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SUMMARY

This paper examines the linear stability of sliding on faults embedded in a 2-D elastic medium
that obey rate and state friction and have a finite length and/or are near a traction-free surface.
Results are obtained using a numerical technique that allows for analysis of systems with
geometrical complexity and heterogeneous material properties; however only systems with
homogeneous frictional and material properties are examined. Some analytical results are also
obtained for the special case of a fault that is parallel to a traction-free surface. For velocity-
weakening faults with finite length, there is a critical fault length L* for unstable sliding that
is analogous to the critical wavelength #* that is usually derived from infinite fault systems.
Faults longer than L* are linearly unstable to perturbations of any length. On vertical strike-
slip faults or faults in a full-space L* ~ h*/e, where e is Euler’s number. For dip-slip faults
near a traction-free surface L* < h* /e and is a function of dip angle S, burial depth d of the
fault’s up-dip edge and friction coefficient. In particular, L* is at least an order of magnitude
smaller than /2™ on shallowly dipping (8 < 10°) faults that intersect the traction-free surface.
Additionally, L* ~ h* /e on dip-slip faults with burial depths d > A*. For sliding systems that
can be treated as a thin layer, such as landslides, glaciers or ice streams, L* = 4*/2. Finally,
conditions are established for unstable sliding on infinitely-long, velocity-strengthening faults
that are parallel to a traction-free surface.
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1 INTRODUCTION

How does the geometry of fault systems affect the stability of fric-
tional sliding? Most knowledge of frictional stability comes from
analyses of spring-slider systems (e.g. Ruina 1983; Gu ef al. 1984;
Ranjith & Rice 1999) or faults embedded in an infinite elastic
medium (e.g. Rice & Ruina 1983; Dieterich 1992; Rice et al. 2001;
Uenishi & Rice 2003; Rubin & Ampuero 2005; Ampuero & Rubin
2008). These two systems do not include important aspects of fault
geometry such as proximity to a traction-free surface, fault dip angle
or finite fault length in many cases. This paper examines the linear
stability of sliding on finite length faults that obey rate and state
friction (RSF) and are embedded in a 2-D elastic continuum with
homogeneous material properties. As in many previous studies, the
focus here is on the quasi-static regime where inertia is neglected
(e.g. Rice & Ruina 1983; Uenishi & Rice 2003; Viesca 2016a, b;
Aldam et al. 2017; Heimisson et al. 2019; Ozawa et al. 2024).

The specific finite length geometries considered are: a fault in an
infinite full-space; a fault parallel to a traction-free surface and a
dip-slip fault or vertical strike-slip fault in a half-space. Including
these features provides more accurate assessments of the sliding
stability of natural fault systems. First, because all faults have a finite
length and secondly, because many faults are near the surface of the
earth or the seafloor. Additionally, landslides (Handwerger et al.

2016), ice streams (Lipovsky & Dunham 2017) and glaciers (Zoet
et al. 2020) also exhibit sliding behaviour that can be described by
frictional processes. The results show that these basic geometrical
effects cause significant departures from long-standing results on
linear stability behaviour.

For a fault in an elastic medium, the stability of sliding can be
assessed by considering a balance between the rate at which elastic
stress stored in the fault system can be unloaded, and the rate at
which shear stress on the fault is reduced (i.e. fault weakening) in
response to sliding (e.g. Scholz 2019). Unstable sliding initiates
when the fault weakening rate is higher than the elastic unloading
rate. For frictional sliding, the changes in shear stress on a fault are
described by the RSF equations wherein the evolution of the friction
coefficient p on a surface is a function of the sliding rate v and an
internal state variable 0

i(v.0) = o +aln (1) +b1n(v08>, ()
Vo dc

where p is a reference friction coefficient for steady state sliding
at the reference velocity vy, @ and b are constitutive parameters,
and d. is a critical slip distance that is related to the amount of slip
needed to attain a new steady state after changes in sliding velocity
(Dieterich 1979; Ruina 1983; Marone 1998). The reference values
o and v, are not arbitrary, but are determined from experimental
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measurements of how the steady state friction coefficient of a given
material depends on the sliding velocity. However, pairs of values
(o, vo) can be chosen from among a set of such measurements.
The evolution of the state variable is commonly described using the
aging or slip laws:

20 0 20 0 0
aging law: — =1— it slip law: — = v In (v—> .

ot d,’ ot d, d,
(2)

For velocity-weakening friction (¢ —b < 0; or a/b < 1), fault
weakening will occur due to a reduction in the friction coeffi-
cient as sliding rate increases. On deformable faults, weakening
can also occur due to a coupling between fault slip and changes in
normal stress, which can lead to unstable behaviour for velocity-
strengthening friction below some critical value of a/b. This effect
has been shown to exist on bimaterial and poroelastic faults (Rice
et al. 2001; Ranjith 2014; Heimisson et al. 2019), on faults with
fault-valve behaviour (Ozawa et al. 2024), and on faults that lack
geometric reflection symmetry across the sliding surface (Aldam
et al. 2016). Lack of geometric reflection symmetry is a very gen-
eral feature of fault systems. So too then is the possibility of unstable
behaviour on velocity-strengthening faults. The results in this paper
take a first step in establishing the range of parameters where this
behaviour occurs on faults that are near a traction-free surface.

Before proceeding, it will be helpful to differentiate between lin-
ear and nonlinear methods of stability analysis, as well as establish
some terminology related to frictional sliding stability. Studies of
frictional sliding stability can be grouped according to the use of
linear analysis methods (e.g. Rice & Ruina 1983; Ruina 1983; Rice
et al. 2001; Heimisson et al. 2019; Ozawa et al. 2024) or nonlinear
analysis methods (e.g. Gu er al. 1984; Dieterich 1992; Ranjith &
Rice 1999; Uenishi & Rice 2003; Rubin & Ampuero 2005; Am-
puero & Rubin 2008; Viesca 2016a; Ray & Viesca 2017). In a linear
analysis (the subject of this paper), boundary conditions are defined
such that a spatially uniform steady state exists on the fault and
the equations governing fault slip are simplified through lineariza-
tion about this steady state. In addition, the initial conditions must
be defined to reside within the neighbourhood of the steady state
in order for the linearized governing equations to remain valid. A
stability analysis of the linearized equations determines if a set of
initial conditions, that includes small perturbations to the steady
state sliding velocity, will grow or decay. If the fault system is lin-
early stable then the sliding velocity will return to the steady state
after it is perturbed. If the fault system is linearly unstable then the
sliding velocity will grow exponentially until the linearized equa-
tions are no longer valid, at which point the nonlinear governing
equations must be considered to determine the subsequent evolu-
tion. Throughout this paper the words ‘instability’ and ‘unstable’
are used according to this meaning. The word ‘perturbation’ is also
used frequently and will always refer to a deviation from steady
state.

Nonlinear stability analysis concerns the full nonlinear governing
equations. Various initial and boundary conditions can be consid-
ered since there are no restrictions imposed as in a linear analysis.
In a nonlinear analysis, ‘instability” usually means that slip speeds
would become infinitely large if they were not restricted by inertia
(e.g. Rubin & Ampuero 2005; Ampuero & Rubin 2008). Because
the results in this paper only concern behaviour in the linear regime,
the nonlinear meaning of ‘instability’ is not used.

Linear stability analysis of spring-slider systems leads to the
classical concept of a critical patch length, that is interpreted as
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the minimum length of a slipping fault patch that is required for
an unstable sliding event to develop (e.g. Dieterich ; Rice 1993;
Scholz 1998). The critical patch length /. is obtained by equating
the critical stiffness of an RSF spring-slider system to the stiffness
of a crack embedded in an elastic medium, such that
nG'd.

= ob—a)’ ©)
where G’ = G for antiplane sliding and G’ = G/(1 — v) for in-
plane sliding, with G the shear modulus and v the Poisson ratio. In
eq. (3), n is a numerical pre-factor of order unity that depends on
the assumed stress and strain conditions for computing the stiffness
of the elastic crack (see table 1 in Dieterich 1992).

However, the stiffness of a fault in an elastic continuum is a quan-
tity that evolves through space and time as the fault slips (e.g. Rice
& Ruina 1983; Horowitz & Ruina 1989), whereas eq. (3) is obtained
by assuming the existence of a unique critical stiffness. Linear sta-
bility analysis of infinitely long faults in elastic continua leads to
a critical wavelength, rather than a critical stiffness or patch size.
The critical wavelength #* can be found analytically for the special
case of an infinitely long fault with constant frictional properties
and effective normal stress o, embedded in an infinite, 2-D elastic
full-space with homogeneous properties. Allowing the fault to be
infinitely long simplifies the mathematical analysis sufficiently to
obtain an equation for #* (Rice & Ruina 1983; Rice ef al. 2001):

nG'd,

hpzm.

“4)
Here the symbol #7; is used to denote the special value of 4* for
a homogeneous fault in a full-space. Because the derivation of /7.
involves an infinitely long fault, its proper definition is the criti-
cal wavelength of an infinitely long, sinusoidal perturbation to the
steady state.

The fact that the critical wavelength /7. is identical to the critical
patch length /. (to within the numerical constant ) naturally leads
to the conclusion that unstable sliding on velocity-weakening, elas-
tically deformable faults can only occur when perturbed slipping
patches are longer than /.. However, this is not true for sliding be-
haviour in the linear regime, because any perturbation that contains
wavelengths larger than /7. will grow exponentially until the lin-
earized equations are no longer valid. Importantly, since an initial
perturbation need not have a sinusoidal form, this does not im-
pose any conditions on the spatial extent of the perturbation (see
Section 2.1.1).

When faults are not infinitely long or when a spring-slider model
cannot capture important features of a fault system, then it becomes
difficult to apply analytical methods of linear stability analysis.
In this paper these difficulties are overcome by using a numerical
method for conducting linear stability analysis of 2-D finite length
fault systems. The method can be applied to any fault system for
which stress change functions are available (defined in the next sec-
tion), and can accommodate features such as heterogeneous material
properties or multiple faults.

The results of this paper show that the linear stability behaviour
of finite length faults is properly characterized by a critical fault
length L*, the value of which is related to the critical wavelength of
a corresponding infinitely long fault. Once the fault length is larger
than L*, then a perturbation of any size will grow exponentially
within the linear regime. Throughout this paper, values of 4* are
referred to as ‘critical wavelengths’ and the symbol L* is used to de-
note a ‘critical fault length’. Subscripts are used for both 2* and L*
to differentiate between specific geometries. On vertical strike-slip
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faults or faults in a full-space, L. ~ h}./e where e is Euler’s num-
ber. For dip-slip faults near a traction-free surface, L}, < h7./e and
is a function of dip angle, burial depth of the fault’s up-dip edge and
friction coefficient. However, L}, =~ h¥;/e for dip-slip faults where
the up-dip edge of the fault is buried at a depth greater than or equal
to A7 For sliding systems that can be treated as a thin layer, such as
landslides, glaciers or ice streams, L} = hj /2, where /] is defined
in Section 3.1. Conditions are also established for linear instability
under velocity-strengthening friction on infinitely long faults that
are parallel to a traction-free surface. Finally, since the focus of this
paper is on linear stability, behaviour in the nonlinear regime (e.g.
rupture localization or propagation) is not considered or examined;
however simulations of the nonlinear governing equations are used
to confirm some results of the linear analysis in Section 3.2.

2 METHODS

2.1 Linear stability analysis

Consider a fault of length L that obeys eq. (1) and either of eqs (2),
and denote the position along the fault by £. Assume also that the
fault is embedded in a 2-D homogeneous elastic medium with shear
modulus G and Poisson ratio v. A linear stability analysis of the
fault’s sliding motion can be conducted according to the following
steps. (1) Write the system of nonlinear equations governing the
evolution of sliding velocity v(&, ) and state variable 0(&, ¢) along
the fault. (2) Determine a uniform steady state of the system such
that v(&, 1) = vy and (&, t) = 6. Defining such a steady state re-
quires that constant slip at rate vy be imposed on extensions of the
fault along the £-axis (i.e. backslip loading). (3) Obtain a linearized
system of equations by computing the Jacobian matrix J of the
nonlinear system and evaluating it at the uniform steady state so
that Jy = J(vo, 6). (4) Determine the stability of the linear system
by examining the eigenvalues of J,. If any eigenvalue has a positive
real part then the system is unstable.

Step 1. For quasi-static sliding, the velocity of the fault is gov-
erned by a balance between frictional resistance 7 = uo and the
shear stresses resolved upon the fault © = 7y + 7, where 7 is the
change in shear stress due to gradients in slip along the fault, and
7o is the shear stress on the fault in the absence of any slip. As with
the shear stress, the normal stress on the fault is 0 = oy + 0. The
stress balance changes in time as to = Tz — uog, and by making
use of eq. (1), the sliding velocity of the fault can be written as

tp — uog bé)]

6.0 = F0.0) = = [7 - ®)

o [%
The evolution of the state variable can simply be written as
0(&, 1) = H(v, 0), since only the aging and slip laws are consid-
ered here and both state variable laws have the same linearization
(e.g. Ruina 1983). The nonlinear governing equations for v(£, ) and
O(&, t) are now represented by the functions F(v, #) and H (v, 6).
When sliding is quasi-static, the changes in shear and nor-
mal stress are functions of the slip distribution 8(£, ¢), so that
tx = T(§,8) and o = N(&, §). The functions 7'(&, §) and N (&, §)
are the stress change functions mentioned in the Introduction. These
functions must be determined by solving the appropriate 2-D elas-
ticity problem for a given fault geometry (see Appendix C for
example) and contain all necessary information about the elastic
response of the system. These functions also have the property that
tr = T(§,v)and 6 = N(§, v) (e.g. Viesca 2016a, b). Both T'(, §)
and N (&, §) are equal to zero if there is no slip gradient.

Step 2. The uniform steady state of the system satisfies the
conditions F(vg, 6p) = 0 and H(vo, 6p) = 0. Assume that the en-
tire fault is sliding at steady state with velocity vy, such that
T(&,v9) = N(&, vo) = 0. This requires that the fault is subject to
boundary conditions v(0, t) = v(L, t) = vy, and for nonzero v, im-
plies that constant sliding at v, prevails on extensions of the fault
along the £-axis (see dotted, red lines in Fig. 1). For both the aging
and slip laws, H(vg, 6p) = 0 when 6y = d./vy. These conditions
satisfy F(vg, 6p) = 0, so the uniform steady state of the nonlinear
system is (vo, d./vo).

Step 3. To linearize the equations about the uniform steady state,
first define

(6)

1) — [v(s,r) - vo}

9(5, t) - 90

where w(&, t) is a small perturbation away from (v, 6p). Now the
linearized equations can be written as w = J,w. The Jacobian ma-
trix Jy is most conveniently expressed in terms of the dimensionless
variables: 7 = (vy/d.)t, D = v/v, and 0 = (vo/d.)0, such that the
uniform steady state becomes (0o, @0) =(1,1). Then J, can be
written as

kN [(Z) [4F: — ol +1] (2) 1} .
P |k o I wa
a0 96

where £y = F (Do, éo), Hy = H (Do, @0), 1 is the identity matrix and
7 and N; denote derivatives with respect to 0. Some additional
mathematical steps are provided in Appendix A. The dimensions of
Jo will depend on whether the Jacobian is treated analytically or
numerically.

Step 4. The eigenvalues and eigenvectors of J, determine so-
lutions to the linearized system (W = Jow) of the form w(§, ¢)
w(k&)e?". The eigenvectors w(k€) represent small spatial perturba-
tions of wavenumber £ to the uniform steady state. The eigenvalues
p are the corresponding growth rates of those perturbations. If all
of the eigenvalues of J have a negative real part then the system
is linearly stable. If any eigenvalue has a positive real part then the
system is linearly unstable (e.g. Strogatz 2018).

2.1.1 Analytical stability analysis

For analytical results, I — 1 in eq. (7) and J, can be treated as
a 2 x 2 matrix. Then the eigenvalues are found by solving the
characteristic equation of Jy, such that

PA[l=2C+D]p= ()T =0, T=3T—ple). ©

The eigenvalues do not need to be explicitly determined in cases
where 7, and N, are purely real functions. Instead, the stability of the
system can be determined from conditions on det(Jo) = —(b/a)l’
and Tr(Jo) = (b/a)(T + 1) — 1, where det() and Tr() denote the
determinant and trace of the matrix, respectively. The system is
unstable if either Tr(Jy) > 0, or det(Jy) < 0 (e.g. Strogatz 2018,
fig. 5.2.8); however, for all of the cases examined in this paper
det(Jy) > 0. The trace instability condition can be written as

b 1 A -
(,) [,(Tﬁ_,LON,;Hl] ey ©)
a b

Eq. (9) can be used to obtain analytical stability results. For example,
in a spring-slider system N, =0 and 7, = —K, where K is the
spring stiffness. Then solving eq. (9) for K will yield the usual
relation for the critical spring stiffness (see Appendix B1).
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Figure 1. Diagrams of the fault system geometries used in this paper. In each panel a fault of length L is located by the solid red line; the dashed red lines are
extensions along the &£-axis. (A) A fault in an infinite full-space, where the x- and &-axes coincide. (B) A fault at a depth d, parallel to a traction-free surface;
both infinite and finite length systems are considered. (C) A fault dipping at an angle S relative to a traction-free surface, with its up-dip edge at a depth d. In

panels B and C, the traction-free upper surface is defined by y = 0.

Analytical results can be obtained for faults in a 2-D medium
by specifying the functional form of the spatial perturbation w(k§).
For infinitely long faults there are no restrictions on the values of
k because the fault has no boundaries. Then the general solution to
the linear equations is

oo

w(, 1) = / A(k)exp (pt + ik&)dk, (10)
—00

where A(k) is determined by a Fourier transform of the initial con-

ditions w(&, 0) (Pivato 2010).

For a finite length fault with a uniform steady state velocity vy,
the sliding velocity must remain v, at the boundaries and so w(k&)
must be equal to zero at the boundaries. If the fault is defined over
& = [0, L], the general solution to the linear equations that satisfies
these boundary conditions is

WE 1) =Y A sin(nmé /L), (11)
where the constants A4, are determined by Fourier series expansion
of the initial conditions (Pivato 2010). The allowable wavenumbers
are k =nm/L (for n =1, 2, ...), analogous to the normal modes
on a vibrating string. Thus, the possible values of & are discrete on
a finite length fault and scaled by the fault length L, and this has
important consequences for the stability behaviour.

The general solutions for an initial perturbation given by eqs (10)
and (11) also reveal why there is no condition on the spatial extent of
a small perturbation for linearly unstable sliding. Since eqs (10) and
(11) both represent a superposition of mode numbers, instability
will occur for any initial perturbation w(&, 0) that contains wave-
lengths that have a positive growth rate p. For example, consider
an infinitely long, velocity-weakening fault such that the critical
perturbation wavelength is given by eq. (4). Any set of initial con-
ditions w(£, 0) that contains wavelengths larger than /7. will have
a positive growth rate and so be linearly unstable. Now consider a
perturbation from steady sliding in the form of a finite delta func-
tion, such that w(&, 0) = € at& = 0, where € is some small constant,
and otherwise w(&, 0) = 0. This set of initial conditions is unstable
because it contains all wavelengths, since its Fourier transform is
a constant. Since the finite delta function has no width, this means
that there is no minimum slip patch length required to generate a
linear instability. The same type of argument applies to finite faults
as well and is further illustrated in Sections 3.1 and 3.2.

2.1.2 Numerical stability analysis

To conduct a linear stability analysis numerically, the fault can
be discretized into n, elements of length d&é. Then J, becomes
a 2n, X 2n, block matrix where in general the upper-left block

FY2) /00 is dense and the other blocks are sparse diagonal matrices.
In discrete form, the functions 7'(§, v) and N(&, v) become linear
operators on the slip velocity. For example, 7'(§, v) — Z";;l Tijv;
and T, — T;;, where T}; is an n, x n, matrix and v; is a vector of
length .. All numerical results in this paper were obtained using a
piecewise constant discretization of the stress change functions by
assuming that slip is constant over regularly spaced elements along
the fault.

The stability condition given by eq. (9) is only valid for 2 x 2
matrices (e.g. Luis 2021). The eigenvalues must be explicitly cal-
culated for numerical analysis (e.g. Viesca 2016a, b; Ray & Viesca
2017; Viesca 2023). The eigenvalues and eigenvectors can be di-
rectly computed using standard numerical routines; here the MAT-
LAB functions eig and eigs are used. Numerically computing the
eigenvalues will indicate if a fault system is stable or unstable for
the specific set of RSF, elastic and geometrical parameters that de-
fine the system. Determining the conditions (if any) where stability
changes requires an iterative assessment of the stability for different
parameter values. In this paper, critical fault lengths are determined
using a bisection method to locate values of L where the stability
changes (to within £d& /2) while other properties are held constant.

2.2 Nonlinear simulations

In Section 3.2 the results of a limited set of simulations of the full
nonlinear governing equations are presented to confirm some of
the linear stability results. In these simulations the fault is loaded
such that the steady state slip velocity along the entire fault is equal
to vy = 107 ms~!. These simulations use the aging law for state
variable evolution and rather than eq. (1), use the regularized form of
the rate and state friction equation (Rice & Ben-Zion 1996; Lapusta
et al. 2000)

(v, 0) = a sinh™! [(21) exp (M)] . (12)

Vo a

In discrete form the stressing rate balance at the centre of each fault
element is

ioi + T = Z Tij(vj — vo) — s Z]vij(vj — ), (13)
j=1

J=1

where /¢ is found from eq. (12) and 7, is the radiation damping
approximation for the inertial stressing rate (Rice 1993). The gov-
erning eq. (13) with eq. (12) and the aging law were solved along
the entire length of the fault using a boundary element method im-
plemented in MATLAB (see Data Availability statement for code
availability).
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Figure 2. (A) Critical faults lengths L* normalized by /47 for the thin layer (cyan) and by /7, for strike-slip/full-space (magenta) systems. The dotted lines
correspond to expressions as shown in the legend; the squares are numerically determined boundaries as described in Section 2.1.2. Grid spacing for numerical
calculations: d¢ = L, /80 for full-space and dé = L /80 for thin layer. (B) Wavelengths of the highest unstable mode number as a function of the fault length
for the thin layer system, for a/b = 0.5. Both the wavelengths and the fault lengths are normalized by the critical wavelength /7 . The black line shows the
analytical result given by eq. (18), the cyan squares show the numerically determined wavelengths. For all calculations L, = 1600 km; for thin layer calculations

d =0.01L.

3 RESULTS

Results are presented first for a finite length fault that is parallel to a
traction-free surface, using a thin-layer approximation for the stress
change functions. Analytical results are obtained for the thin-layer
system, which provide insight into more complicated systems; re-
sults from numerical stability analysis for this system are presented
as well. Next results are obtained numerically and semi-analytically
for vertical strike-slip faults, as well as faults in an infinite full-
space. Finally, dip-slip faults of any orientation in a system with a
traction-free surface are examined.

3.1 Thin layer approximation

Consider a fault of length L that is parallel to a traction-free surface
at a depth d (Fig. 1 B). In general, this system will have a non-
zero N (&, v) for in-plane sliding (see Section 3.3). However, when
d < L, =d.G'/(boy) then N(§,v) =0 and the change in shear
stress is (Viesca 2016a)

9%
E

TE, v)= (dE/)a?z,

26 e
N =t in-plane sliding. (14)
G, anti-plane sliding .

Note that eq. (14) is a special case of the stress change function
for a dipping fault geometry illustrated in Fig. 1(C), as described in
Section 3.3. The critical wavelength for an infinitely long fault in
this system is (Viesca 2016b)

de'd, 7'?
oo(b — a)]

_ 27TLbh
T (1 —a/b)¥’

0y =2 [ (15)

where L,, = /dE'd./(boy) (see Appendix B3.1).
Due to the simplicity of eq. (14), analytical results for the critical

fault length and the wavelengths of unstable modes can be obtained
for finite length faults in this system. By assuming a solution for
v(&,t) of the form of eq. (11), the normalized derivative of the

shear stress change function becomes 7 /b = —(nm Ly, /L) (see
Appendix B3.2 for details). Then via eq. (9) the instability condition
for the fault length becomes

- ni Ly, _ nhy ' (16)

(1 —a/b)l/? 2
Since the right hand side of eq. (16) is smallest at n = 1, the critical
fault length is

h*
Ly = 7L . (17)
Eq. (17) indicates that the fault becomes unstable when it is long
enough that the wavelength A of the first mode (n = 1) of eq. (11)
becomes equal to A =27/ k = 2L = hj.

The critical fault length L7 can also be numerically determined
using the method described in Section 2.1.2. In this case by choosing
avalue of a /b then computing the stability of the system for different
values of L. Then the critical fault length coincides with the value
of L where the stability changes. Fig. 2(A) displays the results of
this process for nine different values of a/b and shows that the
numerically determined values of L7} agree with eq. (17).

As the fault length increases above L , progressively higher mode
numbers will become unstable and the wavelength of the highest
unstable mode number will approach £} as L — oco. From eq. (16),
the total number of unstable modes that a fault can host is ny =
FI(2L/ h7), where Fl(q) gives the greatest integer less than or equal
to some quantity g. The wavelength of the highest mode number n
as a function of the fault length is

L2
"I FIQL/RE)

L

and Llij;[oloknT =hj. (18)

Eq. (18) predicts that A,, > A7 and approaches 4] with a type of
saw-tooth pattern as L — oo (Fig. 2B). This result can also be
confirmed numerically by computing the wavelength of the eigen-
vector for the highest unstable mode as a function of the fault length
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of the perturbation. The approximate critical fault lengths are marked by crosses and the vertical black, dashed line indicates L/h7, = e~!. Grid spacing for

simulations: d§ = L, /80.

for L > L7; (Fig. 2B). The close agreement between the analytical
and numerical analyses both validates the numerical method and
confirms the behaviour for finite length faults.

It is important to emphasize again that there is no minimum slip
patch length required to generate an unstable sliding event for faults
longer than L7 . Since eq. (11) is a sum over all mode numbers,
instability will occur for any set of initial conditions that contains a
mode with a positive growth rate p. For example, consider a fault
in the thin layer geometry with length L = L7, so that one unstable
mode exists with wavelength A = /7. Following the argument at
the end of Section 2.1.1, an initial perturbation consisting of a finite
delta function will be unstable, since the delta function can be rep-
resented as a sum over all mode numbers and therefore contains the
unstable mode. This implies that there is no minimum perturbation
length required to initiate a linear instability.

3.2 Vertical strike-slip faults in a half-space and full-space
faults

Now consider a fault of length L embedded in a homogeneous
full-space (Fig. 1A). For this system N (&, v) = 0 and the change in
shear stress is given by (e.g. Segall 2010)

G L/2 9v/9
/ v/ sds

T(E,v):E L2 s—&

(19)

This stress change function is also valid for a vertical strike-slip
fault in a half-space, in which case the integration is taken over
[d,d + L]and G’ = G (Fig. 1C with 8 = 90°). Eq. (19) takes the
form of a Hilbert transform for an infinitely long fault (L — o0).
Then the critical wavelength /7. given by eq. (4) can be obtained
from eq. (9) after applying a Fourier transform (see Appendix B2.1).

Analytical analysis using Fourier transforms cannot be applied to
finite length faults due to the finite integration interval in eq. (19).

However, the critical fault length can be obtained semi-analytically
by using some results from Uenishi & Rice (2003) to solve eq. (9)
(e.g. Ciardo & Viesca 2024). Details are provided in Appendix B2.2.
The stability analysis can also be conducted numerically in the same
manner as for the thin layer system, using the method described
in Section 2.1.2. Both the semi-analytical and numerical stability
analysis (Fig. 2A) show that the critical fault length for the full-space
system is

Lt~ hife. (20)

Eq. (20) is an approximate equality in the absence of fully analytical
results.

Eq. (20) is also supported by simulations of the full nonlinear
governing equations following Section 2.2. The goal of these simu-
lations is not to study nonlinear behaviour, but to confirm the linear
stability results by using the full governing equations to simulate
the growth or decay of an initial small perturbation from steady
state. Fig. 3 shows the results of six sets of simulations using three
values of a/b and two values of L,. Nine simulations, each with a
different fault length, were run for each pair of (a/b, L;) values.
In these simulations the initial conditions were set to the uniform
steady state values, except for one element at the centre of the
fault where v(§ = 0,7 = 0) = 0.99v,. Hence the spatial extent of
the initial perturbation is as small as the numerical discretization
allows. Three additional sets of simulations for L, = 1.6 km were
conducted with the perturbation applied to a single element at the
edge of the fault.

The simulations were run until either consistent oscillations of
maximum slip rate on the fault developed (i.e. a limit cycle),
or the sliding velocity reached a uniform steady state such that
v(&, t) = vy. The critical fault length for each pair of (a/b, L,) val-
ues lies in the interval of fault lengths that separate growth and
decay of the initial perturbation, as indicated by the maximum
slip velocity. These critical fault lengths (normalized by 47.) are
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Figure 4. Critical fault lengths L7, for thrust and normal faults as a function of dip angle 8, burial depth d and friction coefficient 9. Critical fault lengths
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to e~! to within 0.8 per cent.

0.37125 £ 0.00125 for a/b = 0.3, 0.7 and 0.37375 £ 0.00125 for
a/b = 0.5. These critical fault lengths are within 2 per cent of the
value given by eq. (20), and there is no dependence on the value of
L, or the location of the perturbation (Fig. 3).

Since the perturbation was restricted to a single fault element,
the element length places an upper bound on any possible pertur-
bation length scale required to initiate linear instability. The ele-
ment length is set to d6 = L,/80 in all of the simulations, and
for the values of a/b used in Fig. 3 this corresponds to element
lengths of d§ =~ h}./838 to h}, /359, since hy, = L,/(1 —a/b).
These results further illustrate that /7. should not be interpreted as a
minimum patch length needed to initiate a linearly unstable sliding
event.

3.3 Dip-slip faults

Consider in-plane sliding on a fault that is dipping at an angle §
relative to the traction-free surface of a homogeneous, elastic half-
space (Fig. 1C). The up-dip edge of the fault is buried at a depth
d below the traction-free surface. Both the full-space and parallel
fault geometries are special cases of this dipping fault geometry.
The full-space geometry is obtained when d — o0, and the parallel
fault geometry is obtained when d # 0 and g = 0.

Stress change functions for the half-space geometry are available
in the literature (Dmowska & Kostrov 1973; Freund & Barnett 1976;
Rudnicki & Wu 1995), and can be written as

I+L a
T(E ) =/l WG, f)oods @1)

where / = d/sin(f), and W(z, B) is an analytic function of the
complex variable z = x + iy (England 2003). A similar expression
holds for N(&, v). A derivation of these functions is presented in
Appendix C. Note that these stress change functions are equivalent

to using the Okada (1992) solutions for the middle of a very long
dip-slip fault (e.g. Liu & Rice 2007).

3.3.1 Velocity-weakening behaviour

Critical fault lengths L7, for the dipping geometry can be deter-
mined by choosing a burial depth d and dip angle 8 and then
conducting a numerical stability analysis as described in Sec-
tion 2.1.2. Changing the value of L for fixed values of d and B
corresponds to changing the down-dip depth of the fault. The sta-
bility calculation was repeated for dip angles in the range g = 0°
—90° and burial depth values d/h% =0, 1073, 1072, 1071, 1 (the
value d = 0 was omitted for § = 0°). This process was carried out
for values of oy = 0.2, 0.6, 1, for both thrust and normal faults
(Fig. 4).

The critical fault length L7}, approaches the full-space value given
by eq. (20) as d — h7.. Therefore L}, = L3 at depths d > A}, and
Fig. 4 shows critical fault lengths for both thrust and normal faults
in any possible orientation. For burial depths d < A7}., the critical
fault length is approximately a log-linear function of d (Fig. 5A).

The critical fault length L7, depends on the dip angle in a manner
that is different for thrust and normal faults. There is also a sec-
ondary dependence on the value of u that depends on the sense
of slip. For both thrust and normal faults, L7, increases with dip
angle up to a value of 20° — 40°, depending on the burial depth and
sense of slip. For thrust faults, L7, then decreases to a secondary
minimum before increasing again as g — 90°. For normal faults,
L7, reaches a maximum value then decreases as 8 — 90°. Increas-
ing the value of u, decreases L7}, for thrust faults, and does the
opposite for normal faults. Values of L}, can become quite small on
shallowly dipping faults that are near to the traction-free surface.
In particular, as B — 0° on faults that break the surface (d = 0),
L% /h% — 1072 on normal faults and appears to approach zero on
thrust faults.
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The dependence of L7}, on B and p( can mostly be explained
by considering the on-fault stressing rates due to a uniform slip
velocity distribution Av on a dipping fault of length L with burial
depth d = 0. The elastic stressing rate on the fault is i — uog
(see Section 2.1, Step 1), which can be computed by evaluating the
stress change functions at the centre of the fault & = L/2 (e.g. Kato
& Hirasawa 1997). The stressing rate has a dependence on § and
Wo that shares some of the same features as that of L7,; including
similar behaviour as 8 — 0° and 8 — 90°, and the same style of
dependence on ji, for thrust and normal faults (Fig. 5B).

The stressing rate calculation also provides an explanation for
why values of L7, become very small at shallow dip angles. Sliding
instability develops when the frictional weakening rate /¢ is greater
than the elastic stressing rate. The elastic stressing rate is approxi-
mately proportional to /L for dip angles less than about 10° —20°
(Fig. 5B). Then for a given set of frictional parameters, when the
dip angle is small only shorter length faults can relieve elastic stress
faster than the frictional weakening rate. This leads to the results
displayed in Fig. 4.

3.3.2 Velocity-strengthening behaviour

As noted in the Introduction, it is possible for unstable behaviour to
occur on velocity-strengthening faults when a coupling between slip
and normal stress exists, that is, when N (&, v) # 0. The parameter
space for the dipping fault geometry is large; the stability behaviour
can be expected to depend on frictional and elastic parameters jt,
a/b, Ly;burial depth d; dip angle 8 and fault length L. Additionally,
while normalization by /47 accounts for dependence on RSF and
elastic parameters for velocity-weakening behaviour, 47 does not
exist on velocity-strengthening faults. Therefore the results in this
section are restricted to an infinitely long fault that is parallel to a
traction-free surface, which reduces the parameter space to (g, a/b
and a normalized burial depth d/L,. In this case eq. (8) can be used
to determine the stability of the system (see Appendix B4 for stress
change functions and details).

Fig. 6 shows the results of choosing values of o and d/L,,
then determining the maximum value of (a/b). = (a/b) > 1 that

satisfies Re(p) > 0 in eq. (8). One striking feature of the results
is that unstable behaviour only exists at depths greater than some
minimum value that is very well approximated by

d=Q2/w) Ly .

The details of obtaining eq. (22) are provided in Appendix B4.
At shallower depths there are no unstable solutions to eq. (8) for
(a/b) > 1. This shallow, stable region is not related to the thin layer
limit that occurs atd /L, < 1. Where unstable behaviour occurs, for
constant p there is depth at which (a/b),. reaches a maximum value.
While for constant d/L,, values of (a/b). increase monotonically
with g, so the velocity-strengthening instability is enhanced when
friction is higher.

An extensive parameter study to determine the effects of fi-
nite fault length and dip angle is beyond the scope of this study.
However, some insight can be gained by examining the critical
wavelengths that correspond to the values of (a/b).. Each value
of (a/b). shown in Fig. 6(A) occurs at some critical wavenum-
ber k. that is in the neighbourhood of k./d ~ 1 regardless of
the value of (a/b). (Fig. 6B). By analogy with the velocity-
weakening results, if L* &~ h*/e = 27 /(ek.), then for any set of
values [uo, (a/b).,d /L] taken from Fig. 6(A), the fault length
would have to be L > 2w d /e for unstable behaviour to occur.

(22)

4 DISCUSSION

4.1 Some theoretical considerations

A main result in this paper is that the linear stability of frictional
sliding depends on overall fault length. The critical fault length L*
for finite length faults replaces the concept of the critical wavelength
h* for infinitely long faults. For vertical strike-slip faults or faults in
a full-space L* ~ h7. /e (Section 3.2), while for dip-slip faults the
critical fault length is a function of the dip angle and burial depth
(Section 3.3). For sliding systems that can be treated as a thin layer,
L* = h} /2 (e.g. landslides, glaciers or ice streams; Section 3.1).
Velocity-weakening faults are linearly unstable if they are longer
than L*, in the sense that an infinitesimally small perturbation to the
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steady state will grow exponentially until the linear approximation is
no longer valid. The results also illustrate that there is no minimum
length scale associated with initial perturbations, leading to the
conclusion that the critical patch length /. obtained from spring-
slider models does not have any relevance to the linear stability
behaviour of finite or infinite length faults in an elastic continuum.
This may explain why studies of length scales related to nonlinear
stability and nucleation behaviour have not found any connection
with /. (e.g. Rubin & Ampuero 2005; Ampuero & Rubin 2008).

The concept of a critical fault length also leads to a new definition
of conditional stability. Velocity-weakening faults that are shorter
than L* are conditionally stable in that they are stable in the linear
regime, but large perturbations out of the linear regime could gen-
erate unstable sliding events (e.g. Gu ef al. 1984). In the classical
model of fault stability, regions of a fault are assigned stability prop-
erties (stable, unstable or conditionally stable) based on the linear
stability analysis of a spring-slider system and variations in (¢ — b)
along the fault (Scholz 1998, fig. 2). The results in this paper make
use of fault systems with constant values of (@ — b); however the
numerical method for linear stability analysis can easily be applied
to systems where the frictional properties vary along the fault. Thus,
it is possible to obtain linear stability results for heterogeneous fault
systems as a whole, rather than apply results from spring-slider sys-
tems to individual sections of a fault. The linear stability of such
fault systems can be expected to depend on geometrical aspects
(e.g. dip angle, burial depth) as well as the frictional properties in
both the velocity-weakening and velocity-strengthening portions of
the fault (e.g. Skarbek e al. 2012; Dublanchet et al. 2013; Ray &
Viesca 2017; Yabe & Ide 2017; Luo & Ampuero 2018).

4.2 Influence of the free surface and burial depth

Proximity to a traction-free surface, as measured by A}. or L,,
has a significant influence on stability properties. Since both 77
and L, are inversely proportional to effective normal stress, the
normalized burial depths in Figs 4 and 6 are smaller on faults
with high pore fluid pressure. This means that the influence of
the free surface is enhanced on overpressured fault systems. High
pore pressure leads to smaller normalized critical fault lengths,
but larger values of /7. If the burial depth is less than 47, then

the free surface will influence the stability behaviour. This effect
should be important in the shallow regions of subduction zones
and in areas of induced seismicity where pore pressures can be
elevated. Particularly on subduction megathrust plate boundaries,
the combination of shallow dip angles and high pore pressures
should lead to very small normalized critical fault lengths.

The effect of shallow burial depth on unstable behaviour for
velocity-strengthening faults is more complicated. A fault parallel
to the free surface should be the most unstable geometry for a
non-zero burial depth d, since on a dipping fault the depth from
the traction-free surface will increase with down-dip distance. The
values of (a/b). for the infinite fault system in Fig. 6(A) are close
to velocity-neutral, so it seems reasonable to assume that values
of (a/b). would be even closer to unity on finite length, dipping
faults that are buried. However, the velocity-weakening results show
that intersecting the free surface causes a significant reduction in
stability; L7,/ . decreases logarithmically with decreasing d/ h’..
So it is possible that values of (a/b). may be larger on dipping
faults where d = 0. Certainly more work is needed to understand
this behaviour.

Multiple effects have been described that can cause unstable
sliding on velocity-strengthening faults: contrasting elastic param-
eters across a fault (Rice er al. 2001; Ranjith 2014); poroelastic-
ity (Heimisson et al. 2019); ‘fault valve’ behaviour (Ozawa et al.
2024); and proximity to a traction-free surface (this paper; Aldam
et al. 2016). All of these features are commonplace in fault sys-
tems as well as in other frictional systems like landslides and ice
streams. For example, all of these effects could be present in the
shallow regions of subduction zones and may contribute towards
enabling shallow slow-slip events (e.g. Saffer & Wallace 2015),
or influencing the behaviour of tsunami earthquakes (e.g. Bilek &
Lay 2002).

5 CONCLUSION

The results in this paper show how even simple types of geomet-
rical complexity can change stability behaviour. Using numerical
methods makes it possible to conduct linear stability analyses for
a wide range of fault systems that cannot be examined using an-
alytical techniques. Some examples of systems for which stress
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change functions are available in the literature are multifault sys-
tems and non-planer faults in a 3-D homogeneous elastic half-space
(Okada 1992; Meade 2007). Functions are also available for differ-
ent types of viscoelastic geometries (e.g. Segall 2010; Lambert &
Barbot 2016). Heterogeneous on-fault frictional properties can be
used with any existing stress change functions (e.g. Ray & Viesca
2017). Finally, numerical stability methods could also be extended
to include dilatancy and changes in pore pressure, or other types of
frictional constitutive behaviour (e.g. Segall & Rice 1995; Chen &
Spiers 2016; Barbot 2022).
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APPENDIX A: LINEARIZATION OF RSF
EQUATIONS

Additional mathematical details are provided here for obtaining the
Jacobian matrix given by eq. (7). First, using eqs (2) and (5), the
linearized equations can be written as

. 0Fy n aF 0
v=—|)v —
av a0
v\ [ 1 [ 0tp 36\ b bvy
— )| = — —mo— — — )6, Al
<a)|:cro( v M >+dc]v+(adf (AD

. aH() 3H0 1 Vo
9=<E>“+<W)9=‘<a)”‘(z>9' (42)

Eqs (A1) and (A2) can be used to define a dimensional Jacobian. The
elements of eq. (7) are obtained after changing to the dimension-
less variables defined by 7 = (vy/d,)t, b = v/v, and 6 = (vo/d.)0.
Dimensionless stress change functions are obtained by normalizing
stresses by oy. So for example, iz = T'(§,v) = (aovo/dc)f".

APPENDIX B: ANALYTICAL LINEAR
STABILITY RESULTS

B1 Spring-slider
The shear stress change in the basic spring-slider model is
g =Ky —v), (B1)

where K is a normalized spring stiffness with units of [Stress /
Length]. Using the same dimensionless variables defined in A, the
dimensionless shear stress change function is

d.K

0o

7() = 1=19). (B2)
Inserting the derivative of eq. (B2) with respect to v into eq. (9) and
setting the left-hand side equal to zero yields the critical stiffness
K. =oy(b—a)/d..

B2 Full-space

B2.1 Infinite fault

For infinite faults the critical wavelength can be found by searching
for solutions of the form v(&,¢) = A exp(pt + ik&). For a full-
space, the shear stress change function can be found by substituting
this expression into eq. (19), for L — oo; this is essentially the
method used by (Rice ez al. 2001):

G’ o t+ik

T, v) = ikd [ — / wd& (B3)
2 ) J_ o s —&

After making a change of variables u = s — &, eq. (B3) becomes

G’ o ik
ik (—)Aexp(pt-{—iké)/ wdu
2 o u

= (”‘%) v, (B4)

where the integral in the first line is a Fourier Transform of 1 /u and
is equal to imwsgn(k). Using the previously defined dimensionless
variables, but leaving k in dimensional form, the critical wavenum-
ber k. from eq. (9) is

(£)(-22

which leads to eq. (4) since the critical wavelength is defined as
W=, =27/ k..

T, v)

)-1:0, (BS)

B2.2 Finite fault

The critical fault length for a finite fault in a full-space can be found
by first normalizing eq. (19) and inserting the result into eq. (9).
Again using the previously defined dimensionless variables and also
normalizing lengths by L /2, eq. (19) becomes

’ 1 an 3
Gde / 0008 g5 (B6)
wool Joy 5§ —&

T, 9=
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Substituting this result into eq. (9) and rearranging terms yields

a1 ['ad/os L
—A*f Toa| =i (B7)
0| ) §—¢ h.
Finally, integrating eq. (B7) with respect to ¥ provides an equa-
tion for the critical fault length

7/ 8v/8s (TL’L
iy

- ) () . (B8)

Note that the negative sign on the right-hand side of eq. (B7) has
been absorbed into the denominator of the integral argument in
eq. (BS).

Eq. (B8) is in the form of an eigenvalue equation where 7w L/ h’.
is the eigenvalue and (£) is the corresponding eigenvector. Note
that this eigenvalue equation is distinct from what is described in
Section 2.1. The critical fault length is found from the smallest
eigenvalue of eq. (BS)

Erv1158~—. (B9)
hy. e

The numerical factor in eq. (B9) has previously been determined by
Uenishi & Rice (2003); see eqs (12) and (13) and Appendix B1 in
that paper (see also Appendix B in Ciardo & Viesca 2024). Finally,
solving eq. (B9) for L provides the critical fault length given by

eq. (20).

B3 Thin layer

B3.1 Infinite fault

The critical wavelength for the thin layer system can be found by
following the same procedure for the full-space system, but using
eq. (14) for the shear stress change function.

2

T v) = [UE) 7 g A exp(pr +ikE)] = —dE'Kv. (B10)

Using the dimensionless variables as before, eq. (9) becomes
b

(7) [1—(Lmko)’]—1=0,
a

with Ly, = /dE’d./(boy) (Viesca 2016b). Solving eq. (B11) for
the critical wavelength leads to eq. (15) for 47 .

(B11)

B3.2 Finite fault

For a finite fault the deviation of the sliding velocity from steady
state takes the form v(&, ) — vy = a, e’ sin(nm&/L). After substi-
tuting this into eq. (14), the shear stress change becomes

T(E,v) = —dE’ (%)2 a,e’ sin(nmé/L) = —dE’ (%)2 v,
(B12)

such that
a , (nTT
T, = S-T(.v) = —dE (L) .

Eq. (B13) can be normalized using the dimensionless quantities
defined in Appendix A and remembering that 7 has units of
[stress/time], then

YA—'{) _ }’lﬂLbh 2
b L '

(B13)

(B14)
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as in Section 3.1. Finally, the critical fault length is obtained by
substituting eq. (B14) into eq. (9), which yields eq. (16).

B4 Velocity-strengthening layer

The stress change functions for in-plane sliding on an infinitely long
fault that is parallel to a traction-free surface at a depth d are (e.g.

Viesca 2016a)
— G ” 1 - > _g
T, v) = 3 (I—V),/;oo{s_é 442 + (s — £)?
8d*(s — &)
[4d> + (s — £P]
4d*(s — &)’ —48d*(s —§)| dv
[4d> + (s — £°F } " o
and
__ G < [32d° — 24d%(s — £)° | dv
NEV= iy /x{ [4d> + (s — &7 } "
(B16)

The stability of this system is most easily determined after applying
a Fourier transform. Using the Fourier transform pair:

70 = Fifwl = [ fewe e (B17)
fx)=F'[f(h] = / fkye™dx, (B18)
eqs (B15) and (B16) become
Tk, v) = — (G |k|> {1 =M1 = 2d|k| + 2(dk)*]} ¥

(B19)
and
Nk, D) = —i G'k(dk)*e 2y (B20)

where tildes denote transformed quantities. Note that these func-
tions are provided by Viesca (2016a) using a different transform
pair.

The eigenvalues p can then be computed from eq. (8) after defin-
ing ' = (l/b)(T — ,uON ) using eqs (B19) and (B20). Using the
dimensionless variables, and also defining k=dk yields

o () [ s i
(B21)

The resulting equation for p is complex and depends on the values of
(a/b),(L,/d), v and the dimensionless wavenumber k. The results
in Fig. 6 were obtained through an iterative process by solving for
p numerically as a function of k for chosen values of L, /d and pg.
For each pair of values (L, /d, o), p(lAc) was first determined for a
value of (a/b) < 1, which guarantees that Re[ p(lAc)] > ( for some
value of &; numerical tests showed that the maximum value of p(l:t)
occurs in the vicinity of k ~ 1. This process was then repeated for
incrementally larger values of (¢ /b) until Re[ p(lAc)] < 0 forall values
of &, which determines the values of (a/b). shown in Fig. 6(A).

The minimum depth for unstable behaviour can be approximately
determined by solving for p for a specific value of k. From the results
in Fig. 6(B), the stability boundary occurs at k ~ 0.5, so that

(D) (5]

(B22)

Gzoz Iudy g1 uo 1senb Aq 5886208/928/2/1 vz/e1one/B/woo dno-ojwspese//:sdiy woly pepeojumog



838  R.M. Skarbek

Additionally, that stability boundary occurs at (a/b) = 1. With these
values of k and (a/b), eq. (8) becomes

()5 ()
()

Now p can be solved for using a procedure described in Rice
et al. (2001). First, Fig. 6 indicates that for a constant value of
o, the real part of p changes sign as d/L, increases from zero.
The sign change occurs at p = ip; substituting this into eq. (B23)
yields

-1 -1
o (e Ly 2—e)L,
[ P ( 8d )" t T Ra

(L, 2—¢! oe ! _
—1(;)[( 3 ),0-{- 3 :|—0. (B24)

Eq. (B24) is satisfied when both its real and imaginary parts are
equal to zero. Setting the real part equal to zero provides an equa-
tion for p in terms of g and (L,/d):

—1 _ 2 _
woe Ly 1 [ e 'L, 2—e L,
S e L [ - . (B25
p ( 16d ) 2/( 8d ) 2d (B25)

Finally, inserting eq. (B25) into the imaginary part of eq. (B24) and
setting it equal to zero provides an equation for d/L as a function
of 1y. The best way to execute this final step is using a symbolic
math program. The solution is

d 1 [@Qe—1)1—2e) {2V
fb_§[u—é_l]+l/4~(5>' (B26)

APPENDIX C: DIP-SLIP FAULTS

Consider an edge dislocation in a 2-D homogeneous elastic body.
The dislocation induces displacement and stress fields through-
out the elastic body that can be represented in terms of two
complex potentials, w(z) and 2(z), that are analytic functions of
z (e.g. England 2003; Bower 2009). The complex coordinate z
is defined as z = x +iy =re'® where (r, ¢) are radial coordi-
nates with ¢ measured from the x-axis in the direction of the
y-axis.

For the dipping fault system shown in Fig. 1(C), the fault is
located at By = — 8 along [ <r <[+ L, where [ = d/ sin(B)
(also note that & = r). The stress change functions can be obtained
by considering a distribution of dislocations along the fault, and
computing the shear and normal stresses that these dislocations
induce on the fault itself. The first and most important step is to
determine the complex potentials for a single dislocation placed
at zg = roe’, with Burger’s vector be’® = b cos(By) + ib sin(By)
(e.g. Freund & Barnett 1976).

In the x-y plane the stress and displacement fields are given by:

o +0,=2[Q0@)+Q07)] . (ChH
oy —ioy = Q(2) + Q(2) +22"(2) + '(2) (€2)
2G(u, +iuy) = (3 — 4)Q2) — 29(2) — w(z) , (C3)

where primes denote derivatives with respect to z, and bars denote
complex conjugates (e.g. section 2.5 in England 2003). The dis-
placements are denoted by u,, u,; the normal stresses by o, and
o, and oy, is the shear stress. The normal and shear stresses on the

fault can be obtained in the radial coordinate system, in which case
the stresses are

o, +0,=2 [Q/(z) —+ Q’i(z)] , (CH
0y — 0,y = () + V(@) + e [z (2) + ' (2)] (Cs)
2G(u, +iug) = e H?[(3 — 4v)Q(2) — zQ'(z) — w(2)] . (C6)

For a half-space with a traction-free surface at y = 0, z = x, the
potentials can be written as

Q(2) =Q@) + (), oz =w(z)+ (), (€7

where Qy(z) and wy(z) are the potentials for a full-space, and so
will produce tractions along z = x; while ©(z) and w,(z) are addi-
tional potentials that clear the tractions along z = x. The full-space
potentials are given by (e.g. Bower 2009, section 5.3.12)

Q(z) = yIn(z - z0) , (C8)
00(z) =7 In(z — z0) — >, (€9)
Z—Z
where
i Ghe'fo
y=_2%¢ (C10)
4(1 —v)

The additional potentials can be found using a variety of meth-
ods (e.g. Dmowska & Kostrov 1973; Freund & Barnett 1976).
Here, the additional potentials are computed using the process of
analytic continuation (e.g. section 3.5 in England 2003), and are
given by

Q(2) = —z(3@) — w3, (C1D)

w1(2) = zwy(z) — Qo(2) + z2H(2) + ZZQg(E) . (C12)

Substituting these definitions for €2,(z) and w;(z) into eqs (C7)
along with the results for €2y(z) and wy(z), the potentials for an edge
dislocation in a half-space are:

Qz)=yn [Z _f"] _Ye-z) (C13)
Z—Z Z—Zy

o) =7 |22 |- YR vE 7 (20 —720)2 (Cl4)
zZ—2Z zZ—2zy Z—2Zp (z —zo)?

Note that eqs (A4) and (AS5) in Rudnicki & Wu (1995) are the
derivatives of eqs (C13) and (C14).

The normal o, and shear 0,4 stresses on the fault due to a single
dislocation are given by the real and imaginary parts of eq. (C5),
evaluated using eqs (C13) and (C14) at values of z corresponding
to =By and [ <& <[+ L. For a distribution of dislocations
along the length of the fault, the resultant Burger’s vector between
neighbouring points & and & + d§ is b = (398/0&)dé, where 8(§)
is slip on the fault (Freund & Barnett 1976; Weertman 1996). The
stress change functions are found by integrating over the length of
the fault, such that

I+L )
T(E,8) =— /l Im {Q'(z) + Q'(z) + e 7 [zQ"(2) + &/ (2)]}

06
x —ds, (C15)
as

I+L - ) o
N(E,8) = fl Re {Q'(2) + Q'(2) + e *[zQ"(2) + o/ (2)]}

a6
x —ds, (C16)
as
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where the potentials are evaluated using eqs (C13) and (C14) at
z = £e'P0 and zy = seo. Finally, note that it is possible to write the
integrands in eqs (C15) and (C16) explicitly in terms of & and S,
however the resulting expressions are extremely cumbersome [see

Stability of dip-slip and finite faults 839

for example eqs (13) in Freund & Barnett (1976); eqs (3.1)—~3.2)
in Dmowska & Kostrov (1973); or eqs (A6)—(A11L) in Rudnicki
& Wu (1995)]. For numerical computations it is most concise to
compute the stresses using the individual equations listed above.
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