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Abstract—Plant diseases, pest infestation, weed pressure, and
nutrient deficiencies are some of the grand challenges for the
agricultural sector worldwide, which can result in substantial
crop yield losses. To limit these losses, farmers must promptly
identify the different types of plant weeds to stop their spread
within agricultural fields. Farmers try to recognize plant weeds
through color and multi-spectral imaging, and optical observa-
tion, which incorporates a significantly high degree of complexity,
especially for large-scale farms. This paper presents an Artificial
intelligence (AI)-powered system to automate the plant weeds
identification process. The developed system uses the Convolu-
tional Neural network (CNN) model as an underlying Machine
Learning (ML) engine for classifying eight weed categories.
The user interface is developed as an Android mobile app,
allowing farmers to capture a photo of the suspected weed
plants conveniently. It then displays the weed category along
with the confidence percentage and classification time. The
system is evaluated using different performance metrics, such
as classification accuracy and processing time.
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I. INTRODUCTION

The agriculture sector worldwide grapples with significant
challenges such as pest infestations, nutrient deficiencies, weed
pressure, and plant diseases, which can result in substantial
crop yield losses [1]. In particular, weed pressure represents
an imposing threat to agricultural crop yield gains. Different
weeds can compete voraciously with crops for sunlight, water,
and nutrients. Despite the importance of such weed challenges,
farmers use traditional ways to detect the types of weeds in
their agriculture fields, including multi-spectral imaging and
even optical observations, which are often time-consuming
and dependent on specific data collection conditions. However,
these conventional ways need to be more practical in the era
of large-scale farms and precision agriculture [2].

In response, precision weed identification and control have
become increasingly pertinent [3]. Concurrently, the success
of Machine Learning (ML) [1] and Computer Vision [4] in
agriculture have paved the way for developing efficacious
image-based weed detection systems. This paper presents an
ML-powered system designed to automate the process of
plant weed identification and diagnosis. This system harnesses
the computational prowess of Convolutional Neural Networks
(CNN) [5], trained, validated, and tested using an imagery
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Fig. 1. Sample Examples from our Imagery Dataset: 1(a) Chinee Apple; 1(b)
Lantana; 1(c) Parkinsonia; 1(d) Prickly Acacia; 1(e) Parthenium; 1(f) Rubber
Vine; 1(g) Siam; 1(h) Snake.

dataset encompassing 10,896 images, facilitating the classifi-
cation of the most common eight weed categories. Figure 1
shows examples of various types of weeds from our dataset.

We built a user-friendly interface using an Android mobile
app that allows farmers to capture images of suspected weed
leaves and rapidly receive the classified weed category, along-
side a confidence percentage and the classification time. This
functionality promises to enhance decision-making processes
concerning the appropriate use of fertilizers, ultimately aiding
in effective weed management and healthier crop growth [6].
Upon evaluation, the system exhibits an impressive average
classification accuracy of 92% and an average classification
time of a mere 0.88 seconds, demonstrating the system’s
efficiency and reliability.

II. RELATED WORK

Global efforts to mitigate yield losses and enhance food
security continue, given that plant diseases and weeds ac-
count for over 20% of crop losses worldwide [1]. Recent
advancements in AI/ML in the agricultural domain [4], [7]-[9],
coupled with the widespread use of mobile phones [2], [10],



[11], allow farmers to spot and identify the different types of
weeds to prevent crop yield and quality losses [6].
DeepWeeds [9] is a multi-class weed species image dataset
from the Australian rangelands. The dataset consists of 17,509
labeled images of eight nationally significant weed species
native to eight locations across northern Australia. The au-
thors used this dataset to train two machine learning models,
Inception-v3 and ResNet-50, which achieved an average ac-
curacy of 95.1% in classifying these eight weed classes.
Sapkota et al. in [6] collected an imagery dataset using
an Unmanned Aerial System (UAS) to conduct site-specific
weed control in a corn field by mapping the spatial distribution
information of weeds in the field. The resulting prescription
map was used to spray the field using a commercial-size
sprayer, which showed an effective reduction in chemical
usage for weed control scenarios. In particular, the study
showed that 26.2% of the acreage from being sprayed with
herbicide was saved, compared to the existing methods.
Another study was conducted in [7] to provide an effec-
tive solution for detecting multiple diseases in several plant
varieties. The developed system was able to detect different
plant diseases in various species, including apple, corn, grapes,
potato, sugarcane, and tomato. The authors collected a dataset
of 35k images of six species. The system achieved an average
accuracy of 96.5% in identifying the studied plant diseases.
In summary, the review of plant weed detection using
machine learning [7] and computer vision [4] shows that most
of these approaches focus on particular weed classes [1], crop
species [7], geographical regions or countries [9]. Moreover,
most ML-based models are designed to work offline, which
is inappropriate for real-time weed detection. Furthermore,
to the best of our knowledge, none of the current ML-
based approaches can be deployed on mobile devices due
to their limited computational capabilities, which precludes
minimizing communication delays and enhancing the farmer
experience in using the system.

III. SYSTEM DESIGN

Figure 2 shows the distributed run-time system for the weed
detector, which is organized with parts executing on mobile
devices on the user side and centralized servers on the cloud
side. Layer 1 describes the ML model used in the system
(i.e., CNN) and the Intermediate Representation (IR) model
that runs on the mobile device. Layer 2 illustrates the user
interface, developed as an Android app to enable system users
(shown in layer 3) to interact with the system conveniently.

A. Dataset

Although standard object detection datasets (e.g., Microsoft
COCO [12]) exhibit volume and variety of examples, they
are unsuitable for plant disease and weed detection as they
annotate object categories that do not include plant weeds.
Therefore, we collected more than labeled 10,896 images of
different weed leaves for training the CNN model from various
sources such as Kaggle [13], Plant Village [14] and Google
Web Scraper [15]. Most of the images in our dataset are in
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Fig. 2. System Architecture

TABLE I

THE NUMBER OF IMAGES USED IN THE TRAINING, VALIDATION, AND
TESTING PHASES ACROSS THE EIGHT WEED CLASSES

Class Training Validation Testing Total
Chinee Apple 975 235 246 1,456
Lantana 937 233 223 1,393
Parkinsonia 918 226 227 1,371
Parthenium 913 224 225 1,362
Prickly Acacia 937 232 233 1,402
Rubber Vine 905 232 222 1,359
Siam 944 235 235 1,204
Snake 902 223 224 1,349

their natural environments because object detection is highly
dependent on contextual information.

Our dataset is divided into three parts: training, validation
and testing. Table I shows the number of images used in the
three phases across the eight weed species. The number of
images in each phase is determined based on the fine-tuned
hyperparameters and structure of the CNN model.

B. CNN Structure

We trained a CNN model with four convolutional layers,
one input layer, and one output layer. I = [iy,42,..,%,] and
O = Jo1,09,...,0p] represent the input and output vectors,
respectively, where r means the number of elements in the
input feature set and h is the number of classes. The network’s
main objective is to learn a compressed dataset representation.
In other words, it tries to approximately learn the identity
function F, which is defined as:

FW’B([)’ZI (1)

where W and B are the network weights and biases vectors.

The training algorithm involves two phases: forward and
backward phases. During the forward phase, the network’s
weights are kept fixed, and the input data is propagated through
the network layer by layer. In the backward phase, the error
signal e; is propagated through the network in the backward
direction. During this phase, error adjustments are applied to
the CNN network’s weights for minimizing e;. We used the
gradient descent first-order iterative optimization algorithm to



calculate the change of each neuron weight Aw; ;, which is
defined as follows:

de(n)
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where y;(n) is the intermediate output of the previous neuron

n, n is the learning rate, and (n) is the error signal in the
entire output. £(n) is calculated as follows:
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We further customized the CNN model by implementing
object classification using focal loss, T, which is defined as:

T = —o0,(1 —p;)" log(p;) (€]

where 7 is the modulating factor that balances the training
dataset, o, is a factor used to balance the number of true
positive and false negatives samples, p, is the estimated
probability of the ground truth, and log(p,) is the cross
entropy for the model’s binary classification.

Before moving the trained CNN model to the mobile device,
we had to convert it into an optimized Intermediate Repre-
sentation (IR) model based on the trained network topology,
weights and biases values. We used the Intel OpenVINO
toolkit [16] to generate the IR model, which is the only format
that the inference engine at NCS2 accepts and understands.
The conversion process involved removing the convolution and
pooling layers that are not relevant to the inference engine at
the stick. In particular, OpenVINO splits the trained model into
two types of files: XML and Bin extension. The XML files
contain the network topology, while the BIN files contain the
weights and biases binary data.

1V. IMPLEMENTATION
A. CNN Training and Implementation

We had to normalize the range of pixel intensity values of
leaf images in the dataset before training the CNN model.
This step was necessary because all dimensions of feature
vectors extracted from input images should be in the same
intensity range. This made the convergence of our CNN model
faster during the training phase. Image normalization was
implemented by subtracting the input image’s mean value u
from each pixel’s value I(i, ), and then dividing the result by
the standard deviation o of the input image. The distribution
of the output pixel intensity values would resemble a Gaussian
curve centered at zero. We used the following formula to
normalize each image in our training set:

1(7’7]) — M
g

where I and O are the input and output images, respectively;
and ¢ and j are the current pixel indices to be normalized.
The training images must have the same size before feeding
them as input to the model. Our model was trained with
colored (RGB) images with resized dimensions of 400x400
pixels. We set the batch size and number of epochs to be 50
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Fig. 3. The Training and Validation Accuracy vs. The Training and Validation
Losses of the CNN Model
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Fig. 4. The CNN Classification Confidence

images and 100 epochs, respectively. The model training was
carried out using a server computer equipped with a 4.50GHz
Intel Core™ i7-16MB CPU processor, 16GB of RAM, and
CUDA GPU capability. The training phase took approximately
45 hours to run 100 epochs. We took a snapshot of the trained
weights every 5 epochs to monitor the progress. The training
error and loss are calculated using this equation:

n

1
M=- Yi — 4 2 (6)
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where M is the mean square error of the model, y is the
value calculated by the model, and x is the actual value. M
represents the error in object detection.

We measured these performance metrics during the training
process: training and validation accuracies, training and vali-
dation losses, and classification confidence. Figure 3 illustrates
the efficiency of the training process across 100 epochs. As
shown in the figure, both loss and accuracy curves plateaued
after the 85! epoch, indicating that even though training
continued, little was learned. This shows us that our data
worked very well, given the type of data and the parameters
set. Figure 4 shows the CNN classification confidence for the
eight weed classes, with an average confidence rate of 93.4%.

The CNN model is implemented using Keras development
environment 2.4 [17]. Keras is an open-source neural network
library written in Python using TensorFlow 02 as a back-end
engine. Keras libraries running on top of TensorFlow make it
easier for developers to build ML models written in Python.



TABLE 11
THE CONFUSION MATRIX FOR THE CNN MODEL: CHINEE APPLE (CA),
LANTANA (LA), PARKINSONIA (PS), PARTHENIUM (PT), PRICKLY
ACACIA (PA), RUBBER VINE (RV), S1AM (SI) AND SNAKE (SN)

Class CA LA PS PT PA RV SI SN
CA 230 8 0 3 0 1 0 4
LA 2 216 0 0 0 0 2 3
PS 1 0 221 0 4 0 0 0
PT 1 4 3 206 0 6 0 5
PA 1 0 0 4 227 0 0 1
RV 4 4 0 0 1 211 1 1
SI 0 2 0 0 0 0 233 0
SN 29 9 0 1 1 0 0 184

B. Mobile App

The plant weed detector’s user interface is implemented
as a self-contained mobile app developed using Android
Development Environment ADT bundle (64-bit). The app uses
different technologies and tools, including the Android SDK
and XML, to create the front-end interface. We used Python’s
Flask Web Framework as a middleware between the app and
the database server on the cloud and SQLite for the database.

The mobile app allows farmers to photograph the suspected
weed plant or upload an existing image on the phone with
proper alignment and orientation. The orientation handler,
which runs as a background service thread in the mobile
app, is responsible for correcting the tilt and camera angle of
capturing the plant photo. Once the right image is captured, the
app uploads it to a cloud server to detect the weed class(es) by
applying our CNN model. The captured image is transferred
to the cloud side via a REST (Representational State Transfer)
service in the form of a JSON image object.

V. EXPERIMENTAL EVALUATION

Figure 5 illustrates some examples of the inference result of
the weed detector system. Most notably, the system classified
the Prickly Acacia, Lantana, and Siam classes correctly with
a confidence score of 95%, 96%, and 97%, respectively. The
operations of class prediction and displaying results took
around 0.88 seconds, including the communication overheads.
This shows that our system can be used as a plant weed
detector in real-time at the network edge.

Our system, in most cases, delivers good results in natural
conditions even when the plant images are captured from
different angles from the camera, orientations, and illumination
conditions. However, sometimes, the system fails to achieve
such high confidence levels for some classes. For instance,
Figure 5(c) illustrates an example of an 8§2% confidence ratio
for detecting the snake weed class. This may be justified by the
confusion between Snake and Chinee Apple classes because
they have similar leaf phenology, as shown in Table II.

Table II shows the confusion matrix for the CNN model
that gives a detailed analysis of how the model performance
changes for different weed classes. The matrix rows represent
the actual (true) disease classes, and the columns correspond to
the predicted classes. The diagonal cells show the proportion
of the correct predictions of our CNN model, whereas the

TABLE III
THE PRECISION VS. RECALL VS. F1-SCORE VALUES OF THE CNN
MODEL FOR ALL WEED CLASSES

Class Precision  Recall F1-Score
Chinee Apple 0.78 0.87 0.83
Lantana 0.83 0.94 0.88
Parkinsonia 0.95 0.96 0.95
Parthenium 0.93 0.85 0.89
Prickly Acacia  0.89 0.92 0.90
Rubber Vine 0.95 0.83 0.89
Siam 0.92 0.94 0.93
Snake 0.88 0.74 0.80

off-diagonal cells illustrate the error rate of our model. The
confusion matrix demonstrates that our model, in most cases,
can differentiate between the weed classes and achieve high
prediction accuracy. For the three most common types of weed
classes, Parkinsonia, Parthenium, and Rubber Vine, the model
achieves accuracies above 95%, 93%, and 95%, respectively.

The precision, recall and F1-score ratios, shown in Table III,
summarizes the trade-off between the true-positive rate and the
positive predictive value for our CNN model using different
probability thresholds. Precision represents the positive pre-
dictive value of our model, while recall is a measure of how
many true positives are identified correctly, and F1-score takes
into account the number of false positives and false negatives.
As shown in the table, most of the precision vs. recall values
tilts towards 1.0, which means that our CNN model achieves
high accuracy while minimizing the number of false negatives.

The precision ratio describes the performance of our model
at predicting the positive class. It is calculated by dividing the
number of true positives by the sum of the true positives and
false positives, as follows:

TruePositives

Precision — 7
TSN = T e Positives + FalsePositives @

The recall ratio is calculated as the ratio of the number of
true positives divided by the sum of the true positives and the
false negatives, as follows:

TruePositives

Recall = 8
ced TruePositives + FalseNegatives ®

F1-score ratio is calculated by a weighted average of both
precision and recall, as follows:

Precision * Recall
=2
Recall * Precision + Recall ©)

Table IV shows the classification accuracy and prediction
time across the eight weed classes. The CNN model achieved
an overall average classification accuracy of 92%. Class pre-
diction and displaying results via the mobile app took an
average 0.88 seconds. This is evident that farmers can diagnose
any plant weeds in their agricultural fields using a handy
mobile app in less than one second. The table shows that our
model is robust and can operate in real-time inference in the
agricultural fields with high accuracy.
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TABLE IV
THE AVERAGE CLASSIFICATION ACCURACY AND PREDICTION TIME OF
THE CNN MODEL

Class Validation Precision  Testing Precision  Time (s)
Chinee Apple 78% 87% 0.96
Lantana 83% 94% 1.03
Parkinsonia 95% 96% 0.78
Parthenium 93% 85% 1.13
Prickly Acacia  89% 92% 0.76
Rubber Vine 95% 83% 0.79
Siam 92% 94% 0.75
Snake 88% 74% 0.83

VI. CONCLUSIONS

This paper presented an ML-powered plant weed detector
that enables farmers to diagnose the most common eight weed
species. We trained a CNN model using an imagery dataset
consisting of 10,896 photos of different weed leaves, where
crowded backgrounds, low contrast, and diverse illumination
condition images are considered. To increase the system’s
usability, we developed a mobile app that would create a
better opportunity for limited-resources farmers to detect plant
weeds in their early stages and eliminate the use of incorrect
fertilizers that can hurt the health of both the plants and
soil. This system is expected to create a better opportunity
for farmers to keep their crops healthy and eliminate the
use of wrong fertilizers that could stress the plants. We
found that our system achieved a classification accuracy of 92
percent. In ongoing work, we are looking into opportunities
for generalizing our approach to be deployed locally at UAS,
which farmers can use to monitor their crops from the sky.
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