
An Image-based Plant Weed Detector using

Machine Learning

Ahmed Abdelmoamen Ahmed∗

Department of Computer Science

Prairie View A&M University

Prairie View, TX, USA
∗Corresponding Author: amahmed@pvamu.edu

Jamil Ahmed

Department of Computer Science

Prairie View A&M University

Prairie View, TX, USA

jahmed1@PVAMU.EDU

Abstract—Plant diseases, pest infestation, weed pressure, and
nutrient deficiencies are some of the grand challenges for the
agricultural sector worldwide, which can result in substantial
crop yield losses. To limit these losses, farmers must promptly
identify the different types of plant weeds to stop their spread
within agricultural fields. Farmers try to recognize plant weeds
through color and multi-spectral imaging, and optical observa-
tion, which incorporates a significantly high degree of complexity,
especially for large-scale farms. This paper presents an Artificial
intelligence (AI)–powered system to automate the plant weeds
identification process. The developed system uses the Convolu-
tional Neural network (CNN) model as an underlying Machine
Learning (ML) engine for classifying eight weed categories.
The user interface is developed as an Android mobile app,
allowing farmers to capture a photo of the suspected weed
plants conveniently. It then displays the weed category along
with the confidence percentage and classification time. The
system is evaluated using different performance metrics, such
as classification accuracy and processing time.

Keywords-Weed Detector; Agriculture; AI; Machine Learning
(ML); Mobile Computing; Communication; Edge Computing.

I. INTRODUCTION

The agriculture sector worldwide grapples with significant

challenges such as pest infestations, nutrient deficiencies, weed

pressure, and plant diseases, which can result in substantial

crop yield losses [1]. In particular, weed pressure represents

an imposing threat to agricultural crop yield gains. Different

weeds can compete voraciously with crops for sunlight, water,

and nutrients. Despite the importance of such weed challenges,

farmers use traditional ways to detect the types of weeds in

their agriculture fields, including multi-spectral imaging and

even optical observations, which are often time-consuming

and dependent on specific data collection conditions. However,

these conventional ways need to be more practical in the era

of large-scale farms and precision agriculture [2].

In response, precision weed identification and control have

become increasingly pertinent [3]. Concurrently, the success

of Machine Learning (ML) [1] and Computer Vision [4] in

agriculture have paved the way for developing efficacious

image-based weed detection systems. This paper presents an

ML-powered system designed to automate the process of

plant weed identification and diagnosis. This system harnesses

the computational prowess of Convolutional Neural Networks

(CNN) [5], trained, validated, and tested using an imagery

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1. Sample Examples from our Imagery Dataset: 1(a) Chinee Apple; 1(b)
Lantana; 1(c) Parkinsonia; 1(d) Prickly Acacia; 1(e) Parthenium; 1(f) Rubber
Vine; 1(g) Siam; 1(h) Snake.

dataset encompassing 10,896 images, facilitating the classifi-

cation of the most common eight weed categories. Figure 1

shows examples of various types of weeds from our dataset.

We built a user-friendly interface using an Android mobile

app that allows farmers to capture images of suspected weed

leaves and rapidly receive the classified weed category, along-

side a confidence percentage and the classification time. This

functionality promises to enhance decision-making processes

concerning the appropriate use of fertilizers, ultimately aiding

in effective weed management and healthier crop growth [6].

Upon evaluation, the system exhibits an impressive average

classification accuracy of 92% and an average classification

time of a mere 0.88 seconds, demonstrating the system’s

efficiency and reliability.

II. RELATED WORK

Global efforts to mitigate yield losses and enhance food

security continue, given that plant diseases and weeds ac-

count for over 20% of crop losses worldwide [1]. Recent

advancements in AI/ML in the agricultural domain [4], [7]–[9],

coupled with the widespread use of mobile phones [2], [10],



[11], allow farmers to spot and identify the different types of

weeds to prevent crop yield and quality losses [6].

DeepWeeds [9] is a multi-class weed species image dataset

from the Australian rangelands. The dataset consists of 17,509

labeled images of eight nationally significant weed species

native to eight locations across northern Australia. The au-

thors used this dataset to train two machine learning models,

Inception-v3 and ResNet-50, which achieved an average ac-

curacy of 95.1% in classifying these eight weed classes.

Sapkota et al. in [6] collected an imagery dataset using

an Unmanned Aerial System (UAS) to conduct site-specific

weed control in a corn field by mapping the spatial distribution

information of weeds in the field. The resulting prescription

map was used to spray the field using a commercial-size

sprayer, which showed an effective reduction in chemical

usage for weed control scenarios. In particular, the study

showed that 26.2% of the acreage from being sprayed with

herbicide was saved, compared to the existing methods.

Another study was conducted in [7] to provide an effec-

tive solution for detecting multiple diseases in several plant

varieties. The developed system was able to detect different

plant diseases in various species, including apple, corn, grapes,

potato, sugarcane, and tomato. The authors collected a dataset

of 35k images of six species. The system achieved an average

accuracy of 96.5% in identifying the studied plant diseases.

In summary, the review of plant weed detection using

machine learning [7] and computer vision [4] shows that most

of these approaches focus on particular weed classes [1], crop

species [7], geographical regions or countries [9]. Moreover,

most ML-based models are designed to work offline, which

is inappropriate for real-time weed detection. Furthermore,

to the best of our knowledge, none of the current ML-

based approaches can be deployed on mobile devices due

to their limited computational capabilities, which precludes

minimizing communication delays and enhancing the farmer

experience in using the system.

III. SYSTEM DESIGN

Figure 2 shows the distributed run-time system for the weed

detector, which is organized with parts executing on mobile

devices on the user side and centralized servers on the cloud

side. Layer 1 describes the ML model used in the system

(i.e., CNN) and the Intermediate Representation (IR) model

that runs on the mobile device. Layer 2 illustrates the user

interface, developed as an Android app to enable system users

(shown in layer 3) to interact with the system conveniently.

A. Dataset

Although standard object detection datasets (e.g., Microsoft

COCO [12]) exhibit volume and variety of examples, they

are unsuitable for plant disease and weed detection as they

annotate object categories that do not include plant weeds.

Therefore, we collected more than labeled 10,896 images of

different weed leaves for training the CNN model from various

sources such as Kaggle [13], Plant Village [14] and Google

Web Scraper [15]. Most of the images in our dataset are in

Fig. 2. System Architecture

TABLE I
THE NUMBER OF IMAGES USED IN THE TRAINING, VALIDATION, AND

TESTING PHASES ACROSS THE EIGHT WEED CLASSES

Class Training Validation Testing Total

Chinee Apple 975 235 246 1,456

Lantana 937 233 223 1,393

Parkinsonia 918 226 227 1,371

Parthenium 913 224 225 1,362

Prickly Acacia 937 232 233 1,402

Rubber Vine 905 232 222 1,359

Siam 944 235 235 1,204

Snake 902 223 224 1,349

their natural environments because object detection is highly

dependent on contextual information.

Our dataset is divided into three parts: training, validation

and testing. Table I shows the number of images used in the

three phases across the eight weed species. The number of

images in each phase is determined based on the fine-tuned

hyperparameters and structure of the CNN model.

B. CNN Structure

We trained a CNN model with four convolutional layers,

one input layer, and one output layer. I = [i1, i2, .., ir] and

O = [o1, o2, ..., oh] represent the input and output vectors,

respectively, where r means the number of elements in the

input feature set and h is the number of classes. The network’s

main objective is to learn a compressed dataset representation.

In other words, it tries to approximately learn the identity

function F , which is defined as:

FW,B(I) ' I (1)

where W and B are the network weights and biases vectors.

The training algorithm involves two phases: forward and

backward phases. During the forward phase, the network’s

weights are kept fixed, and the input data is propagated through

the network layer by layer. In the backward phase, the error

signal ei is propagated through the network in the backward

direction. During this phase, error adjustments are applied to

the CNN network’s weights for minimizing ei. We used the

gradient descent first-order iterative optimization algorithm to



calculate the change of each neuron weight ∆ωi,j , which is

defined as follows:

∆ωi,j = −η
δε(n)

δej(n)
yi(n) (2)

where yi(n) is the intermediate output of the previous neuron

n, η is the learning rate, and ε(n) is the error signal in the

entire output. ε(n) is calculated as follows:

ε(n) =
1

2

∑

j

e2j (n) (3)

We further customized the CNN model by implementing

object classification using focal loss, Υ, which is defined as:

Υ = −στ (1− pτ )
γ log(pt) (4)

where γ is the modulating factor that balances the training

dataset, στ is a factor used to balance the number of true

positive and false negatives samples, pτ is the estimated

probability of the ground truth, and log(pτ ) is the cross

entropy for the model’s binary classification.

Before moving the trained CNN model to the mobile device,

we had to convert it into an optimized Intermediate Repre-

sentation (IR) model based on the trained network topology,

weights and biases values. We used the Intel OpenVINO

toolkit [16] to generate the IR model, which is the only format

that the inference engine at NCS2 accepts and understands.

The conversion process involved removing the convolution and

pooling layers that are not relevant to the inference engine at

the stick. In particular, OpenVINO splits the trained model into

two types of files: XML and Bin extension. The XML files

contain the network topology, while the BIN files contain the

weights and biases binary data.

IV. IMPLEMENTATION

A. CNN Training and Implementation

We had to normalize the range of pixel intensity values of

leaf images in the dataset before training the CNN model.

This step was necessary because all dimensions of feature

vectors extracted from input images should be in the same

intensity range. This made the convergence of our CNN model

faster during the training phase. Image normalization was

implemented by subtracting the input image’s mean value µ

from each pixel’s value I(i, j), and then dividing the result by

the standard deviation σ of the input image. The distribution

of the output pixel intensity values would resemble a Gaussian

curve centered at zero. We used the following formula to

normalize each image in our training set:

O(i, j) =
I(i, j)− µ

σ
(5)

where I and O are the input and output images, respectively;

and i and j are the current pixel indices to be normalized.

The training images must have the same size before feeding

them as input to the model. Our model was trained with

colored (RGB) images with resized dimensions of 400×400

pixels. We set the batch size and number of epochs to be 50

Fig. 3. The Training and Validation Accuracy vs. The Training and Validation
Losses of the CNN Model

Fig. 4. The CNN Classification Confidence

images and 100 epochs, respectively. The model training was

carried out using a server computer equipped with a 4.50GHz

Intel CoreTM i7-16MB CPU processor, 16GB of RAM, and

CUDA GPU capability. The training phase took approximately

45 hours to run 100 epochs. We took a snapshot of the trained

weights every 5 epochs to monitor the progress. The training

error and loss are calculated using this equation:

M =
1

n

n∑

i=1

(yi − xi)
2 (6)

where M is the mean square error of the model, y is the

value calculated by the model, and x is the actual value. M

represents the error in object detection.

We measured these performance metrics during the training

process: training and validation accuracies, training and vali-

dation losses, and classification confidence. Figure 3 illustrates

the efficiency of the training process across 100 epochs. As

shown in the figure, both loss and accuracy curves plateaued

after the 85th epoch, indicating that even though training

continued, little was learned. This shows us that our data

worked very well, given the type of data and the parameters

set. Figure 4 shows the CNN classification confidence for the

eight weed classes, with an average confidence rate of 93.4%.

The CNN model is implemented using Keras development

environment 2.4 [17]. Keras is an open-source neural network

library written in Python using TensorFlow 02 as a back-end

engine. Keras libraries running on top of TensorFlow make it

easier for developers to build ML models written in Python.



TABLE II
THE CONFUSION MATRIX FOR THE CNN MODEL: CHINEE APPLE (CA),

LANTANA (LA), PARKINSONIA (PS), PARTHENIUM (PT), PRICKLY

ACACIA (PA), RUBBER VINE (RV), SIAM (SI) AND SNAKE (SN)

Class CA LA PS PT PA RV SI SN

CA 230 8 0 3 0 1 0 4

LA 2 216 0 0 0 0 2 3

PS 1 0 221 0 4 0 0 0

PT 1 4 3 206 0 6 0 5

PA 1 0 0 4 227 0 0 1

RV 4 4 0 0 1 211 1 1

SI 0 2 0 0 0 0 233 0

SN 29 9 0 1 1 0 0 184

B. Mobile App

The plant weed detector’s user interface is implemented

as a self-contained mobile app developed using Android

Development Environment ADT bundle (64-bit). The app uses

different technologies and tools, including the Android SDK

and XML, to create the front-end interface. We used Python’s

Flask Web Framework as a middleware between the app and

the database server on the cloud and SQLite for the database.

The mobile app allows farmers to photograph the suspected

weed plant or upload an existing image on the phone with

proper alignment and orientation. The orientation handler,

which runs as a background service thread in the mobile

app, is responsible for correcting the tilt and camera angle of

capturing the plant photo. Once the right image is captured, the

app uploads it to a cloud server to detect the weed class(es) by

applying our CNN model. The captured image is transferred

to the cloud side via a REST (Representational State Transfer)

service in the form of a JSON image object.

V. EXPERIMENTAL EVALUATION

Figure 5 illustrates some examples of the inference result of

the weed detector system. Most notably, the system classified

the Prickly Acacia, Lantana, and Siam classes correctly with

a confidence score of 95%, 96%, and 97%, respectively. The

operations of class prediction and displaying results took

around 0.88 seconds, including the communication overheads.

This shows that our system can be used as a plant weed

detector in real-time at the network edge.

Our system, in most cases, delivers good results in natural

conditions even when the plant images are captured from

different angles from the camera, orientations, and illumination

conditions. However, sometimes, the system fails to achieve

such high confidence levels for some classes. For instance,

Figure 5(c) illustrates an example of an 82% confidence ratio

for detecting the snake weed class. This may be justified by the

confusion between Snake and Chinee Apple classes because

they have similar leaf phenology, as shown in Table II.

Table II shows the confusion matrix for the CNN model

that gives a detailed analysis of how the model performance

changes for different weed classes. The matrix rows represent

the actual (true) disease classes, and the columns correspond to

the predicted classes. The diagonal cells show the proportion

of the correct predictions of our CNN model, whereas the

TABLE III
THE PRECISION VS. RECALL VS. F1-SCORE VALUES OF THE CNN

MODEL FOR ALL WEED CLASSES

Class Precision Recall F1-Score

Chinee Apple 0.78 0.87 0.83

Lantana 0.83 0.94 0.88

Parkinsonia 0.95 0.96 0.95

Parthenium 0.93 0.85 0.89

Prickly Acacia 0.89 0.92 0.90

Rubber Vine 0.95 0.83 0.89

Siam 0.92 0.94 0.93

Snake 0.88 0.74 0.80

off-diagonal cells illustrate the error rate of our model. The

confusion matrix demonstrates that our model, in most cases,

can differentiate between the weed classes and achieve high

prediction accuracy. For the three most common types of weed

classes, Parkinsonia, Parthenium, and Rubber Vine, the model

achieves accuracies above 95%, 93%, and 95%, respectively.

The precision, recall and F1-score ratios, shown in Table III,

summarizes the trade-off between the true-positive rate and the

positive predictive value for our CNN model using different

probability thresholds. Precision represents the positive pre-

dictive value of our model, while recall is a measure of how

many true positives are identified correctly, and F1-score takes

into account the number of false positives and false negatives.

As shown in the table, most of the precision vs. recall values

tilts towards 1.0, which means that our CNN model achieves

high accuracy while minimizing the number of false negatives.

The precision ratio describes the performance of our model

at predicting the positive class. It is calculated by dividing the

number of true positives by the sum of the true positives and

false positives, as follows:

Precision =
TruePositives

TruePositives+ FalsePositives
(7)

The recall ratio is calculated as the ratio of the number of

true positives divided by the sum of the true positives and the

false negatives, as follows:

Recall =
TruePositives

TruePositives+ FalseNegatives
(8)

F1-score ratio is calculated by a weighted average of both

precision and recall, as follows:

Recall = 2 ∗
Precision ∗Recall

Precision+Recall
(9)

Table IV shows the classification accuracy and prediction

time across the eight weed classes. The CNN model achieved

an overall average classification accuracy of 92%. Class pre-

diction and displaying results via the mobile app took an

average 0.88 seconds. This is evident that farmers can diagnose

any plant weeds in their agricultural fields using a handy

mobile app in less than one second. The table shows that our

model is robust and can operate in real-time inference in the

agricultural fields with high accuracy.



(a) Chinee Apple and Lantana (b) Prickly Acacia and Parkinsonia (c) Snake and Siam

Fig. 5. Examples of Successful Recognition of Different Weed Classes in Natural Conditions

TABLE IV
THE AVERAGE CLASSIFICATION ACCURACY AND PREDICTION TIME OF

THE CNN MODEL

Class Validation Precision Testing Precision Time (s)

Chinee Apple 78% 87% 0.96

Lantana 83% 94% 1.03

Parkinsonia 95% 96% 0.78

Parthenium 93% 85% 1.13

Prickly Acacia 89% 92% 0.76

Rubber Vine 95% 83% 0.79

Siam 92% 94% 0.75

Snake 88% 74% 0.83

VI. CONCLUSIONS

This paper presented an ML-powered plant weed detector

that enables farmers to diagnose the most common eight weed

species. We trained a CNN model using an imagery dataset

consisting of 10,896 photos of different weed leaves, where

crowded backgrounds, low contrast, and diverse illumination

condition images are considered. To increase the system’s

usability, we developed a mobile app that would create a

better opportunity for limited-resources farmers to detect plant

weeds in their early stages and eliminate the use of incorrect

fertilizers that can hurt the health of both the plants and

soil. This system is expected to create a better opportunity

for farmers to keep their crops healthy and eliminate the

use of wrong fertilizers that could stress the plants. We

found that our system achieved a classification accuracy of 92

percent. In ongoing work, we are looking into opportunities

for generalizing our approach to be deployed locally at UAS,

which farmers can use to monitor their crops from the sky.

ACKNOWLEDGMENTS

This research work is supported in part by the National Sci-

ence Foundation (NSF) under grants # 2011330, 2200377 and

2302469. Any opinions, findings, and conclusions expressed

in this paper are those of the authors and do not necessarily

reflect NSF’s views.

REFERENCES

[1] K. Hu, Z. Wang, and G. e. a. Coleman, “Deep learning techniques for in-
crop weed recognition in large-scale grain production systems: a review,”
Precision Agriculture, vol. Hu2023, pp. 1573–1618, 2023.

[2] A. A. Ahmed and G. H. Reddy, “A mobile-based system for detecting
plant leaf diseases using deep learning,” AgriEngineering, vol. 3, no. 3,
pp. 478–493, 2021.

[3] A. A. Ahmed, S. A. Omari, R. Awal, and A. F. et al., “A distributed
system for supporting smart irrigation using iot technology,” Engineering

Reports, vol. 3, pp. 1–13, 2020.
[4] Z. Wu, Y. Chen, B. Zhao, and X. e. a. Kang, “Review of weed detection

methods based on computer vision,” Sensors, vol. 21, no. 11, 2021.
[5] S. Ren, K. He, and R. G. et al., “Faster r-cnn: Towards real-time object

detection with region proposal networks,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 39, no. 6, pp. 1137–1149, 2017.
[6] R. Sapkota, J. Stenger, and M. e. a. Ostlie, “Towards reducing chemical

usage for weed control in agriculture using uas imagery analysis and
computer vision techniques,” Scientific Reports, vol. 13, pp. 1–14, 2023.

[7] S. V. Militante, B. D. Gerardo, and N. V. Dionisio, “Plant leaf detection
and disease recognition using deep learning,” in IEEE Eurasia Confer-

ence on IOT, Communication and Engineering, 2019, pp. 579–582.
[8] A. M. Hasan, F. Sohel, and D. e. a. Diepeveen, “A survey of deep

learning techniques for weed detection from images,” Computers and

Electronics in Agriculture, vol. 184, pp. 0168–1699, 2021.
[9] A. Olsen, D. Konovalov, and B. e. a. Philippa, “Deepweeds: A multiclass

weed species image dataset for deep learning,” Scientific Reports, vol. 9,
no. 1, pp. 2045–2322, 2019.

[10] A. A. Ahmed and M. Echi, “Hawk-eye: An ai-powered threat detector
for intelligent surveillance cameras,” IEEE Access, vol. 9, pp. 283–293,
2021.

[11] A. A. Ahmed, “A privacy-preserving mobile location-based advertising
system for small businesses,” Engineering Reports, vol. e12416, pp. 1–
15, 2021.

[12] T. Lin, M. Maire, and S. J. B. et al., “Microsoft COCO: common objects
in context,” Computer Vision, vol. 1405.0312, no. 1, 2014.

[13] “Kaggle: Machine learning and data science community,” accessed
December 4, 2023. [Online]. Available: https://www.kaggle.com/

[14] D. P. Hughes and M. Salathe, “An open access repository of images on
plant health to enable the development of mobile disease diagnostics,”
Computers and Society, pp. 1–13, 2016.

[15] “Google web scraper,” accessed December 4, 2023.
[Online]. Available: https://chrome.google.com/webstore/detail/web-
scraper/jnhgnonknehpejjnehehllkliplmbmhn?hl=en

[16] “Openvino toolkit,” accessed December 4, 2023. [Online]. Available:
https://software.intel.com/content/www/us/en/develop/tools/openvino-
toolkit.html

[17] “Keras: A python deep learning api,” accessed December 4, 2023.
[Online]. Available: https://keras.io/


