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Highlight 
The primary objective of this review is to examine the environmental and genetic factors that 

contribute to heat and drought stress tolerance in crops. It also assesses the limitations of current 

breeding programs and models, and discusses emerging technologies and interdisciplinary 

approaches for developing climate-resilient crops. These innovations aim to sustain agricultural 

productivity amid increasing extreme weather conditions. 

 
Abstract 
Global crop production faces increasing threats from the rise in frequency, duration, and intensity of 

drought and heat stress events due to climate change. Most staple food crops, including wheat, rice, 

soybean, and corn that provide over half of the world's caloric intake, are not well-adapted to 

withstand heat or drought. Efforts to breed or engineer stress-tolerant crops have had limited 

success due to the complexity of tolerance mechanisms and the variability of agricultural 

environments. Effective solutions require a shift towards fundamental research that incorporates 

D
ow

nloaded from
 https://academ

ic.oup.com
/jxb/advance-article/doi/10.1093/jxb/eraf111/8068105 by U

niversity of W
isconsin System

 user on 18 April 2025



Acc
ep

ted
 M

an
us

cri
pt

 

 

realistic agricultural settings and focuses on practical outcomes for farmers. This review explores the 

genetic and environmental factors affecting heat and drought tolerance in major crops, examines 

the physiological and molecular mechanisms underlying these stress responses, and evaluates the 

limitations of current breeding programs and models. It also discusses emerging technologies and 

approaches that could enhance crop resilience, such as synthetic biology, advanced breeding 

techniques, and high-throughput phenotyping. Finally, this review emphasizes the need for 

interdisciplinary research and collaboration with stakeholders to translate fundamental research 

into practical agricultural solutions. 

Keywords 
abiotic stress tolerance, agricultural productivity, climate change, climate-resilient crops, drought 

stress, field-to-lab-to-field, genetic engineering, heat stress, high-throughput phenotyping, plant 

breeding 

 

Introduction 
Global crop production is increasingly threatened by worsening drought and heat stress events 

(Lengnick, 2015). Since the 1960's, heat waves have dramatically increased in frequency, duration, 

and intensity in the US (United States Environmental protection Agency) (Fig 1A). Further, drought 

and heat waves often occur together and the combination of both is the third most costly event in 

the US out of 7 disaster types (Smith, 2020) (Fig 1B). The IPCC predicts that heat and drought waves 

will occur more frequently with increases in both duration and intensity this century (‘IPCC WGI 

Interactive Atlas’) (Fig 1C). 

 Billions of the world’s population continue to experience hunger (Cooper et al., 2021) and 

remain vulnerable to climate-related crop failures and decreasing food affordability (Caparas et al., 

2021). Most of our current food crops (Awika, 2011) are not adapted to heat (Zhao et al., 2017) and 

drought (Santini et al., 2022) (Fig 1D), which can be detrimental to sustaining agricultural yield with 

increasing extremes in weather. Most current crops are vulnerable to temperatures above 35 ºC 

(Hatfield et al., 2011; Hatfield and Prueger, 2015), a temperature threshold expected to be crossed 

more frequently in the future (‘IPCC WGI Interactive Atlas’) (Fig 1D). Even sorghum, a crop originally 

domesticated in Africa and considered to be relatively heat tolerant, decreases its biomass and seed 

yield at temperatures beyond 40 ºC (Prasad et al., 2006). 

 Efforts to breed or engineer stress-tolerant crops have had limited success in both commercial 

and research contexts. This is largely due to the complexity and diversity of tolerance mechanisms 

and variation in agricultural production systems. Genetically modified plants with improved 

resilience in lab settings often fall short when tested in multi-location field trials (Braun et al., 2010). 

Further, field-based selection of advantageous genes or alleles do not always prove effective when 

moved from model to crop plants or from reference genotypes to elite germplasm. This discrepancy 

is thought to come from limitations of field approaches that cannot test all the possible 

combinations of growing conditions and varieties within a specific area (Anten and Vermeulen, 2016; 

Casadebaig et al., 2016).  
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 To increase robustness of agricultural productivity under drought and heat, it is crucial to 

understand how crops experience stress and incorporate realistic features of agricultural systems 

into plant research. This approach will necessitate a paradigm shift towards conducting fundamental 

research in field settings or having the results of applied research in the field drive directions of 

fundamental research in the lab. To be successful, this shift will require greater emphasis on projects 

with results that can be implemented by farmers. 

 In this review, we examine the complexity of molecular mechanisms in plants under heat and 

drought stress. We also cover limitations of current models and breeding programs in translating lab 

findings to field conditions. Finally, we discuss technologies and approaches that could help usher in 

a ‘field to lab to field’ research paradigm in studying plant resilience against adverse climate 

conditions.   

 
How heat and drought stresses are experienced in today’s 
agricultural systems 
Heat and drought stress risk varies by geography (‘IPCC WGI Interactive Atlas’) and crop production 

system. Societies will adapt to the stresses imposed by climate change by shifting production to new 

locations and modifying their agricultural system practices. Widely-used crop production systems 

today include large-scale, high-input field-based farms (Glossary), high-input greenhouse systems 

(Glossary), vertical multi-layer farming systems (Glossary), and small-holder farming operations 

(Glossary) (Dimitri and Effland, 2020). Farmers operating in each of these systems face unique 

challenges with regards to managing heat and drought stress experienced by their crops (Cohn et al., 

2017; Elias et al., 2019; Ghani et al., 2019; Ghoulem et al., 2019; Hein et al., 2021; van Delden et al., 

2021) (Fig 2).  

 In rain-fed (non-irrigated) systems, which are the dominant farm type globally, summer heat and 

mis-timed rainfall present a perennial challenge. The magnitude of crop stress experienced will be 

impacted by management decisions. Beyond a crop’s genotype, soil texture, quality, and chemistry 

can affect rooting intensity (Nunes et al., 2021). These soil features affect transpiration and 

evaporation rates, which alter crop temperature (Nagel et al., 2009). Because soil features influence 

rooting depth and rooting intensity (Glossary), they affect access to soil water and the risk of 

drought stress. In moisture-limiting environments, improvements in various rooting-associated 

phenotypes are expected to provide the greatest benefit (Maqbool et al., 2022). Various 

management choices, including planting date, planting depth, the type and amount of fertilizers 

applied, and the rate and chemistry of herbicides used, also will influence rooting depth, intensity, 

and initial shoot growth. 

 In irrigated systems, heat and drought stress can be partially mitigated by watering, but the 

quality, timing, placement, and rate of watering will determine the amount of heat and drought 

stress experienced and whether soil quality would be affected over time (e.g. through salinization) 

(Yang et al., 2023). In contrast, controlled-environment agriculture, i.e. greenhouses and vertical 

farms, aims to mitigate stress through precise environmental control to reduce or eliminate the 

frequency and intensity of abiotic stress such as drought and heat. In an indoor production setting, 

plants are limited by their inherent temperature range rather than by their environment. Currently, 
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vertical farm operators use crop cultivars bred for the field and greenhouse due to limited 

germplasms bred or engineered to be optimal for indoor production (SarathKumar et al., 2020). For 

example, crops with varying temperature requirements are grown in a fixed-temperature 

environment, leading to inefficient yield maximization. For water resources, breeding new cultivars 

with improved water and nutrient use efficiency without negative impact on yield is needed for both 

indoor and outdoor production. This may require specific traits such as improved root and shoot 

architecture, anatomy, metabolism, and physiology. These improvements could enhance the cost-

effectiveness of crop production, as water and energy for irrigation are major expenses, particularly 

in indoor farming.  

 
Complexity of physiological, cellular, and molecular responses 
to heat and drought stress 
Few stress-tolerant crop varieties have been commercially developed due to the complex nature of 

heat and drought stress and the challenges of integrating effective resilience traits. Drought 

conditions reduce water availability, which leads to turgor loss, cellular dehydration and membrane 

destabilization (Yang et al., 2021). Heat stress disrupts protein stability through denaturation (Jarzab 

et al., 2020), which impairs enzyme function and subsequently leads to metabolic imbalances 

(Mittler et al., 2012; Xu and Fu, 2022). Heat stress also affects membrane fluidity and permeability 

by altering lipid composition or the interactions between lipids and membrane proteins. (Niu and 

Xiang, 2018). Under both stresses, carbon fixation is impaired and elevated levels of reactive oxygen 

species (ROS) are produced (Sato et al., 2024). Both stresses can also induce structural changes in 

chromatin and DNA methylation (Probst and Mittelsten Scheid, 2015) leading to transcriptional 

changes in stress-responsive genes (Kim et al., 2015). Active histone marks are enriched on many 

drought-responsive genes (Kim et al., 2015) and histone modification such as acetylation and 

sumoylation are involved in thermal stress response (Kim et al., 2015). Modification in DNA 

methylation also plays an important role in the transcriptional regulation of drought and heat-

responsive genes (Talarico et al., 2024). Plants are particularly susceptible at the reproductive stage 

(Cohen et al., 2021) where heat and drought stress irreversibly reduce flower number, increase 

ovule and seed abortion, disrupt pollen formation, and reduce grain filling (Giorno et al., 2013; Sage 

et al., 2015; Djanaguiraman et al., 2018; Wang et al., 2019; Lamin-Samu et al., 2021; Santiago et al., 

2021; Sinha et al., 2021). 

 Plants employ a suite of strategies at the tissue, cellular and molecular levels to mitigate 

negative impacts of heat or drought stress and repair damages caused by these stresses. A suite of 

signaling cascades initiate tolerance mechanisms, involving abscisic acid (ABA) (Kim, 2014), calcium 

(Shao et al., 2008), reactive oxygen species (ROS) (Furlan et al., 2016), Mitogen-Activated Protein 

Kinases (MAPKs) (Chen et al., 2021), phospholipids (Liang et al., 2023), the Unfolded Protein 

Response in the endoplasmic reticulum (Manghwar and Li, 2022), and epigenetic regulations (Chang 

et al., 2020). A suite of hormones, including auxin, cytokinin, gibberellin, ethylene, salicylate, 

brassinosteroids, and jasmonate, also regulate and fine-tune plant responses to drought and heat 

stress (Burgess and Huang, 2016; Li et al., 2021). Heat Shock Factors (HSFs) are a group of 

evolutionarily conserved proteins in all eukaryotes with complex regulatory networks and are central 

regulators of heat stress responses (Haider et al., 2022). Heat Shock Factors increase the expression 
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of Heat Shock Proteins (HSPs) and chaperones that protect other proteins against denaturation 

under high temperatures (Khan and Shahwar, 2020; Mondal et al., 2023). Targeting HSFs and HSPs 

by genetic engineering improved thermotolerance in several plant species (Fragkostefanakis et al., 

2015).  

 Following the transduction of heat and drought stress signals, plants synthesize 

osmoprotectants (Zulfiqar et al., 2020), specialized (secondary) metabolites (Akula and Ravishankar, 

2011), and proteins such as Late Embryogenesis Abundant (LEA) proteins (Chen et al., 2019) and 

Dehydrins (Tiwari and Chakrabarty, 2021; Smith and Graether, 2022). To limit oxidative damage, 

ROS-scavenging compounds are generated and antioxidant enzymes are activated (Chen et al., 2017; 

Zhao et al., 2018; Hasanuzzaman et al., 2019). These mechanisms enable plants to recover faster and 

with less damage during the vegetative stage compared to the reproductive stage, particularly if the 

stress is moderate and short-lived (Mahalingam and Bregitzer, 2019; Ruehr et al., 2019; Cohen et al., 

2021). Moreover, during vegetative growth, moderate stress followed by a recovery can prime the 

plants to promote subsequent tolerance to stress (Wang and Huang, 2004; Bruce et al., 2007; 

Jacques et al., 2021). 

 The combination of heat and drought stress is more damaging than either stress alone, yet the 

molecular responses to combined stresses and their effects on agronomic traits remain 

understudied (Lawas et al., 2018; Cohen et al., 2021; Sato et al., 2024). Heat and drought frequently 

occur together, triggering overlapping and sometimes contradictory responses. For example, 

stomata close to conserve water during drought but open for evaporative cooling under heat stress. 

This contradiction highlights the challenges of developing enhanced tolerance to both heat and 

drought simultaneously (Zandalinas and Mittler, 2022). 

 

How drought and heat stress responses are modeled 
Models can serve as useful tools for predicting effects of climate change on crop productivity and 

identifying engineering and breeding strategies to improve growth. Crop models that simulate entire 

fields, such as Agricultural Production Systems sIMulator (APSIM) (Glossary) or Functional Structural 

Plant Models (FSPM) (Glossary), predict crop yield under heat and drought stress (Eyshi Rezaei et al., 

2015; Ndour et al., 2017; Ababaei and Chenu, 2020; Braghiere et al., 2020).  

 Crop models simulate heat and drought stress by adjusting the rates of processes like 

photosynthesis, biomass partitioning, grain filling, respiration, and senescence in response to 

temperature and water availability (Messina et al., 2015; Feng et al., 2019; De Swaef et al., 2022). 

Stress response functions scale the rates of these processes based on optimal condition thresholds 

(Ewert et al., 2015; Zhao et al., 2019) (Fig 3). For instance, cumulative mean daily temperature drives 

the rate of development and time to maturity in the CERES-WHEAT and SIMPLE crop models such 

that higher temperatures will accelerate development (Jones et al., 1983; Zhao et al., 2019). In the 

context of drought, the ARID index is used to calculate the level of drought stress using values for 

evapotranspiration, precipitation, soil surface runoff, and drainage (Woli et al., 2012; Feng et al., 

2019; Zhao et al., 2019). These stress response functions are derived from constant heat or drought 

stress experiments (Seidel et al., 2018; Horie, 2019; Wallach et al., 2021) and not across a range of 

stress durations or severities. Moreover, drought and heat stress sensitivity varies across 
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developmental stages, necessitating stress response functions that can dynamically simulate erratic 

heat waves and droughts across a crop’s entire lifespan. For example, modeling heat stress as a 

function of cumulative mean daily temperature can under-represent short term extreme heat stress 

in crop models (Sun et al., 2021). A recent study compared the heat stress response functions used 

in 14 different rice crop models that differ in how heat affects grain filling and setting (Sun et al., 

2021). They found that current rice crop models underestimate the effect of short term heat stress 

after flowering at the early grain filling stage and proposed an updated heat stress response function 

which improved yield predictions. This study highlights the need for more comparative research to 

assess the effectiveness of stress response functions that account for dynamic stress events. 

 To improve stress response functions, Machine Learning (ML) algorithms and statistical models 

are being incorporated into crop models (Jin et al., 2016) and are becoming increasingly popular for 

predicting crop yield under stress (Crane-Droesch, 2018; Cai et al., 2019; Leng and Hall, 2020; 

Shahhosseini et al., 2020; Lischeid et al., 2022; Newman and Furbank, 2022). For instance, an ML 

algorithm (Droutsas et al., 2022) was added into a crop model to predict variables such as radiation 

use efficiency and harvest index based on weather data, eliminating the need for stress functions 

described above. In addition, combining statistical models with crop models improved prediction 

accuracy by 20% (Everingham et al., 2016; Pagani et al., 2017; Shahhosseini et al., 2021). Moreover, 

a study that combined a popular crop model, APSIM, with a random forest model (Glossary) 

improved accuracy by 33% in predicting wheat yield during extreme climate events in South Eastern 

Australia (Feng et al., 2019). The authors predicted that crop models may be underestimating yield 

losses during extreme climate events by up to 10%, highlighting the need to improve stress response 

functions in crop models (Feng et al., 2019). These studies exemplify how combining multiple models 

can further improve yield predictions under extreme stresses. 

 
Current challenges and opportunities 
Breeding new crop cultivars that are more resilient to heat and drought stress will be essential to 

meet our food, fiber, and energy needs. To rapidly meet the demand, plant research must effectively 

address the following challenges and capitalize on the opportunities that new technologies offer to 

expand our understanding and accelerate translation. 

 
A gap between fundamental and translational research 
Despite extensive fundamental research into the mechanisms of plant stress tolerance to heat and 

drought, developing commercial crops with superior traits remains challenging (Mittler and 

Blumwald, 2010; Van Montagu, 2011; Gilliham et al., 2017; Purugganan and Jackson, 2021).  

 Synthetic biology, a bioengineering approach that designs, redesigns, and assembles biological 

elements to develop novel functions, offers new perspectives for large-scale protein engineering 

(Engqvist and Rabe, 2019) and crop improvement (Sargent et al., 2022). For instance, CRISPR/Cas 

technology can be used for targeted genome modification to generate novel desirable variations 

(Scheben et al., 2017). Directed protein evolution, which involves the generation of a large set of 

diverse protein sequences that are screened for desirable properties, is another promising and 

powerful approach for crop improvement (Engqvist and Rabe, 2019). Directed protein evolution 
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(Mueller-Cajar and Whitney, 2008; Carmo-Silva et al., 2015), synthetic biology (Kubis and Bar-Even, 

2019), and CRISPR-based genome editing (Sami et al., 2021) were attempted to engineer plants with 

superior heat or drought resilience capabilities. In addition, strategies involving agronomic practices 

such as application of compatible solutes (Wang et al., 2014), plant growth promoting rhizobacteria 

(Ahluwalia et al., 2021), and mycorrhizal fungi (Wu and Zou, 2017) were also attempted. However, 

studies showing successes in engineering heat or drought resilient traits are scarce. Most efforts to 

commercialize transgenic lines with superior drought tolerance have focused mainly on maize, 

resulting in eighteen lines. Very few such lines exist for other crops. There are two lines in soybean, 

three in sugarcane, and one in wheat (‘ISAAA’s GM Approval Database’). To our knowledge, no heat-

tolerant commercial lines are available. 

 This limited success in translating fundamental research to the field may be due to the 

differences between lab-controlled conditions and actual field environments. Fundamental research 

performed in growth chambers or greenhouses is often not tested subsequently under field 

conditions. Yet, real life scenarios involve crop exposure to variable environmental conditions (e.g. 

of light, temperature, moisture) throughout the day and the life cycle of the plant, and interactions 

with other organisms (Mittler and Blumwald, 2010; Poorter et al., 2016; Langstroff et al., 2022). A 

significant bias arises from the choice of soil and pots used in greenhouses, which differ significantly 

from most field environments (Heinze et al., 2016; Forero et al., 2019). Greenhouse soil mixes used 

in controlled environments may not accurately represent field soils. Additionally, growth chamber 

experiments conducted in pots can have different ventilation and water holding characteristics from 

field soils resulting in different root architecture. The size of the pots used in growth chamber or 

greenhouse experiments also have an effect on plant growth. Therefore, phenotypes observed in 

such contexts may not translate well to field conditions. 

 Another reason for the slow pace of progress may be the complexity of response mechanisms to 

drought and heat stress. Plants respond to stress differently based on their age, as well as the 

duration and severity of the stress. Responding to these stresses involves many genes, some of 

which may have antagonistic effects when stresses are combined, complicating the breeding 

selection process (Snowdon et al., 2021). In addition, the polygenic nature of these traits makes it 

challenging to identify the causal genetic determinants. Furthermore, trade-offs between growth 

and stress tolerance (Zhang et al., 2020), as well as between moderate and severe stresses (Kusmec 

et al., 2023), can complicate the development and selection of ideal traits. Tolerance to abiotic 

stresses can be associated with reduced growth (Darychuk et al., 2012) or a reduced resistance 

against biotic stresses (Silva et al., 2019). Similarly, increased tolerance to moderate heat stress in 

maize hybrid lines was associated with reduced tolerance to severe heat stress (Kusmec et al., 2023). 

Such trade-offs present significant challenges to breeding crops that can withstand variable climates. 

 
Limitations in using genomic selection  
Genomic Selection (GS) accelerates the breeding cycle by using predictive models, offering a faster 

and more cost-effective alternative to traditional breeding programs (Heffner et al., 2010; Crossa et 

al., 2017). Moreover, recent studies have demonstrated that GS can predict complex traits with a 

high degree of accuracy (Merrick and Carter, 2021). However, GS requires extensive genotypic and 

phenotypic data to feed into the training models to obtain a higher level of prediction of the 
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estimated breeding value (Glossary). Additionally, GS’s accuracy depends on the availability of 

molecular markers, statistical models, field management, breeding schemes, and size and quality of 

testing and training populations (Rabier et al., 2016; Xu et al., 2020). In breeding programs of field-

grown crops, the availability of large data sets is still limited, resulting in only moderate prediction 

accuracy. Furthermore, GS for indoor production is currently not feasible due to the lack of data 

from indoor-grown populations. Ultimately, the quantity and quality of training and testing 

populations are critical for achieving higher GS prediction accuracy (Rabier et al., 2016). 

 
Limitations of models 
The biggest limitation to modeling heat and drought stress in plants is the lack of availability of data 

for model input and validation. FSPMs can be used to aid researchers in identifying important 

phenotypic traits for resilience, which can be parameterized to a specific genotype (Hammer et al., 

2006; Yin and Struik, 2010; De Swaef et al., 2022). However, their biggest challenge is finding the 

data required for parameterization, such as measurements of organ width, length, thickness, and 

angles (Wang et al., 2020). Moreover, when the mechanisms responsible for a biological process are 

uncertain, modeling it becomes challenging. Uncertainties in parameters, as well as the timing and 

impact of stresses on growth and related processes, lead to the inclusion of assumptions in models. 

Parameter uncertainty is difficult to avoid due to the complex biological networks that underlie plant 

growth. 

 In addition, because crop models are highly parameterized, they are prone to overfitting and can 

be difficult to generalize. Translating predictions across different crop species and production 

regions is challenging due to variations in factors such as light, precipitation, altitude, soil quality, 

and microbiomes. Species and location specificity limit the ability to compare models, hindering 

efforts to improve prediction accuracy. Furthermore, crop models incorporate simplified equations 

to represent complex processes such as grain setting, soil water potential, biomass partitioning, and 

sensitivity to heat and drought stress (Feng et al., 2019; Sun et al., 2021). These simplifications may 

fail to capture short-term or extreme climate events accurately. Simulating a broader range of 

environmental perturbations is essential for testing the robustness and generalizability of the 

models. 

 
Breeding limitations of cumulative and combined stresses 
Conventional plant breeding is a widely used methodology where crops are selected over 

generations based on desired traits. Unfortunately, this approach can take years to achieve a stable 

climate-resilient variety. Modern technologies such as gene editing, genomic selection, marker 

assisted selection, and high-throughput phenotyping reduce the time required to release new 

varieties, but increase the cost (Lamichhane and Thapa, 2022). In addition, modern breeding 

approaches have not effectively addressed cumulative stress conditions that have notably increased 

in frequency and intensity (Choudhary et al., 2022; Lamichhane and Thapa, 2022). Major limitations 

include the genetic erosion (loss of genetic diversity) that diminishes variation and ability to adapt to 

multiple stresses and the limited ability for breeders to monitor critical traits for tolerance to stress 

combinations in a short period (Hein et al., 2021; Khoury et al., 2022). 
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Breeding limitations for indoor farming 
New developments in climate control, lighting, and automation enabled the growth of the 

Controlled Environment Agriculture (CEA) (Glossary) industry or indoor farming. However, crops well 

suited to greenhouse and vertical farms are limited. Field-bred cultivars are commonly used in 

indoor farming due to the limited availability or lack of cultivars specifically developed for indoor 

production (SharathKumar et al., 2020). In a well-designed climate-controlled indoor farm, 

environmental fluctuations seen outdoors are almost non-existent. The climate stability of indoor 

farming opens up a new niche of plant breeding focusing on desirable traits for indoor production 

including small plant architecture and stature, rapid development, improved aroma, flavor and 

texture, and robust temperature range. Breeding programs for indoor farming should prioritize traits 

that align with the specific conditions and limitations of CEA infrastructure, while also enhancing 

crop quality. For example, robust temperature ranges of crops like basil and spinach, which require 

high and low temperatures respectively, would allow co-cultivation in a single growing area without 

compromising yield potential of each crop. For a thorough review of breeding new CEA cultivars for 

plant architecture and compounds, see (Folta, 2019). 

 
Promising strategies to enhance heat and drought tolerance in 
crops 
Developing heat and drought resilient plants poses numerous complex challenges, as outlined 

above. We propose strategies to address these challenges and accelerate finding solutions through 

innovations from fundamental research, emerging technologies, and societal paradigm shifts (Fig 4). 

 
Improving crop tolerance through fundamental plant resilience research 
Engineering and breeding programs have had limited success in creating heat and drought tolerant 

crops for field conditions (Fig 5A). Innovative strategies are needed to bridge the gap between lab 

results and field performance and to accelerate the translation of research into practical 

applications. 

 Understanding plant responses in the natural environments where they evolved may provide 

valuable insights. Wild relatives of domesticated crops (Tanksley and McCouch, 1997) and naturally 

resilient plant lineages such as extremophiles (Eshel et al., 2021; Alwutayd et al., 2023; Prado et al., 

2023) offer a rich reservoir of genetic resources and novel mechanisms for heat and drought 

tolerance. One approach of leveraging these genetic resources is to identify and transfer desirable 

traits and genes from wild relatives or extremophiles to non-adapted crops. This approach has been 

most commonly used to breed biotic stress tolerance into crops, though drought tolerance was 

introduced for barley and rice cultivars from their wild relatives (Hajjar and Hodgkin, 2007). Several 

crops, including tomato, alfalfa, cowpea, and groundnut, have close relatives that exhibit drought 

and heat tolerance (Kapazoglou et al., 2023), making them promising targets for this approach. An 

alternative strategy is to re-domesticate heat and drought resilient wild relatives by introducing 

known domestication genes into the wild species (Lemmon et al., 2018; Zsögön et al., 2018; 

Gasparini et al., 2021). These strategies highlight the potential of harnessing wild relatives and 
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naturally resilient lineages to enhance crop adaptation to heat and drought stress, offering a 

sustainable path forward in addressing the challenges posed by climate change. 

 Another strategy to accelerate the development of drought- and heat-adapted plants is to 

identify traits associated with heat and drought tolerance from field observations. This strategy 

requires high-throughput, multi-modal measurements in the field but does not necessitate a 

complete understanding of the underlying molecular processes (Richards, 2006). For example, plant 

phenotyping under field conditions identified root and shoot traits that could be important to confer 

drought tolerance in soybean (Fenta et al., 2014) and potato (Wishart et al., 2014), as well as heat 

tolerance in cotton (Karademir et al., 2012) and maize (Liu et al., 2022). This approach allows for the 

rapid identification of critical traits that can be directly targeted for breeding. Since results from 

controlled conditions may not always apply to the field, more studies should include field 

evaluations to identify the most reliable traits for drought and heat tolerance. Chlorophyll 

fluorescence, membrane integrity, and enzyme activity may serve as reliable traits for heat tolerance 

in both controlled and field environments for cotton and tomato (Cottee et al., 2010; Wu et al., 

2014; Poudyal et al., 2018). Field trials across different locations and seasons with varying heat and 

drought stress events should be routinely incorporated into evaluations. This approach was applied 

to wheat, which showed that green leaf area retention after heat stress in a controlled environment 

may be a valuable predictor of heat tolerance in the field (Telfer et al., 2018). Screening at the seed 

and seedling stages may also be a reliable strategy to predict drought tolerant rice lines in the field 

(Fatima et al., 2024). Integrating controlled and field evaluations, alongside multi-stage screening, 

provides a comprehensive strategy for identifying reliable traits that can enhance the development 

of heat- and drought-tolerant crops. 

 A significant knowledge gap exists in understanding how gene functions drive phenotype and 

fitness under natural, fluctuating conditions (Purugganan and Jackson, 2021). There is still a lack of 

complete insight into how agronomically important traits develop at the molecular level (Bailey-

Serres et al., 2019; Purugganan and Jackson, 2021). As a result, genes or alleles identified as 

advantageous in model plants and reference genotypes do not always perform effectively in crops 

and elite germplasm under field conditions. To address these limitations, phenomics (Glossary) may 

serve as a key area of development (Chen et al., 2014; Tardieu et al., 2017). Dissecting gene function 

and its regulation of phenotypes in response to heat and drought stress will require understanding 

mechanisms across different organizational scales (plant, organ, cell levels) and developmental 

stages, as well as integrating the effects of environmental fluctuations inherent in a natural 

environment (Purugganan and Jackson, 2021). Fundamental plant resilience research has made 

significant progress in uncovering molecular and physiological mechanisms to support molecular 

breeding and genetic engineering strategies for improving heat and drought tolerance. However, 

these strategies risk reaching a plateau without parallel advances in technology. 

 
Emerging technologies and combinatorial approaches 
Technological advances have become essential to comprehensively assess the impact of heat and 

drought in the field and estimate genetic gain. Tools like remote sensing, machine learning, 

modeling, and large-scale semi-field facilities, as well as their combined application, hold great 

potential for accelerating progress in crop improvement. 
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 High-throughput plant phenotyping technologies, along with sensor and imaging systems, have 

recently made significant strides for a wide range of traits at the whole plant level (Araus et al., 

2018; Chawade et al., 2019; Hein et al., 2021), as well as at the organ and cellular levels non-

invasively (Cobb et al., 2013; Tardieu et al., 2017; Jain et al., 2021; Tanaka et al., 2021). 

Nanotechnology-based sensors that translate plant chemical signals into stress responses offer high 

spatial and temporal resolution (Giraldo et al., 2019). Do-it-yourself methodologies using Raspberry 

Pi technologies offer flexible, robust, and low cost alternatives (Dobrescu et al., 2017; Cho and Yang, 

2023; Ginzburg et al., 2024). High-throughput phenotyping facilities that integrate automation, 

robotics, high-speed computing, and imaging are available in greenhouses or growth chambers 

(Pratap et al., 2015). A complementary approach to field phenotyping has been proposed (Langstroff 

et al., 2022), with some systems already in place under semi-field conditions such as RadiMax for the 

study of root growth (Svane et al., 2019). 

 The extensive data generated by high-throughput phenotyping and imaging present a significant 

bottleneck in data handling and processing, hindering the translation of this information into 

valuable knowledge (Tardieu et al., 2017). Machine learning approaches can estimate phenotypic 

parameters from large datasets (e.g. real-time sensors, historical trends, and omics data) and can 

facilitate crop yield prediction, crop planning and management, genomic crop design, breeding, and 

crop modeling (Mishra et al., 2016; Feng et al., 2019; Abdollahi-Arpanahi et al., 2020; van Dijk et al., 

2021; Droutsas et al., 2022). Models can be used to test a variety of genotypes, environments, and 

management strategies (Chauhan et al., 2021; Hein et al., 2021). Integrating crop models with 

machine learning methods helps disentangle the underlying mechanisms of heat and drought stress. 

The multi-crop model ensemble approach, which combines multiple models to enhance predictive 

power, has been shown to improve yield predictions compared to using individual models (Martre et 

al., 2015; Wallach et al., 2018). There is a growing demand for modeling studies that assess various 

engineered plant traits to determine the minimum number of gene edits required to improve yield 

under drought or heat stress. To improve predictions, it is crucial to increase available data for 

parameterization and validation (Hartig et al., 2011; Wang et al., 2020). It is also important to ensure 

model predictions are robust across a range of environmental parameters to account for the 

variability encountered in field conditions. 

 Synthetic biology is viewed as highly promising to overcome limitations of conventional breeding 

(Sargent et al. 2022). Valuable synthetic biology tools include gene editing such as CRISPR-Cas9, gene 

assembly such as Golden Gate, gene silencing such as RNAi, homing gene drives that increase the 

inheritance of a gene of interest, gene synthesis, and engineered promoters (Sargent et al., 2022). 

Current synthetic biology strategies to improve drought and heat tolerance involve: 1) engineering 

drought inducible CAM or C4 photosynthesis in C3 plants (Kubis and Bar-Even 2019; Yang et al. 2020; 

Lohani et al. 2022), 2) improving CO2 fixation, light harvesting efficiency and photoprotection 

systems (Kubis and Bar-Even 2019; Lohani et al. 2022), 3) engineering metabolic pathways such as 

carbon metabolism, starch metabolism, phenylpropanoid biosynthesis, gamma-aminobutyric acid 

biosynthesis (GABA), and phytohormone biosynthesis and signaling (Liu et al., 2023), or 4) 

engineering root systems and their associated microbiota (Ragland et al. 2024) (Fig 5B). Despite 

rapid DNA assembly throughput, transformation efficiency remains a huge bottleneck in plants 

(Lohani et al., 2022). Novel transgenesis-free functional genomics tools are under development, 

which are based on synthetic biology with RNA viral vectors that enable rapid screening of candidate 

genes (Khakhar et al., 2021). 
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  Combining approaches such as genomic selection, speed breeding (Watson et al., 2018), AI, ML, 

synthetic biology, and metabolic engineering have the potential to substantially accelerate breeding 

pipelines and identify traits that can confer drought and heat tolerance (Varshney et al., 2021; Liu et 

al., 2023). A new smart breeding strategy, coined integrated Genomic-Enviromic Prediction (iGEP), 

used multi-omics data and AI to integrate variation in genotype and phenotype with changes in the 

environment (Xu et al., 2022). The BREEDIT pipeline is an approach that combines gene editing and 

conventional breeding (Lorenzo et al., 2023). This pipeline uses CRISPR constructs targeting multiple 

genes in a network, along with crossing, to generate different combinations of multi-gene edits in 

plants, producing up to 12 gene edits simultaneously. BREEDIT can be used to identify a minimum 

set of genes needed to alter a phenotype and has the potential to accelerate gene-editing based 

breeding and evaluation of multi-gene edits in the field. The integration of these cutting-edge 

technologies and breeding strategies could offer more efficient and precise ways to enhance 

resilience to climate stressors such as drought and heat. 

 
Adoption of systems-based experimental approaches 
To improve agricultural productivity in the face of increasing heat and drought stress, we need to 

recognize why and how crops experience stress in specific agricultural systems under investigation. 

To maximize relevance and utility for crop producers, it is crucial to use protocols that include key 

features of the chosen agricultural system (see Box 1). In addition, all factors influencing plant 

growth and development, which contribute to heat- and drought-related losses, should be 

considered within the context of the specific agricultural system. For instance, native and inoculated 

soil microbes, especially mycorrhizae, can contribute to drought tolerance in plants (Bahadur et al., 

2019). Furthermore, some inputs classified as microbial inoculants or biostimulant products may 

influence how plants sense and respond to abiotic stresses (Baltazar et al., 2021; Martínez-Lorente 

et al., 2024). However, the extent to which such products can supplement host responses to heat 

and drought stress are not yet fully understood and there is some evidence that they may not help 

(e.g. (Franzen et al., 2023)). This may be an area worth exploring scientifically to better understand 

genome x environment x management interactions. Finally, a recent review on plant phenomics, 

emphasizing the need for a systems-based research focus to improve nutrient uptake efficiency 

(York et al., 2022), highlights an approach that is equally relevant for mitigating heat and drought 

stress, considering the critical role roots play in accessing soil water. 

 The traditional approach of translating fundamental plant research from the laboratory and 

greenhouse to the field may need reconsideration. While this pathway has led to crop improvement, 

it has often resulted in limited progress because key factors influencing plant responses were not 

accurately represented in laboratory or greenhouse settings. As a result, many published findings 

may not be fully applicable to the real-world conditions of the agricultural systems they aim to 

improve, potentially slowing progress. Field studies are not inherently more difficult than 

greenhouse studies, but they do require interactions with producers. Collaboration with extension 

scientists and outreach specialists who support commercial producers can help foster stronger 

relationships with those producers. Although unpredictable weather and unforeseen pest and 

disease pressure can complicate field research, careful planning, manageable replication, and 

flexible scheduling can significantly contribute to achieving meaningful results. In addition, while 

high-throughput phenotyping is more challenging in the field than in controlled environments, 
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recent technological advances in data analysis, sensors, robots, and computational resources can 

help overcome these limitations (Ninomiya, 2022). 

 The implications of these ideas may call for a shift in how we approach plant resilience research, 

with a stronger focus on studies conducted in "real-world" production environments. This could 

involve both controlled and natural experiments that consider one or multiple predictor and 

response variables. While fundamental research often begins by studying single factors in isolation, 

it's crucial that all other parameters and variables in the study reflect the real conditions of the 

agricultural system being targeted for improvement. 

 
Collaborations among key stakeholders 
To effectively sustain global food security, it is necessary to establish a research paradigm that 

seamlessly integrates fundamental research with translational and applied research in agriculture. 

For instance, advancements in plant science through genetic modification have demonstrated 

significant potential to increase crop yields and provide nutritional benefits. For example, a 2014 

meta-analysis found that genetically modified crops, such as soybean, maize, and cotton, achieved 

an average yield increase of 22% (Klümper and Qaim, 2014). More recently, genome editing 

techniques like CRISPR have been used to develop tomatoes enriched with GABA, a compound 

linked to health benefits such as reduced blood pressure (Waltz, 2022). Despite such progress, our 

plant science research community today is generally fragmented and siloed, through co-citation, 

funding mechanisms, conferences and societies, and institutional structures (Henkhaus et al., 2020). 

There are tools and resources such as team science approaches that may mitigate these trends 

(‘Toolbox dialogue initiative – starting the dialogue’; National Research Council (U.S.); Committee on 

the Science of Team Science and National Research Council (U.S.); Division of Behavioral and Social 

Sciences and Education, 2015). Ultimately, more stakeholder collaboration will be required to ensure 

the results of fundamental plant science benefit society (Henkhaus et al., 2020). 

  A successful example of collaboration among stakeholders in crop improvement is 

participatory plant breeding (Glossary). First proposed in the 1980s, this program was implemented 

in 69 countries over 36 years, covering 47 crops and involving 140 institutions, including CGIAR 

centers, universities, and NGOs (Ceccarelli and Grando, 2020). In participatory plant breeding, 

farmers, consumers, and breeders work collaboratively, making decisions together throughout the 

entire duration of the program. Participatory plant breeding has been successfully applied for 

decades in Latin America and Africa to meet the needs of underserved farmers (Bhargava and 

Srivastava, 2019; Colley et al., 2021). This approach is especially valuable for underutilized crops, 

which have received less research attention and are often better understood by local farmers. This 

strategy is now garnering more attention in the United States, Canada, and Europe to promote 

knowledge sharing, crop biodiversity preservation, farmers’ seed sovereignty, and organic 

agriculture breeding (Colley et al., 2021). Participatory plant breeding expanded crop diversity 

(Witcombe et al., 1996; Goa and Ashamo, 2017), improved farmers' access to new varieties, and 

increased efficiency in meeting breeding objectives (Eva Weltzien et al., 2006; Goa and Ashamo, 

2017). Yet, challenges remain in securing sustained funding for participating farmers and breeding 

program costs (Goa and Ashamo, 2017), and overcoming barriers to the commercial distribution of 

varieties developed through these programs (Colley et al., 2021).  
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Adding practical experiences to fundamental plant science training 
In recent years, general interest in plants and agronomy has declined (Stroud et al., 2022; USDA, 

2022). This decrease has led to fewer people entering plant science fields and farming. Consequently, 
there is a reduction in practical experience gained in commercial plant production, landscaping, 
greenhouse management, and farming. Now, more than ever, it is essential for fundamental plant 

scientists to gain first-hand experience with the agricultural systems they aim to improve. 

Participation in Extension and Farm Bureau field days, as well as industry and agricultural trade 

shows and farmer-focused conferences could help connect fundamental plant scientists with the 

end users of their research. Some universities operate research farms, but few students and trainees 

participate in their day to day management. Hands-on experience with commercial crop production 

systems, organized as internships with local businesses, farms, and development agencies (e.g. 

Peace Corp, CGIAR centers, etc.) could become a bigger part of training the next generation of plant 

scientists.  

 Although building relationships with people from different walks of life can be challenging, it is 

essential for true transdisciplinary research. Attending farm industry shows that cater to producers 

involved in the systems under study can be a valuable starting point for those who have never 

interacted with farmers before. University and government researchers can also connect with farm 

managers employed by their own institutions or attend field days organized by their departments. 

To make their work more relevant and impactful, it is important for fundamental plant scientists to 

invest time in understanding and communicating with the people they aim to serve, their practices, 

and the reasons behind them. 

 
Conclusion 
The increasing frequency of heat and drought events threatens global crop production and food 

security. While much research has explored plant responses to these stresses, applying this 

knowledge to agriculture remains difficult. Current crop varieties are often ill-suited to extreme 

conditions, and traditional breeding has had limited success. To overcome these challenges, 

fundamental plant research should integrate real agricultural conditions and focus on practical 

outcomes. Technologies such as high-throughput phenotyping and machine learning hold great 

promise, but they require a more comprehensive understanding of plant-environment interactions 

to realize their full potential. Collaboration between plant scientists, agronomists, extension 

scientists, and farmers is key to developing climate-resilient crops for the future. 
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under heat stress. Plant physiology and biochemistry 122, 90–101. 

Zsögön A, Čermák T, Naves ER, Notini MM, Edel KH, Weinl S, Freschi L, Voytas DF, Kudla J, Peres 
LEP. 2018. De novo domestication of wild tomato using genome editing. Nature biotechnology doi: 
10.1038/nbt.4272. 

Zulfiqar F, Akram NA, Ashraf M. 2020. Osmoprotection in plants under abiotic stresses: new insights 
into a classical phenomenon. Planta 251. 

Boxes 
Box 1: Ten questions plant scientists should ask about experimental systems to make their heat 

and drought stress research more relevant to crop producers 

1. What type of farming system (e.g., low input high tunnel, high input greenhouse, low input field, 

high input field) does the experimental set up best represent?  

2. Which natural environmental features (e.g., light, air, water, soil, microbiome) of the farming 

system are being accurately modeled in the experiment?  

3. How do farm management practices (e.g., timing, rate, and placement of fertilizers, herbicides, 

and irrigation) influence the frequency or severity of heat and drought stress on crops? 

4. What are the typical ranges of light, heat, or water limitation experienced by the crops grown in 

the farming system modeled in the experiment?  

5. How does the experimental system reflect diurnal fluctuations in light, heat, and drought stress 

typically experienced by the crop in the modeled farming system?  

6. At what developmental stage(s) do plants in the modeled farming system typically experience 

heat and drought stress?  

7. Does the developmental stage of the plants (e.g., early vegetative, rapid growth, flowering, post-

pollination) influence their response to heat and drought stress in the experiment? 

8. How does the plant's rooting structure impact the plants’ experience of the applied stress? 

9. Does the growth substrate used (e.g., hydroponic, greenhouse potting mix, field soil) affect root 

structure or the flow of water into the plant?  

10. How does the availability of mineral nutrients before, during, and after the applied stress affect 

the plant's stress perception, response, and recovery? 

 

Box 2. Glossary 

● Agricultural Production Systems sIMulator (APSIM) – A crop scale model that can predict 

yield of several crop species under different farming management strategies  

● Controlled Environment Agriculture (CEA) – A system of protected cultivation of crops with 

controlled environments for crop production, ranging from simple hoop houses to advanced 

greenhouses and indoor vertical farms, as well as plant factories with integrated climate 

control and robotics 

● Estimated Breeding Value (EBV) – The genetic potential of inheritance of specific traits 

● Functional Structural Plant Models (FSPM) – Crop growth models that combine physiology 

and plant architecture, using L-systems to simulate the spatial orientation of each organ and 

are applied to simulate an entire field  
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● High-input greenhouse systems – Intensive greenhouse crop production system of large-

scale greenhouse complexes using extensive fertilizers, irrigation, and pest, pathogen, and 

weed management 

● Large-scale, high-input field-based farms – Crop production system in the field with 

extensive use of fertilizers, irrigation, and pest, pathogen, and weed management 

● Multi-layer farming systems – A type of vertical farming system where multiple levels of 

shelves are used to grow plants 

● Participatory plant breeding – a program where stakeholders (usually farmers) collaborate 

with scientists in all steps of the breeding program 

● Phenomics – the study of all phenotypes resulting from gene functions, environmental 

factors, and their interactions 

● Random forest model – A machine learning algorithm that averages multiple decision trees 

to identify key variables linked to data (e.g. phenotypes linked to climatic data)  

● Rooting intensity – density and distribution of roots within the soil, reflecting how vigorously 

a plant grows its roots in a given area 

● Small-holder farming system – A farming operation that involves cultivation of crops in small 

land areas usually up to 5 acres and is typically owned, operated, and managed by a family 

unit 

 
Figure legends 
Figure 1. Increasing patterns of heat and drought stress and their impact on economics and and crop 

reproduction 

(A) Increases in heat wave frequency (i), duration (ii), length of season (iii), and intensity (iv) since 

the 1960s. The data shown consists of the exact values provided by the source, plotted directly 

without smoothing, averaging, or further adjustments. Data accessed from (United States 

Environmental protection Agency). (B) Cost of combined drought and heat events relative to other 

major disasters (Smith, 2020). Total costs are summed over 44 years and divided by the number of 

years to provide an annualized estimate. (C) Average number of days with maximum temperature 

exceeding 35ºC in the contiguous USA. Red line represents the mean of state-level means, with a 

LOESS-smoothed curve. Shaded regions indicate the 95% confidence interval. Data accessed from 

(U.S. Federal Government, 2023). (D) Relative contribution of major staple crops to global caloric 

intake (D’Odorico et al., 2014) and maximum temperature at which each crop results in reproductive 

failure (Hatfield et al., 2011; Asseng et al., 2014; Hatfield and Prueger, 2015). Created in BioRender. 

Holland, B. (2025) https://BioRender.com/s40z874.  

 

Figure 2. Five common agricultural systems, their challenges, and the desirable features needed to 

support their development  

Agricultural systems can be divided into field-based agriculture, including small-holder and large-

scale farms, and controlled-environment agriculture, such as greenhouses and vertical farms (top 

panel). Each system faces unique challenges from increasing drought and heat stress (middle panel). 

Crop traits for improved resilience, water use efficiency, nutrient uptake, and higher yields are 
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essential across all systems (bottom panel). Created in BioRender. Prado, K. (2025) 

https://BioRender.com/j36u724. Figure adapted from  

Lugano, G. (2024). “Environmental Impact on Food Production” template and retrieved from 

https://app.biorender.com/biorender-templates/figures/all/t-65c3edcc7a87c37e94429caf-

environmental-impact-on-food-production. 

 

Figure 3. General framework of how crop models simulate yield under heat and drought stress 

Environmental parameters (e.g., temperature, precipitation) are used as input for models that 

determine rates of key processes (white boxes). These processes contribute to biomass production 

in major organs (leaf, stem, root, and grain). Grain output serves as a predictor for yield. Asterisks 

indicate processes commonly affected by heat (red) or drought (blue) stress in crop models. Created 

in BioRender. Holland, B. (2025) https://BioRender.com/r00k447. 

 

 

Figure 4. Promising strategies to increase drought and heat tolerance in crops and key components 

for each strategy 

Enhancing agricultural productivity under heat and drought stress requires integration of multiple 

strategies (inner circle). Recommendations, example approaches, or stakeholders for each strategy 

are listed (outer circle). Created in BioRender. Prado, K. (2025) https://BioRender.com/o57u383. 

Figure adapted from Ona, S. (2024). “Crop Rotation” template and retrieved from 

https://app.biorender.com/biorender-templates/figures/all/t-65a6f3ec3d4c3616021f8489-crop-

rotation 

 

Figure 5: Engineering heat and drought tolerance traits in crops 

(A) Successful genetic modifications that led to crops that are tolerant to heat and drought (top 

panel), heat (middle panel) or drought (bottom panel). Genetic modification was performed by 

overexpressing target genes if no other strategy was specified between parentheses. Text in bold 

and green indicates that the transgenic lines displayed higher survival rates, higher yield, or 

improved stress tolerance during vegetative and/or reproductive stages in economically important 

crops grown in the field. Abbreviations are listed in Table 1. NAC, bZIP, WRKY, RAB, MBF, MYB, HSF, 

AP2/ERF are transcription factors. (B) Target processes for engineering under development to 

produce heat and drought stress-tolerant crops. Created in BioRender. Prado, K. (2025) 

https://BioRender.com/y73e301 from the results reviewed in Kubis and Bar-Even, 2019; Yang et al., 

2020; Lohani et al., 2022; Liu et al., 2023; Ragland et al., 2024. 
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Table 1. List of abbreviations in alphabetical order 

ABA Abscisic Acid 

AP2/ERF APETALA2/Ethylene-Responsive Factor 

APSIM Agricultural Production Systems sIMulator 

bZIP Basic Leucine Zipper 

C2H2-EAR 
Ethylene-responsive element binding-factor-associated amphiphilic repression domain 
found in C2H2-type zinc finger proteins 

CAM Crassulacean Acid Metabolism 

CCM Carbon-Concentrating Mechanisms 

CEA Controlled Environment Agriculture 

CERES-
WHEAT 

Crop Environment REsource Synthesis WHEAT model 

CGIAR Consultative Group on International Agricultural Research 

CRISPR clustered regularly interspaced short palindromic repeats 

DREB Dehydration Responsive Element Binding factors 

EBV Estimated Breeding Value 

FSPM Functional Structural Plant Models 

GABA Gamma-aminobutyric acid 

GS Genomic Selection 

GTP Guanosine-5'-triphosphate 

HSF Heat Shock Factor 

HSP Heat Shock Protein 

iGEP integrated Genomic-Enviromic Prediction 

LEA Late Embryogenesis Abundant 

LRR-RLK Leucine-Rich Repeat Receptor-Like Kinases 

MAPK Mitogen-Activated Protein Kinase 

MAPKKK Mitogen-Activated Protein Kinase Kinase Kinase 
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MBF Myb-related Binding Factor 

ML Machine Learning 

MYB Myeloblastosis-related 

NAC 
NAM (No Apical Meristem), ATAF (Arabidopsis Transcription Activation Factor), and 
CUC (Cup-Shaped Cotyledon) 

NGO Nongovernmental Organization 

PEPKR Phosphoenolpyruvate carboxylase kinase-related kinase 

RAB Responsive to ABA (Abscisic Acid) 

RNAi RNA interference 

ROS Reactive Oxygen Species 

RuBisCO Ribulose-1,5-bisphosphate Carboxylase/Oxygenase 

RuBP Ribulose 1,5-bisphosphate 

SAM S-adenosyl-L-methionine 

WRKY Named after the conserved WRKY domain in the DNA-binding region 
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Figure 1. Increasing patterns of heat and drought stress and their impact on economics and and crop 

reproduction 

(A) Increases in heat wave frequency (i), duration (ii), length of season (iii), and intensity (iv) since 

the 1960s. The data shown consists of the exact values provided by the source, plotted directly 

without smoothing, averaging, or further adjustments. Data accessed from (United States 

Environmental protection Agency). (B) Cost of combined drought and heat events relative to other 

major disasters (Smith, 2020). Total costs are summed over 44 years and divided by the number of 

years to provide an annualized estimate. (C) Average number of days with maximum temperature 

exceeding 35ºC in the contiguous USA. Red line represents the mean of state-level means, with a 

LOESS-smoothed curve. Shaded regions indicate the 95% confidence interval. Data accessed from 

(U.S. Federal Government, 2023). (D) Relative contribution of major staple crops to global caloric 

intake (D’Odorico et al., 2014) and maximum temperature at which each crop results in reproductive 

failure (Hatfield et al., 2011; Asseng et al., 2014; Hatfield and Prueger, 2015). Created in BioRender. 

Holland, B. (2025) https://BioRender.com/s40z874.  
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Figure 2.  Five common agricultural systems, their challenges, and the desirable features needed to 

support their development  

Agricultural systems can be divided into field-based agriculture, including small-holder and large-

scale farms, and controlled-environment agriculture, such as greenhouses and vertical farms (top 

panel). Each system faces unique challenges from increasing drought and heat stress (middle panel). 

Crop traits for improved resilience, water use efficiency, nutrient uptake, and higher yields are 

essential across all systems (bottom panel). Created in BioRender. Prado, K. (2025) 

https://BioRender.com/j36u724. Figure adapted from  

Lugano, G. (2024). “Environmental Impact on Food Production” template and retrieved from 

https://app.biorender.com/biorender-templates/figures/all/t-65c3edcc7a87c37e94429caf-

environmental-impact-on-food-production. 

 

  

D
ow

nloaded from
 https://academ

ic.oup.com
/jxb/advance-article/doi/10.1093/jxb/eraf111/8068105 by U

niversity of W
isconsin System

 user on 18 April 2025

https://biorender.com/j36u724
https://app.biorender.com/biorender-templates/figures/all/t-65c3edcc7a87c37e94429caf-environmental-impact-on-food-production
https://app.biorender.com/biorender-templates/figures/all/t-65c3edcc7a87c37e94429caf-environmental-impact-on-food-production


Acc
ep

ted
 M

an
us

cri
pt

 

 

 

Figure 3. General framework of how crop models simulate yield under heat and drought stress 

Environmental parameters, (e.g. temperature, precipitation) are used as input for models that 

determine rates of key processes (white boxes). These processes contribute to biomass production 

in major organs (leaf, stem, root, and grain). Grain output serves as a predictor for yield. Asterisks 

indicate processes commonly affected by heat (red) or drought (blue) stress in crop models. Created 

in BioRender. Holland, B. (2025) https://BioRender.com/r00k447. 

 

 

  

D
ow

nloaded from
 https://academ

ic.oup.com
/jxb/advance-article/doi/10.1093/jxb/eraf111/8068105 by U

niversity of W
isconsin System

 user on 18 April 2025



Acc
ep

ted
 M

an
us

cri
pt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Promising strategies to increase drought and heat tolerance in crops and key components 

for each strategy 

Enhancing agricultural productivity under heat and drought stress requires integration of multiple 

strategies (inner circle). Recommendations, example approaches, or stakeholders for each strategy 

are listed (outer circle). Created in BioRender. Prado, K. (2025) https://BioRender.com/o57u383. 

Figure adapted from Ona, S. (2024). “Crop Rotation” template and retrieved from 

https://app.biorender.com/biorender-templates/figures/all/t-65a6f3ec3d4c3616021f8489-crop-

rotation 
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Figure 5:  Engineering heat and drought tolerance traits in crops 

(A) Successful genetic modifications that led to crops that are tolerant to heat and drought (top 

panel), heat (middle panel) or drought (bottom panel). Genetic modification was performed by 

overexpressing target genes if no other strategy was specified between parentheses. Text in bold 

and green indicates that the transgenic lines displayed higher survival rates, higher yield, or 

improved stress tolerance during vegetative and/or reproductive stages in economically important 

crops grown in the field. Abbreviations are listed in Table 1. NAC, bZIP, WRKY, RAB, MBF, MYB, HSF, 

AP2/ERF are transcription factors. (B) Target processes for engineering under development to 

produce heat and drought stress-tolerant crops. Created in BioRender. Prado, K. (2025) 

https://BioRender.com/y73e301 from the results reviewed in Kubis and Bar-Even, 2019; Yang et al., 

2020; Lohani et al., 2022; Liu et al., 2023; Ragland et al., 2024. 
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