocity reached a uniform steady state such that 

v( ξ, t) = v 0 . The critical fault length for each pair of ( a/b, L b ) val- 

ues lies in the interval of fault lengths that separate growth and 

decay of the initial perturbation, as indicated by the maximum 

slip velocity. These critical fault lengths (normalized by h 
∗
F ) are 
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832 R.M. Skarbek 

(a) (b)

Figure 4. Critical fault lengths L ∗D for thrust and normal faults as a function of dip angle β, burial depth d and friction coefficient μ0 . Critical fault lengths 

and burial depths are normalized by h ∗F . Values of d are indicated by colours, and values of μ0 by line styles as indicated in the legend. Since the critical fault 

length can be very small, for these calculations the grid spacing was set to dξ = L b / 80 or dξ = L/ 250 , whichever is smaller. The solid black lines are equal 

to e −1 to within 0 . 8 per cent . 

0 . 37125 ± 0 . 00125 for a/b = 0 . 3 , 0 . 7 and 0 . 37375 ± 0 . 00125 for 

a/b = 0 . 5 . These critical fault lengths are within 2 per cent of the 

v alue gi ven b y eq. ( 20 ), and there is no dependence on the value of 

L b or the location of the perturbation (Fig. 3 ). 

Since the perturbation was restricted to a single fault element, 

the element length places an upper bound on any possible pertur- 

bation length scale required to initiate linear instability. The ele- 

ment length is set to dξ = L b / 80 in all of the simulations, and 

for the values of a/b used in Fig. 3 this corresponds to element 

lengths of dξ ≈ h 
∗
F / 838 to h 

∗
F / 359 , since h 

∗
F = π L b / (1 − a/b) . 

These results further illustrate that h 
∗
F should not be interpreted as a 

minimum patch length needed to initiate a linearly unstable sliding 

event. 

3.3 Dip-slip faults 

Consider in-plane sliding on a fault that is dipping at an angle β

relative to the traction-free surface of a homogeneous, elastic half- 

space (Fig. 1 C). The up-dip edge of the fault is buried at a depth 

d below the traction-free surface. Both the full-space and parallel 

fault geometries are special cases of this dipping fault geometry. 

The full-space geometry is obtained when d → ∞ , and the parallel 

fault geometry is obtained when d �= 0 and β = 0 . 

Stress change functions for the half-space geometry are available 

in the literature (Dmowska & Kostrov 1973 ; Freund & Barnett 1976 ; 

Rudnicki & Wu 1995 ), and can be written as 

T ( ξ, v) = 

∫ l+ L 

l 

� ( z, β) 
∂v 

∂s 
ds , (21) 

where l = d/ sin ( β) , and � ( z, β) is an analytic function of the 

complex variable z = x + iy (England 2003 ). A similar expression 

holds for N ( ξ, v) . A deri v ation of these functions is presented in 

Appendix C . Note that these stress change functions are equi v alent 

to using the Okada ( 1992 ) solutions for the middle of a very long 

dip-slip fault (e.g. Liu & Rice 2007 ). 

3.3.1 Velocity-weakening behaviour 

Critical fault lengths L 
∗
D for the dipping geometry can be deter- 

mined by choosing a burial depth d and dip angle β and then 

conducting a numerical stability analysis as described in Sec- 

tion 2.1.2 . Changing the value of L for fixed values of d and β

corresponds to changing the down-dip depth of the fault. The sta- 

bility calculation was repeated for dip angles in the range β = 0 ◦

– 90 ◦ and burial depth values d/h 
∗
F = 0 , 10 −3 , 10 −2 , 10 −1 , 1 (the 

v alue d = 0 w as omitted for β = 0 ◦). This process w as carried out 

for values of μ0 = 0 . 2 , 0.6, 1, for both thrust and normal faults 

(Fig. 4 ). 

The critical fault length L 
∗
D approaches the full-space value given 

by eq. ( 20 ) as d → h 
∗
F . Therefore L 

∗
D = L 

∗
F at depths d ≥ h 

∗
F and 

Fig. 4 shows critical fault lengths for both thrust and normal faults 

in any possible orientation. For burial depths d < h 
∗
F , the critical 

fault length is approximately a log-linear function of d (Fig. 5 A). 

The critical fault length L 
∗
D depends on the dip angle in a manner 

that is different for thrust and normal faults. There is also a sec- 

ondary dependence on the value of μ0 that depends on the sense 

of slip. For both thrust and normal faults, L 
∗
D increases with dip 

angle up to a value of 20 ◦ – 40 ◦, depending on the burial depth and 

sense of slip. For thrust faults, L 
∗
D then decreases to a secondary 

minimum before increasing again as β → 90 ◦. For normal faults, 

L 
∗
D reaches a maximum value then decreases as β → 90 ◦. Increas- 

ing the value of μ0 decreases L 
∗
D for thrust faults, and does the 

opposite for normal faults. Values of L 
∗
D can become quite small on 

shallowly dipping faults that are near to the traction-free surface. 

In particular, as β → 0 ◦ on faults that break the surface ( d = 0 ), 

L 
∗
D /h 

∗
F → 10 −2 on normal faults and appears to approach zero on 

thrust faults. 
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Stability of dip-slip and finite faults 833 

(a) (b)

Figure 5. (A) Examples of critical fault lengths for thrust and normal faults as a function of burial depth for β = 0 . 5 ◦, 10 ◦, 20 ◦. (B) Normalized stressing 

rates (2 π L )( ̇τE − μσ̇E ) / ( G ′ �v) for thrust and normal faults. For both panels the sense of slip is indicated by colours as shown in the legend in panel B. 

The dependence of L 
∗
D on β and μ0 can mostly be explained 

by considering the on-fault stressing rates due to a uniform slip 

velocity distribution �v on a dipping fault of length L with burial 

depth d = 0 . The elastic stressing rate on the fault is τ̇E − μσ̇E 

(see Section 2.1 , Step 1), which can be computed by evaluating the 

stress change functions at the centre of the fault ξ = L/ 2 (e.g. Kato 

& Hirasawa 1997 ). The stressing rate has a dependence on β and 

μ0 that shares some of the same features as that of L 
∗
D ; including 

similar behaviour as β → 0 ◦ and β → 90 ◦, and the same style of 

dependence on μ0 for thrust and normal faults (Fig. 5 B). 

The stressing rate calculation also provides an explanation for 

why values of L 
∗
D become very small at shallow dip angles. Sliding 

instability develops when the frictional weakening rate μ̇ is greater 

than the elastic stressing rate. The elastic stressing rate is approxi- 

mately proportional to β/L for dip angles less than about 10 ◦ – 20 ◦

(Fig. 5 B). Then for a given set of frictional parameters, when the 

dip angle is small only shorter length faults can relieve elastic stress 

faster than the frictional weakening rate. This leads to the results 

displayed in Fig. 4 . 

3.3.2 Velocity-strengthening behaviour 

As noted in the Introduction, it is possible for unstable behaviour to 

occur on velocity-strengthening faults when a coupling between slip 

and normal stress exists, that is, when N ( ξ, v) �= 0 . The parameter 

space for the dipping fault geometry is large; the stability behaviour 

can be expected to depend on frictional and elastic parameters μ0 , 

a/b, L b ; burial depth d; dip angle β and fault length L . Additionally, 

while normalization by h 
∗
F accounts for dependence on RSF and 

elastic parameters for velocity-weakening behaviour, h 
∗
F does not 

e xist on v elocity-strengthening faults. Therefore the results in this 

section are restricted to an infinitely long fault that is parallel to a 

traction-free surface, which reduces the parameter space to μ0 , a/b

and a normalized burial depth d/L b . In this case eq. ( 8 ) can be used 

to determine the stability of the system (see Appendix B4 for stress 

change functions and details). 

Fig. 6 shows the results of choosing values of μ0 and d/L b , 

then determining the maximum value of ( a /b) c = ( a /b) > 1 that 

satisfies Re ( p) > 0 in eq. ( 8 ). One striking feature of the results 

is that unstable behaviour only exists at depths greater than some 

minimum value that is very well approximated by 

d = (2 /μ0 ) 
2 L b . (22) 

The details of obtaining eq. ( 22 ) are provided in Appendix B4 . 

At shallower depths there are no unstable solutions to eq. ( 8 ) for 

( a/b) > 1 . This shallow, stable region is not related to the thin layer 

limit that occurs at d/L b � 1 . Where unstable behaviour occurs, for 

constant μ0 there is depth at which ( a/b) c reaches a maximum value. 

While for constant d/L b , values of ( a/b) c increase monotonically 

with μ0 , so the velocity-strengthening instability is enhanced when 

friction is higher. 

An e xtensiv e parameter study to determine the effects of fi- 

nite fault length and dip angle is beyond the scope of this study. 

Ho wever , some insight can be gained by examining the critical 

wavelengths that correspond to the values of ( a/b) c . Each value 

of ( a/b) c shown in Fig. 6 (A) occurs at some critical wavenum- 

ber k c that is in the neighbourhood of k c /d ≈ 1 regardless of 

the value of ( a/b) c (Fig. 6 B). By analogy with the velocity- 

weakening results, if L 
∗ ≈ h 

∗/e = 2 π/ ( ek c ) , then for any set of 

values [ μ0 , ( a/b) c , d/L b ] taken from Fig. 6 (A), the fault length 

would have to be L ≥ 2 πd/e for unstable behaviour to occur. 

4  D I S C U S S I O N  

4.1 Some theoretical considerations 

A main result in this paper is that the linear stability of frictional 

sliding depends on overall fault length. The critical fault length L 
∗

for finite length faults replaces the concept of the critical wavelength 

h 
∗ for infinitely long faults. For vertical strike-slip faults or faults in 

a full-space L 
∗ ≈ h 

∗
F /e (Section 3.2 ), while for dip-slip faults the 

critical fault length is a function of the dip angle and burial depth 

(Section 3.3 ). For sliding systems that can be treated as a thin layer, 

L 
∗ = h 

∗
L / 2 (e.g. landslides, glaciers or ice streams; Section 3.1 ). 

Velocity-weakening faults are linearly unstable if they are longer 

than L 
∗, in the sense that an infinitesimally small perturbation to the 
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(a) (b)

Figure 6. (A) Values of ( a/b) c , and (B) k c /d for unstable behaviour on infinitely long, velocity-strengthening faults near a traction-free surface, as a function of 

friction coefficient μ0 and normalized burial depth d/L b . The black, dashed line in (A) corresponds to the shallow stability boundary given by d = (2 /μ0 ) 
2 L b . 

steady state will grow exponentially until the linear approximation is 

no longer valid. The results also illustrate that there is no minimum 

length scale associated with initial perturbations, leading to the 

conclusion that the critical patch length l c obtained from spring- 

slider models does not have any relevance to the linear stability 

behaviour of finite or infinite length faults in an elastic continuum. 

This may explain why studies of length scales related to nonlinear 

stability and nucleation behaviour have not found any connection 

with l c (e.g. Rubin & Ampuero 2005 ; Ampuero & Rubin 2008 ). 

The concept of a critical fault length also leads to a new definition 

of conditional stability. Velocity-weakening faults that are shorter 

than L 
∗ are conditionally stable in that they are stable in the linear 

regime, but large perturbations out of the linear regime could gen- 

erate unstable sliding events (e.g. Gu et al. 1984 ). In the classical 

model of fault stability, regions of a fault are assigned stability prop- 

erties (stab le, unstab le or conditionally stab le) based on the linear 

stability analysis of a spring-slider system and variations in ( a − b) 

along the fault (Scholz 1998 , fig. 2). The results in this paper make 

use of fault systems with constant values of ( a − b) ; however the 

numerical method for linear stability analysis can easily be applied 

to systems where the frictional proper ties var y along the fault. Thus, 

it is possible to obtain linear stability results for heterogeneous fault 

systems as a whole, rather than apply results from spring-slider sys- 

tems to individual sections of a fault. The linear stability of such 

fault systems can be expected to depend on geometrical aspects 

(e.g. dip angle, burial depth) as well as the frictional properties in 

both the velocity-weakening and velocity-strengthening portions of 

the fault (e.g. Skarbek et al. 2012 ; Dublanchet et al. 2013 ; Ray & 

Viesca 2017 ; Yabe & Ide 2017 ; Luo & Ampuero 2018 ). 

4.2 Influence of the free surface and burial depth 

Proximity to a traction-free surface, as measured by h 
∗
F or L b , 

has a significant influence on stability properties. Since both h 
∗
F 

and L b are inversely proportional to ef fecti ve normal stress, the 

normalized burial depths in Figs 4 and 6 are smaller on faults 

with high pore fluid pressure. This means that the influence of 

the free surface is enhanced on overpressured fault systems. High 

pore pressure leads to smaller normalized critical fault lengths, 

but larger values of h 
∗
F . If the burial depth is less than h 

∗
F , then 

the free surface will influence the stability behaviour. This effect 

should be important in the shallow regions of subduction zones 

and in areas of induced seismicity where pore pressures can be 

ele v ated. Particularl y on subduction megathrust plate boundaries, 

the combination of shallow dip angles and high pore pressures 

should lead to very small normalized critical fault lengths. 

The effect of shallow burial depth on unstable behaviour for 

velocity-strengthening faults is more complicated. A fault parallel 

to the free surface should be the most unstable geometry for a 

non-zero burial depth d , since on a dipping fault the depth from 

the traction-free surface will increase with down-dip distance. The 

values of ( a/b) c for the infinite fault system in Fig. 6 (A) are close 

to velocity-neutral, so it seems reasonable to assume that values 

of ( a/b) c would be even closer to unity on finite length, dipping 

faults that are buried. Ho wever , the velocity-weakening results show 

that intersecting the free surface causes a significant reduction in 

stability; L 
∗
D /h 

∗
F decreases lo garithmicall y with decreasing d/h 

∗
F . 

So it is possible that values of ( a/b) c may be larger on dipping 

faults where d = 0 . Certainly more work is needed to understand 

this behaviour. 

Multiple effects have been described that can cause unstable 

sliding on velocity-strengthening faults: contrasting elastic param- 

eters across a fault (Rice et al. 2001 ; Ranjith 2014 ); poroelastic- 

ity (Heimisson et al. 2019 ); ‘fault valve’ behaviour (Ozawa et al. 

2024 ); and proximity to a traction-free surface (this paper; Aldam 

et al. 2016 ). All of these features are commonplace in fault sys- 

tems as well as in other frictional systems like landslides and ice 

streams. For example, all of these effects could be present in the 

shallow regions of subduction zones and may contribute towards 

enabling shallow slow-slip events (e.g. Saffer & Wallace 2015 ), 

or influencing the behaviour of tsunami earthquakes (e.g. Bilek & 

Lay 2002 ). 

5  C O N C LU S I O N  

The results in this paper sho w ho w even simple types of geomet- 

rical complexity can change stability behaviour. Using numerical 

methods makes it possible to conduct linear stability analyses for 

a wide range of fault systems that cannot be examined using an- 

alytical techniques. Some examples of systems for which stress 
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Stability of dip-slip and finite faults 835 

change functions are available in the literature are multifault sys- 

tems and non-planer faults in a 3-D homogeneous elastic half-space 

(Okada 1992 ; Meade 2007 ). Functions are also available for differ- 

ent types of viscoelastic geometries (e.g. Segall 2010 ; Lambert & 

Barbot 2016 ). Heterogeneous on-fault frictional properties can be 

used with any existing stress change functions (e.g. Ray & Viesca 

2017 ). Finally, numerical stability methods could also be extended 

to include dilatancy and changes in pore pressure, or other types of 

frictional constitutive behaviour (e.g. Segall & Rice 1995 ; Chen & 

Spiers 2016 ; Barbot 2022 ). 
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All of the calculations and figures in this paper can be repro- 

duced using a MATLAB package RSFaultZ available at https: 

//github.com/rmskarbek/RSFaultZ (Skarbek 2024 ). The m-files for 

automatically generating figures are stored in the github repository 

directory: RSFaultZ/examples/stability. 
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A P P E N D I X  A :  L I N E A R I Z AT I O N  O F  R S F  

E Q U  A  T I O N S  

Additional mathematical details are provided here for obtaining the 

Jacobian matrix given by eq. ( 7 ). First, using eqs ( 2 ) and ( 5 ), the 

linearized equations can be written as 

v̇ = 

(
∂ F 0 

∂v 

)
v + 

(
∂ F 0 

∂θ

)
θ

= 

(v 0 

a 

) [
1 

σ0 

(
∂ ̇τE 

∂v 
− μ0 

∂ ̇σE 

∂v 

)
+ 

b 

d c 

]
v + 

(
bv 3 0 

ad 2 c 

)
θ , (A1) 

and 

θ̇ = 

(
∂ H 0 

∂v 

)
v + 

(
∂ H 0 

∂θ

)
θ = −

(
1 

v 0 

)
v −

(
v 0 

d c 

)
θ . (A2) 

Eqs ( A1 ) and ( A2 ) can be used to define a dimensional Jacobian. The 

elements of eq. ( 7 ) are obtained after changing to the dimension- 

less variables defined by ̂  t = ( v 0 /d c ) t , ˆ v = v/v o and ˆ θ = ( v 0 /d c ) θ . 

Dimensionless stress change functions are obtained by normalizing 

stresses by σ0 . So for example, τ̇E = T ( ξ, v) = ( σ0 v 0 /d c ) ̂  T . 

A P P E N D I X  B :  A NA LY T I C A L  L I N E A R  

S TA B I L I T Y  R E S U LT S  

B1 Spring-slider 

The shear stress change in the basic spring-slider model is 

τ̇E = K ( v 0 − v) , (B1) 

where K is a normalized spring stiffness with units of [Stress / 

Length]. Using the same dimensionless variables defined in A , the 

dimensionless shear stress change function is 

ˆ T ( ̂ v ) = 
d c K 

σ0 
(1 − ˆ v ) . (B2) 

Inserting the deri v ati ve of eq. ( B2 ) with respect to ̂  v into eq. ( 9 ) and 

setting the left-hand side equal to zero yields the critical stiffness 

K c = σ0 ( b − a) /d c . 

B2 Full-space 

B2.1 Infinite fault 

For infinite faults the critical wavelength can be found by searching 

for solutions of the form v( ξ, t) = A exp ( pt + ikξ ) . For a full- 

space, the shear stress change function can be found by substituting 

this expression into eq. ( 19 ), for L → ∞ ; this is essentially the 

method used by (Rice et al. 2001 ): 

T ( ξ, v) = i k A 

(
G 

′ 

2 π

)∫ ∞ 

−∞ 

exp ( pt + i ks ) 

s − ξ
ds. (B3) 

After making a change of variables u = s − ξ , eq. ( B3 ) becomes 

T ( ξ, v) = i k 

(
G 

′ 

2 π

)
A exp ( pt + i kξ ) 

∫ ∞ 

−∞ 

exp ( i ku ) 

u 
du 

= −

(
| k| G 

′ 

2 

)
v , (B4) 

where the integral in the first line is a Fourier Transform of 1 /u and 

is equal to iπsgn ( k) . Using the pre viousl y defined dimensionless 

variables, but leaving k in dimensional form, the critical wavenum- 

ber k c from eq. ( 9 ) is 
(

b 

a 

) (
1 −

L b | k c | 

2 

)
− 1 = 0 , (B5) 

which leads to eq. ( 4 ) since the critical wavelength is defined as 

h 
∗
F = λc = 2 π/k c . 

B2.2 Finite fault 

The critical fault length for a finite fault in a full-space can be found 

by first normalizing eq. ( 19 ) and inserting the result into eq. ( 9 ). 

Again using the pre viousl y defined dimensionless variables and also 

normalizing lengths by L/ 2 , eq. ( 19 ) becomes 

ˆ T ( ̂ ξ, ̂  v ) = 
G 

′ d c 

πσ0 L 

∫ 1 

−1 

∂ ̂  v /∂ ̂  s 

ˆ s − ˆ ξ
d ̂ s . (B6) 
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Substituting this result into eq. ( 9 ) and rearranging terms yields 

∂ 

∂ ̂  v 

[
1 

π

∫ 1 

−1 

∂ ̂  v /∂ ̂  s 

ˆ s − ˆ ξ
d ̂ s 

]
= −

π L 

h 
∗
F 

. (B7) 

Finally, integrating eq. ( B7 ) with respect to ˆ v provides an equa- 

tion for the critical fault length 

1 

π

∫ 1 

−1 

∂ ̂  v /∂ ̂  s 

ˆ ξ − ˆ s 
d ̂ s = 

(
π L 

h 
∗
F 

)
ˆ v ( ̂ ξ ) . (B8) 

Note that the ne gativ e sign on the right-hand side of eq. ( B7 ) has 

been absorbed into the denominator of the integral argument in 

eq. ( B8 ). 

Eq. ( B8 ) is in the form of an eigenvalue equation where π L/h 
∗
F 

is the eigenvalue and ˆ v ( ̂ ξ ) is the corresponding eigenvector. Note 

that this eigenvalue equation is distinct from what is described in 

Section 2.1 . The critical fault length is found from the smallest 

eigenvalue of eq. ( B8 ) 

π L 

h 
∗
F 

≈ 1 . 158 ≈
π

e 
. (B9) 

The numerical factor in eq. ( B9 ) has pre viousl y been determined by 

Uenishi & Rice ( 2003 ); see eqs (12) and (13) and Appendix B1 in 

that paper (see also Appendix B in Ciardo & Viesca 2024 ). Finally, 

solving eq. ( B9 ) for L provides the critical fault length given by 

eq. ( 20 ). 

B3 Thin layer 

B3.1 Infinite fault 

The critical wavelength for the thin layer system can be found by 

following the same procedure for the full-space system, but using 

eq. ( 14 ) for the shear stress change function. 

T ( ξ, v) = (dE 
′ ) 

∂ 2 

∂ξ 2 
[ A exp ( pt + ikξ )] = −dE 

′ k 2 v. (B10) 

Using the dimensionless variables as before, eq. ( 9 ) becomes 
(

b 

a 

) [
1 − ( L bh k c ) 

2 
]
− 1 = 0 , (B11) 

with L bh = 
√ 

dE ′ d c / ( bσ0 ) (Viesca 2016b ). Solving eq. ( B11 ) for 

the critical wavelength leads to eq. ( 15 ) for h 
∗
L . 

B3.2 Finite fault 

For a finite fault the deviation of the sliding velocity from steady 

state takes the form v( ξ, t) − v 0 = a n e 
p t sin ( nπξ/L ) . After substi- 

tuting this into eq. ( 14 ), the shear stress change becomes 

T ( ξ, v) = −dE 
′ 
(nπ

L 

)2 

a n e 
p t sin ( nπξ/L ) = −dE 

′ 
(nπ

L 

)2 

v, 

(B12) 

such that 

T v = 
∂ 

∂v 
T ( ξ, v) = −dE 

′ 
(nπ

L 

)2 

. (B13) 

Eq. ( B13 ) can be normalized using the dimensionless quantities 

defined in Appendix A and remembering that T has units of 

[stress/time], then 

ˆ T ̂ v 

b 
= −

(
nπ L bh 

L 

)2 

, (B14) 

as in Section 3.1 . Finally, the critical fault length is obtained by 

substituting eq. ( B14 ) into eq. ( 9 ), which yields eq. ( 16 ). 

B4 Velocity-strengthening layer 

The stress change functions for in-plane sliding on an infinitely long 

fault that is parallel to a traction-free surface at a depth d are (e.g. 

Viesca 2016a ) 

T ( ξ, v) = 
G 

2 π (1 − ν) 

∫ ∞ 

−∞ 

{
1 

s − ξ
−

s − ξ

4 d 2 + ( s − ξ ) 2 

+ 
8 d 2 ( s − ξ ) 

[4 d 2 + ( s − ξ ) 2 ] 2 

+ 
4 d 2 ( s − ξ ) 3 − 48 d 4 ( s − ξ ) 

[4 d 2 + ( s − ξ ) 2 ] 3 

}
∂v 

∂s 
ds, (B15) 

and 

N ( ξ, v) = 
G 

2 π (1 − ν) 

∫ ∞ 

−∞ 

{
32 d 5 − 24 d 3 ( s − ξ ) 2 

[4 d 2 + ( s − ξ ) 2 ] 3 

}
∂v 

∂s 
ds. 

(B16) 

The stability of this system is most easily determined after applying 

a Fourier transform. Using the Fourier transform pair: 

˜ f ( k) = F [ f ( x)] = 

∫ ∞ 

−∞ 

f ( x ) e −ikx dx (B17) 

f ( x) = F 
−1 [ ̃  f ( k)] = 

1 

2 π

∫ ∞ 

−∞ 

˜ f ( k) e ikx dx, (B18) 

eqs ( B15 ) and ( B16 ) become 

˜ T ( k, ̃  v ) = −

(
G 

′ | k| 

2 

) {
1 − e −2 d| k| 

[
1 − 2 d| k| + 2( dk) 2 

]}
˜ v , 

(B19) 

and 

˜ N ( k, ̃  v ) = −iG 
′ k( dk) 2 e −2 d| k| ˜ v . (B20) 

where tildes denote transformed quantities. Note that these func- 

tions are provided by Viesca ( 2016a ) using a different transform 

pair. 

The eigenvalues p can then be computed from eq. ( 8 ) after defin- 

ing � = (1 /b)( ̃  T ̃ v − μ0 ̃
 N ̃ v ) using eqs ( B19 ) and ( B20 ). Using the 

dimensionless variables, and also defining ˆ k = dk yields 

� = −

(
L b 

d 

) { 
ˆ | k| 

2 

[ 
1 −e −2 | ̂ k | 

(
1 −2 | ̂ k | + 2 ̂ k 2 

)] 
−iμ0 ̂

 k 3 e −2 ̂ k 

} 

. 

(B21) 

The resulting equation for p is complex and depends on the values of 

( a/b) , ( L b /d) , μ0 and the dimensionless wavenumber ̂  k . The results 

in Fig. 6 were obtained through an iterative process by solving for 

p numerically as a function of ˆ k for chosen values of L b /d and μ0 . 

For each pair of values ( L b /d, μ0 ) , p( ̂ k ) was first determined for a 

value of ( a/b) < 1 , which guarantees that Re [ p( ̂ k )] > 0 for some 

value of ˆ k ; numerical tests showed that the maximum value of p( ̂ k ) 

occurs in the vicinity of ˆ k ≈ 1 . This process was then repeated for 

incrementall y larger v alues of ( a/b) until Re [ p( ̂ k )] < 0 for all values 

of ˆ k , which determines the values of ( a/b) c shown in Fig. 6 (A). 

The minimum depth for unstable behaviour can be approximately 

determined by solving for p for a specific value of ̂  k . From the results 

in Fig. 6 (B), the stability boundary occurs at ˆ k ≈ 0 . 5 , so that 

� = −

(
L b 

d 

) [(
2 − e −1 

8 

)
− iμ0 

(
e −1 

8 

)]
. (B22) 
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Additionally, that stability boundary occurs at ( a/b) = 1 . With these 

values of ˆ k and ( a/b) , eq. ( 8 ) becomes 

p 2 −

(
L b 

d 

) [(
2 − e −1 

8 

)
− iμ0 

(
e −1 

8 

)]
p + 

(
L b 

d 

)

×

[(
2 − e −1 

8 

)
− iμ0 

(
e −1 

8 

)]
= 0 . (B23) 

Now p can be solved for using a procedure described in Rice 

et al. ( 2001 ). F irst, F ig. 6 indicates that for a constant value of 

μ0 , the real part of p changes sign as d/L b increases from zero. 

The sign change occurs at p = iρ; substituting this into eq. ( B23 ) 

yields 
[
−ρ2 −

(
μ0 e 

−1 L b 

8 d 

)
ρ + 

(2 − e −1 ) L b 

8 d 

]

− i 

(
L b 

d 

)[(
2 − e −1 

8 

)
ρ + 

μ0 e 
−1 

8 

]
= 0 . (B24) 

Eq. ( B24 ) is satisfied when both its real and imaginary parts are 

equal to zero. Setting the real part equal to zero provides an equa- 

tion for ρ in terms of μ0 and ( L b /d) : 

ρ = −

(
μ0 e 

−1 L b 

16 d 

)
±

1 

2 

√ (
μ0 e −1 L b 

8 d 

)2 

−
(2 − e −1 ) L b 

2 d 
. (B25) 

Finally, inserting eq. ( B25 ) into the imaginary part of eq. ( B24 ) and 

setting it equal to zero provides an equation for d/L b as a function 

of μ0 . The best way to execute this final step is using a symbolic 

math program. The solution is 

d 

L b 
= 

1 

8 e 

[
(2 e − 1)(1 − 2 e) 2 

μ2 
0 

− 1 

]
+ 1 / 4 ≈

(
2 

μ0 

)2 

. (B26) 

A P P E N D I X  C :  D I P - S L I P  FAU LT S  

Consider an edge dislocation in a 2-D homogeneous elastic body. 

The dislocation induces displacement and stress fields through- 

out the elastic body that can be represented in terms of two 

complex potentials, ω( z) and �( z) , that are analytic functions of 

z (e.g. England 2003 ; Bower 2009 ). The complex coordinate z

is defined as z = x + iy = re iφ where ( r, φ) are radial coordi- 

nates with φ measured from the x-axis in the direction of the 

y-axis. 

For the dipping fault system shown in Fig. 1 (C), the fault is 

located at β0 = π − β along l ≤ r ≤ l + L , where l = d/ sin ( β) 

(also note that ξ = r ). The stress change functions can be obtained 

by considering a distribution of dislocations along the fault, and 

computing the shear and normal stresses that these dislocations 

induce on the fault itself. The first and most important step is to 

determine the complex potentials for a single dislocation placed 

at z 0 = r 0 e 
iβ0 , with Burger’s vector b e iβ0 = b cos ( β0 ) + ib sin ( β0 ) 

(e.g. Freund & Barnett 1976 ). 

In the x - y plane the stress and displacement fields are given by: 

σx + σy = 2 
[
�′ ( z) + �′ ( z) 

]
, (C1) 

σy − iσxy = �′ ( z) + �′ ( z) + z �′′ ( z ) + ω 
′ ( z) , (C2) 

2 G ( u x + iu y ) = (3 − 4 ν) �( z ) − z �′ ( z ) − ω( z ) , (C3) 

where primes denote deri v ati ves with respect to z, and bars denote 

complex conjugates (e.g. section 2.5 in England 2003 ). The dis- 

placements are denoted by u x , u y ; the normal stresses by σx and 

σy and σxy is the shear stress. The normal and shear stresses on the 

fault can be obtained in the radial coordinate system, in which case 

the stresses are 

σr + σφ = 2 
[
�′ ( z) + �′ ( z) 

]
, (C4) 

σφ − iσrφ = �′ ( z) + �′ ( z) + e −2 iφ[ z �′′ ( z ) + ω 
′ ( z)] , (C5) 

2 G ( u r + iu φ) = e −2 iφ[(3 − 4 ν) �( z ) − z �′ ( z ) − ω( z ) ] . (C6) 

For a half-space with a traction-free surface at y = 0 , z = x , the 

potentials can be written as 

�( z) = �0 ( z) + �1 ( z) , ω( z) = ω 0 ( z) + ω 1 ( z) , (C7) 

where �0 ( z) and ω 0 ( z) are the potentials for a full-space, and so 

will produce tractions along z = x ; while �1 ( z) and ω 1 ( z) are addi- 

tional potentials that clear the tractions along z = x . The full-space 

potentials are given by (e.g. Bower 2009 , section 5.3.12) 

�0 ( z) = γ ln ( z − z 0 ) , (C8) 

ω 0 ( z) = γ ln ( z − z 0 ) −
γ z 0 

z − z 0 
, (C9) 

where 

γ = −
iGb e iβ0 

4 π (1 − ν) 
. (C10) 

The additional potentials can be found using a variety of meth- 

ods (e.g. Dmowska & Kostrov 1973 ; Freund & Barnett 1976 ). 

Here, the additional potentials are computed using the process of 

analytic continuation (e.g. section 3.5 in England 2003 ), and are 

gi ven b y 

�1 ( z) = −z �′ 
0 ( z ) − ω 0 ( z ) , (C11) 

ω 1 ( z) = z ω 
′ 
0 ( z ) − �0 ( z ) + z �′ 

0 ( z ) + z 2 �′′ 
0 ( z ) . (C12) 

Substituting these definitions for �1 ( z) and ω 1 ( z) into eqs ( C7 ) 

along with the results for �0 ( z) and ω 0 ( z) , the potentials for an edge 

dislocation in a half-space are: 

�( z) = γ ln 

[
z − z 0 

z − z 0 

]
−

γ ( z − z 0 ) 

z − z 0 
, (C13) 

ω( z) = γ ln 

[
z − z 0 

z − z 0 

]
−

γ z 0 

z − z 0 
+ 

γ z 

z − z 0 
+ 

γ ( z 0 − z 0 ) z 

( z − z 0 ) 2 
. (C14) 

Note that eqs (A4) and (A5) in Rudnicki & Wu ( 1995 ) are the 

deri v ati ves of eqs ( C13 ) and ( C14 ). 

The normal σφ and shear σrφ stresses on the fault due to a single 

dislocation are given by the real and imaginary parts of eq. ( C5 ), 

e v aluated using eqs ( C13 ) and ( C14 ) at values of z corresponding 

to φ = β0 and l ≤ ξ ≤ l + L . For a distribution of dislocations 

along the length of the fault, the resultant Burger’s vector between 

neighbouring points ξ and ξ + dξ is b = ( ∂ δ/∂ ξ )dξ , where δ( ξ ) 

is slip on the fault (Freund & Barnett 1976 ; Weertman 1996 ). The 

stress change functions are found by inte grating ov er the length of 

the fault, such that 

T ( ξ, δ) = −

∫ l+ L 

l 

Im 
{
�′ ( z) + �′ ( z) + e −2 iβ0 [ z �′′ ( z ) + ω 

′ ( z)] 
}

×
∂δ

∂s 
ds, (C15) 

N ( ξ, δ) = 

∫ l+ L 

l 

Re 
{
�′ ( z) + �′ ( z) + e −2 iβ0 [ z �′′ ( z ) + ω 

′ ( z)] 
}

×
∂δ

∂s 
ds, (C16) 
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where the potentials are e v aluated using eqs ( C13 ) and ( C14 ) at 

z = ξe iβ0 and z 0 = se iβ0 . Finally, note that it is possible to write the 

integrands in eqs ( C15 ) and ( C16 ) explicitly in terms of ξ and β0 , 

however the resulting expressions are extremely cumbersome [see 

for example eqs (13) in Freund & Barnett ( 1976 ); eqs (3.1)–(3.2) 

in Dmowska & Kostrov ( 1973 ); or eqs (A6)–(A11L) in Rudnicki 

& Wu ( 1995 )]. For numerical computations it is most concise to 

compute the stresses using the individual equations listed above. 

The Author(s) 2025. Published b y Oxford Uni versity Press on behalf of The Royal Astronomical Society. This is an Open Access article 
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