
Smart-Watcher: An AI-Powered IoT Monitoring
System for Small-Medium Scale Premises

Ahmed Abdelmoamen Ahmed
Department of Computer Science

Prairie View A&M University
Prairie View, TX, USA

Email: amahmed@pvamu.edu

Bernard Nyarko
Department of Computer Science

Prairie View A&M University
Prairie View, TX, USA

Abstract—With recent advances in both Artificial Intelligence
(AI) and Internet of Things (IoT) capabilities, it is more possible
than ever to implement surveillance systems that can automat-
ically identify people who might represent a potential security
threat to the public in real time. Imagine a surveillance camera
system that can detect various on-body weapons, suspicious
objects, and traffic. This system could transform surveillance
cameras from passive sentries into active observers, which would
help prevent a possible mass shooting in a school, stadium,
or mall. In this paper, we tried to realize such systems by
implementing Smart-Watcher, an AI-powered threat detector for
intelligent surveillance cameras. The developed system can be
deployed locally on the surveillance cameras at the network
edge. Deploying AI-enabled surveillance applications at the edge
enables the initial analysis of the captured images on-site,
reducing communication overheads and enabling swift security
actions. We developed a mobile app that alerts system users
about any detected suspicious objects in an image and video
captured by several cameras at the network edge. Also, Smart-
Watcher can generate a high-quality segmentation mask for
each object instance in the photo, along with the confidence
percentage. Smart-Watcher can recognize eight object classes,
including baseball bats, birds, cats, dogs, guns, hammers, knives,
and human faces. Smart-Watcher was evaluated using various
performance metrics such as classification time and accuracy.

Index Terms—IoT; AI; Machine Learning (ML); Mobile Com-
puting; Communication; Edge Computing; Monitoring System.

I. INTRODUCTION

Artificial intelligence (AI) has emerged as a powerful tool in
various fields, with Machine Learning (ML) playing a crucial
role in driving innovation [1], [2]. The Convolutional Neural
Network (CNN) model [3] has emerged as the ML model
of choice in image and video recognition applications, as it
excels in evaluating pixel data, making it well-suited for such
applications. The rising demand for reliable and automated
security and public safety mechanisms has increased the need
to explore the usage of AI in this domain [4].

Imagine an innovative threat detection system that can
automatically glimpse security perils in video streams without
manual intervention. Such a system would significantly boost
traditional camera systems’ monitoring and surveillance ca-
pabilities. This paper presents Smart-Watcher, an AI-powered
Internet of Things (IoT) monitoring system for small-medium
scale premises. Smart-Watcher leverages the powers of the

CNN model to perform descriptive and generative tasks, mak-
ing it highly efficient in detecting potential security threats.

Smart-Watcher aims to minimize communication overheads
between the network edge surveillance devices (i.e., cameras)
and the centralized video processing servers hosted in the
cloud core. The developed system is organized into two parts:
executing on the edge’s monitoring cameras and on core
video processing servers. Smart-Watcher uses motion sensors
to detect any motion in the monitored environment. When an
action is seen, these sensors send a signal to a Raspberry Pi
device hosted locally, instructing it to start capturing images
for such activity, thus reducing the overheads of continuously
capturing videos when there is no motion in the scene.

An imagery dataset of more than 2,000 images of various
threatening objects was constructed, including baseball bats,
guns, hammers, knives, birds, cats, dogs, and human faces.
Figure 1 shows examples of various types of the eight object
categories from our imagery dataset. Most of the images in
our dataset are in their natural environments because object
detection is highly dependent on contextual information. The
pet images are included in our dataset because they may trigger
false alarms. Smart-Watcher could smartly analyze the whole
scene as a security threat scenario because it can handle multi-
class classification problems, where it can classify the input
image as belonging to one or more of the eight object classes.

II. RELATED WORK

The growing global human population and the increasing
need for security and safety have led to a surge in demand for
innovative surveillance systems [1]. As a result, the field of
information security has become a multibillion-dollar industry
[5]. The recent advancements in AI and IoT capabilities
have enabled the realization of intelligent surveillance systems
capable of real-time threat identification [6].

For instance, Hawk-eye [1] leverages AI-powered threat
detection algorithms to enhance the capabilities of surveil-
lance cameras for proactive threat prevention. Hawk-eye is
an example of an AI-powered public surveillance system that
offers increased coverage and intelligence for threat detection,
thereby contributing to public safety [4].

In the area of real-time object tracking and detection, Kumar
et al. [7] introduced a system that utilizes multiple cameras for



(a) Baseball Bat (b) Gun (c) Hammer (d) Knife (e) Bird (f) Cat (g) Dog (h) Human Face

Fig. 1. Sample Examples from our Dataset.

real-time object tracking to enhance security and situational
awareness. In the health sector, Smart-Monitor [6] is a patient
monitoring system for IoT-based healthcare systems using
deep learning for e-healthcare. The developed method can
monitor the surveyed patients’ physiological signals.

AI and IoT have been used in agriculture to develop
intelligent greenhouse monitoring systems. In [8], the au-
thors introduced an automated smart greenhouse based on an
adaptive Neuro-Fuzzy Inference System (ANFIS), which is
used to boost crop production inside the house. Using various
IoT sensors, the developed system can monitor and control
several ecological conditions inside the greenhouse, such as
temperature, humidity, and soil moisture.

In summary, most of the existing video surveillance ap-
proaches work on either recorded videos [5] or offloading the
video data into a centralized server in the cloud [9], which is
inappropriate for real-time threat detection. Furthermore, none
of the current video surveillance approaches can be deployed
on the security camera due to its limited computational capa-
bilities, which precludes taking advantage of minimizing the
communication delays in such mission-critical security tasks.

III. SYSTEM DESIGN

Figure 2 shows the distributed architecture of Smart-
Watcher, which is arranged with components executing on
IoT devices at the camera side and on centralized servers
on the cloud side. This architecture orchestrates the seamless
interaction between the various hardware devices and software
technologies used in the system, culminating in a comprehen-
sive intelligent surveillance solution.

The hardware components of the camera side are shown
in layer 1. Layer 2 describes the ML models used in Smart-
Watcher, which includes the Mask R-CNN model [10]. It also
shows the Intermediate Representation (IR) model, which runs
on a Neural Compute Stick 2 (NCS2) device at the camera
side. Layer 3 illustrates the user interface of Smart-Watcher
running on the cloud server. As shown in layer 4, a mobile
app is developed so that users can detect suspicious objects in
an image and video captured by several cameras at the edge.

The Mask R-CNN model is used to construct segmentation
masks on different Regions of Interest (RoI) of the threatening
objects in an image. The model extends the Faster R-CNN
model [3] by adding a new module for predicting segmentation
masks on each RoI and the existing modules for feature
extractions, RoI classification, and bounding box regression.

We trained a Mask R-CNN model with four convolutional
layers, one input layer, and one output layer. I = [i1, i2, .., ir]
and O = [o1, o2, ..., oh] represent the input and output vectors,

Fig. 2. System Architecture

respectively, where r means the number of elements in the
input feature set and h is the number of classes. The network’s
main objective is to learn a compressed dataset representation.
In other words, it tries to approximately learn the identity
function F , which is defined as:

FW,B(I) ≃ I (1)

where W and B are the network weights and biases vectors.
We further customized the Mask R-CNN model by imple-

menting object classification using focal loss and optimized
the position of the bounding box using a regression method.
The focal loss, Υ, is defined as:

Υ = −στ (1− pτ )
γ log(pt) (2)

where γ is the modulating factor that balances the training
dataset, στ is a factor used to balance the number of true
positive and false negatives samples, pτ is the estimated
probability of the ground truth, and log(pτ ) is the cross
entropy for the model’s binary classification.

The regression method, for optimizing the position
of the bounding box, predicts four parameters
((Px1;Py1) ; (Px2;Py2)), representing the offset
coordinates ((x1, y1) , (x2, y2)) between anchor box A
and the ground-truth box Y . Their ground-truth offsets
((Tx1;Ty1) ; (Tx2;Ty2)) is expressed as:

Tx =
(Yx −Ax)

Aw
; Ty =

(Yy −Ay)

Ah
(3)



where Y is the ground-truth box and A is the anchor box. The
width and height of the bounding box are represented by w
and h. The regression loss, Θ, is defined as:

Θ =
∑

j∈{x1;y1;x2;y2}

SL(Pj − Yj) (4)

where SL is a smoothing function defined over x dimension.
Before moving the trained Mask R-CNN model to the NCS2

device, we had to convert it into an optimized Intermediate
Representation (IR) model based on the trained network topol-
ogy, weights and biases values. We used the Intel OpenVINO
toolkit [11] to generate the IR model, which is the only format
that the inference engine at NCS2 accepts and understands.
The conversion process involved removing the convolution and
pooling layers that are not relevant to the inference engine at
the stick. In particular, OpenVINO splits the trained model into
two types of files: XML and Bin extension. The XML files
contain the network topology, while the BIN files contain the
weights and biases binary data.

IV. IMPLEMENTATION

A. Smart-Watcher Training

Although standard object detection datasets (e.g., Microsoft
COCO [12]) exhibit volume and various examples, they are
unsuitable for thread detection as they annotate object cat-
egories, not including guns and other threatening objects.
Therefore, we collected more than labeled 2k images for
training the Mask R-CNN model from different sources such
as Kaggle [13] and Google Web Scraper [14]. Our dataset is
divided into three parts: training, validation and testing. The
number of images in each phase is determined based on the
fine-tuned hyperparameters and structure of the ML model.

For training the Mask-RCNN model, we used the La-
belImg tool [15] to annotate 250 images for each object
class. LabelImg is a graphical image annotation software tool
used to label and define object bounding boxes within the
images meticulously. The output annotations are saved in
XML files using the PASCALVOC format. Figure 3 illustrates
an annotated image with multiple human faces. We exported
the spatial dimensions of each region in the input image in
JSON format, which is then fed to the Mask-RCNN model as
a one-dimensional array of the mask.

Given the limited-resource constraints of IoT devices in the
network edge (i.e., Raspberry Pi 4), we decided to customize
the Mask-RCNN model to generate a lightweight object de-
tection model suitable to be executed on IoT devices. This
decision aligned with the TensorFlow 2 Detection Model Zoo
collection used in this work, specifically designed to operate on
IoT devices. The integration of Intel’s NCS2 further elevated
the system’s performance of the object detection process.

The training images must have the same size before feeding
them as input to the model. Our model was trained with
colored (RGB) images with resized dimensions of 400×400
pixels. We set the batch size and number of epochs to be 50
images and 30 epochs, respectively. The model training was
carried out using a server computer equipped with a 4.50GHz

Fig. 3. Annotated Image used in Training the Mask R-CNN Model

Fig. 4. The Regularization and Total Loss of the CNN Model

Intel Core™ i7-16MB CPU processor, 16GB of RAM, and
CUDA GPU capability. The training phase took approximately
30 hours to run 30 epochs. We took a snapshot of the trained
weights every 5 epochs to monitor the progress. The training
error and loss are calculated using this equation:

M =
1

n

n∑
i=1

(yi − xi)
2 (5)

where M is the mean square error of the model, y is the
value calculated by the model, and x is the actual value. M
represents the error in object detection and the construction of
a mask over the wrong object.

We measured these performance metrics during the training
process: regularization loss (see Figure 4), total loss (see
Figure 4), learning rate (see Figure 5), classification loss, and
localization loss. The regularization loss metric indicates our
model’s ability to generalize. The classification and localiza-
tion losses determine the capability of Mask R-CNN to classify
a target object and the model’s regression ability to create the
bounding rectangular box around that object, respectively.

B. Physical Implementation

Figure 6 shows the physical prototype implementation of
Smart-Watcher on the camera side, where we used a Raspberry
Pi 4 device, NCS2, Logitech C920 webcams, PIR motion
sensors, buzzers, push buttons, and LED lights; in addition
to Python Face recognition software, and TensorFlow Custom
Object Detection toolkit.

The LEDs have three colors (i.e., red, yellow, and green),
indicating the different states of the system. The green LED



Fig. 5. The Learning Rate the CNN Model

Fig. 6. The Physical Implementation of Smart-Watcher

indicates that there is no invasion of the monitored premises.
The LED turns yellow when the motion sensor is triggered
with a trained human face. If an unknown human face is
detected, the buzzer is turned on, and the LED turns red.

C. User Interface

The user interface was developed as a responsive and self-
contained mobile app application to enhance user experience
using the system. The app was built using the Android
Development Environment ADT bundle (64-bit). The app uses
different technologies and tools, including the Android SDK
and XML, to create the front-end interface. We used Python’s
Flask Web Framework as a middleware between the app and
the database server on the cloud and SQLite for the database.

Figure 7 shows a snapshot of the camera view selector page
where users can view live video streams from different cam-
eras simultaneously. The mobile app allows users to calibrate
their faces by capturing photos of their faces from different
angles, which are considered familiar faces. When the

Fig. 7. A Screenshot of the Smart-Watcher Mobile App

system detects one of those familiar faces, the LED turns
yellow, and the alarm is not triggered.

To run the mobile app on top of the Mask R-CNN model,
we had to wrap the model, implemented on TensorFlow, as a
REST API using the Flask web framework. In other words, the
communication between TensorFlow and Flask is coordinated
through that REST API. When a photo is captured, Flask uses
the POST method to send the image from the mobile app to
TensorFlow via an HTTP header.

V. EXPERIMENTAL EVALUATION

Figure 8 illustrates an example of the inference result of
the Mask R-CNN model. The figure shows that the model
created segmentation masks around human faces, a gun, and
pets with high confidence percentages. Class prediction, mask
construction, and displaying results took around 1.61 seconds.
A significant portion of that time is consumed to identify the
regions of interest and create the segmentation masks.

To provide timely alerts to users, Smart-Watcher sends them
email and text message alerts when an unknown human face
is detected. Figure 9 shows a sample email alert with attached
scene images. This enables users to assess the threat level,
guiding them to take the appropriate action.

Table I shows the Mask R-CNN model’s average classifica-
tion accuracy and prediction time across the eight classes. The
Mask R-CNN model achieved an overall average classification
accuracy of 96.3%. The average prediction time of the Mask
R-CNN was measured to be 1.61s (seconds). We noted that
the prediction accuracy of human faces and guns were 99.2%
and 98.2%, respectively. With the fact that machine guns are



(a) Human Faces

(b) Gun (c) Pets

Fig. 8. The Inference Results of the Mask R-CNN Model

Fig. 9. A Snapshot of the Motion Detection Trigger Email Alert

the most used weapon in the deadliest mass shootings in the
United States [16], Smart-Watcher can be a helpful tool to
mitigate mass shootings if deployed on the various surveillance
cameras at public places such as schools, malls, parks, etc.

VI. CONCLUSIONS

This paper presented the design and implementation of
Smart-Watcher. This AI-driven system empowers surveillance
cameras to detect potential security threats in real-time, of-
fering protection beyond passive monitoring. Smart-Watcher
could preemptively prevent catastrophic incidents like mass
shootings by identifying on-body weapons, suspicious objects,
and unusual activities. The system implementation used the

TABLE I
THE AVERAGE CLASSIFICATION ACCURACY AND PREDICTION TIME OF

THE MASK R-CNN MODEL

Class No. of Testing Images Accuracy Prediction Time
Baseball Bat 100 97.6% 1.54s
Gun 235 98.2% 1.61s
Hammer 104 98.2% 1.59s
Knife 123 93.2% 1.45s
Bird 170 95.6% 1.63s
Cat 271 94.3% 1.57s
Dog 236 94.1% 1.88s
Human Face 459 99.2% 1.67s

Intel NCS2 device to boost the processing capabilities of a
Raspberry Pi 4 device for deploying the Mask R-CNN model
locally on the surveillance camera without cloud computing
dependence. A user-friendly interface was developed on top
of the Mask R-CNN model to allow users to interact with the
system conveniently. We carried out a sets of experiments to
evaluate the performance and classification accuracy of our
system, paying particular attention to the prediction time.

ACKNOWLEDGMENTS

This research work is supported in part by the National Sci-
ence Foundation (NSF) under grants # 2011330, 2200377 and
2302469. Any opinions, findings, and conclusions expressed
in this paper are those of the authors and do not necessarily
reflect NSF’s views.

REFERENCES

[1] A. A. Ahmed and M. Echi, “Hawk-eye: An ai-powered threat detector
for intelligent surveillance cameras,” IEEE Access, vol. 9, pp. 63 283–
63 293, 2021.

[2] A. A. Ahmed and S. Ahmed, “A real-time car towing management sys-
tem using ml-powered automatic number plate recognition,” Algorithms,
vol. 14, no. 11, 2021.

[3] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 39, no. 6, pp. 1137–
1149, 2017.

[4] A. A. Ahmed and N. Okoroafor, “An ml-powered risk assessment system
for predicting prospective mass shooting,” Computers, vol. 12, no. 2,
2023.

[5] G. F. Shidik, E. Noersasongko, A. Nugraha, P. N. Andono, J. Jumanto,
and E. J. Kusuma, “A systematic review of intelligence video surveil-
lance: Trends, techniques, frameworks, and datasets,” IEEE Access,
vol. 7, no. 1, pp. 457–473, 2019.

[6] P. R. Jeyaraj and E. R. S. Nadar, “Smart-monitor: Patient monitoring
system for iot-based healthcare system using deep learning,” IETE
Journal of Research, vol. 68, no. 2, pp. 1435–1442, 2022.

[7] K. S. Kumar, S. Prasad, P. K. Saroj, and R. Tripathi, “Multiple cameras
using real time object tracking for surveillance and security system,” in
2010 3rd International Conference on Emerging Trends in Engineering
and Technology, 2010, pp. 213–218.

[8] S. Soheli, N. Jahan, M. Hossain, A. Adhikary, A. Khan, and
M. Wahiduzzaman, “Smart greenhouse monitoring system using internet
of things and artificial intelligence,” Wireless Personal Communications,
vol. 124, no. 4, pp. 3603–3634, 2022.

[9] U. Navalgund and K. Priyadharshini, “Crime intention detection system
using deep learning,” in Proceedings of the IEEE International Con-
ference on Circuits and Systems in Digital Enterprise Technology, ser.
ICCSDET ’18, 2018, pp. 1–6.

[10] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” in
Proceedings of the IEEE International Conference on Computer Vision,
ser. ICCV ’17, 2017, pp. 2980–2988.

[11] “Openvino: A toolkit for optimizing deep learning
models,” accessed December 5, 2023. [Online]. Available:
https://software.intel.com/content/www/us/en/develop/tools/openvino-
toolkit.html

[12] T. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B. Girshick, J. Hays,
P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick, “Microsoft COCO:
common objects in context,” Computer Vision, vol. 1405.0312, no. 1,
2014.

[13] “Kaggle: Machine learning and data science community,” accessed
December 5, 2023. [Online]. Available: https://www.kaggle.com/

[14] “Google web scraper,” accessed December 5, 2023.
[Online]. Available: https://chrome.google.com/webstore/detail/web-
scraper/jnhgnonknehpejjnehehllkliplmbmhn?hl=en

[15] “Labelimg,” accessed December 5, 2023. [Online]. Available:
https://viso.ai/computer-vision/labelimg-for-image-annotation/

[16] “Gun violence archive,” accessed December 5, 2023. [Online].
Available: https://www.gunviolencearchive.org/


