IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 20 November 2024, accepted 4 January 2025, date of publication 10 January 2025, date of current version 17 January 2025.

Digital Object Identifier 10.1109/ACCESS.2025.3528304

== RESEARCH ARTICLE

GuardianMPC: Backdoor-Resilient Neural
Network Computation

MOHAMMAD HASHEMI“, (Member, IEEE), DOMENIC FORTE 2, (Senior Member, IEEE),
AND FATEMEH GANJI®1, (Member, IEEE)

!Electrical and Computer Engineering Department, Worcester Polytechnic Institute, Worcester, MA 01609, USA
2Electrical and Computer Engineering Department, University of Florida, Gainesville, FL 32611, USA

Corresponding author: Fatemeh Ganji (fganji@wpi.edu)

This work was supported in part by the Semiconductor Research Corporation (SRC) under Grant 2991.001 and Grant 2992.001,
and in part by NSF under Award 2138420.

ABSTRACT The rapid growth of deep learning (DL) has raised serious concerns about users’ data and neural
network (NN) models’ security and privacy, particularly the risk of backdoor insertion when outsourcing
the training or employing pre-trained models. To ensure resilience against such backdoor attacks, this work
presents GuardianMPC, a novel framework leveraging secure multiparty computation (MPC). GuardianMPC
is built upon garbled circuits (GC) within the LEGO protocol framework to accelerate oblivious inference
on FPGAs in the presence of malicious adversaries that can manipulate the model weights and/or insert
a backdoor in the architecture of a pre-trained model. In this regard, GuardianMPC is the first to offer
private function evaluation in the LEGO family. GuardianMPC also supports private training to effectively
counter backdoor attacks targeting NN model architectures and parameters. With optimized pre-processing,
GuardianMPC significantly accelerates the online phase, achieving up to 13.44x faster computation than
its software counterparts. Our experimental results for multilayer perceptrons (MLPs) and convolutional
neural networks (CNNs) assess GuardianMPC’s time complexity and scalability across diverse NN model
architectures. Interestingly, GuardianMPC does not adversely affect the training accuracy, as opposed to
many existing private training frameworks. These results confirm GuardianMPC as a high-performance,
model-agnostic solution for secure NN computation with robust security and privacy guarantees.

INDEX TERMS Backdoor insertion, malicious adversary, neural networks, multiparty computation, secure
and private function evaluation, private training, oblivious inference.

I. INTRODUCTION attacks involve the stealthy insertion of vulnerabilities

Deep learning (DL) has seen remarkable progress in rev-
olutionizing areas such as image and speech recognition,
object detection, and even extending to complex fields like
genomics and drug discovery. The essence of deep learning
lies in its ability to learn multiple features from data,
which has enabled sophisticated functions for tasks like
classification. This advancement in deep learning is crucial
in uncovering complex structures in high-dimensional data,
making it applicable across various domains [1]. !

With the advancement of deep learning, the threat of
backdoor attacks has become increasingly prominent. These

The associate editor coordinating the review of this manuscript and

approving it for publication was Junho Hong
ICode is available at https://github.com/vernamlab/GuardianMPC

within machine learning models. Backdoor attack surfaces
involve (1) malicious data collection and data poisoning,
(2) code poisoning, (3) malicious collaborative learning,
(4) manipulation during post-deployment, (5) outsourcing
the training, and (6) manipulating a pre-trained model and
making it available to the users. Here, outsourcing the
training to a third party as practiced in, e.g., Amazon’s and
Microsoft’s Machine Learning as a Service (MLaaS) [2],
[3], can be exploited by the adversary who can disrupt the
training pipeline. Moreover, manipulating a popular pre-
trained benign model available in, e.g., Caffe model zoo or
Keras model library [4], [5] is another attempt to distribute
the backdoored model to the market [6], [7], [8]. This paper
focuses on outsourcing and using pre-trained models for two
reasons. First, outsourcing has the highest attack success rate

© 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

VOLUME 13, 2025

For more information, see https://creativecommons.org/licenses/by/4.0/

11029

https://orcid.org/0000-0002-1216-1552
https://orcid.org/0000-0002-2794-7320
https://orcid.org/0000-0003-0151-1307
https://orcid.org/0000-0001-5035-8260

IEEE Access

M. Hashemi et al.: GuardianMPC: Backdoor-Resilient Neural Network Computation

since the attacker can access the model and training data
as well as control the training process. On the contrary, the
user has restricted computational resources, so the training
is outsourced to another party. The same limitation applies
to the user who applies the pre-trained model due to its
lack of resources. This imbalance between the user’s and
the adversary’s power makes the problem of designing a
countermeasure more challenging.

Another interesting factor in such attacks is the stage
of implementation where the backdoor can be inserted,
e.g., (1) at the graph definition level by slightly modifying
components of neural networks (NNs) [9], [10], [11];
(2) backdoors inserted by manipulating the weights during
the hardware compilation step [12]; (3) in the software
execution environment by injecting the malicious logic into
the deployed model through reverse-engineering [13]; (4) the
hardware which the model runs on [14], [15], and [16].
These attack vectors, particularly in hardware accelerators,
make it very difficult (if not impossible) to verify whether a
backdoor is inserted.? Hence, the stealth and sophistication
of these attacks necessitate robust and innovative defense
strategies [8], [14].

A. SECURE MULTIPARTY COMPUTATION FOR NNS
Seen from another perspective, the increasing deployment of
NN in various applications has also led to privacy concerns.
As a remedy, secure cryptographic inference protocols have
been devised, where many of them have secure multiparty
computation (MPC), specifically, garbled circuits (GCs) at
their core [17], [18], [19], [20], [21], [22], [23], [24], [25],
[26], [27], [28], [29], [30], [31], [32]. Classically, GC is
a secure two-party computation (2PC), also referred to
as secure function evaluation (SFE), that offers oblivious
evaluation over “encrypted’ truth tables of gates in a given
circuit [33]. GCs are realized by encoding the parties’ inputs
and sending them to an evaluator during an online phase,
which reveals no information about the inputs. Compared to
its counterpart, fully homomorphic encryption (FHE), GCs’
computation complexity is much lower [28], [34], [35], [36].
These protocols protect the user’s data and/or NN providers’
intellectual property (IP), i.e., the NN models. MPC has also
been employed under outsourced training scenarios where
the user does not have resources for training the model [18],
[37], [38], [39], [40], [41], [42], [43], [44]. Outsourced
training is a special case of private training. Under a private
training scenario, multiple mutually distrustful data owners
collectively and privately train using interactive protocols.
Hence, outsourced training can be seen as private training
with one data owner.

Now, the question is whether backdoor attacks against NNs
can be formalized within the context of MPC. To answer
this question, we focus on GCs. GCs can protect the NN

2Note that as we concentrate on the physical security of NNs, data
poisoning/adversarial machine learning is out-of-scope.

11030

owner’s input, which should be kept private, i.e., the NN’s
weight; hence, GCs are naturally suited to prevent backdoors
in the NN’s weights. Moreover, given that the NN model can
be seen as the NN owner’s input, GCs in private function
evaluation (PFE) can be a good fit to counter backdoor
insertion attacks in NNs. PFE enables a secure computation
protocol to keep the details of the function being computed
hidden; hence, the adversary can insert a backdoor into
neither the NN’s architecture nor the weights.

B. CONTRIBUTIONS
Our paper aims to answer the following questions on applying
MPC to protect NNs against backdoor attacks. Which existing
GC-based NN engines are immune against backdoor attacks,
especially attacks mounted during outsourcing and against
pre-trained models? If existing GC-based NN inference
engines are not secure against such attacks, which modifica-
tions can be made to assure their security? What is the cost of
securing GC-based NN inference engines against backdoor
attacks?

Our paper answers these questions by contributing to the
following areas:

1) We first build a bridge between the definitions of
malicious adversaries in MPC and backdoor attacks.
According to our observation, existing GC-based NN
engines cannot withstand backdoor attacks. To narrow
this gap, we introduce GuardianMPC, a novel NN
computation engine that is secure against backdoor
attacks.

2) GuardianMPC is the very first pure GC-based frame-
work that supports private training and oblivious
inference in the presence of malicious adversaries.
This feature allows us to effectively protect the NN
model (parameters and architecture) in the face of
backdoor attacks during outsourcing and when using
pre-trained models. GuardianMPC greatly benefits from
the flexibility offered by the LEGO protocol fam-
ily [45], particularly one of its variants that enables
function-independent pre-processing [46]. Implement-
ing GuardianMPC on field programmable gate arrays
(FPGAs) is the first of its kind, allowing for efficient
oblivious inference. Furthermore, this efficiency is
achieved thanks to the optimizations and parallelism
provided by both the protocol and FPGA when consid-
ering oblivious inference.

3) The protection mechanism offered by GuardianMPC
is model agnostic and does not affect the accuracy
of the protected model. The key ingredient making
this possible is the implementation of a universal
microprocessor architecture that is model-independent
and accepts a NN model as a private input of the parties.
A slight increase in the protocol’s pre-processing time
(during the offline phase) is the trade off for security in
malicious cases.

VOLUME 13, 2025

M. Hashemi et al.: GuardianMPC: Backdoor-Resilient Neural Network Computation

IEEE Access

Input Garbled | XOR Garbled AND Garbled
Input Output | XOR Output [Output AND Output
00 | wow 0 Ep9,,s(we) 0 Ep9,,s(wWe)
01 | wowp 1 E gt (We) 0 Epyg w2 (W)
1,0 | wiw 1 Ey1wo(We) 0 Eyrwmp W)
L1 | wiwi 0 Ep1 i (W) 1 Eyiwp(We)

FIGURE 1. Garbled gates’ look-up table (Inspired by [50]).

C. ORGANIZATION

Section II provides the preliminaries on GCs, while
Section III describes a taxonomy of the existing rele-
vant malicious adversary-resilient GC-based frameworks.
Section IV elaborates on the relationship between backdoor
attacks and malicious adversaries as defined in the context
of MPC. Section V details the methodology, whereas
Section VI includes experimental results for various NN
model implementations using GuardianMPC. Section VII
discusses the salient points relevant to this work. Finally,
Section VIII concludes the paper.

Il. BACKGROUND ON GARBLED CIRCUITS

A. YAO'S GC

Yao’s GC is a predominant example of MPC with two parties,
garbler, and evaluator, which is also referred to as the secure
function evaluation (SFE) method for Boolean circuits [47],
[48], [49]. We highlight the primary building blocks and
optimizations within this scheme.

B. OBLIVIOUS TRANSFER (OT)

We focus on 1-out-of-2 OT protocols, where the sender P has
two messages mg and mj. The receiver P, poses a selection
bit i € {0, 1} used to learn m;, but not m_;. In this process,
P; does not learn i.

C. GARBLING

The main building block of GC is typically known as
“encryption,” i.e., operations such as hashing or employing
symmetric keys, in particular, a constant-key block cipher.
The first step in the protocol is to construct the garbled
circuit C, where the garbler (P;) selects random secrets wﬁ
representing the garbled value of j € 0,1 per wire W;.
Importantly, these wﬁ secrets do not disclose any information
about j. In practice, when employing Yao’s GC, the binary
values “0” and “1” are represented by n-bit strings, where
n denotes the security parameter; hence, each wi (so-called,
a token) encrypts a combination of j and (n — 1) random
bit values. After generating the tokens, the garbler generates
a garbled table T; per logic gate G;, where the output is
encrypted in each row. The final output is a “‘ciphertext,”
shown in Figure 1 as the result of the encryption function E(-).
The rows in the table are shuffled to ensure that decoding the

VOLUME 13, 2025

output labels does not reveal the garbler’s inputs. The output
of T; can be decoded using a set of garbled inputs, although
the inputs of the garbler and the evaluator (P») are kept secret.
In this context, the token generated for the garbler’s input is
transferred to P, via OT. P, computes the garbled output by
sequentially processing the garbled circuit using the tables T;
and obtaining j for the output wire from P [51]. It is also
possible to skip the garbling of the circuit’s output wires,
allowing both parties to determine solely the final result [52].

D. FREE-XOR OPTIMIZATION

This technique takes advantage of the XOR gate’s algebraic
properties. It enables the direct combination of committed
input bits using XOR, omitting the need for extra encryption
steps and reducing computational overhead [52].

E. XOR-HOMOMORPHIC COMMITMENT SCHEMES

These schemes are constant round, additively homomorphic
with (amortized) computational and communication com-
plexity linear in the string size that the party commits to [53].
Like other commitment schemes, these primitives can be seen
as digitally sealed containers containing parties’ secrets sent
to another party. XOR-homomorphic commitment schemes’
hiding property means that the receiver cannot determine the
secret, whereas the notion of binding captures the fact that the
sender cannot alter the content of the commitment. Homo-
morphism of XOR-homomorphic commitment schemes is
the result of removing the sender’s freedom for sending
maliciously constructed corrections at commitment time for
all values; therefore, after this phase, commitments and shares
can be added together without issue cf. [53]. LEGO protocols
rely on cut-and-choose of GCs and require a large number of
homomorphic commitments, specifically, one commitment
for each wire of all garbled gates [45], [46].

IIl. RELATED WORK

MPC-related literature can be broadly classified based on
their threat models. Classically, two threat models have been
considered in prior works: (i) semi-honest (so-called Honest-
but-curious, HbC) and (ii) malicious (active) adversary.
An HbC adversary is expected to follow the protocol
execution and not deviate from the protocol specifications.
On the contrary, a malicious adversary may attempt to cheat
or deviate from the protocol execution specifications. More
concretely, the garbler may send the garbling of a different
circuit than the evaluator has not agreed to evaluate, i.e.,
cheating to gain access to private information. Furthermore,
the garbler may not use the same input in all the evaluated
garbled circuits. Another garbler’s malicious activity, referred
to as selective OT, corresponds to feeding incorrect inputs
to the OTs for the evaluator to its input labels [54], [55].
Still, the evaluator cannot confirm the circuit is correct or
the garbler’s input is intact [56]. This clarifies why back-
door attacks can be formalized in the malicious adversary
model.

11031

IEEE Access

M. Hashemi et al.: GuardianMPC: Backdoor-Resilient Neural Network Computation

A. NN COMPUTATION WITH MALICIOUS ADVERSARY

As explained in Section I, secure NN computation can be per-
formed using the cryptographic primitive, namely two-party
computation (2PC). 2PC, in the context of malicious
adversaries, has attracted notable attention due to the potent
threats to users’ privacy. In fact, GC-based 2PC protocols
can be turned into maliciously secure ones by combining cut-
and-choose techniques [57] and malicious OT-extension [58].
Various techniques have been devised to tackle the significant
overhead imposed by such combinations, which are briefly
discussed below.

1) COMBINATION OF GC AND SECRET SHARING W/O HE

A large body of research has suggested using pure or
hybrid HE protocols for mainly NN inference and out-
sourced training [18]. Nevertheless, among them, only a
few proposals guarantee security in the malicious sense,
for instance, [59]. One possible reason is that HE as an
encryption method suffers from limited operational scope,
potential truncation errors, complex key management, and
compatibility issues [60], [61], [62]. Moreover, while HE
offers the advantage of computing directly on ciphertexts,
it is burdened by significant computational and storage over-
heads, particularly in its fully homomorphic variant. These
drawbacks render HE less viable for complex computations,
especially where latency is a concern, e.g., inference at the
edge.

Secret sharing is another ingredient often used in protocols
offering security against malicious adversaries. Examples of
this are [39] and its most related protocols FLASH [63],
BLAZE [64], Falcon [41], Trident [42], SWIFT [65], Adam
in Private [43] and Fantastic 4 [66]. In addition to supporting
more than 3 parties, they had different objectives, e.g.,
providing security with abort, meaning that honest parties
would abort if a corrupt party deviates from the protocol.
Furthermore, some studies, e.g., FLASH [63], SWIFT [65],
and Trident [42] support notions of fairness or robustness.
Here, fairness refers to the feature that all or none of
the parties obtain the output of the computation, whereas
robustness, so-called guaranteed output delivery, ensures that
honest parties always receive the correct computation result
cf. [35]. Another aspect that makes these protocols different is
how the protocol is optimized. For instance, SWIFT [65] aims
for high-speed and robust privacy preservation in machine
learning by employing algorithmic and computational opti-
mizations. Needless to say secret sharing adds computational
complexity, poses vulnerability to collusion attacks, and
presents challenges in managing and distributing shares [67],
[68], [69].

2) USING ZERO-KNOWLEDGE PROOFS

Primitives relying on zero-knowledge (ZK) proofs allow the
NN model owner to convince the users that the NN model is
correctly built. In this context, ZK proofs guarantee that if the
model owner sends a wrong computation result, it can only
pass the verification with a negligible probability, which is

11032

referred to as the soundness property. Furthermore, the proof
leaks no information about the model owner’s secret input,
i.e., the zero-knowledge property. These properties make
ZK proofs a potential solution to counteract the malicious
party as considered in, e.g., [64]. Lehmkuhl et al. [70]
introduced MUSE, a secure machine learning inference
framework against malicious clients, leveraging HE and
secret sharing MPC and zero-knowledge proofs. SIMC [71]
and SIMC 2.0 [72] have further enhanced the efficiency of
MUSE by building upon its protocols, including ZK proofs.
Besides the issue mentioned in regard to secret-sharing
and HE, one should not ignore the difficulties facing the
adoption of zero-knowledge proofs. Zero-knowledge proofs
can introduce computational complexity, require trusted
setups, and may face scalability issues [73], [74].

B. PURE GC-BASED APPROACHES

As briefly explained before, pure GC protocols in the
HbC setting have a clear path toward supporting malicious
security; nevertheless, this can be achieved at the cost of
high overhead. The main technique for securing GC protocols
against malicious adversaries is cut-and-choose [46], [54],
[55], [75], [76], [77]. The idea behind the cut-and-choose
technique is that a set of circuits presumably computing
the same function are generated and sent to the user
(i.e., evaluator). After evaluating a random set of these
circuits, the user verifies whether all the circuits have
been generated correctly. If so, the user continues running
the protocol and evaluating other unopened circuits in the
standard GC protocol; otherwise, the user knows that the
NN owner (i.e., the garbler) has cheated and can abort.
Table 1 summarizes some of these techniques, their target
attacks, and the contribution of the most relevant GC-based
countermeasure. We categorize the relevant literature into
two main streams: (1) single-interaction cut-and-choose and
(2) amortized cut-and-choose.

1) SINGLE-INTERACTION AND AMORTIZED
CUT-AND-CHOOSE

The seminal work of Lindell and Pinkas [55] established
the foundational principles of single-interaction cut-and-
choose for 2PC in the presence of malicious adversaries.
This approach integrates commitment schemes, OT, and
GC, leading to a series of enhancements in subsequent
work. Kreuter et al. [78] proposed a compiler framework
that optimized secure computation protocols, particularly
for large-scale computations involving billions of gates.
They also have accelerated the cut-and-choose step by
giving the check circuits to the evaluator and by revealing
the random seeds used to produce them rather than the
check circuits themselves, as suggested in [79]. Frederiksen
and Nielsen [75] contributed to this line of research
by introducing GPU-based acceleration for cut-and-choose
protocols, utilizing NVIDIA’s CUDA architecture to achieve
substantial speed improvements over traditional CPU-based
methods.

VOLUME 13, 2025

M. Hashemi et al.: GuardianMPC: Backdoor-Resilient Neural Network Computation

IEEE Access

Amortized cut-and-choose has been proposed to reduce
the evaluation cost in a scenario, where two parties know
in advance that multiple secure evaluations of the same
function (on unrelated inputs) should be performed. In this
setting, the amortized costs for each evaluation can be
reduced by performing a single cut-and-choose for all
evaluation instances cf. [56]. This idea has been formal-
ized, later optimized, and implemented in [54], [76], and
[80]. Lindell and Riva [76] enhanced this approach by
introducing methods such as “cutting in the exponent,”
which optimizes the online/offline phases of 2PC, and
by addressing the challenges of concurrently executing
computations, thus reducing overall computational demands.
Furthermore, Nielson et al. [46] expanded upon these con-
cepts by implementing function-independent pre-processing,
leading to constant-round maliciously secure 2PC.

Despite examples of spectacular advancements in soft-
ware implementations of maliciously secure 2PC protocols,
hardware implementation and acceleration are still lagging,
particularly when considering secure and private NN compu-
tation. Features of GurdianMPC and the differences between
GuardianMPC and TinyLEGO [46], [81] highlight how this
work contributes to the field (see Sections V-B-V-C).

IV. DL AND GCS: SIMILARITIES IN THREAT MODELS

A. BACKDOOR ATTACKS IN DL PIPELINE

Figure 2 shows the well-known attack types at each
stage of the DL pipeline including adversarial example
attack [82], universal adversarial patch [83], [84], [85], data
poisoning [86], [87], backdoor insertion [87], [88], [89],
[90], and outsourcing [88].3 Among these attacks, backdoor
insertion attacks [87], [88], [89], [90] effectively manipulate
NN at various stages. A summary of attacks within the scope
of this paper is provided below.

A backdoor refers to the intentional insertion of a hidden
vulnerability or mechanism within a model that allows it
to perform correctly on virtually all input data points, but
forces it to execute an incorrect, typically malicious action
when a particular, hidden trigger is present in the input or the
NN models [8], [91]. Backdoors can be inserted into models
through various mechanisms. Two primary ways to insert
backdoors are during the outsourcing of model training and
within pre-trained models [8]. Here, we provide a detailed
elaboration on these two cases.

1) PRE-TRAINED MODEL BACKDOOR INSERTION

Pre-trained models are commonly used in DL due to the
significant computational resources and data required for
training. These models are often available for transfer
learning [92], having been trained on large, generalized
datasets. In this scenario, the backdoor is introduced by either
direct weight manipulation attacks [89], [93] or by altering
an existing model to include the backdoor [14], [87], [88].
This alteration involves embedding triggers in the model’s

3Data poisoning/adversarial ML are beyond this work’s scope.

VOLUME 13, 2025

parameters that do not affect its performance on standard
tasks but activate specific, malicious behaviors when the
model encounters inputs containing the trigger.

a: DIRECT WEIGHT MANIPULATION

A prime example of attacks that can be mounted on
pre-trained models is referred to as direct weight manipula-
tion. Such attacks involve partially/fully altering a pre-trained
NN’s weights to introduce a backdoor without poisoning
the training data [89], [90]. This approach offers more
control over the model’s behavior, as it directly changes
model parameters in a way that can evade many existing
backdoor detection and removal defenses [89]. These attacks
can maintain high success rates of inducing malicious
behavior while preserving the model’s overall performance
on legitimate tasks [8].

2) OUTSOURCING BACKDOOR INSERTION

In the outsourcing scenario, a user may not have the
resources or expertise to train a DL model; therefore, the user
outsources the training process to a third-party service [8].
This approach introduces a vulnerability where the service
provider can modify the weights of the trained model, so-
called direct weight manipulation attacks [89], [90] while
maintaining the model’s overall accuracy. Since the backdoor
only activates in the presence of the predefined trigger, the
backdoor is difficult to detect.

a: ARCHITECTURAL BACKDOOR INSERTION ATTACK
Besides direct weight manipulation, architectural backdoors
are possible under an outsourcing scenario. Such attacks
subtly embed a backdoor into an ML model, enabling it
to handle both a malicious sub-task and a benign primary
task [87], [88]. It reduces the model’s accuracy even if it is
retained on clean inputs [88]. Upon activating a trigger, the
backdoored model executes the attacker’s intended sub-task,
independent of the actual input content [8]. Another type of
a successful architectural backdoor attack is the hardware
backdoor insertion [14]. This involves inserting backdoors
in the hardware embodying the NN model. The malicious
manipulation of hardware accelerators relies heavily on RTL-
level changes, with attackers either altering the system’s
logic or inserting vulnerabilities. Preventing architectural
manipulation protects against these threats [14].

B. TARGETS OF MALICIOUS ADVERSARY IN GC

What can be understood from the discussion in Section IV-A
is that attackers often exploit vulnerabilities within DL
systems, either by subtly embedding triggers or by directly
tampering with the model’s weights to generate unde-
sirable outcomes. While efforts have mainly focused on
strengthening DL pipelines against these attacks, an interest-
ing correlation between these threats and malicious attacks
against MPC protocols has been unnoticed. By linking the
similarities between MPC’s malicious adversary models and
attack models in the context of backdoored NNs, we aim

11033

IEEE Access

M. Hashemi et al.: GuardianMPC: Backdoor-Resilient Neural Network Computation

TABLE 1. Summary of most relevant garbled-circuit-based countermeasure against malicious adversary.

Author/Work

Technique

Mitigation

Contributions

Lindell et al. [55]

Single-interaction
cut-and-choose GC

« Incorrectly construct GC.

« Input consistency.

« Providing an efficient implementation of Yao’s protocol, using the cut-and-choose
methodology.

« A constant-round black-box reduction of secure two-party computation to oblivious
transfer and perfectly-hiding commitments.

« Consistency checks based on cut-and-choose.

Kreuter et al. [78]

Single-interaction
cut-and-choose GC

« Incorrectly construct GC.

- Input consistency.

« Building a high-performance secure two-party computation system that integrates
various techniques for efficiently.

« Oblivious Transfer Extension.

« Circuit-Level parallelism of cut-and-choose protocol.

- Presentation of A scalable boolean circuit compiler that can generate circuits with
billions of gates.

Frederiksen et al. [75]

Single-interaction
cut-and-choose GC

« Incorrectly construct GC.

- Input consistency.

« Implementation of cut-and-choose protocol using same instruction multiple data (SIMD).
« Showcased a fast maliciously secure two-party computations framework using
NVIDIA GPU.

Huang et al. [80]

Amortized
cut-and-choose GC

« Incorrectly construct GC.

« Input consistency.
- Selective OT.

« Development of amortized cut-and-choose garbled-circuit protocols in multiple
execution scenarios.
- Significant reduction in the replication factor for cut-and-choose-based protocols.

Lindell et al. [76]

Amortized
cut-and-choose GC

« Incorrectly construct GC.

- Input consistency.
« Selective OT.

« Improve efficiency by utilizing batch two-party computation.
« Proposal of the online/offline two-party computation aimed to decrease protocol latency.

LEGO [46]

Amortized
cut-and-choose GC

« Incorrectly construct GC.

« The proposal of large efficient GC optimization by restricting the circuits to NAND gates.
« Offers a fault-tolerant design that allows computation even with some faulty gates.

Lindel et al. [54]

ZK Proofs + GC

« Selective-OT.
« Incorrectly construct GC
« Input consistency.

« Optimizing the online/offline phase of [76] by reducing the number of GC

" | needed to be evaluated during the online phase

* Data Poisoning

Data Collection and Model Selection

Preparation

» Backdoor Insertion

* Backdoor Insertion

» Backdoor Insertion
* Adversarial Example
* Universal Adversarial Patch ¢ Backdoor Insertion

* Code Poisoning

LLLLL)
Hardware Implementation

Model Update < Backdoor Insertion

FIGURE 2. Well-known attack types against each stage of the DL pipeline (Inspired by [8]). The red font means that the attacks fall within
the scope of this paper. The backdoor insertion during different phases involves architectural backdoor insertion in Model Selection, direct
weight manipulation in Model Train, architectural backdoor insertion and direct weight manipulation in Model Deploy, and direct weight

manipulation in Model Update.

to identify commonalities between threats and develop more
robust defense strategies.

1) INCORRECT CIRCUIT CONSTRUCTIONS

One of the malicious adversaries’ abilities in the context of
MPC is the construction of incorrect GCs. If an adversary
can successfully introduce incorrect circuits without being
detected, they might influence the computation’s outcome.
This could result in either incorrect computation results or
leakage of private information if the incorrect circuits are
designed to reveal information when executed. To address
this, multiple GCs are prepared, and a subset is chosen
randomly for evaluation, i.e., cut-and-choose. When applying
cut-and-choose, if the user verifies that the opened circuits
are correct, the computation outcome will be determined by
taking the majority of outputs generated by the unopened
circuits that are evaluated in a standard GC way.

2) INPUT INCONSISTENCY
An input inconsistency attack in the context of cut-and-
choose-based GCs occurs when the malicious garbler gives

11034

different inputs in different computation instances cf. [94].
Suppose that the NN provider gives correct garbled inputs
(e.g., garbled weights) only for a subset of the possible
inputs, the user aborts after observing the inconsistency
outcomes or understanding that she cannot compute any
circuit due to incorrect inputs. Since the protocol is aborted,
the NN provider will learn some information about the
user’s input based on whether or not it aborts. This
undermines the security and reliability of the protocol [95].
TinyLEGO family [46], [81] and GuardianMPC address this
by incorporating a commitment scheme on top of the cut-and-
choose mechanism (see Section V for details).

C. SIMILARITIES BETWEEN ADVERSARIES

1) DIRECT WEIGHT MANIPULATION

This type of backdoor changes the expected behavior of a
DL model by altering its trained weights [89], [90]. This
is a case for constructing a garbled circuit that computes a
function that is different from the one that two parties agreed
to compute cf. [55], [96]; see Figure 3. The cut-and-choose
technique can address this; however, it is insufficient due to

VOLUME 13, 2025

M. Hashemi et al.: GuardianMPC: Backdoor-Resilient Neural Network Computation

IEEE Access

int inputSize = 784;
int hiddensizel = 128;
int hiddensize2 = 64;
int outputSize = 1¢;

[4
User
[

int inputSize = 784;
int hiddens:
int hiddens:

€ "int backdool
. int outputsize

hidden layer
d hidden layer
or hidden layer

%D 5 |tayer inputLayer(inputsize, @); Layer inputLayer(inputSize, @);

B - S |tayer hiddenLayeri(hiddensizel, inputsize); Layer hiddenLayerl(hiddensi.

L _ S |rayer hiddenLayer2(hiddensize2, hiddensizel); “Layer backdoorLayer (backdo

5 Layer outputLayer(outputSize, hiddensize2); NN id Layer hiddenLayer2(hiddenSi:

2 Provider |iayer cutputiayer(outputsize, hiddensize2);
2] - . . .
=R f W Incorrect Clrcuil Constructions
o 3 Training

o for (int i -9 1 - For (int i=0; 1 Q -
Q 2 biases[i] = b; biases[i] = b; b=
g for (int j = @; j < prevsize; ++j) { |—> QENNED —> for (int j = @; j < pre 5 ’ . 3
S weights[i][j] = W[i][j]; veight weights[1][j] = "w*[i][Jj] ght =
= ! J) User

qd }

A~ Published NN NN provider Input Inconsistency

FIGURE 3. An example of most relevant malicious activities as known in MPC and their possibility in the DL pipeline.
During outsourced training, the NN provider trains the backdoored NN that will be implemented on the user’s device.
In the pre-trained NN scenario, the NN provider downloads the pre-trained network and manipulates it to either gain
profit (if the published NN is not free-of-charge) or simply harm users’ devices by making them less reliable.

the possibility of giving inconsistent input to different circuits
being evaluated, and consequently, the malicious party could
learn more information than allowed. Therefore, we can
conclude that direct weight manipulation is conceptually
equivalent to the malicious input inconsistency [95] in GCs.

2) ARCHITECTURAL BACKDOOR INSERTION

These attacks, along with the direct weight manipulation,
are two possible attacks to be launched during outsourcing
the NN computation [8], [14], [88]. These backdoors aim to
modify the DL model through its structure without affecting
the model functionality noticeably. This attack is close to
incorrect GC constructions in MPC, where the malicious

party constructs a circuit to extract other party’s secrets if not
detected [76].

D. OUR ADVERSARY MODEL

Our model involves two parties, a user and an NN provider,
who acts maliciously in the GC sense. The user aims to obtain
an NN for a certain task, whereas the NN provider represents
the party to whom the user either outsources the job of
training the NN or from whom the user downloads a pre-
trained model. In an outsourcing case, the user aims to train
the parameters of a NN using a training dataset. Hence, the
user sends a description of the NN (i.e., the number of layers,
size of each layer, choice of non-linear activation function,
etc.) to the NN provider, who returns trained parameters. The
user may not fully trust the trainer and check the accuracy
of the trained model on a held-out validation dataset. When
interactively performing this process, the NN provider may
change the NN’s weights/architecture after the validation
phase is over. On the other hand, when using a pre-trained
NN, the user downloads a maliciously pre-trained model
crafted by the NN provider. The malicious NN provider first
downloads an honestly-trained, published version of the NN
and then inserted a backdoor into that and made it available.
The NN provider does not need to access the published

VOLUME 13, 2025

TABLE 2. Resiliency of existing GC-based NN computation against
backdoor attacks.

Framework Outsourced Backdoor Pre-trained Backdoor
ABY® [39] No
TinyGarble2 [97] No
CryptFlow [98] No
Flash [63] No
Blaze [54] No
Swift [65] No
Trident [42] No
Fantastic 4 [66] No
QuantizedNN [59] No
MUSE [70] No
AdamlInPrivate [43] No
SecureNN [99] No
FalcoN [41] No
GuardianMPC

model’s original training [8]. The NN provider can potentially
arbitrarily modify the NN’s weights and architecture.

E. RESILIENCY OF EXISTING GC-BASED NN
COMPUTATION AGAINST BACKDOOR ATTACKS

What follows the discussion in Section IV-C is that
MPC-based NN computation (see Section III-A), which
are robust to malicious attacks, could protect NNs against
backdoors. Table 2 provides a comparative overview of such
frameworks supporting GC-based NN computation and their
resilience against different backdoor attacks. Specifically,
the table focuses on the resiliency of these frameworks
against backdoors inserted either during outsourcing or by
manipulating a pre-trained NN. The table indicates protection
capabilities, using green to signify successful protection and
red to indicate vulnerability.

Our framework, GuardianMPC, distinguishes itself by
offering protection against both outsourced and pre-trained
backdoor attacks. It utilizes the LEGO protocol’s cut-and-
choose method [46], [81], which involves opening a subset
of garbled circuits to ensure correctness, thus verifying the
integrity of the computation at each phase. This approach
ensures that if any inconsistencies or tampering attempts
occur during training, they are likely to be detected,

11035

IEEE Access

M. Hashemi et al.: GuardianMPC: Backdoor-Resilient Neural Network Computation

Encya a E . Encgv| Encs |Ency s(x5)
M, X

Encp ot () Ence /| Encyy |Ence (x5

Garbled Table Direct Weight | gncg| Ency [Encg 2

Bncg | Ency [Encg g0 | ManBUaton s [Bre ()

Ei Enc, Enc, x§.

P Y B Y P &
1 Encg |Ency [Encg a(xf)
0

Truth Table
0

Incorrect Circuit
Construction:

0
1
0
1

Encys |Ency |Ence a(x6)

Encgv| Encsv]

Encyg| Encay[Enc

Encyg,/| Ency,

,
NN provider @ . ™

- Gumdianm

FIGURE 4. How GuardianMPC protects NNs against the malicious NN
provider during private training. GuardianMPC deploys mechanisms to
check inconsistency in the input and model to stop an attacker from
inserting a backdoor through weight manipulation or incorrect NN
construction. Green check marks and red text illustrate that the backdoor
is prevented by checking the inputs and tables.

making GuardianMPC a suitable countermeasure against
the malicious NN provider. GuardianMPC also ensures
that pre-trained models remain secure against backdoors,
leveraging the weight and architectural changes.

V. GUARDIANMPC
GuardianMPC utilizes principles from protocols from the
LEGO family [45] to achieve resiliency against architectural
backdoor attacks and direct weight manipulation. The
concept of LEGO applies the cut-and-choose mechanism at
the gate level instead of at the circuit level [45]. Compared
to conventional cut-and-choose at the circuit level, this
allows a saving in the computation and communication
complexity in order of O(log(s)), with s being the circuit
size. To further improve the LEGO protocol’s efficiency
and make it compatible with known optimization for Yao’s
protocol, e.g., free-XOR, MiniLEGO was introduced [100].
Yet, for real-world circuits, the MiniLEGO protocol induces a
significant overhead in comparison with the fastest protocols
for cut-and-choose of garbled circuits. TinyLEGO has
resolved this issue by integrating several optimizations,
including XOR-homomorphic commitment schemes (see
Section II). This commitment scheme is asymptotically
and concretely very efficient in terms of communication
cost. This commitment scheme, on top of the cut-and-
choose mechanism, ensures that the malicious NN provider
neither constructs incorrect NNs nor changes her inputs, i.e.,
does not insert architectural backdoors and manipulates the
weights. TinyLEGO’s recent variant also supports function-
independent pre-processing phase [46] that not only achieves
a higher level of efficiency, but also allows for independently
garbled gates to be processed offline through cut-and-
choose. This variant forms the basis for GuardianMPC,
although GuardianMPC differs from usual implementations
of TinyLEGO (see Sections V-B-V-C for more details).
GuardianMPC framework is composed of two imple-
mentations for private training and oblivious inference;
see Figures 4 and 5. The key distinction between these
two implementations is that the entire training process
is conducted on the server side, allowing for continuous
weight updates and iterative learning, whereas the oblivious

11036

Eneye . e E"”‘ ’
2 L' 4
:)):>_ EncX:‘E"Cxaxb (x) Enc.u ? Enc,a b (x°)

Garbled Table Garbled Table

'Erut:Taoble Enc |Encg |Encg a(x§) Ency |Ency |Encg (x5

EEE Ency |Ency |Enc,a(x) Encyy |Ency |Encga(x)
—_— -

1] A Ency |Ency |Encyga(x) Ency |Ency |Encga(x)

1]1]o0 Ency |Ency |Ence »(xf) Encyg |Ency |Encs(x§)

PR
NN provider g%

Published NN O F U;cr
< = i%’E a

FIGURE 5. How GuardianMPC ensures privacy of pre-trained NNs in the
face of backdoor attacks. Since the NN architecture is also protected
through garbling, the attacker can neither manipulate the weights nor
insert architectural backdoors (the red unknown key indicates that the
malicious NN provider cannot decrypt the garbled inputs and tables).

inference process is optimized to run on an FPGA for
faster evaluation of a pre-trained model. For private training,
GuardianMPC runs backward propagation with many more
iterations than the forward propagation in oblivious inference
cf. [34]. GuardianMPC follows the private training as
outlined in [18] and includes the required functionalities in
the TinyLEGO-compatible implementation.

While potential backdoors during private training are
prevented through SFE, oblivious inference should protect
the NNs from backdoor attacks when using a pre-trained
NN. For this, GuardianMPC applies function-independent
pre-processing to fulfill the need for PFE. Consequently,
PFE prevents backdoor insertion if a pre-trained NN is used
due to the fact that the adversary cannot decrypt the NN’s
weights and configuration; see Figure 5. Some features of
GuardianMPC are summarized below.

Transparency in computation: Transparency ensures that
the computation can be verified by all parties without reveal-
ing sensitive information [45]. In LEGO and TinyLEGO,
the cut-and-choose mechanism [76] allows participants to
open a subset of GCs and verify their correctness. If these
circuits are correct, the unopened circuits are used for the final
computation, providing a statistical guarantee of correctness.

In GuardianMPC, this transparency is granted during
both private training and inference phases. Specifically, for
oblivious inference, each garbled microprocessor without
interlocked pipeline stages (MIPS) instruction and input is
verifiable through cut-and-choose techniques. By ensuring
that all instructions and gates align with the intended
computation, GuardianMPC enables users to trust the results
of NN models without exposing the secret data. Moreover,
no model hyperparameters, and parameters can be changed
by the malicious NN provider in pre-trained model scenario;
see Figure 5.

Protection against unauthorized changes: In both private
training and oblivious inference, GuardianMPC leverages
the principles of LEGO’s verification to detect unautho-
rized modifications to the NN model’s circuitry. Malicious
changes, such as weight manipulation [89], [90] or archi-
tectural backdoor insertion [87], [88], would harm the
consistency of the GC. GuardianMPC guarantees that any
inconsistency is flagged immediately, preventing attackers

VOLUME 13, 2025

M. Hashemi et al.: GuardianMPC: Backdoor-Resilient Neural Network Computation

IEEE Access

from inserting backdoors. This is achieved by the cut-and-
choose mechanism coupled with the commitment scheme.
TinyLEGO employs the XOR-homomorphic commitment
scheme, where for all wires of all garbled gates, the garbler
commits to values. When soldering the output wire of a gate
onto the input wires of another gate, we decommit to the XOR
of values on the wires. TinyLEGQO’s optimizations reduce the
overhead associated with verification, making it feasible to
apply this protection even for large NNs.

A. FLOW OF GUARDIANMPC
GuardianMPC follows a structured four-phase flow (see
Figure 6):

1) PREPARATION PHASE

The preparation phase is one of the most critical stages
in GuardianMPC. It ensures that the secure computation
pipeline is established by transforming the circuit function
into its garbled equivalent while optimizing the structure for
efficient and secure evaluation. This phase takes advantage
of the LEGO family’s principles [45], [46], [81] and
HWGN?Z [101], all of which work together to ensure function
privacy and computational security. Steps taken in this phase
are as follows.

Step 1: Circuit compilation into MIPS instructions: The
first step involves translating the circuit C, typically described
in high-level code (such as C/C++), into MIPS instructions.
This is accomplished by a specialized compiler to convert
the function into a sequence of machine instructions specific
to the MIPS architecture cf. [101]. This translation is crucial
because MIPS instructions offer a low-level representation of
the function, making the NN’s structure and logic ambiguous
from the evaluator’s perspective while maintaining full
functionality.

Ig = Compile(C)
I = {Inst}¥,,

where I is the MIPS instruction set composed of N
instructions, which represents the functionality of C in an
abstracted form that is difficult for the evaluator to reverse-
engineer.

Step 2: Generating garbled instructions and inputs: This
step is taken differently for private training and oblivious
inference. For oblivious inference (see Figure 6.a), this
step enables PFE to protect the pre-trained NN’s assets
(configuration and weights) from the malicious NN provider
attempting to insert backdoors; see Figure 5. On the other
hand, under the private training scenario (see Figure 6.b),
where garbling the instructions is skipped, and solely the
user’s inputs are garbled. Once the MIPS instruction set M
has been generated, in this step, the set is garbled along with
the inputs. For each MIPS instruction Inst;, GuardianMPC
applies garbling.

The outputs of this step consist of garbled tables and labels
corresponding to a MIPS instruction set and input bit denoted

VOLUME 13, 2025

by I and X. One can think of /; as the garbled tables, which
are formalized as garbled instruction set, whereas X refers
to specific instructions, a subset of the instruction set that acts
as the garbler input.

Step 3: Constructing multiple instances of the garbled
MIPS core: The process continues by generating multiple,
say, k, independent instances of the garbled MIPS core (i.e.,
garbled tables), each representing the same computational
function, but garbled separately. The number of instances
depends on the security level required by the designer [55]
(see Section V-A2). Each instance contains the same logical
operations but with different random values used for garbling,
ensuring variability across instances. Later, the evaluator
selects solely a subset of instances for verification (see
Section V-A2).

The garbled instruction set and inputs are now ready to be
stored in the next phase of the GuardianMPC flow, ensuring
that the circuit function and data remain secure throughout
the computation process.

Step 4: Memory organization for garbled instructions:
GuardianMPC leverages a structured memory layout that
supports efficient access and retrieval while minimizing the
interaction between the garbler and the evaluator. In this
phase, garbled instruction set I and garbled inputs Xg
prepared in preparation phase should be stored. The garbled
instruction set I is placed in a designated memory unit called
the Instruction Set Memory. This memory unit is
designed to store encrypted instructions that allows for rapid
access by the computation units within the GuardianMPC
implementation. A significant advantage of storing the
garbled instruction set within the Instruction Set
Memory is the reduction in communication overhead. Tra-
ditional MPC protocols often require the garbler to interact
with the evaluator during each phase of the computation,
particularly when sending encrypted instructions or data. This
back-and-forth interaction can be both time-consuming and
vulnerable to various forms of communication-based attacks.
By storing Ig and X locally within the GuardianMPC
implementation, the system minimizes these interactions,
although at the price of memory required on the user’s
device. Once the garbled instructions are securely stored,
the Scheduler component of GuardianMPC can directly
access the Instruction Set Memory to fetch the
necessary instructions for processing. This reduces the
latency and communication burden on the system without
compromising the security since at least, the output should
be decrypted by one interaction between the NN provider and
the user.

2) RUNNING TINYLEGO PROTOCOL
Following the steps below, GuardianMPC utilizes the LEGO
protocol [45], [81] to ensure both input’s consistency and
correctness as well as the correctness of the garbled MIPS
core’s construction.

Step 1: Initializing the commitment scheme: For garbled
instruction sets stored in the memory, the commitment

11037

IEEE Access

M. Hashemi et al.: GuardianMPC: Backdoor-Resilient Neural Network Computation

— Garbler —+%

Circuit.c Input.bin
: Garbled
Garblin
insu-ll\l/gtlijosn set engineg instructions C&C gnuksetd Build }c‘rcult i QEcc?lertated
. uckets valuation
MIPS Compiler MIPS
instruction
L ' J v Y) . -) f)
Preparation Storing instruction set Running TinyLEGO Evaluation
(@
Buckets in SCD format
T Garbler — Garbled
Circuit.c Inputbin —, Garbling 1nputs Instruction
MIPS cgiic m set _— e) Unused_ [o | | Circuit.v Accelerated
i i memot
MIPS Compiler 1nstr11\1/lcltll)osn e P s _ri/ SChedlllerHMIPS o Buckets | Evaluation
instruction
a .) h [
Preparation Storing instruction set Runmng TinyLEGO Evaluation

®)

FIGURE 6. A high-level flow of GuardianMPC. The processes highlighted in red and yellow run on the garbler’s (NN publisher/provider) and
user's machines. (a) Garbling the instructions and the instruction sets is included in the flow of oblivious inference. In the private training
scenario, as shown in sub-figure (b), the instructions and the instruction sets are not garbled. The garbler’s input (weights) are garbled and

obliviously sent to the user via OT.

scheme is initialized, which creates wire authenticators and
commits to all associated wires. Here, the garbler commits to
each wire of the garbled instruction sets.

Step 2: Checking correctness and integrity with cut-and-
choose: The checking is performed through cut-and-choose
running between the parties. To ensure the correctness of
the garbled instances, the evaluator selects a random subset
of garbled cores to be opened and verified. The selected
instances are revealed entirely, allowing the evaluator to
examine the internal structure and verify that the garbling
process was conducted properly. Specifically, the evaluator
checks the correctness of the encryption used for garbling
each AND gate’s truth table and ensures that the input
mappings match the expected values. The garbler cannot
predict which instances will be chosen for verification,
thereby discouraging any attempt to manipulate the garbled
core.

Furthermore, the wire authenticators are checked, where
the corresponding gadget either accepts or rejects a given key
(without revealing the value of the key) [81]. As demonstrated
n [81], this additional step does not impose a cost in
terms of time complexity thanks to the enhanced cut-and-
choose process that significantly reduces the overall cost
(communication and time complexity). This guarantees that
the inputs provided by the garbler are consistent with the
committed values.

This step takes full advantage of function-independent
pre-processing of [46], which relies on the fact that the
preparation step can be taken in an offline fashion and done
independently of the circuit. This matches perfectly the idea
of implementing a general-purpose processor that is indepen-
dent of the instructions corresponding to NN functionality
to be evaluated in the online phase. The implementation of
such a function-independent processor results in efficiency

11038

thanks to the parallelism in the preparation phase. Another
advantage of that is adding more flexibility as the final
output of offline processing is universal. Seen from the
PFE perspective, the function-independent, general-purpose
processor is a universal Turing machine [102] that is useful
for evaluating a function privately. We should stress that
so far, none of the LEGO protocols have been extended to
support PFE; hence, GuardianMPC is the first to implement
a LEGO protocol with PFE support.

Step 3: Building the final garbled core: After the
verification step, if the opened instances pass the checks,
the unopened instances are used to assemble the final GC. The
number of unopened instances is proportional to the desired
security parameter, which determines the statistical security
of the protocol cf. [45]. More precisely, the cut-and-choose
mechanism provides statistical assurance that for any fixed
statistical security parameter s and any polynomial time-
bounded adversary, the probability of an incorrect circuit
going undetected is 27° 4+ O(1). s is typically set to 40 [54],
[81]. The final circuit is constructed by soldering together the
remaining unopened instances, effectively combining them
into a single correctly constructed MIPS core. This step
ensures that each gate’s output in one garbled instance is
correctly wired to the input of the subsequent gates. At the end
of this phase, the assembled GC is referred to as the protected
garbled MIPS core. It encapsulates the logical functionality
of the original MIPS architecture. The evaluator can now
proceed to evaluate it with their inputs while remaining
confident in the integrity of the GC.

3) EVALUATION ACCELERATION
GuardianMPC employs hardware-based acceleration through
a dedicated garbled MIPS evaluator [101], significantly

VOLUME 13, 2025

M. Hashemi et al.: GuardianMPC: Backdoor-Resilient Neural Network Computation

IEEE Access

improving the efficiency of the evaluation phase. The acceler-
ation is crucial for minimizing the latency of evaluating GCs,
especially in large computations like deep learning inference.

The garbled MIPS core is designed with various
hardware primitives to optimize the evaluation of encrypted
instructions. It utilizes Arithmetic Logic Units
(ALUs) specifically configured for performing operations
on encrypted values, ensuring that computations remain
secure throughout the process. Lookup Tables (LUTs)
are employed for the efficient decoding of garbled values,
which allows for quick access to encrypted data during
evaluation. Additionally, the design incorporates on—chip
memory to store intermediate results and garbled labels,
reducing the reliance on external memory — a common
performance bottleneck — and thereby further accelerating the
overall evaluation process.

The evaluation phase involves both the garbler and
evaluator engaging in a secure exchange of encrypted input
labels using the OT protocol; see Figure 6. Once the evaluator
obtains the garbled labels for their inputs, they proceed to
evaluate the GC by computing the encrypted outputs of each
gate using the garbled tables (see Figure 1. Throughout this
phase, the garbled MIPS evaluator ensures that neither the
user nor the NN provider gains access to the underlying
secrets of one another. The evaluator ultimately decrypts
the garbled outputs using the decryption keys provided
by the garbler, allowing them to retrieve the final results
without exposing any intermediate computation values.
In this respect, this combination of hardware acceleration and
secure computation protocols makes GuardianMPC a robust
solution.

B. GUARDIANMPC'’S FUNCTIONALITIES

GuardianMPC offers two primary functionalities: oblivious
inference and private training. Both functionalities utilize the
GuardianMPC flow, but differ in inputs, some processes, and
goals. This section provides a detailed explanation of each
functionality and its implementation.

1) OBLIVIOUS INFERENCE

During the evaluation, the user provides their input data,
which is encrypted into garbled labels and obliviously
transferred to the evaluator using OT. The evaluation of the
garbled model is then performed on a hardware platform,
e.g., an FPGA. The time complexity of oblivious inference
with GuardianMPC is polynomial in the size of the garbled
instruction set and size of inputs (/g and Xg, respectively), the
security parameter, and the degree of parallelism provided by
the hardware-accelerated MIPS core on the FPGA cf. [103],
[104]. The parallelization factor allows for concurrent pro-
cessing of garbled instructions, leading to a faster evaluation
phase.

2) PRIVATE TRAINING
Private training (see Section I) focuses on training an NN
with privacy, i.e., while keeping both the training data and

VOLUME 13, 2025

the model weights private. The training process involves
multiple iterations (epochs), where the model is updated
based on the training data. Unlike oblivious inference, the
input provided to GuardianMPC for training initially consists
of randomized values, which serve as placeholders for the
garbled training dataset. The circuit function circuit.cis
extended to include both forward and backward propagation
computations, enabling the model to learn from data over
successive epochs.

The entire training process is performed on the server
side, where the evaluator (representing the data holder)
sends the garbled training dataset to the server via OT,
ensuring that only encrypted labels are exchanged. The
garbler, representing the model owner, receives these labels
and uses the garbled MIPS core to compute the forward pass,
followed by the backward pass for each batch of data. During
each epoch, the server updates the model weights by adjusting
them according to the gradients derived from the backward
pass. The updated weights remain encrypted throughout this
process, preventing the server from accessing the underlying
values. At the end of each epoch, the server sends the updated
garbled weights back to the evaluator as the encrypted
output. The iterative nature of training makes this process
more computationally intensive than inference, as each epoch
requires both forward and backward computations along
with weight updates. The time complexity of private training
using GuardianMPC is polynomial in size of garbled inputs,
Xg, the security parameter, and the degree of parallelism
offered by the hardware-accelerated MIPS core on the FPGA
cf. [103], [104].

C. DIFFERENCES BETWEEN GUARDIANMPC AND
TINYLEGO

GuardianMPC and TinyLEGO share many common features:
both exhibit modularity, easy adjustments to various appli-
cations, optimized low latency and high throughput. Both
TinyLEGO [81] and GuardianMPC are based on the LEGO
framework [45], although key differences exist as follows.

1) ARCHITECTURE AND ITS PRIVACY

GuardianMPC and TinyLEGO [81] are both built on the
foundational principles of the LEGO protocol [45], focusing
on secure 2PC using GCs. However, they differ significantly
in their approach. GuardianMPC offers PFE. GuardianMPC
focuses on converting functions into MIPS instructions,
which are then garbled and evaluated securely and privately.
This low-level approach ensures that the function logic
remains hidden during the computation process. It allows
GuardianMPC to obfuscate the underlying computational
processes, providing an extra layer of privacy and preventing
an adversary from understanding the details of the function
being computed.

On the other hand, TinyLEGO [46], [81] adopts a
higher abstraction level in constructing GCs, allowing it
to focus on the gate level, where each logical operation
(such as NAND, XOR, etc.) is garbled directly. This

11039

IEEE Access

M. Hashemi et al.: GuardianMPC: Backdoor-Resilient Neural Network Computation

approach simplifies the garbling process since it does not
require translating the entire function into a lower-level
representation like MIPS instructions. Yet, TinyLEGO cannot
support PFE as it is intended to only offer secure function
evaluation. Although TinyLEGO provides strong security
against the manipulation of weights via its robust cut-
and-choose mechanism, it does not inherently hide the
function logic, i.e., network architecture. Consequently, for
oblivious inference, TinyLEGO cannot prevent the malicious
adversary from inserting architectural backdoors as opposed
to GuardianMPC.

2) APPLICABILITY AND OVERHEAD

GuardianMPC introduces an additional computational layer
by translating complex functions into MIPS instructions
before garbling them. This conversion process can intro-
duce overhead, as it requires additional steps to transform
high-level functions into a lower-level representation. The
benefit of this approach lies in its robustness against
function exposure, but it comes at the cost of increased
pre-processing time and resource requirements. TinyLEGO,
with its direct approach to garbling circuits at the gate level,
is designed for efficient garbling [46], [81]. By focusing
on reducing communication rounds to the optimal two
rounds and leveraging efficient cut-and-choose mecha-
nisms, TinyLEGO can perform garbling with relatively low
overhead.

3) FLEXIBILITY

The flexibility of GuardianMPC is centered on its use of
MIPS instructions, allowing it to handle a diverse range
of functions by adapting them into a universal instruction
format. This makes GuardianMPC particularly suited for
scenarios where function privacy is crucial, as it can adapt
to various proprietary algorithms or computations that need
to remain hidden during secure evaluation. However, this
reliance on MIPS instruction sets may limit its adaptability
to non-MIPS architectures or cases where direct circuit
representation is desired. TinyLEGO [46], [81] is designed
with flexibility in terms of integrating with a wide range of
secure computation workflows. This adaptability is particu-
larly useful when the priority is to achieve fast computation
and secure interaction without the need for low-level function
obfuscation (see Section VII-C for further discussion).

VI. EXPERIMENTAL RESULTS

GuardianMPC is coded in C++4 and is available on
GitHub [105]. We evaluate the performance of GuardianMPC
in two scenarios: oblivious inference and private training.
For the former, we assess the performance of GuardianMPC
to evaluate NN models such as multi-layer perceptrons
(MLPs) and convolutional NNs (CNNs) on garbled data
while ensuring both input privacy and function hiding. The
oblivious inference and private training results are obtained
by considering images in the MNIST dataset [106]. For
private training, we employ GuardianMPC to securely train

11040

an NN on private data, ensuring that no information about
the training data or model parameters is disclosed during the
training process.

A. EXPERIMENTAL SETUP

In both oblivious inference and private training scenarios,
the garbler used a machine equipped with Intel Xeon Silver
16 core CPU @2.5GHz, NVIDIA RTX-A4000 GPU, 128
GB RAM, and Linux Ubuntu 20. As for private training, the
evaluator was an Intel Core i7-7700 CPU @ 3.60GHz system
with 16 GB RAM. The garbler runs the compiled version
of TinyLEGO [107] framework, which is written in C++-.
The evaluator running the oblivious inference was an Artix-
7 FPGA device (XC7AT100T) using Xilinx Vivado Design
Suite 2021 [108]. The garbler and evaluator were connected
via a local area network (LAN) in the same region. The
average network delay is 0.2 ms and the bandwidth is 1 GB/s,
a similar network utilized by [18].

B. OBLIVIOUS INFERENCE

The results presented in this section are for oblivious
inference, where the aim is to evaluate NNs (MLPs and
CNNs) on garbled data, ensuring both input and function
privacy; consequently, the attacker is hindered from inserting
backdoors in pre-trained models (see Figure 5).

1) BENCHMARK MODELS

a: MLPS

For oblivious inference, we considered two MLP models. The
first one, hereafter called BM1, is an MLP with 784 neurons
in the input layer, three hidden layers of 1024 neurons
each, and an output layer with 10 neurons trained on
MNIST [106]. The second one, called BM2, is an MLP used
as abenchmark NN in [18], consisting of a single hidden layer
with 128 neurons and square activation function, trained on
MNIST [20].

b: CNNS

We also implemented CNNs to test the scalability of the
frameworks for oblivious inference. The first one, BM3, is a
seven-layer CNN used by Chameleon [109], EzPC [110],
and MiniONN [20], trained on CIFAR-10. The second one,
LeNET-5, is a CNN used in TinyGarble2 [97] for MNIST
classification [111]. LeNET-5 consists of convolutional
layers followed by fully connected layers.

The benchmark NNs were implemented in three different

ways:

« Baseline. Benchmarks were implemented without any
security measures (without garbling scheme or function
hiding).

o Within the TinyLEGO framework (SFE) [107].
Benchmarks were implemented without function hiding.

o Protected, with function hiding (PFE). Bench-
marks were implemented using GuardianMPC, which
ensures function hiding and protection against malicious

VOLUME 13, 2025

M. Hashemi et al.: GuardianMPC: Backdoor-Resilient Neural Network Computation

IEEE Access

TABLE 3. Comparison between the execution time of BM1 (the numbers in boldface indicate the best results).

. . Preparation [ms] Online [ms]
Approach Security | # of AND gates Construction |BaseOT [Random Generation| Total |Communication|Checking|Building|Evaluation| Total
Baseline None N/A N/A N/A N/A N/A N/A N/A N/A N/A 3.43
TinyLEGO [107]| SFE 2098 3591.8 579.03 17.59 4188.42 4219.72 492.7 6.09 43.84 4762.36
GuardianMPC | PFE 2098 5912.29 | 719.88 6650.29 801.19 608.94 6.23 3.26 1419.62

TABLE 4. Comparison between the execution time of BM2 (the numbers
in boldface indicate the best results).

TABLE 6. Comparison between the execution time of LeNET-5 [111] (the
numbers in boldface indicate the best results).

Online [ms]

Online [s]

Approach Security | Preparation [ms] Comm_TEvaluation] Total Total [ms] Approach Security | Preparation [s] CommTEvaluation] Towl Total [s]
Baseline None N/A N/A N/A |171.39| 171.39 Baseline None N/A N/A N/A 1.73 | 1.73
MiniONN [20] | SFE 880 N/R N/R 400 1280 TinyGarble2 [97]| SFE N/R N/R N/R 91.1 | 91.1

TinyLEGO [107]| SFE 1961.24 70.57 3476 [392.39] 2353.63 TinyLEGO [107]| SFE 387.85 37.02 2.61 49.23| 419.95
GuardianMPC | PFE 2323.96 10.23 2.8 425.91| 2749.87 GuardianMPC | PFE 429.23 6.91 0.4 36.95] 466.25

TABLE 5. Comparison between the execution time of BM3 (the numbers
in boldface indicate the best results).

. . Online [s
Approach Security | Preparation [s] Comm Evalua[li(])n Totl Total [s]
Baseline None N/A N/A N/A 972 9.72
MiniONN [20] SFE 472 N/R N/R 72 544
EzPC [110] SFE N/R N/R N/R N/R | 265.6
TinyLEGO [107]| SFE 913 40.22 7.29 154 | 1067
GuardianMPC PFE 1191 23.73 1.18 208 | 1399

adversaries. This resembles the oblivious inference
scenario, where inserting backdoors in pre-trained
models is prevented.

The following subsections discuss the performance of
GuardianMPC in terms of execution time for both the
preparation and online phases. The results are compared with
the most relevant studies, which have employed the same
benchmarking NNs.

2) EXECUTION TIME

a: BM1

Table 3 compares the time complexity for BM1 embedded in
different frameworks. The online phase, consisting of check-
ing, building, and evaluation, shows that TinyLEGO incurs
149x more execution time than the unprotected FPGA-
based accelerator. GuardianMPC requires more preparation
and online time than TinyLEGO. This additional cost is
due to the enhanced privacy provided by GuardianMPC,
including function hiding, which is crucial for oblivious
inference.

b: BM2

Table 4 presents the results for BM2. GuardianMPC requires
6% more online execution time than MiniONN, which
benefits from single instruction multiple data (SIMD) opti-
mization. However, GuardianMPC offers stronger privacy
against malicious adversaries, whereas MiniONN is only
resilient to semi-honest adversaries. These results highlight
the trade-off between performance and privacy guarantees in
oblivious inference settings.

c: BM3
Table 5 shows the time spent running the frameworks against
BM3. GuardianMPC shows a higher online execution time

VOLUME 13, 2025

compared to TinyLEGO and MiniONN, but provides the
strongest privacy guarantee. The online time for Guardian-
MPC is 21.3x higher than the FPGA-based unprotected
implementation. However, it improves privacy by hiding the
function and protecting both the input and the intermediate
data in the CNN inference task.

d: LENET-5

Table 6 compares LeNET-5 implemented within different
frameworks. GuardianMPC incurs 21.4 x more online execu-
tion time than the unprotected FPGA-based implementation.
Nevertheless, it significantly outperforms TinyGarble2 [97],
being 1.46x faster during the online phase. This is
thanks to the parallelization supported by the hardware
platform (FPGA), which increases the efficiency com-
pared to a software implementation (TinyGarble2). More-
over, the advantage of GuardianMPC lies in its ability
to handle oblivious inference tasks while maintaining
high levels of protection and acceptable performance
trade-offs.

e: EVALUATION ACCELERATION ON FPGAS

One of the key contributions of GuardianMPC is its ability to
accelerate the evaluation phase of the LEGO protocol [45],
which is crucial for oblivious inference. The hardware
accelerator takes advantage of hardware optimization tech-
niques and the FPGA’s parallel processing capabilities.
Compared to TinyLEGO, according to Table 3 and Table 4,
GuardianMPC accelerates the evaluation phase by 13.44x
and 12.41x for BM1 and BM2, respectively. Similarly,
GuardianMPC accelerates the evaluation phase for CNN
benchmarks such as BM3 and LeNET-5 by 6.17 x and 6.52 %,
respectively (see Tables 5-6). This demonstrates the potential
of GuardianMPC to handle oblivious inference efficiently,
especially in complex NN architectures like CNNs.

C. PRIVATE TRAINING

1) BENCHMARK MODEL

We trained a fully-connected NN on the MNIST dataset
using our privacy-preserving GuardianMPC protocol. The
architecture of the NN includes two hidden layers, each

11041

IEEE Access

M. Hashemi et al.: GuardianMPC: Backdoor-Resilient Neural Network Computation

TABLE 7. Comparison between the time complexity in training phases of
BM4 using GuardianMPC and SecureML [18] for 15 epochs using ReLU
activation function (the numbers in boldface indicate the best results).

Online [s]
Comm. |Evaluation| Total Total [s]
290000 N/R N/R [4239.7(294239.7
367240 833 42 875 | 368115

Approach

SecureML [18]| SFE
GuardianMPC | SFE

Security | Preparation [s]

containing 128 neurons, with ReLU and square functions as
the activation functions. In the output layer, we employed a
softmax function as in SecureML [18], and the cost function
used for training was the cross-entropy loss function. The
labels were encoded as one-hot vectors with 10 elements cor-
responding to the 10 classes of the MNIST dataset, hereafter
called BM4. For the sake of comparison, we replicated the
exact NN and batch size configuration in SecureML [18].
The batch size |B| was set to 128, and the training process
was conducted for 15 epochs, similar to the setup described
in SecureML [18].

2) EXECUTION TIME

Table 7 presents the execution time of training phases
when running BM4 in GuardianMPC and SecureML [18]
frameworks. A key observation from this table is that
GuardianMPC significantly reduced the online time to 875s
compared to SecureML’s online time, which is 4239.7s. This
improvement shows that GuardianMPC’s online phase takes
nearly x4.8 faster than SecureML, attributed to two primary
factors: batch-wise data transmission over the local LAN
and the inherent advantages of LAN-based communication,
as explained below.

a: BATCH-WISE DATA TRANSMISSION OVER LAN
GuardianMPC benefits from transmitting data in mini-
batches, with a batch size |B| = 128. This approach ensures
that the model processes smaller, manageable data segments
incrementally rather than waiting for the entire dataset to be
processed simultaneously. The mini-batch strategy enhances
computational efficiency by enabling parallelism, where
operations for different batches are computed concurrently.
In contrast, if data were processed in larger chunks or sequen-
tially, it would increase communication latency, thereby
extending the online phase duration.

Since GuardianMPC processes batch one at a time, it min-
imizes the data transmitted in each communication round,
ensuring a faster exchange between the garbler and evaluator.
This incremental data flow keeps the communication pipeline
active throughout the computation, reducing idle times and
maximizing resource utilization. Consequently, Guardian-
MPC achieves lower communication overhead, contributing
to a faster online phase compared to SecureML [18].

b: IMPACT OF LAN

The experiments were conducted considering a LAN, which
provides a low-latency and high-bandwidth communication
channel between the garbler and evaluator. This setup offers
a significant advantage over wide-area networks (WANs)

11042

or cloud-based setups, where higher latency and bandwidth
limitations could adversely affect communication perfor-
mance. LAN-based communication ensures minimal delay
during the exchange of garbled inputs and encrypted outputs,
directly benefiting the online phase of GuardianMPC.

The reduced online time in GuardianMPC can be partly
attributed to how we configured a low-latency, efficient
communication over LAN. With each batch of data sent
locally, the need for long waiting times between consecutive
communication rounds is eliminated, leading to seamless,
uninterrupted computation. Despite running the protocol via
LAN, SecureML [18] may not have fully exploited this LAN
advantage. GuardianMPC’s focus on batch-wise data transfer
within a LAN environment ensures a faster online phase,
as seen in the comparison.

¢: PREPARATION OVERHEAD

The reduced online time in GuardianMPC comes at the
cost of a x1.26 increased preparation time. This overhead
is due to the GuardianMPC’s design, which introduces
additional steps to translate high-level NN operations into
MIPS instructions. Moreover, GuardianMPC extends the
cut-and-choose mechanism of TinyLEGO [107] to enhance
security by preparing multiple cores and verifying a subset
of them for integrity. This can also contribute to the
computational overhead during preparation. This step ensures
that computations in the online phase are efficient and
secure against a malicious adversary that attempts to insert
a backdoor in the NN model.

The preparation phase also involves batch-wise optimiza-
tions to align data and circuits for efficient execution.
While improving online performance, these optimizations
contribute further to the preparation overhead due to the setup
required for batch processing. Despite the longer preparation
time, this design shifts the computational burden to the
offline phase, ensuring that the online phase is smooth and
uninterrupted.

The result of this trade-off is evident in the performance
comparison: GuardianMPC’s online phase is x4.8 faster
than SecureML [18]. In contrast, the total computation
time shows only a x1.25 increase due to the preparation
overhead. GuardianMPC’s approach demonstrates the ben-
efits of transferring overhead to the preparation stage to
enable faster real-time performance during the online phase.
Additionally, as explained next, GuardianMPC does not
affect the predictive performance of the NN during the private
training.

3) ACCURACY EVALUATION

To assess the predictive performance of the BM4 model,
we trained it for 15 epochs using both GuardianMPC and
PyTorch [112], i.e., the plaintext training as adopted in
SecureML [18]. After completing the training phase in
GuardianMPC, we extracted the resulting NN and applied it
against the MNIST test set [106], also used for the PyTorch

VOLUME 13, 2025

M. Hashemi et al.: GuardianMPC: Backdoor-Resilient Neural Network Computation

IEEE Access

80

60 -

40f

Accuracy (%)

—o—Plaintext Training
—4—SecureML 13 bits

SecureML 6 bits
—=—SecureML 2 bits
- ¢ ~GuardianMPC

0 5 10 15
Number of iterations

FIGURE 7. Comparison of accuracy over the first 15 iterations between

plaintext training, SecureML [18] at various bit precisions (13, 6, and

2 bits), and GuardianMPC trained on MNIST [106] dataset.

20

0

evaluation. The aim was to validate whether the private
training process in GuardianMPC introduces any degradation
in accuracy. Both models shared the same architecture,
activation functions, and parameters with SecureML [18]
to ensure consistency. The GuardianMPC-generated NN
was loaded into a PyTorch model to facilitate comparison,
ensuring no discrepancies arose from framework differences.

In SecureML [18], different levels of bit precision were
used to balance computational efficiency and accuracy.
Training with 13 bits closely matches plaintext training, while
lower precision, such as 6 bits and 2 bits, introduces more
accuracy degradation. However, as evident from Figure 7,
GuardianMPC maintains identical accuracy to plaintext train-
ing, demonstrating that the secure computation process does
not compromise the model’s predictive performance, unlike
lower bit-precision methods used in SecureML [18]. This
is due to the fact that SecureML has a minor accuracy loss
due to the effect of truncation, polynomial approximations,
and modified activation functions employed in the NNs.
On the contrary, GuardianMPC uses a floating point for data
without any truncation. Moreover, GuardianMPC does not
apply approximation as it converts the high-level description
to GC using MIPC instructions. Finally, GuardianMPC does
not require a modified activation function.

VIl. DISCUSSION ON GUARDIANMPC'S FEATURES

A. TRAINING ACCURACY OF GUARDIANMPC
GuardianMPC ensures that the accuracy of NNs remains
unaffected during outsourced training by avoiding techniques
known to degrade accuracy. Unlike other privacy-preserving
methods, such as Homomorphic Encryption (HE) [113],
GuardianMPC eliminates the need for truncation [114],
polynomial approximations [18], and modified activation
functions [22], all of which can introduce errors. Truncation,
often used to simplify encrypted arithmetic, leads to cumu-
lative errors during training, affecting model convergence
and accuracy [18], [32]. Similarly, frameworks relying on
polynomial approximations of non-linear activation func-
tions, such as ReLU or sigmoid, experience degraded
precision, especially with low-degree polynomials [32].
GuardianMPC bypasses these issues by directly garbling
standard functions, ensuring exact computation without
approximation. Furthermore, GuardianMPC avoids replacing
activation functions with simplified alternatives, which can
VOLUME 13, 2025

alter the model’s dynamics and reduce accuracy [17], [115].
By computing with the original activation functions, such
as ReLU and softmax, GuardianMPC guarantees the secure
model’s behavior follows the plaintext model, maintaining
predictive performance throughout the training process.

We stress that the accuracy of NN models is inherently
influenced by the quality of the input data. For instance,
low-quality inputs, such as blurry or low-resolution images,
are known to degrade model accuracy due to the loss of
critical information during pre-processing or imaging. While
the accuracy of the NN may be reduced when presented with
such low-quality inputs, this reduction is solely a result of the
model’s limitations in handling data and not a consequence of
the secure computation process performed by GuardianMPC.
GuardianMPC, however, operates as a secure computation
framework that does not alter the underlying functionality
or behavior of the NN model. Specifically, GuardianMPC
processes inputs in their original form using secure multiparty
computation techniques, preserving the data privacy and the
integrity of the model.

B. GUARDIANMPC VS. OTHER COUNTERMEASURES

1) HE VS. GUARDIANMPC

HE [113] emerges as a promising solution for NN, allowing
computations on encrypted data. Despite the potential, HE-
based NN accelerators face challenges such as the complex
implementation of non-linear functions like ReL.U, signifi-
cant computational complexity, and truncation errors [18],
[29]. As stated in [24], both HE and GC have inher-
ent limitations. The major limitation of HE is its high
computational complexity, which grows with the depth
of the arithmetic circuits required. This complexity leads
to significant performance issues, making it less feasible
for real-time applications. On the other hand, GCs are
computationally more efficient as they use symmetric-key
cryptographic primitives and benefit from hardware support.
However, the primary drawback of LEGO [45], the core
of GuardianMPC, is that it bears communication overhead,
as it requires the exchange of large amounts of data between
parties. This aspect makes it less suitable for scenarios where
bandwidth is limited. While conventional HE methods may
lack the circuit privacy of Private Function Evaluation (PFE)
offered by GuardianMPC, fully HE protocols achieve this
goal [116], [117].

2) ZERO-KNOWLEDGE PROOF VS. GUARDIANMPC

The limitation of ZK proofs lies predominantly in their
practical efficiency [73], [74]. While theoretically robust
in offering security guarantees, ZK Proofs tend to be
computationally intensive and resource-demanding [74]. This
is particularly evident in scenarios requiring security against
malicious adversaries. Their complexity makes them less
practical for applications that demand efficient and real-time
computations. The GuardianMPC uses LEGO protocol
that addresses these limitations by offering an efficient

mechanism for constructing secure two-party computations,
11043

IEEE Access

M. Hashemi et al.: GuardianMPC: Backdoor-Resilient Neural Network Computation

making it more suited for applications involving large
circuits and the need for robust protection against malicious
adversaries [81].

3) TRIGGER RECONSTRUCTION VS. GUARDIANMPC
NeuralCleanse [118] developed the first trigger reconstruc-
tion approach [119]. Trigger reconstruction in machine
learning aims to detect and remove backdoor triggers by
modifying inputs to find misclassification patterns, indicating
potential backdoors [118]. While this can identify and
help remove these triggers, the process has limitations.
Detecting complex or well-disguised triggers that blend into
the NN model is challenging and computationally intensive.
Additionally, there is no guarantee of completely removing
the backdoor, especially in models with complex features,
making it unreliable against all backdoor attacks [119].

On the other hand, GuardianMPC, through its implemen-
tation of the LEGO protocol [45], offers a robust solution to
stop the adversary from inserting backdoors instead of detect-
ing them. As precisely formulated in [90], detection of back-
doors is strictly less desirable than protecting the NN in the
first place. Unlike trigger reconstruction, GuardianMPC effi-
ciently manages computational load by offloading intensive
computation to the pre-processing phase. This strategic dis-
tribution of computational load ensures that its online phase
delivers near real-time performance, making it well-suited for
NN interfaces where quick response times are crucial.

4) MODEL INSPECTION VS. GUARDIANMPC
Model inspection in machine learning is a process for detect-
ing backdoor attacks by analyzing a trained model’s neurons,
outputs, and overall behavior. It involves examining neuron
activations for anomalies, assessing the model’s responses to
various inputs, and utilizing advanced detection techniques,
including NN-based anomaly detection and interpretability
tools [119]. Neuronlnspect [120], Deeplnspect [121], and
Meta Neural Trojan Detection (MNTD) framework [122] are
the cutting-edge approaches that are built based on the model
inspection [119]. Despite the strength of model inspection
in identifying backdoor insertion attacks in machine learning
models, it faces several limitations. Primarily, it is most effec-
tive for certain types of NN models, like CNNs, and might
not perform as well for other network architectures or data
modalities [119]. It also assumes fixed backdoor patterns,
making it less effective against more sophisticated, adaptable
triggers. Another key challenge is its high computational
complexity, particularly evident in methods like the MNTD
framework [122], which involves training numerous shadow
models. These limitations impose difficulties in applying
model inspection universally, especially against advanced
and evolving backdoors that may not adhere to predictable
patterns [119].

In contrast to model inspection, GuardianMPC presents
a more universally effective solution against backdoor
insertion attacks across all types of NNs. This is possible
thanks to the variant of the LEGO protocol [46] that

garbles the circuits independent from their functionality and
11044

model of the NN. Additionally, GuardianMPC’s strategy of
managing computational load between its online and offline
phases offers a significant advantage over frameworks like
MNTD [122]. This efficient management of computational
resources enhances performance and makes GuardianMPC
more practical for deployment in real-world scenarios.

5) LOGIC OBFUSCATION VS. GUARDIANMPC

In the context of securing NN accelerators, logic obfusca-
tion [123], [124] is presented in [125] as a countermeasure
against hardware Trojans. This method involves adding
redundant components or a locking mechanism to ensure
it continues functioning even if a Trojan compromises
some components or is completely rendered useless without
the correct key [125]. However, while effective in certain
scenarios, ad hoc logic obfuscation has its limitations, notably
in its potential for increasing complexity and cost in the
design and verification processes and possibly reducing the
overall performance due to additional logic gates or increased
power consumption [125].

Unlike logic obfuscation, GuardianMPC offers a
theoretically-sound and robust alternative. It focuses on
using MPC techniques, specifically GC, to secure the
function’s high-level logic effectively. This not only secures
the underlying operations of NN models [101] but also
ensures that even if an insider has access to the design,
they cannot easily understand or tamper with the logic.
Furthermore, GuardianMPC’s approach is inherently suited
to protecting against sophisticated backdoor attacks by
garbling the function’s core operations, providing a dual layer
of security—both in function security and privacy, as well as
hardware security.

6) FORMAL VERIFICATION VS. GUARDIANMPC

Formal verification [126], as discussed in [125], serves as a
crucial defense against hardware Trojans by rigorously using
mathematical techniques to verify the integrity of hardware
designs. However, its effectiveness may be limited when
applied to complex ML hardware accelerators with special-
ized hardware and novel architectures, which present unique
challenges that formal methods still need to address [125].
On the contrary, GuardianMPC leverages MPC to provide
a more flexible and robust security layer. This approach
does not rely solely on the initial design correctness, but
continuously protects the data and computation processes.

7) QUALITATIVE COMPARISON
We have analyzed the above-mentioned mitigation scenarios
with regard to maintaining the accuracy level, computational
load, scalability, and universality to highlight the advantages
of using GuardianMPC. Table 8 illustrates a qualitative
comparison between GuardianMPC and cutting-edge miti-
gation against direct weight manipulation and architectural
backdoor insertion. As observable in Table 8, only Guardian-
MPC maintains its real-time performance. Moreover,
GuardianMPC offers a scalable solution independent of
VOLUME 13, 2025

M. Hashemi et al.: GuardianMPC: Backdoor-Resilient Neural Network Computation

IEEE Access

TABLE 8. Comparative analysis of various security benchmarks in data
processing.

Approach Maintain Scalabilit Real-time Model
PP Accuracy "Y' performance Independency
Homomorphic Encryption N

[17], [18], [20], [24]

Zero-knowledge proof [54], [70] N N
Byzantine-resilient [127] N
Trigger reconstruction [118] N N
Model inspection [120]-[122] N N N
Logic obfuscation [123], [124] N
Formal verification [126] N N

GuardianMPC

the NN model. This makes GuardianMPC a better fit for
a backdoor-resilient NN accelerator than other mitigation
approaches.

C. GUARDIANMPC'’S IMPLEMENTATION FLEXIBILITY AND
SCALABILITY

While GuardianMPC leverages FPGA-based implementa-
tions to achieve hardware acceleration and efficient com-
putation, its design is not strictly limited to FPGAs. The
framework utilizes an encrypted version of instructions,
which allows for the potential adaptation to other processor
architectures that support custom instruction decoding.
Specifically, if a processor architecture, such as ARM [128],
allows users to modify the decode phase in order to accept
encrypted instructions, GuardianMPC can be seamlessly
implemented on such processors. In this scenario, the FPGA
used in the current implementation could be replaced with
a compatible processor that incorporates this functionality.
This approach would retain the core privacy-preserving
and secure computation principles of GuardianMPC while
broadening its accessibility to users who do not have
access to specialized hardware like FPGAs. Additionally, this
flexibility in hardware selection ensures that GuardianMPC
remains a scalable and adaptable framework capable of
meeting the requirements of diverse computational environ-
ments. Future research can explore hybrid approaches that
integrate software-based solutions with minimal hardware
modifications to support encrypted instruction decoding. This
would further enhance the accessibility and usability of
GuardianMPC across a wider range of devices.

Moreover, the scalability of GuardianMPC to large and
complex NN architectures, such as transformers, is an impor-
tant consideration for extending its use to a broader range
of applications. While the experimental results in this work
focus on usual benchmarking models like those trained on
the MNIST datasets [106], GuardianMPC’s design inherently
supports scalability to larger architectures, with some trade-
offs. In the case of private training, the training process is
conducted entirely on the server side, which involves iterative
computations across multiple epochs. For more complex
NN, the number of model parameters and hyperparameters
can proportionally increase the computational cost of the
offline phase. This may extend the preparation time as the
GC’s size and associated cryptographic operations scale up
with the complexity of the network.

VOLUME 13, 2025

For oblivious inference, larger NNs with deeper architec-
tures and more parameters result in higher communication
costs due to the increased size of the garbled instruction sets
and inputs. This, in turn, impacts the online computation
time, as the evaluator must process a larger volume of
encrypted data. However, advanced communication protocols
can significantly alleviate this bottleneck by optimizing the
data transfer process, such as by employing batch-wise
transmission [18], parallel communication streams [109],
or hardware-accelerated protocols [24], [31], [41]. These
optimizations ensure that the increase in online computation
time remains manageable, thereby maintaining the scalability
of GuardianMPC for larger NN architectures. By leveraging
these advanced communication and optimization techniques,
GuardianMPC can effectively scale up to accommodate more
complex NNs, such as transformers, without compromising
the privacy and security guarantees of the NN. Future work
can explore the implementation of these techniques to further
validate the framework’s scalability.

VIil. CONCLUSION

In this work, we introduced GuardianMPC, a backdoor-
resilient NN accelerator that offers secure and private 2PC
for oblivious inference and private training. While leveraging
the LEGO protocol to defend against backdoor insertion
threats by malicious adversaries, GuardianMPC’s unique
implementation of private function evaluation makes it a
promising solution to combat the effect of direct weight
manipulation and architectural backdoors. By integrating
advanced GC optimizations and harnessing FPGA computa-
tional power, GuardianMPC fortifies NN models with robust
security and high efficiency. GuardianMPC achieves up to
13.44 x faster evaluation phase performance than TinyLEGO,
a LEGO-based framework, with only minimal extra offline
computation. This combination of advanced cryptography
and high-performance hardware makes GuardianMPC a
secure, resilient, and efficient solution for NN computation
in today’s evolving security landscape.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436444, 2015.

[2] Amazon. (2023). Machine Learning on AWS. Accessed: Oct. 16, 2024.
[Online]. Available: https://aws.amazon.com/machine-learning/

[3] Microsoft Corp. (2023). Azure Machine Learning. Accessed:
Oct. 16, 2024. [Online]. Available: https://azure.microsoft.com/en-
us/products/machine-learning/

[4]1 (2012). Caffe Model Zoo. Accessed: Oct. 16, 2024. [Online]. Available:
https://github.com/BVLC/caffe/wiki/Model-Zoo

[5] (2012). Keras Pre-Trained Models. Accessed: Oct. 16, 2024. [Online].
Available: https://keras.io/applications/

[6] Y. Liu, S. Ma, Y. Aafer, W. Lee, J. Zhai, W. Wang, and X. Zhang,
“Trojaning attack on neural networks,” in Proc. 25th Annu. Netw. Distrib.
Syst. Secur. Symp. (NDSS), Jan. 2018.

[7]1 Y. Yao, H. Li, H. Zheng, and B. Y. Zhao, “Latent backdoor attacks on
deep neural networks,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., Nov. 2019, pp. 2041-2055.

[8] Y. Gao, B. G. Doan, Z. Zhang, S. Ma, J. Zhang, A. Fu, S. Nepal, and
H. Kim, “Backdoor attacks and countermeasures on deep learning: A
comprehensive review,” 2020, arXiv:2007.10760.

11045

IEEE Access

M. Hashemi et al.: GuardianMPC: Backdoor-Resilient Neural Network Computation

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

11046

R. Tang, M. Du, N. Liu, F. Yang, and X. Hu, “An embarrassingly
simple approach for trojan attack in deep neural networks,” in Proc. 26th
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, Aug. 2020,
pp. 218-228.

X. Gong, Z. Wang, Y. Chen, M. Xue, Q. Wang, and C. Shen,
“Kaleidoscope: Physical backdoor attacks against deep neural networks
with RGB filters,” IEEE Trans. Dependable Secure Comput., vol. 20,
no. 66, pp. 4993-5004, Nov. 2023.

M. Bober-Irizar, I. Shumailov, Y. Zhao, R. Mullins, and N. Papernot,
“Architectural backdoors in neural networks,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2023, pp. 24595-24604.
E. Clifford, I. Shumailov, Y. Zhao, R. Anderson, and R. Mullins, “Imp-
Net: Imperceptible and blackbox-undetectable backdoors in compiled
neural networks,” 2022, arXiv:2210.00108.

Y. Li, J. Hua, H. Wang, C. Chen, and Y. Liu, “DeepPayload: Black-
box backdoor attack on deep learning models through neural payload
injection,” in Proc. IEEE/ACM 43rd Int. Conf. Softw. Eng. (ICSE),
May 2021, pp. 263-274.

A. Warnecke, J. Speith, J.-N. Moller, K. Rieck, and C. Paar, “Evil from
within: Machine learning backdoors through hardware trojans,” 2023,
arXiv:2304.08411.

T. A. Odetola, H. Raoof Mohammed, and S. Rafay Hasan, “A stealthy
hardware trojan exploiting the architectural vulnerability of deep learning
architectures: Input interception attack (IIA),” 2019, arXiv:1911.00783.
J. Clements and Y. Lao, ““‘Hardware trojan attacks on neural networks,”
2018, arXiv:1806.05768.

N. Dowlin, R. Gilad-Bachrach, K. Laine, K. Lauter, M. Naehrig, and
J. Wernsing, “CryptoNets: Applying neural networks to encrypted data
with high throughput and accuracy,” in Proc. Intrl. Conf. Mach. Learn.,
Jun. 2016, pp. 201-210.

P. Mohassel and Y. Zhang, “SecureML: A system for scalable privacy-
preserving machine learning,” in Proc. IEEE Symp. Secur. Privacy (SP),
May 2017, pp. 19-38.

E. Hesamifard, H. Takabi, and M. Ghasemi, “CryptoDL: Deep neural
networks over encrypted data,” 2017, arXiv:1711.05189.

J. Liu, M. Juuti, Y. Lu, and N. Asokan, “Oblivious neural network
predictions via MiniONN transformations,” in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur., Oct. 2017, pp. 619-631.

A. Brutzkus, O. Elisha, and R. Gilad-Bachrach, “Low latency privacy
preserving inference,” in Proc. Int. Conf. Mach. Learn., Jan. 2018,
pp. 812-821.

E. Chou, J. Beal, D. Levy, S. Yeung, A. Haque, and L. Fei-Fei, “Faster
CryptoNets: Leveraging sparsity for real-world encrypted inference,”
2018, arXiv:1811.09953.

A. Sanyal, M. J. Kusner, A. Gascon, and V. Kanade, “TAPAS: Tricks to
accelerate (encrypted) prediction as a service,” in Proc. Int. Conf. Mach.
Learn., Jan. 2018, pp. 4490-4499.

C. Juvekar, V. Vaikuntanathan, and A. P. Chandrakasan, “GAZELLE: A
low latency framework for secure neural network inference,” in Proc.
27th USENIX Secur. Symp., Jan. 2018, pp. 1651-1669.

Q. Lou and L. Jiang, “SHE: A fast and accurate deep neural network for
encrypted data,” in Proc. Adv. Neural Inf. Process. Syst., vol. 32, 2019.
F. Bourse, M. Minelli, M. Minihold, and P. Paillier, ‘“Fast homomorphic
evaluation of deep discretized neural networks,” in Proc. 38th Annu.
Int. Cryptol. Conf., Santa Barbara, CA, USA. Springer, Aug. 2018,
pp. 483-512.

B. D. Rouhani, M. S. Riazi, and F. Koushanfar, ‘““DeepSecure: Scalable
provably-secure deep learning,” in Proc. 55th ACM/ESDA/IEEE Design
Autom. Conf. (DAC), Jun. 2018, pp. 1-6.

M. Ball, B. Carmer, T. Malkin, M. Rosulek, and N. Schimanski, “Garbled
neural networks are practical,” Cryptol. ePrint Arch., vol. 2019, p. 338,
Jan. 2019.

M. S. Riazi, M. Samragh, H. Chen, K. Laine, K. Lauter, and
F. Koushanfar, “XONN: XNOR-based oblivious deep neural network
inference,” in Proc. 28th USENIX Secur. Symp., 2019, pp. 1501-1518.
R. Dathathri, O. Saarikivi, H. Chen, K. Laine, K. Lauter, S. Maleki,
M. Musuvathi, and T. Mytkowicz, “CHET: An optimizing compiler
for fully-homomorphic neural-network inferencing,” in Proc. 40th
ACM SIGPLAN Conf. Program. Lang. Design Implement., Jun. 2019,
pp. 142-156.

W. Z. Srinivasan, P. Akshayaram, and P. R. Ada, “Delphi: A crypto-
graphic inference service for neural networks,” in Proc. 29th USENIX
Secur. Symp., 2019, pp. 2505-2522.

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

D. Rathee, M. Rathee, N. Kumar, N. Chandran, D. Gupta, A. Rastogi,
and R. Sharma, “CrypTFlow2: Practical 2-party secure inference,”
in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Oct. 2020,
pp- 325-342.

A. C.-C. Yao, “How to generate and exchange secrets,” in Proc. 27th
Annu. Symp. Found. Comput. Sci., Oct. 1986, pp. 162-167.

L. K. L. Ng and S. S. M. Chow, “SoK: Cryptographic neural-network
computation,” in Proc. IEEE Symp. Secur. Privacy (SP), May 2023,
pp. 497-514.

Z. A. Mann, C. Weinert, D. Chabal, and J. W. Bos, “Towards practical
secure neural network inference: The journey so far and the road ahead,”
ACM Comput. Surv., vol. 56, no. 5, pp. 1-37, May 2024.

C. Marcolla, V. Sucasas, M. Manzano, R. Bassoli, F. H. P. Fitzek,
and N. Aaraj, “Survey on fully homomorphic encryption, theory,
and applications,” Proc. IEEE, vol. 110, no. 10, pp.1572-1609,
Oct. 2022.

N. Agrawal, A. S. Shamsabadi, M. J. Kusner, and A. Gascén,
“QUOTIENT: Two-party secure neural network training and prediction,”
in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Nov. 2019,
pp. 1231-1247.

A. Patra, T. Schneider, A. Suresh, and H. Yalame, “ABY2.0: Improved
mixed-protocol secure two-party computation,” in Proc. 30th USENIX
Secur. Symp., 2021, pp. 2165-2182.

P. Mohassel and P. Rindal, “ABY3: A mixed protocol framework for
machine learning,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Security, 2018, pp. 35-52.

B. Knott, S. Venkataraman, A. Hannun, S. Sengupta, M. Ibrahim, and
L. V. D. Maaten, “CrypTen: Secure multi-party computation meets
machine learning,” in Proc. Adv. Neural Inf. Process. Syst., vol. 34,
Jan. 2021, pp. 4961-4973.

S. Wagh, S. Tople, F. Benhamouda, E. Kushilevitz, P. Mittal, and T. Rabin,
“FALCON: Honest-majority maliciously secure framework for private
deep learning,” 2020, arXiv:2004.02229.

H. Chaudhari, R. Rachuri, and A. Suresh, “Trident: Efficient 4PC frame-
work for privacy preserving machine learning,” 2019, arXiv:1912.02631.
N. Attrapadung, K. Hamada, D. Ikarashi, R. Kikuchi, T. Matsuda,
I. Mishina, H. Morita, and J. C. N. Schuldt, “Adam in private: Secure and
fast training of deep neural networks with adaptive moment estimation,”
2021, arXiv:2106.02203.

J.-L. Watson, S. Wagh, and R. A. Popa, “Piranha: A GPU platform
for secure computation,” in Proc. USENIX Secur. Symp., Aug. 2022,
pp. 827-844.

J. B. Nielsen and C. Orlandi, “LEGO for two-party secure computation,”
in Proc. Theory Cryptography Conf. Springer, 2009, pp. 368-386.

J. B. Nielsen, T. Schneider, and R. Trifiletti, “Constant round maliciously
secure 2PC with function-independent preprocessing using LEGO,”
Cryptol. ePrint Arch., Jan. 2016.

Y. Lindell and B. Pinkas, “A proof of Yao’s protocol for secure two-
party computation. ECCC report TR04-063,” in Proc. Electron. Collog.
Comput. Complex. (ECCC), 2004.

Y. Lindell and B. Pinkas, “A proof of security of Yao’s protocol
for two-party computation,” J. Cryptol., vol. 22, no. 2, pp. 161-188,
Apr. 2009.

M. Hastings, B. Hemenway, D. Noble, and S. Zdancewic, “SoK: General
purpose compilers for secure multi-party computation,” in Proc. [EEE
Symp. Secur. Privacy (SP), May 2019, pp. 1220-1237.

M. Hashemi, D. Forte, and F. Ganji, “Time is money, friend! Timing side-
channel attack against garbled circuit constructions,” in Proc. Int. Conf.
Appl. Cryptography Netw. Secur. Springer, 2024, pp. 325-354.

M. Bellare, V. T. Hoang, and P. Rogaway, “Foundations of garbled
circuits,” in Proc. ACM Conf. Comput. Commun. Secur., Oct. 2012,
pp. 784-796.

V. Kolesnikov and T. Schneider, “Improved garbled circuit: Free XOR
gates and applications,” in Proc. Intrl. Collog. Automata, Lang., Program.
Springer, Aug. 2008, pp. 486-498.

T. K. Frederiksen, T. P. Jakobsen, J. B. Nielsen, and R. Tri-
filetti, “On the complexity of additively homomorphic uc com-
mitments,” in Proc. Theory Cryptography Conf. Springer, 2015,
pp. 542-565.

Y. Lindell and B. Riva, ““Blazing fast 2PC in the oftline/online setting with
security for malicious adversaries,” in Proc. 22nd ACM SIGSAC Conf.
Comput. Commun. Secur., Oct. 2015, pp. 579-590.

VOLUME 13, 2025

M. Hashemi et al.: GuardianMPC: Backdoor-Resilient Neural Network Computation

IEEE Access

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

Y. Lindell and B. Pinkas, “An efficient protocol for secure two-party
computation in the presence of malicious adversaries,” in Proc. 26th
Annu. Int. Conf. Theory Appl. Cryptograph. Techn., Barcelona, Spain.
Springer, May 2007, pp. 52-78.

D. Evans, V. Kolesnikov, and M. Rosulek, “A pragmatic introduction to
secure multi-party computation,” Found. Trends Privacy Secur., vol. 2,
nos. 2-3, pp. 70-246, 2018.

R. Zhu, Y. Huang, J. Katz, and A. Shelat, ““The cut-and-choose game and
its application to cryptographic protocols,” in Proc. 25th USENIX Secur.
Symp., Jan. 2016, pp. 1085-1100.

M. Keller, E. Orsini, and P. Scholl, “Actively secure OT extension
with optimal overhead,” in Proc. Annu. Cryptol. Conf. Springer, 2015,
pp. 724-741.

A. Dalskov, D. Escudero, and M. Keller, ““Secure evaluation of quantized
neural networks,” 2019, arXiv:1910.12435.

C. Zhang, S. Li, J. Xia, W. Wang, F. Yan, and Y. Liu, “BatchCrypt:
Efficient homomorphic encryption for cross-silo federated learning,” in
Proc. USENIX Annu. Tech. Conf., Jan. 2020, pp. 493-506.

M. Ogburn, C. Turner, and P. Dahal, ‘““Homomorphic encryption,” Proc.
Comput. Sci., vol. 20, pp. 502-509, Jan. 2013.

J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption
for arithmetic of approximate numbers,” in Proc. 23rd Int. Conf. Theory
Appl. Cryptol. Inf. Secur., Hong Kong. Springer, Dec. 2017, pp. 409-437.
M. Byali, H. Chaudhari, A. Patra, and A. Suresh, “FLASH: Fast and
robust framework for privacy-preserving machine learning,” Cryptol.
ePrint Arch., Jan. 2019.

A. Patra and A. Suresh. (2020). Blaze: Blazing Fast Privacy-preserving
Machine Learning. Cryptology ePrint Archive, Paper 2020/042. [Online].
Auvailable: https://eprint.iacr.org/2020/042

N. Koti, M. Pancholi, A. Patra, and A. Suresh, “SWIFT: Super-fast
and robust privacy-preserving machine learning,” in Proc. 30th USENIX
Secur. Symp., Jan. 2020, pp. 2651-2668.

A. Dalskov, D. Escudero, and M. Keller, ‘“‘Fantastic four: Honest-majority
four-party secure computation with malicious security,” in Proc. 30th
USENIX Secur. Symp., 2021, pp. 2183-2200.

C. Orlandi, P. Scholl, and S. Yakoubov, “The rise of paillier: Homo-
morphic secret sharing and public-key silent OT,” in Proc. 40th Annu.
Int. Conf. Theory Appl. Cryptograph. Techn., Zagreb, Croatia. Springer,
Oct. 2021, pp. 678-708.

M.-M. Wang, X.-B. Chen, and Y.-X. Yang, “Comment on ‘high-
dimensional deterministic multiparty quantum secret sharing without
unitary operations,”” Quantum Inf. Process., vol. 12, no. 2, pp. 785-792,
Feb. 2013.

J. Liu, W. Li, G. O. Karame, and N. Asokan, ‘“Scalable Byzantine
consensus via hardware-assisted secret sharing,” IEEE Trans. Comput.,
vol. 68, no. 1, pp. 139-151, Jan. 2019.

R. Lehmkuhl, P. Mishra, A. Srinivasan, and R. A. Popa, ‘“Muse: Secure
inference resilient to malicious clients,” in Proc. USENIX Secur. Symp.,
Jan. 2021, pp. 2201-2218.

N. Chandran, D. Gupta, S. L. B. Obbattu, and A. Shah,
“SIMC: ML inference secure against malicious clients at
semi-honest cost,” in Proc. 31st USENIX Secur. Symp., 2022,

pp. 1361-1378.

G. Xu, X. Han, T. Zhang, S. Xu, J. Ning, X. Huang, H. Li, and R. H. Deng,
“SIMC 2.0: Improved secure ML inference against malicious clients,”
IEEE Trans. Dependable Secure Comput., vol. 21, no. 4, pp. 1708-1723,
Jul. 2024.

E. Ben-Sasson, 1. Bentov, Y. Horesh, and M. Riabzev, ‘Scalable
zero knowledge with no trusted setup,” in Proc. 39th Annu. Int.
Cryptol. Conf., Santa Barbara, CA, USA. Springer, Aug. 2019,
pp. 701-732.

X. Sun, F. R. Yu, P. Zhang, Z. Sun, W. Xie, and X. Peng, “A survey
on zero-knowledge proof in blockchain,” IEEE Netw., vol. 35, no. 4,
pp. 198-205, Jul. 2021.

T. K. Frederiksen and J. B. Nielsen, “‘Fast and maliciously secure two-
party computation using the GPU,” in Proc. 11th Int. Conf., Banff, AB,
Canada. Springer, Jun. 2013, pp. 339-356.

Y. Lindell and B. Riva, ‘“Cut-and-choose Yao-based secure com-
putation in the online/offline and batch settings,” in Proc. 34th
Annu. Cryptol. Conf., Santa Barbara, CA, USA. Springer, Aug. 2014,
pp. 476-494.

VOLUME 13, 2025

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

X. Wang, S. Ranellucci, and J. Katz, “Authenticated garbling and efficient
maliciously secure two-party computation,” in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur., Oct. 2017, pp. 21-37.

B. Kreuter, A. Shelat, and C.-H. Shen, “Billion-gate secure computation
with malicious adversaries,” in Proc. 21st USENIX Secur. Symp.,
Aug. 2012, pp. 285-300.

V. Goyal, P. Mohassel, and A. Smith, “Efficient two party and multi party
computation against covert adversaries,” in Proc. 27th Annu. Int. Conf.
Theory Appl. Cryptograph. Techn., Istanbul, Turkey. Springer, Apr. 2008,
pp. 289-306.

Y. Huang, J. Katz, V. Kolesnikov, R. Kumaresan, and A. J. Malozemof,
“Amortizing garbled circuits,” in Proc. Annu. Cryptol. Conf. Springer,
2014, pp. 458-475.

T. K. Frederiksen, T. P. Jakobsen, J. B. Nielsen, and R. Trifiletti,
“TinyLEGO: An interactive garbling scheme for maliciously secure two-
party computation,” Cryptol. ePrint Arch., vol. 2015, p. 309, Jan. 2015.
N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami, “Practical black-box attacks against machine learning,” in
Proc. ACM Asia Conf. Comput. Commun. Secur., Apr. 2017, pp. 506-519.
S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard, ““Universal
adversarial perturbations,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jul. 2017, pp. 1765-1773.

L. Song, X. Yu, H.-T. Peng, and K. Narasimhan, “Universal adver-
sarial attacks with natural triggers for text classification,” 2020,
arXiv:2005.00174.

P. Neekhara, S. Hussain, P. Pandey, S. Dubnov, J. McAuley, and
F. Koushanfar, “Universal adversarial perturbations for speech recogni-
tion systems,” 2019, arXiv:1905.03828.

M. Jagielski, G. Severi, N. Pousette Harger, and A. Oprea, “Subpop-
ulation data poisoning attacks,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., Nov. 2021, pp. 3104-3122.

X. Chen, C. Liu, B. Li, K. Lu, and D. Song, ‘“Targeted backdoor attacks on
deep learning systems using data poisoning,” 2017, arXiv:1712.05526.
T. Gu, B. Dolan-Gavitt, and S. Garg, “BadNets: Identifying vul-
nerabilities in the machine learning model supply chain,” 2017,
arXiv:1708.06733.

S. Hong, N. Carlini, and A. Kurakin, “Handcrafted backdoors in deep
neural networks,” in Proc. Adv. Neural Inf. Process. Syst., vol. 35, 2022,
pp- 8068-8080.

S. Goldwasser, M. P. Kim, V. Vaikuntanathan, and O. Zamir, “‘Planting
undetectable backdoors in machine learning models,” in Proc. IEEE 63rd
Annu. Symp. Found. Comput. Sci. (FOCS), Jan. 2022, pp. 931-942.

A. Salem, M. Backes, and Y. Zhang, “Don’t trigger me! A triggerless
backdoor attack against deep neural networks,” 2020, arXiv:2010.03282.
L. Torrey and J. Shavlik, “Transfer learning,” in Handbook of Research
on Machine Learning Applications and Trends: Algorithms, Methods, and
Techniques. Hershey, PA, USA: IGI Global, 2010, pp. 242-264.

Y. Ji, X. Zhang, S. Ji, X. Luo, and T. Wang, “Model-reuse attacks on
deep learning systems,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., Oct. 2018, pp. 349-363.

A. Shelat and C.-H. Shen, “Two-output secure computation with
malicious adversaries,” in Proc. 30th Annu. Int. Conf. Theory Appl.
Cryptograph. Techn., Tallinn, Estonia. Springer, May 2011, pp. 386—405.
Y. Lindell, ““Fast cut-and-choose-based protocols for malicious and covert
adversaries,” J. Cryptol., vol. 29, no. 2, pp. 456490, Apr. 2016.

Y. Lindell and B. Pinkas, “An efficient protocol for secure two-party
computation in the presence of malicious adversaries,” J. Cryptol.,
vol. 28, no. 2, pp. 312-350, 2015.

S. Hussain, B. Li, F. Koushanfar, and R. Cammarota, “TinyGarble2:
Smart, efficient, and scalable Yao’s garble circuit,” in Proc. Workshop
Privacy-Preserving Mach. Learn. Pract., Nov. 2020, pp. 65-67.

N. Kumar, M. Rathee, N. Chandran, D. Gupta, A. Rastogi, and R. Sharma,
“CrypTFlow: Secure TensorFlow inference,” in Proc. IEEE Symp. Secur.
Privacy (SP), May 2020, pp. 336-353.

S. Wagh, D. Gupta, and N. Chandran, “SecureNN: 3-Party secure
computation for neural network training,” Proc. Privacy Enhancing
Technol., vol. 2019, no. 3, pp. 26-49, Jul. 2019.

T. K. Frederiksen, T. P. Jakobsen, J. B. Nielsen, P. S. Nordholt, and
C. Orlandi, “MiniLEGO: Efficient secure two-party computation from
general assumptions,” in Proc. 32nd Annu. Int. Conf. Theory Appl.
Cryptograph. Techn., Athens, Greece. Springer, May 2013, pp. 537-556.

11047

IEEE Access

M. Hashemi et al.: GuardianMPC: Backdoor-Resilient Neural Network Computation

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108

[109]

[110]

[111]

[112]

[113]

(114

[115s

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

11048

M. Hashemi, S. Roy, D. Forte, and F. Ganji, “HWGN?Z: Side-channel
protected NNs through secure and private function evaluation,” in Proc.
12th Int. Conf., Jaipur, India, Dec. 2022, pp. 225-248.

R. Herken, The Universal Turing Machine a Half-Century Survey. Berlin,
Germany: Springer-Verlag, 1995.

K.-M. Chung and L. Qian, “Adaptively secure garbling schemes for
parallel computations,” in Proc. Theory Cryptography Conf. Springer,
2019, pp. 285-310.

N. Buescher and S. Katzenbeisser, “Faster secure computation through
automatic parallelization,” in Proc. 24th USENIX Secur. Symp.,
Aug. 2015, pp. 531-546.

M. Hashemi, S. Roy, D. Forte, and F. Ganji. (2024). Guardian-
mpc. Accessed: Jan. 30, 2023. [Online]. Available: https:/github.
com/esonghori/TinyGarble

L. Deng, “The MNIST database of handwritten digit images for machine
learning research [best of the web],” IEEE Signal Process. Mag., vol. 29,
no. 6, pp. 141-142, Nov. 2012.

L. Braun and W. Zakarias. (2019). Tinylego Framework.
Accessed: Sep. 28, 2023. [Online]. Available: https://github.com/
AarhusCrypto/TinyLEGO

I Xilinx. (2021). V2021.1. Accessed: Oct. 16, 2024. [Online]. Available:
https://www.xilinx.com/products/design-tools/vivado.html

M. S. Riazi, C. Weinert, O. Tkachenko, E. M. Songhori, T. Schneider, and
F. Koushanfar, “Chameleon: A hybrid secure computation framework for
machine learning applications,” in Proc. Asia Conf. Comput. Commun.
Secur., May 2018, pp. 707-721.

N. Chandran, D. Gupta, A. Rastogi, R. Sharma, and S. Tripathi,
“EzPC: Programmable and efficient secure two-party computation for
machine learning,” in Proc. IEEE Eur. Symp. Secur. Privacy, Jun. 2019,
pp. 496-511.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278-2324, Nov. 1998.

S. Imambi, K. B. Prakash, and G. Kanagachidambaresan, “Pytorch,”
in Programming With TensorFlow: Solution for Edge Computing
Applications, 2021, pp. 87-104.

M. Naehrig, K. Lauter, and V. Vaikuntanathan, ‘“Can homomorphic
encryption be practical?” in Proc. 3rd ACM Workshop Cloud Comput.
Secur. Workshop, Oct. 2011, pp. 113-124.

C. Aicher, N. J. Foti, and E. B. Fox, “Adaptively truncating backpropa-
gation through time to control gradient bias,” in Proc. Uncertainty Artif.
Intell., Jan. 2019, pp. 799-808.

B. Pulido-Gaytan, A. Tchernykh, J. M. Cortés-Mendoza, M. Babenko,
G. Radchenko, A. Avetisyan, and A. Y. Drozdov, “Privacy-preserving
neural networks with homomorphic encryption: C hallenges and oppor-
tunities,” Peer-Peer Netw. Appl., vol. 14, no. 3, pp. 1666-1691, 2021.

F. Bourse, R. D. Pino, M. Minelli, and H. Wee, “FHE circuit privacy
almost for free,” in Proc. Annu. Intrl. Cryptol. Conf. Springer, 2016,
pp. 62-89.

C. Gentry, “A fully homomorphic encryption scheme,” Ph.D. thesis,
Stanford Univ., 2009. [Online]. Available: crypto.stanford.edu/craig

B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng, and
B. Y. Zhao, “Neural cleanse: Identifying and mitigating backdoor attacks
in neural networks,” in Proc. IEEE Symp. Secur. Privacy (SP), May 2019,
pp. 707-723.

A. Oprea and A. Vassilev, “Adversarial machine learning: A taxonomy
and terminology of attacks and mitigations,” Nat. Inst. Standards
Technol., Gaithersburg, MD, USA, Tech. Rep., 2023.

X. Huang, M. Alzantot, and M. Srivastava, ‘“NeuronInspect: Detect-
ing backdoors in neural networks via output explanations,” 2019,
arXiv:1911.07399.

H. Chen, C. Fu, J. Zhao, and F. Koushanfar, “Deeplnspect: A black-box
trojan detection and mitigation framework for deep neural networks,” in
Proc. 28th Int. Joint Conf. Artif. Intell., vol. 2, Aug. 2019, p. 8.

X. Xu, Q. Wang, H. Li, N. Borisov, C. A. Gunter, and B. Li, “Detecting Al
trojans using meta neural analysis,” in Proc. IEEE Symp. Secur. Privacy
(SP), May 2021, pp. 103-120.

G. Kolhe, T. Sheaves, K. I. Gubbi, T. Kadale, S. Rafatirad, S. M. Pd,
A. Sasan, H. Mahmoodi, and H. Homayoun, ““Silicon validation of LUT-
based logic-locked IP cores,” in Proc. 59th ACM/IEEE Design Autom.
Conf., Jul. 2022, pp. 1189-1194.

H. M. Kamali, K. Z. Azar, H. Homayoun, and A. Sasan, “Full-lock:
Hard distributions of SAT instances for obfuscating circuits using fully
configurable logic and routing blocks,” in Proc. 56th ACM/IEEE Design
Autom. Conf. (DAC), Jun. 2019, pp. 1-6.

[125] K.I. Gubbi, I. Kaur, A. Hashem, P. D. S. Manoj, H. Homayoun, A. Sasan,
and S. Salehi, “Securing AI hardware: Challenges in detecting and
mitigating hardware trojans in ML accelerators,” in Proc. IEEE 66th Int.
Midwest Symp. Circuits Syst. (MWSCAS), Aug. 2023, pp. 821-825.
J.Rajendran, V. Vedula, and R. Karri, “Detecting malicious modifications
of data in third-party intellectual property cores,” in Proc. 52nd
ACM/EDAC/IEEE Design Autom. Conf. (DAC), Jun. 2015, pp. 1-6.

E. M. E. Mhamdi, R. Guerraoui, and S. Rouault, “Distributed momentum
for Byzantine-resilient stochastic gradient descent,” in Proc. 9th Int.
Conf. Learn. Represent. (ICLR), May 2021.

A. Arm, Architecture Reference Manual, 2012.

[126]

[127]

[128]

MOHAMMAD HASHEMI (Member, IEEE)
received the B.Sc. degree in electrical engineering
from Islamic Azad University, Tehran, Iran,
in 2017, and the M.Sc. degree in electrical
engineering from the University of Tehran, Tehran,
in 2021. He is currently pursuing the Ph.D.
degree in electrical engineering with the Vernam
Applied Cryptography and Secure Embedded Sys-
tems Laboratory, Worcester Polytechnic Institute
(WPI), Worcester, MA, USA. From 2021 to 2023,
he was a Semiconductor Research Corporation (SRC) Research Scholar.
His current research interests include hardware security, electronic design
automation (EDA), and multi-party computation (MPC).

DOMENIC FORTE (Senior Member, IEEE)
received the B.S. degree in electrical engineering
from Manhattan College, Riverdale, NY, USA,
in 2006, and the M.S. and Ph.D. degrees in electri-
cal engineering from the University of Maryland
at College Park, College Park, MD, USA, in
2010 and 2013, respectively. He is currently
a Professor with the Electrical and Computer
Engineering Department, University of Florida,
Gainesville, FL, USA. His research interests
include hardware security, with a focus on hardware security primitives,
hardware Trojan detection and prevention, electronics supply chain security,
and anti-reverse engineering. He was a recipient of the Presidential Early
Career Award for Scientists and Engineers (PECASE), the NSF Faculty
Early Career Development Program (CAREER) Award, and the Army
Research Office (ARO) Young Investigator Award. His research has also
been recognized through multiple best paper awards and nominations.

FATEMEH (SABA) GANIJI (Member, IEEE)
is currently an Assistant Professor with the
Department of Electrical and Computer Engi-
neering, Worcester Polytechnic Institute (WPI).
Before joining WPI, she was a Postdoctoral
Associate with the University of Florida,
from 2018 to 2020, and the Telecom Innovation
Laboratories/Technical University of Berlin,
from 2017 to 2018. She defended her dissertation,
titled ““On the Learnability of Physically Unclon-
able Functions,” Technical University of Berlin, achieving the overall grade
of “distinction”” (summa cum laude). Her research interests include hardware
security, with an emphasis on the intersection of machine learning and
cryptography. She develops techniques to secure semiconductor chips from
physical attacks and applies privacy-preserving technologies to mitigate such
risks for semiconductor intellectual properties (IPs), such as Al accelerators.
Her research has been supported by the European Union (Horizon 2020 and
Seventh Framework Program), the German Federal Ministry of Education
and Research (BMBF), the National Science Foundation, and the National
Institute of Standards and Technology. For her dissertation, she received the
BIMoS Ph.D. Award 2018 and was nominated by the Technical University
of Berlin for the ACM Dissertation Award.

VOLUME 13, 2025

