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Abstract—We study the one-shot channel coding problem over
classical and classical-quantum channels, where the underlying
codes are constrained to be group codes. In the achievability part,
we introduce a new distribution that incorporates the encoding
homomorphism and the underlying channel law. Using a random
coding argument, we characterize the performance in terms of
hypothesis testing relative-entropies. In the converse part, we es-
tablish bounds by leveraging a hypothesis testing-based approach.
Further we apply the one-shot result to the asymptotic use case
and establish the group capacities for both channels.

I. INTRODUCTION

In this paper, we study channel coding both in the classi-
cal and classical-quantum (CQ) settings. In both problems, the
data to be transmitted reliably are classical, but the channel out-
put of the former is classical in nature, whereas in the latter
it is a quantum state characterized by a density operator. The
channel coding theorems for classical-quantum channels have
been established in [1]-[4].

Due to its algebraic properties, the finite field structure has
been adopted in the coding schemes, over the past several
decades, to approach information-theoretic performance limits
of point-to-point communication [5]-[9]. Later these coding
approaches were extended to weaker algebraic structures such
as rings and groups [10]-[16]. This is motivated by the two
following reasons: a) finite fields exist only for alphabets with
a prime power size, and b) for communication under certain
constraints, codes with weaker algebraic structures have better
properties. For example, when communicating over an addi-
tive white Gaussian noise channel with 8-PSK constellation,
codes over Zsg, the cyclic group of size 8, are more desirable
over binary linear codes because the structure of the code is
matched to the structure of the signal set [12]. As another ex-
ample, construction of polar codes over alphabets of size p”,
for r > 1 and p prime, is simpler with a module structure
rather than a vector space structure [17]-[19]. Furthermore,
Abelian group codes yield better performance in network
communication settings such as distributed source coding
and interference channels [20]-[22]. Many of the aforemen-
tioned works addressed the channel coding problem in the
asymptotic regime.

Later researchers considered single-serving scenarios where
a given channel is used only once. This approach gives rise
to a high level of generality that no assumptions are made
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on the structure of the channel and the associated capacity is
usually referred to as one-shot capacity. The one-shot capac-
ity of a classical channel was characterized in terms of min-
and max-entropies in [23]. The one-shot classical capacity of a
quantum channel is addressed by a hypothesis testing approach
in [24] and [25], yielding expressions in terms of the general-
ized (Rényi) relative entropies and a smooth relative entropy
quantity, respectively. These works considered random unstruc-
tured codes—those which do not have any group structure—in
their achievability approaches.

In this work, we consider performance of structured codes,
in particular Abelian group codes, for transmission of classi-
cal information over classical and classical-quantum channels
in the one-shot regime. This problem has not been studied be-
fore. Our derivation is based on the idea of relating the prob-
lem of channel coding to hypothesis testing. Here, we use a
relative-entropy-type quantity defined in [25] known as hypoth-
esis testing relative entropy, denoted Dfg(-||-). We introduce a
new hypothesis testing group-based relative entropy that incor-
porates the underlying subgroup structure of the channel input
group alphabet, and derive a tight characterization of the per-
formance of group codes. We use the framework of one-shot
quantum typicality developed in [26] for the achievability of
CQ channels.

II. PRELIMINARIES

A. Classical and CQ Channel Model

We consider discrete memoryless classical channels used
without feedback specified by the tuple (X', Y, Wy |x ), where
X and Y are the channel input and output alphabets. We also
study the case of classical-quantum channel coding, where
the data to be transmitted reliably are classical. Let a (classi-
cal) set X denote the input alphabet. For any input x € X,
the channel produces an output, specified by a density oper-
ator p, on a Hilbert space B. We denote a CQ channel by a
mapping N : z — p, from X to a set of density operators.

B. Definition of Achievability for Classical Channel Coding

For a group G, a group transmission system with parame-
ters (n, §2, 7) for reliable communication over a given channel
(X = G,Y, Wy x) consists of a codebook, an encoding map-
ping and a decoding mapping. The codebook C is a shifted
subgroup of G™ whose size is equal to {2 and the mappings



are defined as

Enc : {1727"' 79} —C, Dec:Y"— {172’... 79}7
such that
2
Z QO Z L {z=Enc(m)} Z L mspecyW" (ylz) < 7
m=1 reEX™ yeYn

A rate R is said to be achievable using group codes if for
all € > 0 and for all sufficiently large n, there exists a group
transmission system with parameters (n, €2, 7) such that

1
—logQd > R —¢,
n

T<E.

The group capacity C' of the channel is defined as the supre-
mum of the set of all achievable rates using group codes.

C. Definition of Achievability for CQ Channel

Given a classical-quantum channel N = {p, } ., from the
classical alphabet X to the quantum system B, where X = G is
an Abelian group, a group transmission system with parameters
(n,Q, 1) over N consists of a codebook, an encoding mapping
and a decoding positive operator-valued measure (POVM). The
codebook C is a shifted subgroup of G™ whose size is 2. The
encoding mapping is defined as Enc : {1,2,---,Q} — C.
The decoding POVM is a set {Am}ffl:l of operators such that
Ay > 0,Ym and ) A, = I. The probability of obtaining
outcome j is tr(A;p) if the state is described by some den-
sity operator p. The group transmission system with parameters
(n,Q,7) over N exists if

Q
1
m=1 reXxn
Given a channel A/, the rate R is said to be achievable using
group codes if for all ¢ > 0 and for all sufficiently large n,
there exists a group transmission system for reliable commu-
nication with parameters (n, {2, 7) such that

T<E.

1
—logQ > R —¢,
n

The group capacity of the channel C' = C(N) is defined as
the supremum of all achievable rates using group codes.

D. Groups and Group Codes

All groups referred to in this paper are Abelian groups. Given
a group (G,+) and a subset H of G, we use H < G to de-
note that H is subgroup of G. A coset C of a subgroup H is a
shift of H by an arbitrary element ¢ € G (i.e. C' = a+ H for
some a € (7). A coset is also referred to as a shifted subgroup.
For a prime p dividing the cardinality of G, the Sylow-p sub-
group of G is the largest subgroup of G whose cardinality is
a power of p. Group isomorphism is denoted by ==. Given a
group G, a group code C over GG with block length n is coset
of a subgroup of G™.

III. ABELIAN GROUP CODE ENSEMBLE

In this section, we use a standard characterization of Abelian
groups and introduce the ensemble of Abelian group codes
used in [15] and this paper.

A. Abelian Groups

For an Abelian group G, let P(G) denote the set of all
distinct primes which divide |G| and for a prime p € P(G)
let S,(G) be the corresponding Sylow subgroup of G. It
is known that any Abelian group G can be decomposed
as a direct sum of its Sylow subgroups in the following
manner G = P, cp () Sp(G) Furthermore, each Sylow sub-
group S,(G) can be decomposed into Z, groups as follows:
Sp(G) = Drer,(q) Z%‘”,where R,(G) C Z" and for
r € Ry(G), M, is a positive integer. Thus,

My,
¢c=@® P z->0 & DL

peEP(G) reRH(G) peEP(G) reR,(G) m=1

where Z;T) is called the m™ Z,- ring of G or the (p,r, m)-th
ring of G. We also define two sets, Q(G) C P x Z* by

Q(G) ={(p,r) [ p € P(G),r € Rp(G)} ,
and G(G) CP x Z* x Z* by

9(G) = {lp,r,m) | (p,r) € QG),m e {1,2,..., Mp,}} .

Hence any element a of the Abelian group G can be regarded
as a vector whose components are indexed by (p,r, m) € G(G)
and whose (p, r, m)-th component a,, ,. ,,, takes values from the
ring Z,r

Example 1: Let G = Z4 ® Z3 ® Z%. Then we have
P(G) = {2,3}, SQ(G) = Z4 and S3(G) = Z3 ©® Zg,
Ra2(G) = {2}, R3(G) = {1,2}, My = 1, M3y = 1,
Mo =2 and G(G) = {(2,2,1),(3,1,1),(3,2,1),(3,2,2)}.
Each element a of G can be represented by a quadruple
(@2,2,1,a3,1,1,032,1,03,22) Where as21 € Zy, az11 € Zs
and as 21,0322 € Zg.
In the following section, we introduce the ensemble of Abelian
group codes which we use in the paper.

B. The Image Ensemble

Recall that for a positive integer n, an Abelian group code
of length n over the group G is a coset of a subgroup of G™.
Our ensemble of codes consists of all Abelian group codes
over G; i.e., we consider all cosets of subgroups of G". The
following lemma ( [15, Lemma 1]) effectively characterizes all
subgroups of G™:

Lemma 1: For a group G, let ¢:J — G be a homomor-
phism from some group .J to G. Then ¢(J) < G. Moreover,
for any subgroup H of G there exists a corresponding group
J and a homomorphism ¢ : J — G such that H = ¢(.J).

Definition 1: Let G be an Abelian group. For p € P(G),
define r, = maxR,(G), and S(G) = {(p,s) | p € P(G),1 <
s<rpl.

It is shown in [15] that we only need to consider homomor-
phisms from an Abelian group J to G such that P(J) C
P(G), and s < 7, = max R,(G) for all (¢,s,1) € G(J).

To construct Abelian group codes of length n over G, let

G = G". We have
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Define J as

rq kq,s

- b dbz’  ©

4€P(G) s=1 I1=1

Tq A
D Pl -
q€P(G) s=1
for some positive integers kg ;. Define k = 3 p(c) Sk
and wg s = k?j for (g,s) € S(G).
Definition 2: The ensemble of Abelian group encoders con-
sists of all mappings ¢ : J — G of the form

¢(a) = @ Z(q s1)EG() Qq,s,19(q,s,1)—(p,r,ym) €]

(p,r,m)€G(G™)

for a € J, where ag s,19(q,s,1)=(p,r,m) 18 the short-hand no-
tation for the mod-p” addition of g(q,s,1)—(p,r,m) to itself for
aq,s, times, the sum is over Z,-, and

=0 if p#gq
(..~ (p.r,m) | ~ Unif(Zyr) if p=gq,7 <
~ Unif(p"~*Z,) ifp=gq,r>
The corresponding group code is defined by
C=A{¢(a) +Vl]a e J}, (5)

where V' is a uniform random variable over G™.
The rate of this code is given by

Z Z sw,.s10g q. (6)

1
R=—logl|J| =
n

qu (G) s=1

C. The Hj coset

For an Abelian group G defined in (1), denote a vec-
tor 6 whose components are non-negative integer-valued
and indexed by (p,s) € S(G) by (91,,5)(,,75)63(@), where
0 < 9;},3 < s. Let s denote the vector whose components
satisfy s, 5y = s for all (p,s) € S(G). Let © = O(G)
be the set of vectors f indexed by (p,s) € S(G) such that
0 < 9ps < sand 6 # s, and denote its size by M £ |0].
For 0 = (0, )(p,s)es(c)» define a vector @(f) indexed by
(p,7) € Q(G) and

min

6(0 ) = i r—slt+0,,.

( () P (0,5)ES(G) | | .
Wp,s#0

Let Hj be a subgroup of G defined as

D

(p,rm)€G(G)

Hy = pPOrrz ). )

For a € J and = (91,75)(1,}5)63((;), let Tj(a) denote the set
of vectors a € J such that

N b rkpay B 1k s
ap,s — p,s € PP Lyt \p?r T 227 Y(p, s) € S(G) .

Then we have |Tj(a)| = i sese p5=0p.)kns for all a €
J. Therefore, we may write |Tj(a)| = |T,| without any am-
biguity. Let w; be defined by

— Z(p,s)e:s(c:) 0p,sWp,s logp
Z:(p,s)e‘S(G) swp s logp

®)

we show in Appendix Section B the following result:
log [T = (1 — wp)nR . )

For any a € J, { Tg(a)}é is a collection of disjoint sets whose
union is U;Tj(a) = J. Hence Y |T}| = ZO|T a)| = |J].
Exploiting equation (9), we have that Y, 2(7%a)"% = | ]|, or
equivalently, » 5 2-wp) — 1,

Definition 3: For an element x € G there is a one-to-one
mapping = <+ ([z];,T;), where [z]; is the representative of
the coset of H; which z belongs to, and T; € Hy, such that

We use the following notations for the conditional distri-
butions of the codeword and channel output given the coset
information.

Definition 4: Let H = Hj be a subgroup of G and . € G.
Let X be distributed according to Px = Unif(X), the uni-
form distribution over X = G, and W = (X,), Wy x)
be a classical channel. Then, for a representative [z,],
of a coset of H in G, define P[X]([xr}) £ Pr([X] =
[xr]) = & Pxx(@[z,]) £ Pr(X =@ | [X] = [&]) =
W if z € [z,],0 otherwise, and Py ;x(y|[z,]) = Pr(Y =
y [ [X] = [2]) = Xacpp1+m Pxix (l’l[ﬂﬂr])wa( ) =
D velu]+H ﬁWy|X(y|x) where we write [z,] and [z,],
interchangeably when the dependency of 0 is clear from the
context.

||l> I

IV. ONE-SHOT CLASSICAL GROUP CODING

Given a channel W = (X = G,), Wy x), let the joint
distribution Pxy be Pxy = Px - Wyx with Px being the
uniform distribution over X, and Py be the marginal distribu-
tion of Pxy over ). Let H = H; be a subgroup of G defined
in (7) and [X] = [X], for some 9. Define

I (% [x]Y)

£ Dy (Pxy |1Px Px x)Pyix))-  (10)

A. Achievability

We have the first main result of this section. .
Theorem 1: Let € and {e@} be given with €5 > 0 for all 0
and ) ; €, < €. Then there exists a (1, |J|,¢’)-code such that

€ < e+ZeXp2 {1

@#s

wp) R — I (X3 [X]3Y) }

where the rate R is given in Equation (6).

Proof: Let the ensemble of homomorphisms ¢ from .J to G and
the group code C = {¢(a) + Vl]a € J} be given as in Defini-
tion 2 with n = 1. Given a channel W = (X = G, Y, Wy x),
consider a decision region A. C X x ), which will be con-
structed explicitly later, such that

Pxy(A) = > Px(@)Wyx(yle) >
(zy)€A.

1—e, (11)

where Px is uniform over G.

To find an achievable rate, we use a random coding argu-
ment in which the random encoder is characterized by the ran-
dom homomorphism ¢ and a random vector V' uniformly dis-
tributed over GG. Given a message v € .J, the encoder maps it



to z = ¢(u) + V and z is then fed to the channel. At the re-
ceiver, after receiving the channel output y € ), the decoder
looks for a unique @ € J such that (¢(@) + V,y) € A.. If the
decoder does not find such « or if such # is not unique, it de-
clares error. Thus, the error event can be characterized by the
union of two events: F(u) = E;(u) U E3(u) where Fj(u) is
the event that (¢(u) + V,y) ¢ A. and Es(u) is the event that
there exists a & # u such that (¢(@) + V,y) € A.. We can
provide an upper bound on the probability of the error event
as Pr(E(u)) < Pr(E1(u)) + Pr(Es(u) N (E1(u))°).

In Appendix C, we show that Pr(E(u)) < €+ > 5
Ty (u)| expy {—1;7(X;[X]Y)}. The average probabil-
ity of error of the group transmission scheme can be
upper bounded by Pr(error) = Y ;& T Pr(E(u)) <
€+ D ous | T, ()| exp, {-I7(X;[X]Y)} . Exploiting equa-
tion (9), we get the desired result in terms of the rate R of
the code.

B. Converse

Toward the converse, we have the following theorem whose
proof is given in Appendix D

Theorem 2: Assume that a group transmission sys-
tem with parameters (1,|J|,e) exists over a channel
(X = G,Y,Wy|x), and that the group J takes the form as
in equation (3). Then the rate of the code, R = log|J|, is
bounded as:

R < min
@;és
V. ONE-SHOT CLASSICAL-QUANTUM GROUP CODING
A. Achievability
Consider arbitrary output and input Abelian groups G and
J, a CQ channel {p,}.cc, and a subgroup Hj of G indexed
by 6. We assume the uniform distribution on the input of the
CQ channel yielding the input-output joint state as

AB _ A

zeG

— 5 [ (X (XY,

(12)

where A denotes the input space and B denotes the output
space. Define the transversal, the set of coset representatives
of Hy in G, as R;. We drop 6 from the subscript, when it is
clear from the context.

For any Hj, using the one-to-one mapping = > ([z];,T;),
the joint state can be viewed as follows!

pAE = plAIAB 2 Z| e ) (1), 714 © o .
[z],Z

and we let Pix([z]) = ||g“ for all [z] and Py (T) = |H‘ for
all 7. Here [A] denotes the space associated with R, and A
that associated with Hj. Define

£ Px

ZP
plAlB 2 ZP[X (]| ®P[x} .

IRecall that the classical variable (channel input) X with alphabet X is
stored in a quantum register with Hilbert space also denoted as X'.

p[:z: T ‘aj $|A

Also define the hypothesis testing mutual information:

13 (X (X)) gy

2 D5 (o8 pp
With these definitions, we are ready to state the main result of
this section. A

Theorem 3: Let € and {eé} be given with ¢; > 0 for all 0

and ) 5 ¢, < €. Then there exists a (.J, €')-code such that

¢ <e+ Y expy {(1—wy)R— I (Xy(X]5Y)},
é#s
where the rate R is given in Equation (6).
Proof: Let ¢ > 0, and consider the optimizing POVM (I1")x;
n [AJAB arising in the definition of I;l’«g (X;[X]Y). The
POVM satisifies:

M")x = Y M), @) ([a], 240 Ry e
BE
()] 21— e tr [(H”)pA ® pl1P] < 9T R,

(13)

We use the approach given in [26]. Define B2 B (C2 By
Fact 2 in [26], there are orthogonal projections HF ]; in B that
give the same measurement probability on states o2 © |0)(0|
that POVM elements (I1” )[X] give on states o7, Let Wy,

denote the orthogonal complement of the support of H&];m in

~

B.

Step 1: Consider a new Hilbert space £ that is used only as
a quantum register to store classical values, and define the ex-
tended output space

B £ (BaC%)® (B® C? g LPmmk)),
(p,r,;m,k)EG*(G)

where LK) is isomorphic to L.

Remark 1: Define ((G) = >, . meg(c) "> the sum of
prime powers in the prime factorization of |G|. Also define
the set G*(G) = {(p,r,m, k) : (p,r,m) € G(G),1 <k <r}.
We use a vector representation for the elements of G as fol-
lows. First we note that every element of a of Z,- can be
represented uniquely as a r-length vector (ay,as,. .., a,) such
that a; takes value in the transversal of p"~*Z,- /p" =" Z,-.
A shorter vector (ai,as,...,ax) can represent any element
in the subgroup p"~*Z,. This is extended to all of G using
the direct sum operation. We denote this mapping as v(a).
Hence every element of G is represented uniquely as a vec-
tor of length ((G). This is also extended to all subgroups of
G. Furthermore, we use (p,r7,m,k) € G*(G) to index the
elements of a vector. The set formed by the (p,r, m, k)-th el-
ement of the v/(G) is denoted as X(;, ;. . 1) This also denotes
the Hilbert space associated with the quantum register that
stores the corresponding classical values, where a direct sum
is replaced with a tensor product.

We extend the space corresponding to the alphabet
of (p,r,m,k)-th element of v(G) as follows. For every
(p,r,m, k) € G*(G) define

,rym,k
X(,Pmm,k) = X(p,r,m,]g) ® E(p )



This leads to the following extensions. For each subgroup
p’”‘SZZ(,T), s=1,2,...,r, the extended space is

® E(p,r m, k

and for the transversal of Z;T / pT'_SZ;T), the extended input
space is given by

7‘ SZ

é L(p,r,m,k)'

k=s+1

Step 2: Let 0 < ¢ < 1/10. Consider a vector £ in-
dexed by (p,r,m,k) for (p,r,m,k) € G*(G), where
Ciprmk) € LPrmE) “and is a basis element of £®77k),
Let £; denote the sub-vector corresponding to the subgroup
H,, and the complementary sub-vector [€], corresponding to
the transversal Tj. For the trivial case H; = {0}, we have
[€] = £. Recall that in this case, [X]| = X.

For any subgroup Hj of G, define the tilting map Tx);(¢),5 :
B — B’ defined as

Tixe.6 : |h) —

(m) ;) r—srmy(m)
(2" [p" Ly ) @

(1)

1
14 ¢(G)o?

+ 2

(p,r,m,k)€G*(G)/G*(H)

5|h> |l(p,r,m7k)>) .

Note that we are tilting only along the direction of transversal
of Hy in G. Define a state

’ 2
()55 2 Txes (02 ©10)0/".)

Consider the classical-quantum state

(W) 2L DY P (@)l (e, 7 ©(0) s - (14)
x,L
It can be shown that
|25 = e @000 <@ as)
Define the tilted space
Wixjw.es = Tixpie,6(Wixga)
residing in /. Define the subspace
wﬁé_@W[X],z£67 (16)

beo
and (IT') 5, = (H’)W,

W, o5 Let Hg be the orthogonal projection in B’ onto B.
Define POVM elements

()25 2 (1B yf ) ug (17 — i) . an
Z |z, £)(z, €]" @ (II

Define the following states for any subgroup Hj:

the orthogonal projection in B’ onto

B 2 NBs. (18

! A

1 . ’
(e = L] ZP(JJ)(P’)f,z-
7.0

)™ 2 ey S P

z,l

We make the following observations using the arguments given
in [26]:

() 1 = 1+ (C(G) = ¢(H)))d

Tix)e(pfy @ 10)(0))

1+ ¢(G)é?
+ Nixpfal. 1
for some operators satisfying
2¢(G)o
INIx 1z oo < : (19)
VIL|

Furthermore, using Holder’s inequality we have

|01l < 21B]. (20)

We perform random coding and perform error analysis and
show the desired result. The details are given in Appendix E

B. Converse

Toward the converse, we have the following theorem whose
proof is given in Appendix F.
Theorem 4: Assume that a group transmission system with
parameters (1,]J|,€) exists over a classical-quatum channel
= {p2}, e and that the group J takes the form as in
equatlon (3). Then the rate of the code, R = log |.J|, is bounded
as:

R < min 159 (X [X)Y).
0+#s

VI. GROUP CODING IN THE ASYMPTOTIC REGIME

—wp

We leverage the one-shot results for classical channel group
transmission and show the following capacity result.
Theorem 5:

C = min
O+#s
Proof: The proof is provided in Appendix Section G. W
Similarly, we provide a characterization of the capacity for
the CQ channel:
Theorem 6:

o 6T T [X]p),

C = min

I(X;Y | [X]p),
O0+#s

o
where
I(X;Y | [X]y) 2 D(pAP||pe pltlaP) .

Proof: The proof is provided in Appendix Section G. H
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APPENDIX

A. Hypothesis testing relative entropy

We recall the definition the hypothesis testing relative en-
tropy D§(p||o) from [25]. Let p and o be two possible states
of a system, and () a positive operator with 0 < Q) < I. The
hypothesis testing relative entropy Dfg(p||o) is defined by

Dg(pllo) & —log, inf  tr[Qo]. 21)

Q:0<Q<L,
tr[Qp]>1—e

For two distributions P, ) on a classical alphabet X', the hy-
pothesis testing relative entropy D$;(P||Q) can be similarly
defined by

Dy (P|Q) = —log, ~ inf

A
A:P(A)}lfeQ( )

where A C X is sometimes called the decision region.

B. More on the Hy coset
We show the derivation for (9) as follows:
(p,s)ES(G)
Z(p,S)ES(G) (5 = Op,s)wp,s logp
> (ps)es(G) SwWp.s logp

<D

(p,9)€S(G)

>

(p9)€S(G)

IOg |T@| = (S - ép,S)]’Cp,s Ing

Swp, s log p

= (1 —wyk swpslogp = (1 —wy)nR.  (22)

We recall the following result from [15].

Lemma 2: For a,a € J, z,7 € G" and for (p,s) €
Q) = S(G), let 9p5 € {0,1,---,s} be such that
Gps — aps € plrZ ’”\p boat17,% oo e, a € Ty(a).
Consider a random homomorphlsm gb and a dither V' with
distribution specified as in Definition 2. Then,

1 1
¢(a)+V=x,\ _ TG~ TH, ™
Pr((b((d)”‘/:i){ TG 7y

C. Proof of Achievability for Classical Channel
Denote by P.,-(u) the probability of the event Es(u) N
(E1(u))¢, averaged over the randomness of ¢,V

Perr(u) £ E [Pr(Ez(u) N (B (w))%)]
w)+V=z,3aeJ:
= D Wyl)Pr (u#u (¢(0) +Voy) A )
(w,y)€A.

< 223 wele (GEh)

(w,y)eA uEJ zelG
uFu (3,y)€A.

ifz—ze€ Hg
otherwise

=D D D D Wk Pr( o ))iv:?)
d#s (z,y)EA. UET, (u)( a;SgA

= Z-Per'r(ua é)v

9;&5

where P, (u, tz)) = ZaeTA (u) Perr(u, ) and for @ € Tj(u),

P2 Y Y Wk P45
T A, ZeG
() (:EASEAE
(24)

and s denote the vector whose compnents satisfy s, ;) = s for
all (p,s) € S(G). The term Pr(¢(u) +V =z, ¢(0) +V =
Z) in (24) can be found using Lemma 2. Let « € [z,] be a
shorthand for [z] = [z,], or equivalently, x € [z,] + H. Hence

Polwi)= S 30 L

W(ylz)la, (Z,y) 7~
(z,y)EA, F€x+H, |G| |H |

zeX T€x+Hy y:(x,y)EA. |G| ’H ’
(Z,y)€A.
1
Z Z > W(W)@ﬁ
€X text+Hy y:(Z,y)€Ae
il
:ZT > 2 X W(W)| 1,
(2] z€[z,] TE€E[x,] y:(T,y)EA.
(=) Y Y PGPy (=) @5
{zr] xe[zr] y:(Z, y)GAe

Let a set of parameters {¢; }, ., be given such that ¢; > 0
for each # and that Y o€ = € Let the set AZ, be a maxi-
mizer of the right-hand side of (10) for I;IQ’G(Y; (X]Y), ie.,
ny(A ) > 1-— 69 and

197 (X; [X]Y) = — log,

(S Pl Y Pell) Y Pl

(@] z€[z,] y:(x,y)EA:é

Now we set explicitly A, = Q@A:Q.
event F(u) can be bounded as:

The probability of the

Pr(Ei(u)) =Pr((¢(u) +V.Y) ¢ Ac) = Pr((X,Y) ¢ A)
— Pr ((X,Y) € uA(A:)C)
ZPr(X Y) € (A7) ) Y=
0
Since A, C Ajé, the term P,,..(u, @) in (24) can then be upper
bounded by
SoP(l) > Y. P@E )Pyl [a])
[zr] ZE€ [z, y: (ac,y)EA*
oo {1 (K XTIV,
which leads to the following bound,
d —
Perr( Z |T eXPQ{lee (X5 [(X]Y)} (26)
0#5
Therefore, we have
6;):9 —_—
Pr(BE(u)) < €+ Y |Ty(u)|exp{—I;;" (X; [X]Y)}.

é;ﬁs



The average probability of error of the group transmission
scheme can be upper bounded by

Pr(error) = Z 1 Pr(E(u))

< et 3 T30 expaf— 1 (K (XIV )}

Example 2: Let J = Z4,G = Zg. In this example, we have
G(G) ={(2,3,1)} and G(J) = {(2,2,1)}, ko1 = 0,kg o =
1, ko3 = 0, and the term g(3 2 1)—(2,3,1) is a uniform random
variable over 2Zg. For simplicity, we write © = uz21 € J
and g = g(2,2,1)—(2,3,1) € Zg. Then 72 = maxR»(G) = 3 and
the set Q( ) = S(G ) = {(2,1),(2,2),(2,3)}, and s(5,1) =
1,8, 2) = = 2 ;8(2,3) = = 3. For distinct u,u € J, the vector
0 = (92 1,62 2,92 3) for which @ € Tj(u) must have 02 1=

1 0<92’2<2 92’3_3 Thus Perr( )gperr( 7(17053))—’_
lngT(lt)(]ﬂ 17 3)). ~ A
The set Q(G) = {(2,3)}, so 8(0) = 0(0)(2,3) and
0 = — st + 02
0(0)23) = o %%ﬁ{S s[T+ 2}

= |3 —2|" 4020 =1+0,.

Case 1: @272 =0, 0(A)(2 3 =1

For @ € Ty(u), & —u € Z4\2Z4, and Hj = 27Zg. Let A”‘/2 5

be a maximizer for DH/ (PXY||P[X]épx‘[x]épy|[x]é). Thus
we have

Perr (u

Case 2: 035 = 1, 0() (2,3 = 2 In this case, H; = 4Zs, and
we have

,(1,0,3)) < |T(1,0) (w) | expo{—I5)* (X [X]Y)}.

.0 —
Perr(u < |T(1,1,3) (’LL)| exp2{_11—? (Xa [X]Y)}

Therefore the error probability for a message w is
(B (u))%)

X0

»(1,1,3))

Pr(E(u)) < Pr(E1(u)) + Pr(Es(u) N

<e+ !T(1,0,3)(u)| eXP2{_IHé

(X [X]Y)}

eé,e
+ | Ta,1.3) (w)] expo{ =1} 0=(1,1,3)’

where we consider the decision region A. = Ny A* /2.0
€

D. Proof of Converse for Classical Channel

Based on Lemma 1, for each group code C < G, there ex-
ists a group J and a homomorphism such that C is the image
of the homomorphism. Assume now that a group transmis-
sion system with parameters (1,|.J|,€) exists over a channel
(X = G,Y,Wy|x), and that the group .J takes the form in
equation (3). Assume that the homomorphism ¢ for the group
code C is a one-to-one mapping. We have:

@ Zunsg(p,s)—»(r,m) +V:iuc J}.

(p,rm)€G(G) s=1

c-{

Let 6 be a vector indexed by (p, s) € S(G) with 0 < ép,s <
s. For an message uw € J, construct a one-to-one correspon-
dence between Ups € Zk" : and the tuple (s, Up,s) Where

Up,s €D PSZ o° andupS EZ ‘” . Let U denote the random

message of the group transm1s510n system of the code. Let U
denote the part of the random message such that U, 5 € 7"

9p s
for all (p,s) € S(G). Consider the subcode of C:

Tp
Ci(0,a) = { @ Z(ﬂus +p,s)9(p.s) = (rm) TV
(p,rm)€G(G) s=1

Up,s € PP 2" Y(p, s) € S(G)}.

Let © = ¢(u) + V be the channel input and H; be given
as in (7). Then Cl(é,ﬁ) = x + Hj. That is, there is a one-
to-one correspondence between U and [X],. Ty (u)| =
‘(Dl(é,ﬁ)‘ = |Hp| for all u € J. Let € [z,] be a shorthand
for [z] = [z,], or equivalently, x € [z,] + H, where we omit
the 6 subscript when it is clear from the context.

Define a one-to-one correspondence between x and the tuple
(%4, [x];) where T; = ¢(u). Consider a genie-aided receiver
which gets access to U and performs maximum likelihood de-
coding. Equivalently, this receiver has access to the coset in-
formation [X]; of X and can be written as D9 : ([z],,y) —
a2’ € X. Clearly the average probability of error for this de-
coder must be not greater than €. Let X '€ X be the output
of D9%. For every 0 with 0 < Hps < s, 0 # s, the average
probability of error for this decoder is

ZZPr

[ Z, x’/

= ZPXX'(xvxl)l{m’;ém} < €,

x,x!

Py xnp (@@ [ )10y

where

P(allz]) )

y: D9 ([z],y) =’

PXX’|U(x7x/|ﬂ) £ W(ylz).
Consider a strategy to distinguish Px x/ and PU(PX\U ®
PX,W) as follows. The strategy guesses Px x if it sees X =
X', and guesses P (Py g ® Py, i) otherwise. When Px x/
is the true underlying distribution, the type-I error probability
is exactly the probability that X # X’ computed from Px -,
namely, the average probability of a decoding error, and is thus
not larger than . When Py (Py 5, ® Py, ;) is the true underly-
ing distribution, the probablhty of type-II error (misdetection)

is
ZP Z i (@
—ZP Zy] ZPx| Zr])

" 1
:[ZMG Z e e =

X’\U( | @)1 (21=a)

(E | [xT])l{x’—Jr} (27)

Pz | [a])



where (27) follows from the one-to-one mapping between U
and [X];. Thus,

DE’Q(PXY||P[X]PX|[X]PY\[X])
> Dy (Px x[|Px) Px|1x) Px/|x))
=Dy (Pxx'||[ Py (Px i ® Pyji7))

1
> — log, @ = log, |H| = log, ]T@(uﬂ
=(1—wy)k Z swp, s log p., (28)
(p,s)€S(G)

where the first inequality follows from the DPI. Equivalently,
I (X [X]Y) > (1 - wp)R,

which yields Theorem 2.

E. Proof of Achievability for CQ Channel

Remark 2: We make a general remark here about an arbi-
trary subgroup H of G. We note that [x] =  mod H. Using

the distributive property of mod operation, i.e., [x + y] =
[[z] + y], we note that
[z] = [@(u) + 8] = [[®([u]) + @(@)] + 5] = [[@([u])] + 5],

= ®(w) + ®([u]) + 6.

T =ux— 2]

Hence [x] depends only on [u], where as T depends on the
entirety of u in general.

Step 3: Probability of Error Analysis: We construct a random
code as follows. We generate the random homomorphism as
stated in the previous section. In addition, we generate for ev-
ery v € J, a random vector £ independently and uniformly
such that [€] depends only on [u] and £ depends on the entire
u. (Need to show the existence of such a PMF). We start by
computing the average probability of error for a fixed u using
Hayashi-Nagaoka inequality [3] as follows:

st <t (17 02 )

<2Ectr [(13’ - (H’)fif,e)(u) (P’)@,@(u),éﬂ

+4Y > Ectr{

bco v ET,(u)

} [€)([w']) (&) (u)
/\B’
x (p )([x],[e)qu}),(xl)(u),é}

We work on the two terms in the right hand side. The first

term can be sirnpliﬁed as follows:

B’ / B’
Ectr [(1 — (1) a1y () 2. 2>(u)) (p )([z],[e])([u])y(ﬂ)(u)yé}

|w ZPtr — ()2 (p) ]

|L|<<G>ZP )tr[(1 — (N2 (p) B, + ()3,

(v)
S + iy ZPtr s, (08 @ 10)(0)]
(© 4(1+¢(@
<16¢(G)8° + |£|((G 52 ZP
« 3 [1-wf m®mmﬂ
bco
4(1+¢(G
=16¢(G)3" + |£|<(G)52 ZP

X Z[l - tI‘ HH)[X],rpz]
bcoe

(@) )
<16¢(G)82 +

4(1+¢(G)6%)|Ole
02 ’
where we provide the following arguments. (a) follows from
Fact 3 of [26] and (b) from (15). (¢) folzlows from Proposition
(2156] by using [ = |©|, and o = H—C(ziGW' (d) follows from
Next we look at the second term as follows. Note that

Ty(u) = {u : W] = [u],v #u}.
For any u’ € Tj(u), we have

’

B’ /
Ectr [((H )<m 1) ([ (7.) (u >)( )q 1160 (fu) (=,

‘£|C(G)+C(H) Z ZP (a7)

£)(u),6

[x],[€],7,ez 2
x (1)) 1272 (P e .2.6)
1 /
@ P P@UUI)E, 560 o)
[z],[e]@ &
(a)
2 Pl P)
Lt
[z],[€],z" &
4¢(G)d|B|
X tr[(H’)[ L 7 o Tix110 (P2 @ 10)(0])] W
®) P([z])P(T) NB'
< ————=tr|({ — (II")y;
B |£|C(G) r[( ( )W[L],[l],j 7)
], (€], 7 &
4¢(G)d|B|



@w% > PU)P@IT - (F, )
[z].[6) 7 €
| 1(@)31B]
PDPE) s ) 4 (G

(22 (2—1'2@(?;[)(],3)) 7

for large enough £, where (a) follows from (19), (20), (b) from
using (17), ((c) from using (16), (d) from the fact that WX];[Z}
is an isometry, and hence

o Tixi(piz @ 10)(0])]

Lo (e @ [0y 0D],

and (e) from (13). Combining the three terms we obtain the
average probability of error for a fixed u as

< 16C(G)52 n 4(1 + C(;)52)|@|6

+8 Z |T9|2*IEQ(Y,[X];B)‘
bco

Ec (P(Error|u))

for large enough L.

F. Proof of Converse for CQ Channel

Based on Lemma 1, for each group code C < G, there exists
a group J and a homomorphism such that C is the image of the
homomorphism. Assume now that a group transmission sys-
tem with parameters (1,|J|, €) exists over a classical-quantum
channel N' = {p’} _., where X = G is an Abelian group,
and J = D,cp ) D7, Z];’; *. Assume that the homomor-
phism ¢ for the group code C is a one-to-one mapping.

Let 6 be a vector indexed by (p, s) € S(G) with 0 < 0, , <
s. For an message u € .J, construct a one-to-one correspon-
dence between wu,,s € ZI;E’S and the tuple (@, s, Up s) Where
Ups € PPPo Lyt and g € 20
C1(,4) of C as defined in the classical channel case. Let
x = ¢(u) + V be the channel input and H, be given as in
(7). Then C, (0, @) = [x]; = = + Hj. That is, there is an one-
to-one correspondence between U and [X],.
’Cl 9 i ’*|H| for all u € J.

Define a one-to-one correspondence between = and the tuple
(%4, [x];) where T; = ¢(u). Consider a genie-aided receiver
which gets access to U and denote it by D9¢. Equivalently,
this receiver has access to the coset information [X], of X
and can be realized by a family of POVMs iEg[f]} Clearly
the average probability of error for this decoder must be not
greater than e. Let X’ € X be the output of D9°. For every
6 = s, the average probability of error for this decoder is

ZZPr

[ .L‘L

. Consider the subcode

Py (@2 | @)1 s0y <

where Py v, (@, 2| 1) £ Pxix,(z|[z])tr {Eg]pm} .

Note that the decoding POVM can be viewed as a CPM.
This CPM maps p4Z to the (classical) state Pxx: denoting
the joint distribution of the transmitted codeword X and the
decoder’s guess X'. Similarly, it maps p*pl418 to Py (Py 5 ®

Py \i7)- Hence, it follows from the DPI for Dg(p||o) that

Diy(Pxx'[| Py (Py g @ Pyir)) < Do [l p17)

Consider the strategy to distinguish Px x and PU(PX\ o®
PX,W) as given in the classical channel case, under which the
type-1 error probability is not larger than €, and the probability
of type-II error (misdetection) is ﬁ That is,

Di(p™Pp* pP) > Dig(Px x| Py (Py @ Pyoyiy))

(29)
= log, |H| = log, |T@(u)| .

Using (9), we may rewrite (29) compactly as I;f (X;[X]Y) >
(1 —wy)R.

G. Proofs for Section VI

Proof of Theorem 5:

Achievability— We use the n independent copies of the chan-
nel, and make the observation that S(G) = S(G™) for all
n 2 1. Using this and Theorem 1, we see that there exists a
(n,|J|,€)-code such that

€ <e+ Zepr {(1 —wy)nR — Iy (X5 [X]gY")} )
O+#s
where the rate R is given in Equation (6), and the joint dis-
tribution of the input and the output of the channel is given
by
P(X" =2"Y" =y") = [[ Px(x:) Wy x (yi|2:),
i=1

where Px(z) = G Then we have the random vec-
tors will have the %ollowmg distributions. For z] =
(@r1,2r2,.. ., Trn) € G, [z7] denotes the coset repre-
sentative of z)' + H™ in G", and the product conditional
distribution P{}H X] is defined as

Vi) HPY|
= Z

anelan]+H™

mr 1])

Py X|[X ]( [ﬂfll])WQ\x(y"Wn)a
where P x] and Px|x) are given in Definition 4 and used in
the one-shot case.

|G|” ) X\[X]( | [27]) 0

Now since all distributions are in a product form, we can use
AEP [25] for hypothesis testing relative entropy as: for all € >
0, and all 6,

if 2™ € [x.]",
P’I’L
X1 = otherwise.

€,0 S ~
i (R XEY) = 1K [X];,Y) = 10K VIIXT,).
This gives the desired achievability result. Theorem5

Converse— The converse follows from [15].



Proof of Theorem 6:

The achievability follows by exploiting the product nature
of the input distribution and the quantum Stein’s lemma [27,
Theorem 2]. We skip the details due to lack of space. We skip
the proof of the converse due to lack of space. The complete
details will be provided in the longer version of the paper. W
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