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ABSTRACT With the wide adoption of cryptocurrency, blockchain technologies have become the
foundation of such digital currencies. However, this adoption has been accompanied by a surge in
cryptocurrency fraud, causing significant losses to financial organizations and individuals. One way to
mitigate these losses is to use Federated Learning (FL) techniques to detect fraudulent cryptocurrency
transactions. This paper provides an overview of secure, privacy-preserving, and scalable Blockchain-based
Federated Learning (BCFL) as a promising solution for slowing the exponential growth of cryptocurrency
fraud. BCFL enables multiple entities to collaboratively train machine learning models for detecting
fraudulent cryptocurrency transactions without sharing their private data, thus preserving privacy. However,
Integrating differential privacy and Secure Multi-party computation (SMPC) models in BCFL presents an
additional scalability challenge. This study provides an overview of BCFL, evaluating existing research
on its security, privacy, and scalability challenges in detecting cryptocurrency fraud. The review explores
existing research and variousmethodologies, highlighting advancements and challenges in creating effective,
privacy-conscious fraud detection solutions for cryptocurrency transactions.We first discuss the current state
of BCFL in fraud detection, along with its potential advantages and limitations, and then discuss the existing
research gaps. In particular, this paper examines various BCFL frameworks, consensus algorithms, and block
architectures, emphasizing their strengths and limitations in the context of cryptocurrency fraud detection to
develop scalable and privacy-preserving solutions. We compare various solutions that address scalability and
privacy challenges in BCFL, including adopting a geographically distributed cloud computing model that
utilizes SMPC and lightweight consensus algorithms and protocols to manage computational overheads.

INDEX TERMS Blockchain, cryptocurrency, fraud, federated learning, scalability, security, privacy,
literature review.

I. INTRODUCTION

The exponential growth in cryptocurrency fraud, crypto fraud
for short, has caused significant financial losses in recent
years [1]. For instance, the FBI’s Internet Crimes Complaint
Center (IC3) has reported a 183% increase in crypto fraud in
the United States in 2022, resulting in a loss of 2.57 billion
dollars [2]. Despite the progress in security and privacy
solutions, crypto fraud continues to rise, mainly due to the
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absence of inter-organizational collaboration and privacy
concerns.

The growing emphasis on Federated Learning (FL) as a
promising solution for crypto fraud detection has inspired
and driven a paradigm shift from centralized to decentralized
security and privacy architectures [3]. FL was introduced
by Google in 2016 as a distributed Machine Learning (ML)
paradigm that leverages local computational power and
enables multiple entities to collaboratively train anMLmodel
using local data samples without sharing their sensitive data,
ensuring privacy [4].
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Traditional machine learning approaches require consol-
idating all data in a centralized repository, typically a data
center managed by cloud service providers [5]. This practice
raises privacy concerns for data owners and risks violating
data confidentiality regulations among organizations [6]. As a
result, the development of privacy-preserving ML techniques
has become crucial [7]. The need to protect data privacy and
the shift towards decentralized data collection led to FL’s
emergence [8].
The training of an FL model commences with the

distribution of an initial model from a central cloud server
to several clients that have the distributed training datasets.
Each client computes local training updates, known as
Stochastic Gradient Descent (SGD), to be aggregatedwith the
global model’s updates. The central server then aggregates
these local updates to formulate an updated global model.
This iterative process of local update computations and
aggregations persists until the model converges to an optimal
state [9].
Despite the superior performance capabilities of FL –

facilitated by its distributed architecture, optimized band-
width consumption, and low latency–, it is full of limitations,
particularly concerning security and privacy [10]. The
system’s inherent dependence on a central FL server for
aggregating model parameters exposes it to vulnerabilities
such as Single Points of Failure (SPoF) and Distributed
Denial-of-Service (DDoS) attacks [11]. Furthermore, privacy
risks, including inference attacks, remain a significant
concern. Such attacks allow adversaries to deduce raw
datasets used in the training phase of local and global
models. For instance, a privacy leakage scheme introduced
in [12] enables adversaries to infer label features from global
gradient parameters and reconstruct raw training data. This
privacy risk often discourages organization participation in
the FL model training process. Therefore, mitigating raw
data inference attacks is paramount for fostering trust and
encouraging the involvement of multiple crypto entities in the
federated process.
In this context, blockchain has emerged as a critical player

in the field of FL, primarily due to its inherent support for
decentralization [10]. The decentralized nature of blockchain
systems makes them less vulnerable to the attacks mentioned
above and versatile in various applications, particularly in
financial systems where third-party trust is essential to ensure
the integrity and immutability of information in a guaranteed
manner [13], [14]. Integrating both methodologies, com-
monly called Blockchain-based Federated Learning (BCFL),
has been widely adopted in various applications, including
fraud detection. In detecting crypto fraud, the data utilized for
model training is sourced frommultiple participating entities,
such as crypto security exchanges, financial institutions, and
organizations, to converge the FL model. These contributing
entities possess the capability to improve the quality of
model updates. However, such interventions also potentially
degrade the model’s performance, underscoring the impor-
tance of data quality and security in this large-scale joint

modeling process. To maintain the integrity and reputation
of blockchain networks, the timely detection of fraudulent
transactions is paramount. Comparative studies have been
conducted to determine the most effective ML algorithms for
fraud detection hosted on blockchain networks based on a
balance between accuracy and computational speed [15].

The primary motivation behind this study is driven
by the critical concerns surrounding data privacy for the
participating entities in BCFL model training, particularly
in the financial sector, where data security is crucial. These
concerns arise from the potential for inference attacks and
malicious attacks from participating distributed entities or
on central servers, leading to the compromise of the global
model or breaches of user privacy [16]. Also, the lack of scal-
able methods to meet the computational demands of BCFL
for fraud detection poses a significant challenge. Existing
solutions to address computational demands primarily focus
on small-scale FL systems [17].
To address these data privacy concerns, several FL

frameworks were proposed in the literature [13], [16], [18],
[19], [20], [21], [22] where only trained models are shared
with the participating entities instead of the raw datasets, thus
preserving data confidentiality and utility while upholding
privacy standards. For instance, Qu et al. [10] proposed a
fully decentralized FL-based framework, which leverages
blockchain technology as the foundation and the Proof-of-
Work (PoW) consensus mechanism to confront poisoning
attacks. Lu et al. [23] presented a framework to overcome
obstacles in data sharing by merging DL with a permission
blockchain system. The proposed framework creates secure
links between Internet of Things (IoT) devices at the network
edge via encrypted logs, which are upheld by central IoT
nodes, guaranteeing data confidentiality and availability.
Rather than preserving unprocessed data, the framework
utilizes a permissioned blockchain to retrieve pertinent data
andmanage data access, thereby resolving storage limitations
and privacy issues.
Crypto fraud detection would require multiple entities

to participate in training a global FL model in cross-silo
FL settings [3]. The participating entities need to share
their crypto exchange data and information about their
financial data silos. To coordinate such a data-sharing
process, a manager is designated as one of the partici-
pating organizations or a trusted third party responsible
for coordinating the model training process. However,
selecting a trusted manager poses a significant challenge,
as organizations may have differing priorities and levels of
trust. While a fully decentralized BCFL eliminates the need
for a trusted central authority, it introduces complexities in
managing communication overhead, ensuring efficient model
training, and maintaining system stability. Furthermore, the
performance of the aggregation process is bounded by the
quantity and quality of local computing resources [4].
Table 1 lists the abbreviations and their meanings used in

this article. The contributions of this paper are fourfold. First,
this paper reviews the existing BCFL approaches for crypto
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TABLE 1. Abbreviations and their meanings used in this paper.

fraud detection, including an extensive analysis of BCFL
frameworks, consensus algorithms, and block structures, and
emphasizes their applicability, strengths, and limitations.
Second, we highlight the scalability issues of the existing
BCFL solutions for crypto fraud detection and propose a
scalable approach capable of effectively managing extensive
data from multiple participating financial entities. Third,
this paper extensively analyzes the existing security and
privacy approaches for BCFL and proposes the best-fit
approaches for crypto exchanges of the financial entities
participating in the global FL model during the training
phase to reduce the risk of inference and malicious attacks.
Fourth, we explore the existing BCFL cross-silo settings
in the case of eliminating the centralized manager role
and employing a fully decentralized approach for managing
the communication overhead and maintaining the system’s
stability.
The rest of the paper is organized as follows: Section II

presents related work. Section III presents a comprehensive
technical background review of BCFL and a comparison
between its existing crypto fraud frameworks. The deploy-
ment of scalable and secure BCFL strategies in detecting

fraud is presented in Section IV. Section V presents a
performance evaluation of the reviewed BCFL solutions.
Finally, Section VI summarizes the results of this work.

II. RELATED WORK

The orchestrated and integrated design of FL and blockchain
systems (i.e., BCFL) for crypto fraud detection is becom-
ing increasingly important [3]–various studies focused on
implementing BCFL solutions using machine learning that
incorporate privacy-preserving mechanisms have been pre-
sented in academia and industry [3], [10], [24], [25], [26],
[27], [28], [29], [30], [31], [32]. For instance, Qammar et al.
[33] systematically analyzed the existing challenges of
securing FL using blockchain. This study explored BCFL’s
existing approaches, focusing on security and privacy aspects,
including securing financial records and rewards, as well as
verification and accountability.
A secure federated learning framework using homomor-

phic encryption and verifiable computing was presented
in [34]. The authors proposed a secure FL model that
prevents adversaries from inferring communicated sensitive
information. The proposed approach enables collaborative FL
model training without exposing raw data to the participating
entities. Another work proposed by Baracaldo et al. [25] used
homomorphic encryption to provide security capabilities to
FL models. The authors, who are IBM researchers, presented
a Fully Homomorphic Encryption (FHE) framework that
allows computations to be executed directly on the commu-
nicated encrypted data without decryption. This implies that
the aggregator entity in an FL system does not need to access
the training dataset to train the FL model.
Lin et al. [35] proposed an FL approach that leverages

Variational Auto-Encoders (VAE) to mitigate the risk of
sensitive data being reconstructed through inference. The
proposed approach allows participants to utilize their original
data to generate synthetic data using VAE, which is then used
to train an FLmodel, ensuring the privacy of the data. Another
privacy-preserving FL framework that utilizes differential
privacy techniques to protect model updates from inference
attacks was presented in [24]. The framework employed a
secure aggregation mechanism to combine local data updates
while preserving data privacy.

Li et al. [36] proposed a federated gradient boosting
decision trees framework that protects data privacy by
training decision trees sequentially and combining the final
models. This approach ensures that the raw data remains
on the local devices, preventing direct exposure to the
central server. Wang and Hu [37] presented a review on
BCFL technologies and examined how blockchain can be
applied to FL, focusing on system composition. The authors
analyzed the concrete functions of BCFL from a mechanism
design perspective, highlighting the existing concerns that
blockchain addresses in the context of FL. Addressing these
concerns, Ullah et al. [38] proposed a BCFL-based approach
to utilize a Proof of Authority (PoA) consensus algorithm.
The proposed framework harnesses the immutability and
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transparency of blockchain to ensure data integrity and
privacy throughout the FL process.
Various existing works discuss using BCFL to address

privacy and security concerns in different domains. For
instance, Yuan et al. [39] proposed a two-layer approach
for FL in the IoT context. The proposed system divides the
network into sub-chains, known as shards, to control and
regulate the exchange of sensitive data among the commu-
nicating participants. Additionally, the proposed approach
employs a main-chain layer based on a Direct Acyclic
Graph (DAG) framework to enable asynchronous validation
across the deployed shards. Sharding and DAG mechanisms
addressed the scalability and efficiency challenges in BCFL.
In particular, sharding is a technique for dividing a large
blockchain into smaller, more manageable sections called
shards to allow the network to process and manage higher
data volumes and perform more volume of transactions
efficiently.
A different study by Guo et al. [40] proposed a

dual-layer blockchain structure for secure traffic predic-
tion based on FL. The lower and upper layers of the
blockchain store the aggregated parameters of the local and
global models, respectively. The proposed system utilized
a Distributed Homomorphic-encrypted Federated Averaging
(DHFA) scheme that tackles the issues related to securing the
distributed computations. In another related work presented
byAurna et al., [41], a highly accurate and privacy-preserving
system for detecting credit card fraud using FL is proposed,
in which three deep learningmodels (i.e., CNN,MLP, LSTM)
are used within the FL framework. The proposed approach
explored four distinct sampling techniques to address data
imbalance, and the proposed framework is compared with
other state-of-the-art models.
Significant progress has been made by law enforcement

in the field of crypto fraud detection. For example, the
Market Integrity and Major Frauds (MIMF) unit [42] has
emerged as a force in combating fraudulent activities and
market manipulation associated with cryptocurrency since
2019. MIMF has successfully prosecuted cases involving
cryptocurrency fraud with intended losses exceeding 2 billion
dollars for investors worldwide. Prosecutors employed data
analytics and conventional law enforcement methods to
identify and bring justice to cryptocurrency investment
schemes.

III. TECHNICAL BACKGROUND OF BLOCKCHAIN-BASED

FEDERATED LEARNING

This section provides a technical background of BCFL
technologies, including FL architectures, workflows, and
communication topologies.

A. FEDERATED LEARNING OVERVIEW

FL empowers distributed computing devices to train a
global model collaboratively, safeguarding sensitive data
by retaining it on the originating devices throughout the
training process [43]. Notably, the participating parties who

FIGURE 1. Federated learning architecture and workflow.

contribute to federation learning without uploading their
training datasets to a cloud-based data warehouse maintain
the privacy of each data sample [44]. In FL, the aggregation
server identifies and invites a constituency of potential
contributors to the training process, and then aggregates
the locally trained models when they arrive [37]. Once the
training process is completed –by converging the model’s
gradients and weights– locally at each contributor, the
training parameters are sent to the aggregation server.

In each training epoch, denoted by Ä , the aggregator
server disseminates the initial model updates (i.e., weights)
to the selected constituency of FL contributors, denoted
by µ. Each contributor computes its local model using
the received weights, represented by temporally defined
feeds, each with its contextual constraints. Then, these timed
model feeds are sent to the server to carry out the required
aggregations and transform them into a global FLmodel [33].
The training FL workflow can be represented formally as
follows.

8Ä+1 = 8Ä +
1

µÄ

µÄ∑

i=1

Ãi (1)

where8Ä is the aggregated global model at the Ä th epoch, and
Ãi is the current state of the local model of a contributor µi.
The Vanilla Federated Average (FedAvg) algorithm is used to
aggregate of the local model updates Ãi at the server [33].

B. FEDERATED LEARNING ARCHITECTURE AND

TAXONOMY

Figure 1 illustrates a simplified architecture of FL, which
involves the following distributed components.

• Clients: Also called contributors, participating entities,
or Local Nodes, they are the edge devices that hold the
local data samples used for training local models at the
network edge.

• CommunicationNetwork: It facilitates the exchange of
model updates between local nodes and the aggregation
server.
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• Central Server: It orchestrates the FL learning and
inference processes. It also manages the model initial-
ization, distribution, and aggregation operations. The
centralized FL server aggregates the local model updates
received from clients to construct the global FL model.

• Global Model: It is initialized with random weights,
defined as temporally feeds with contextual local
updates generated from clients. The aggregation server
trains this model on each epoch with clients’ local
updates.

As shown in Figure 1, the FL training process can be
represented as a traditional client-server architecture, where
local data samples, such as crypto exchanges in the crypto
fraud context, undergo local training process to ensure data
privacy. The intermediate gradients produced by each training
epoch are desensitized and transferred to a trusted central FL
server for aggregation. The aggregated global parameters are
then disseminated to local clients to update their local models.
The FL workflow can be summarized in the following steps.

• System Initialization: The central server initiates a joint
FL modeling task and invites clients to participate in the
training process.

• Local Computations: Following the joint model ini-
tialization step, the central server sends some model
parameters to instruct the invited contributors to perform
their local computations. Each contributor then inde-
pendently executes a series of computations utilizing
their dataset and sends its model updates to the central
server, fostering a decentralized computation paradigm
and empowering autonomous data-driven contributions.

• Global Aggregation: The central server aggregates the
received updates from contributors and aggregates them
to train the global FL model.

Figure 2 shows a simplified taxonomy of FL that
shows its diverse components, including data distribution,
model architecture, and system communication architecture.
The figure illustrates that FL is built on four pillars:
model-centric, data-centric, communication topology, and
aggregation approaches. Model-centric approaches focus on
initializing, updating, and disseminating FLmodels centrally.
In particular, a central server initiates the model training
process and then invites a set of contributors to participate
by sending their local updates for aggregation [45]. On the
other hand, data-centric approaches focus on data distribution
among the participating entities or clients [46]. The system
communication architecture is a categorization based on how
multiple participating entities communicate with the central
server. Next, we describe these four FL components.

C. ALGORITHMIC COMPLEXITY OF BLOCKCHAIN

FEDERATED LEARNING

The computational complexity of BCFL algorithms is a
critical factor that impacts these systems’ scalability and
real-world applicability. Several studies have examined

the algorithmic complexity of different federated learning
approaches in the context of blockchain applications [3], [12].

One of the critical components of a BCFL system is
the aggregation of local models trained on distributed data
sources. McMahan et al. [5] introduced the Federated
Averaging (FedAvg) algorithm, which has a computational
complexity of O(K ∗ N ), where K is the number of local
model updates, and N is the number of participating nodes.
This relatively efficient linear complexity allows for scalable
model aggregation, even in large-scale blockchain networks.
However, the complexity of the underlying blockchain con-
sensus mechanism can introduce additional computational
overhead.
Nguyen et al. [47] proposed a federated learning-based

crypto-fraud detection system that utilizes a blockchain
infrastructure. They noted that the computational complexity
of the blockchain consensus protocol, such as Proof-of-Work
(PoW) or Proof-of-Stake (PoS), can significantly impact the
overall system performance. For example, the computational
complexity of the PoW consensus algorithm used in Bitcoin
is O(2n), where n is the number of leading zeros required in
the hash value [48]. This exponential complexity can become
a bottleneck for the scalability of blockchain-federated
learning systems, as the model aggregation and consensus
processes need to be tightly coupled.
To address this challenge, some studies have explored

alternative consensus mechanisms with lower computational
complexity. Li et al. [49] proposed a federated learning-based
anti-money laundering system on the Ethereum blockchain,
which utilizes the Proof-of-Authority (PoA) consensus algo-
rithm. The PoA algorithm has a computational complexity of
O(N ), where N is the number of authorized validators, which
is typically much lower than the complexity of PoW or PoS.

Another research work presented in [50] proposed a deep
learning model using a unique metaheuristic optimization
strategy for Ethereum fraud detection. The proposed model
combined a Genetic Algorithm (GA) with the Cuckoo Search
(CS) technique. The suggested technique and Support Vector
Classification (SVC) models outperformed the rest with the
highest accuracy. In contrast, deep learning with the proposed
optimization strategy outperformed the RF model, with a
slightly higher performance of 99.71% versus 98.33%.

Furthermore, using techniques like sharding and off-chain
computations can potentially reduce the algorithmic com-
plexity of blockchain-federated learning systems. Sharding
allows the blockchain network to be divided into smaller,
more manageable segments, reducing the computational
burden on individual nodes [51]. Off-chain computations,
such as those performed in side chains or state channels,
can also offload some model training and aggregation tasks,
improving the overall system efficiency.

In terms of real-world applicability, the algorithmic com-
plexity of BCFL algorithms plays a crucial role in real-world
applicability and in determining the system’s scalability and
performance. Systems with lower computational complexity,
such as those utilizing efficient consensus mechanisms and
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FIGURE 2. Federated learning taxonomy.

off-chain computations, are more likely to be able to handle
large-scale blockchain networks and crypto fraud detection
scenarios with hundreds or thousands of participating entities
across the world.

D. CYBERSECURITY CONSIDERATIONS OF BCFL

BCFL paradigms have unique security considerations that
must be carefully evaluated. For instance, blockchain net-
works are often applauded for their security features, such
as cryptographic techniques, distributed consensus mecha-
nisms, and immutable transaction records. The decentralized
nature of blockchains helps mitigate single points of failure,
making the system more resilient to attacks [48]. However,
blockchain networks are not without vulnerabilities. The
consensus protocol used, such as Proof-of-Work (PoW) or
Proof-of-Stake (PoS), can be subject to various attacks,
including 51% attacks, where a malicious actor(s) controls
the majority of the network’s computing power or stake [14].
These attacks can compromise the integrity of the blockchain
and enable fraudulent activities. Also, vulnerabilities in
the smart contract code or the blockchain’s underlying
infrastructure can lead to security breaches, such as the DAO
hack on the Ethereum blockchain [50]. Attackers can exploit
these vulnerabilities to gain unauthorized access, steal funds,
or disrupt the system’s operations.

Federated learning systems address data privacy and
security concerns by training machine learning models
on decentralized data sources, such as crypto wallets and
exchanges, without aggregating raw data [5]. This approach
helps mitigate the risk of data breaches and preserves user

privacy. However, federated learning systems are not immune
to security threats. Malicious participants or outside attackers
can attempt to manipulate the model training process, known
as model poisoning attacks [52]. These attacks can introduce
biases or vulnerabilities into the global model, compromising
its effectiveness and reliability.

In addition, the communication channels between the
federated learning nodes and the central coordinator can
be targeted by network-based attacks, such as man-in-
the-middle attacks or denial-of-service (DoS) attacks [53].
These attacks can disrupt the model aggregation process
or intercept sensitive information exchanged during the
federated learning workflow.

Enhancing the security of blockchain networks by imple-
menting more robust consensus protocols or additional
cryptographic safeguards may come at the cost of increased
computational complexity and reduced transaction through-
put [4]. This can impact the real-time performance and
scalability of the overall system, which is crucial for effective
crypto fraud detection. Similarly, implementing advanced
security measures in federated learning, such as secure
multi-party computation or differential privacy techniques,
may introduce computational overhead and communication
latency, potentially affecting the system’s ability to rapidly
detect and respond to evolving fraud patterns [50].

E. FL MODEL CENTRIC APPROACH

The model-centric category can be classified as cross-device
and cross-silo approaches. The cross-device FL approach
involves many computing devices containing sensitive
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TABLE 2. FL model centric approaches.

datasets from various contributing entities. These devices,
–which are predominantly mobile and IoT devices [54]–,
participate in the FL model training process. However, only
a subset of these devices is available for training at any given
time [53]. In contrast, the cross-silo FL approach involves
the use of siloed datasets to train the global FL model.
The contributors in this setup are not individual devices, but
larger entities such as crypto exchanges, banks, schools, and
government institutions [45].
Table 2 compares the characteristics of cross-device

and cross-silo approaches. The cross-silo category offers
excellent stability when used for an FL setup with multiple
crypto exchanges participating in the global model training.
All contributors continuously provide updates for the model
refinement process [45].

F. FL DATA CENTRIC APPROACH

The data-centric category can be classified as Horizontal Fed-
erated Learning (HFL), Vertical Federated Learning (VFL),
and Federated Transfer Learning (FTL) approaches [46].
As shown in Figure 3, HFL converges multiple partic-
ipating crypto entities with heterogeneous data samples
and shared feature space. This setup enables collaborative
model training where substantial overlap exists across
decentralized datasets [29]. HFL-based approaches utilize
expansive feature sets with considerable overlap hosted on
distributed crypto entities with high commonality and a
central aggregation server [55].

As depicted in Figure 4, VFL involves participating entities
with distinct feature data corresponding to an identical set of
samples with large datasets overlap [56]. VFL is prevalent
in applications where data is vertically partitioned due to
privacy regulations or ownership restrictions, such as in
collaborative healthcare analysis or financial risk assessment.
VFL is particularly suited for situations characterized by
a substantial overlap within the sample space of the
dataset [29].
HFL and VFL approaches are viable when dealing with

datasets that share standard features or samples within the
federation. However, in practical scenarios, the existence of
such common entities may be restricted, thereby potentially
diminishing the federation’s appeal [57].
FTL combines the distributed privacy-preserving federated

learning paradigmwith transfer learning techniques, enabling
knowledgeable model initialization and optimization for
data-constrained client entities. It is used when the partic-
ipating entities have different feature spaces and diverse
datasets. In other words, the data samples are located in

different domains with shared latent space. FTL approaches
are typically constrained to a two-party structure, bearing
significant resemblance to the protocols of VFL [26]. Further-
more, the performance of FTL systems remains contingent
on cross-domain similarity, rendering this paradigm optimal
for collaborative modeling between organizations in similar
industries with higher feature space congruity.

G. FL COMMUNICATION TOPOLOGY ARCHITECTURE

The selection of FL communication topology architecture is
crucial and contingent upon the unique domain needs of the
FL system (see Figure 5). Here are the most commonly used
communication topologies for FL:

• Centralized – Client-Server Architecture: The partic-
ipating parties communicate with a central server in the
federation, which manages the FL model training and
aggregation process. This architecture is not scalable to
a large number of participating parties.

• Decentralized – Peer-to-Peer Architecture: The inter-
actions between the participating entities are decen-
tralized, eliminating reliance on a central server. This
architecture is scalable; however, there are some
complexities in managing distributed communication
between the contributing constituency;

• Hierarchical Architecture: This hierarchical structure
incorporates multiple tiers of participating entities,
which facilitates the communication between the entities
in the same layer for exchanging the model updates
before disseminating them up to the hierarchy. While
this architecture can potentially diminish communi-
cation costs and enhance system robustness, it may
concurrently introduce heightened complexity in system
management and coordination.

• Regional Architecture: The participating entities in
this structure are categorized based on geographic
locations, where each location possesses a regional
server responsible for the communication between
the participating entities within its designated region.
While this architecture holds promise for enhancing
communication efficiency and preserving data privacy,
it may necessitate sophisticated mechanisms for group
management and coordination [27].

H. FL AGGREGATION TECHNIQUES

This section presents the most popularly used aggregation
techniques in FL during the federated learning process,
as follows:

• FedAvg: It is a centralized aggregation method based
on Stochastic Gradient Descent (SGD), which is an
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FIGURE 3. Horizontal Federated Learning (HFL).

FIGURE 4. Vertical Federated Learning (VFL).

optimization algorithm for approximating the model
parameters that correspond to the best fit between
predicted and actual outputs. In particular, FedAvg
calculates the average of updates received from the
participating entities in federation [33].

• SMC-Avg: It is a centralized aggregation method that
uses secure multi-party computations and facilitates
a privacy aggregation of FL model updates from the
participating entities. It notably exhibits a remarkable
performance even with a low 33% non-participation
rate [9].

• FedProx: A centralized aggregation method provides
aggregation stability and supports participating device
heterogeneity. FedProx is used in highly heterogeneous
settings using a proximal gradient descent algorithm
to stabilize aggregation and improve convergence.
It provides better convergence guarantees than FedAvg
when learning over data from non-identical distributions
(i.e., statistical heterogeneity) [58].

I. BLOCKCHAIN TECHNOLOGIES

Blockchain is a revolutionary cryptocurrency technology
that records financial transactions, leveraging a decentralized

and secure digital ledger [31]. Blockchain can permanently
document transactions in a transparent and tamper-proof
manner. This technology utilizes a distributed network of
nodes to create an immutable chain of blocks, one of which
is securely linked to another block. This ensures verifiable,
transparent, and tamper-proof transaction documentation,
transforming how transactions are recorded and verified [59].
Network block can record and maintain financial

transactions, offering advantages such as decentralization,
immutability, transparency, and anonymity [59]. Transactions
are shared among a network’s nodes and cryptography
links data blocks. Blockchain can facilitate the exchange
of cryptocurrencies without an intermediary agent. Its
importance lies in simplifying business operations, pre-
venting corruption, and eliminating institutional interfer-
ence. The universally accessible and verifiable permanent
record of payments reduces the risk of human error and
exploitation [60].

Access control in blockchain technologies can be classified
into three groups: private, consortium, and public. Public
blockchains offer unfettered access to any network node,
while private ones restrict participation through some per-
missions mechanisms. Consortium blockchains occupy the
middle ground, granting control over network membership
and block creation to a designated group, resulting in a semi-
decentralized architecture [37].

Figure 6 illustrates the blockchain system architecture,
which consists of five layers, each with distinct respon-
sibilities to enable decentralized, secure data storage and
perform various transactions. The innate modular design
allows different components to be further improved in
terms of efficiency and performance. These layers facilitate
cryptography, networking, consensus protocols, and other
functions needed for transparent ledgers without centralized
control. The functionalities of the five layers are described as
follows:

• Model Consumption Interfaces for Application: It
is also called the application layer, which enables
user interaction with the applications deployed on the
blockchain network.
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FIGURE 5. FL communication topology architecture.

• Network Layer: It facilitates node communication and
data transmission.

• Consensus Layer: It maintains that all network nodes
agree on the current blockchain state using consensus
algorithms.

• Value Distribution Mechanism Layer: It is also called
the incentive layer, which rewards nodes for contributing
to the network’s performance and security.

• Data Layer: It maintains data security, integrity, and
immutability on the blockchain.

Blockchain applications are classified into three cate-
gories: permissioned, permissionless, and federated
blockchain. Table 3 compares these categories regarding
publicity, authority, security, transaction speed, and cost
metrics [61].

IV. BCFL-BASED SOLUTIONS FOR CRYPTO FRAUD

DETECTION

Integrating blockchain’s decentralization approach with FL
(i.e., BCFL) enhances the reliability of such systems.

TABLE 3. Blockchain application classification.

It eliminates the risks associated with a centralized having
a point of failure in the aggregation process. Various BCFL
architectures have been presented in literature [22], [62],
classified broadly into three categories: (1) Fully Integrated
BCFL; (2) Flexibly Integrated BCFL; and (3) Loosely
Integrated BCFL.

Figure 7 illustrates the BCFL system architecture, which
consists of three layers: Network Participants, Interplane-
tary File System (IPFS), and Decentralized Ledger layers.
The system architecture is engineered as a Decentralized
Identifier (DID)-oriented authentication system, which sup-
ports secure entry to the federated learning platform via
self-governed DIDs documented on the blockchain [63].
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FIGURE 6. Blockchain system architecture.

Smart contracts are used in BCFL to provide safe and reliable
crypto exchange operations.
The main components of the BCFL system architecture are

described below:

• The Client System represents the participating entities
interacting with the BCFL server. Its primary responsi-
bility is to execute the training tasks received from the
server.

• The Job Creator, also called Job Initiator, initiates the
FL model training tasks and sends them to the BCFL
server. These tasks include instructions for training part
of the FL model.

• The Training Configuration System configures the
training tasks by setting up parameters and conditions
for the FL training process.

• The Container is a workspace storing the training data
and FL model. It is a placeholder where model training
takes place.

• The Evaluator, also called Validator, assesses and
evaluates the effectiveness and efficiency of the learning
process of the FL model.

• The Aggregator component collects and combines the
FL model updates from the client system. It enables the
sharing of these updates across all nodes.

• The Job Distributor assigns the training tasks to clients
based on their training dataset.

• The Token Contract refers to a virtual contract that
handles the transfer of tokens between clients and the

BCFL server. These tokens can serve as rewards or
incentives for participating in the federated learning
process.

• The Blockchain Contract records transactions at the
BCFL server, ensuring system integrity and security.

Figure 8 shows the workflow of the BCFL-based solutions
for crypto fraud Detection, which consists of six steps divided
into two stages, as follows:

• Step 1: In the first stage, the crypto fraud job is initiated
by the Job Creator. A BCFL architecture is structured
for detecting fraudulent transaction patterns, which can
be learned from diverse data streams, such as transaction
data, user data, and device data.

• Step 2: Once the BCFL architecture is developed,
a diverse pool of participating entities is recruited to con-
tribute to the crypto fraud detection job. These entities
can access training data relevant to the specific crypto
fraud detected. Furthermore, independent researchers
and other financial institutions with access to such data
can also be recruited to participate in the crypto fraud
detection job.

• Step 3: This is the first step in the iterative refine-
ment stage, where local FL models are independently
trained using the participant’s datasets, thus preserving
data privacy. For instance, consider a cybersecurity
firm might use a dataset from past investigations of
crypto fraud over a time-bound period to train an FL
model.
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FIGURE 7. BCFL system architecture.

• Step 4: This step evaluates the performance of the
local models of the participating entities in detecting
fraudulent transactions using a validation dataset.

• Step 5: Based on the assessment in Step 4, a number
of participating entities are selected to participate in the
aggregation process to construct the global model. For
instance, local models demonstrating a high detection
rate are given a greater significance in the aggregation
process.

• Step 6: In the global model deployment step, the
BCFL network deploys the updated global model to all
participating entities to use in the crypto fraud detection
process.

This iterative phase in this BCFL workflow requires
frequent collection of training data from the participating
entities regularly, which is used to retrain the global model
and improve its ability to detect crypto fraud transactions.

V. PERFORMANCE EVALUATION OF EXISTING BCFL

SOLUTIONS

This section presents the grand challenges in developing
BCFL solutions for crypto fraud detection regarding privacy,
cybersecurity, scalability, and performance. It also presents
the existing approaches to address these challenges and open
gaps in the literature.

FIGURE 8. The workflow of the BCFL-based solutions for crypto fraud
detection.

A. PRIVACY AND CYBERSECURITY CHALLENGES OF BCFL

FOR CRYPTO FRAUD DETECTION

Table 4 presents an overview of the existing work on address-
ing the privacy challenges in BCFL for fraud detection.
As shown in the table, one of the primary privacy and
cybersecurity concerns in BCFL arises from the potential
existence of malicious miners in the network. Given the
crucial role miners play in consolidating the global model
and achieving consensus, there exists a possible threat of
malevolent miners taking advantage of weaknesses in the
reward allocation system. This could cause a decline in the
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TABLE 4. An overview of existing work on addressing the privacy challenges in BCFL for fraud detection.

earnings of genuine miners and exert a severe influence on
the mining pool, eventually culminating in attacks on the pool
mining system.
The decentralized functioning of blockchain enables FL

to be fault-tolerant and can help to avoid attacks effectively.
While verifying transaction data is crucial for consensus,
it creates a gaping loophole for privacy violations [64].

With the data laid bare to all nodes, malicious actors could
potentially exploit it for nefarious purposes [65].

1) DATA PRIVACY
BCFL aims to keep each node’s data private during learning.
However, achieving this is difficult as each node must share
information with the other during the learning process.
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Current research has suggested that differential privacy
and homomorphic encryption can be alternatives to enable
computation without decryption. However, these methods are
computationally expensive and challenging to implement in
a scalable way [77].

2) DE-ANONYMIZATION RISK

The risk of de-anonymization is heightened with small
leaks and is particularly concerning for crypto transactions,
which may contain sensitive information such as wallet
addresses and transaction amounts. An approach to mitigat-
ing this risk is implementing differential privacy. However,
there’s a cost trade-off between accuracy and privacy
budget [78].
Differential Privacy (DP) protects the privacy of indi-

vidual data points by adding noise to the data. However,
this noise can also reduce the accuracy of the learning
model. The amount of noise that is added depends on
the privacy budget, which is a parameter that controls the
trade-off between privacy and accuracy. When the noise
was added to the data with differential privacy, it became
more difficult for the model to learn the true relationship
between the data and the labels [79]. DP can reduce the
accuracy of the learning model, especially when the privacy
budget is high. The impact of differential privacy on the
quality of the learning model depends on the specific
task in the job creation workflow of the BCFL with the
participating crypto entities and the amount of available
data [24].

3) HOMOMORPHIC ENCRYPTION (FHE) DIFFICULTIES

Keeping user-related data private from participating crypto
entities while using it for fraud detection can be challenging.
While homomorphic encryption can protect data privacy
during training, it can be computationally expensive and
difficult [34]. Here are some of such difficulties:

• Computational Complexity: High computational expense
in Homomorphic Encryption (HE) algorithms makes
them impractical for large-scale BCFL applications,
significantly slowing down fraud detection model
training and evaluation and hindering real-time perfor-
mance crucial for prompt detection and prevention of
fraudulent transactions [80].

• Limited Expressiveness: Current HE schemes support
only basic operations like addition and multiplication,
limiting the feasibility of training more complex models
involving non-linear operations or requiring access to
raw data features [25].

• Key Management Overhead: HE relies heavily on
cryptographic keys to secure encryption and decryption.
Securely managing these keys is a significant challenge
in BCFL settings, with multiple nodes involved. Key
distribution, revocation, and rotation must be carefully
handled to prevent unauthorized access to sensitive
data [81].

4) USER PRIVACY

Protecting user privacy within the context of data utilization
for fraud detection is a fundamental challenge. It is essential
to ensure the exclusive use of data from participating entities
for fraud detection with strict provisions against unauthorized
access and dissemination to third parties [13]. Technically,
the potential for data privacy exploitation exists if entities
within the federated system participate with the sole intent
of acquiring data from other crypto entities to predict market
trends or analyze the user behavior of competitors, among
other things. In such a scenario, the efficacy of token-based
incentivization may no longer serve as an effective incentive
once this exploitation is detected [13].

5) HANDLING SENSITIVE DATA

To ensure data and user privacy are not compromised, it is
essential to handle crypto transactions containing sensitive
information effectively in a federated environment [35].

6) INTEGRITY OF THE LEARNING PROCESS

The integrity and reliability of the FL process can be
compromised if privacy preserving mechanisms such as
differential privacy that adds noise to the data influences the
accuracy of the learning model [33].

7) POLICY AND REGULATION COMPLIANCE

Navigating the intricate complexities of varying data protec-
tion regulations and standards is a significant challenge in
BCFL. This is because the evolving jurisdictional standards
and regulations demand that all participating entities in the
federated system comply with the latest mandates [15].

8) INFRASTRUCTURE VULNERABILITIES

Vulnerabilities in the physical and digital underpinnings of
the BCFL system could be exploited by adversaries, posing
privacy risks. For instance, attackers might compromise
a node to steal data or disrupt the network, impeding
communication between nodes [82].

B. ADDRESSING THE PRIVACY AND CYBERSECURITY

CHALLENGES OF BCFL FOR CRYPTO FRAUD DETECTION

1) DATA PRIVACY

Several existing solutions presented in the literature address
the challenges of data privacy, including Secure Multi-Party
Computation (SMPC) [83], incorporating advanced encryp-
tion standards approach [34], and Federated Learning of
Cohorts (FLoC) [84].

• Secure Multi-Party Computation (SMPC): This cryptog-
raphy method allows various nodes to collaboratively
contribute to the learning process in total privacy,
offering security during data exchange. In SMPC, the
concept Collaboration without Trust allows each node
to perform its computation on its data, revealing the
final result afterward without exposing individual data.
This is particularly useful in the crypto fraud detection
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ecosystem, where trust between nodes may be limited.
In addition, SMPC allows for the correlation of activities
from different nodes to identify anomalies that can
help signal potential fraud, as anomalous transactions in
crypto environments typically indicate crypto fraud [83].

• Incorporating Advanced Encryption Standards: The
deployment of sophisticated encryption standards, such
as Elliptic Curve Cryptography (ECC), stands out for
its ability to deliver a superior level of security with
reduced computational demands, using more minor keys
compared to alternative cryptographic methods. This
efficiency is critical when dealing with large volumes
of data and transactions in crypto fraud detection. The
lightweight nature of ECC makes it better adapted for
systems with many nodes participating in the model
training process requiring privacy. It offers participating
entities the assurance against unauthorized sharing or
manipulation of sensitive data [34].

• Federated Learning of Cohorts (FLoC) This method-
ology clusters nodes that share similar attributes.
Data analysis from these clustered entities ensures the
safeguarding of personal information and promotes the
model’s training. The cohort-based training enhances
speed and efficiency compared to individual node
operations, facilitating rapid fraud detection. Also,
it allows for the easy identification of fraudulent patterns
and behaviors within cohorts of nodes with similar
features. This proves instrumental in detecting subtle
and complex crypto fraud patterns in BCFL [84], [85].

2) DE-ANONYMIZATION RISK
• Privacy Budget Management: Managing the privacy
budget is a crucial aspect of DP. The privacy budget
refers to the cumulative privacy loss that a user is willing
to tolerate. Spending the privacy budget wisely can help
balance privacy and utility. The careful management of
the privacy budget is necessary to balance privacy and
accuracy optimally. A lower privacy budget minimizes
the noise added to data but compromises privacy and
vice versa. Showing a proactive effort to manage privacy
budgets can build user trust in the system, making
participating entities more willing to contribute their
data for learning, resulting in better fraud detection
outcomes [86].

• Introduction of Multiplicative Noise in DP: Instead
of additive noise, multiplicative noise can sometimes
decrease the risk of information leakage while ensuring
privacy. Although this is not commonly used, with
adequate interpretation capabilities, models can detect
anomalies even in data modified by multiplicative
noise. Such anomalies are an indicator of fraudulent
transactions. DP typically involves the addition of
noise, often from a Laplace or Gaussian distribution,
to the results of a query. The amount of noise added
is proportional to the sensitivity of the function (i.e.,
the maximum amount that any single individual could

change the function’s output) and inversely proportional
to the desired privacy [23].

• Enhanced Differential Privacy Techniques: Advanced
versions of differential privacy like Local Differential
Privacy (LDP) [24] or Renyi Differential Privacy
(RDP) [79] can provide better data privacy while
preserving accuracy. LDP adds noise to individual data
points rather than the output of a function over the
dataset, while RDP provides tighter privacy guarantees
for multiple computations. RDP provides a method
that is both operationally efficient and quantitatively
precise for monitoring the cumulative loss of privacy
during the implementation of an individual differentially
private mechanism, as well as across multiple such
mechanisms [79].

• Anomaly Detection Models: Models for detecting
anomalous transactions can be developed. For example,
an unsupervised learning Expectation Maximization
(EM) algorithm can cluster the dataset, and anomaly
detection can be performed using Random Forest [87].

3) HOMOMORPHIC ENCRYPTION DIFFICULTIES
Here, we present some solutions that can help better crypto
fraud detection. They enable secure and efficient utilization
of distributed data in BCFL and provide a way to manage
trade-offs between privacy, computational efficiency, and
scalability in fraud detection systems [88].

• Hardware Acceleration Techniques: Leverage high-
performance computing or parallel processing tech-
niques to mitigate the high processing needs of HE and
improve system performance [89].

• Hybrid Solutions: Combine non-HE localmodel training
with HE-protected model aggregation. This approach
leverages the privacy-preserving aspect of HE where
needed while limiting its computational burden [90].

• Layered Approach: Implementing a layered security
architecture where HE is used only for susceptible data,
thus reducing its computation needs [86].

• Function Secret Sharing: FSS is a cryptographic primi-
tive that evaluates specific functions without disclosing
raw data, which could be an alternative to HE for
complex operations [23].

• HE-based Approximation Techniques: Utilize HE-based
approximation techniques, such as Chebyshev poly-
nomial approximation of piecewise linear approxima-
tion [91], to approximate complex functions and enable
their evaluation within the HE environment.

C. SCALABILITY AND PERFORMANCE CHALLENGES OF

BCFL FOR CRYPTO FRAUD DETECTION

This section presents the major scalability and performance
challenges of BCFL for crypto fraud detection.

1) COMPUTATIONAL POWER AND ENERGY EXPENDITURE

Blockchain technologies, specifically those utilizing a proof-
of-work consensus mechanism such as Bitcoin, necessitate
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substantial computational resources and energy consumption,
potentially posing challenges to scalability and performance.
As the number of participating entities in the federated system
grows, this would lead to increased costs and environmental
concerns [92].

2) DATA STORAGE

The need to store all transaction data on each node of a
blockchain system can present significant storage challenges
as the volume of transactions scales. It becomes impractical
for resource-constrained entities participating in the model
training [93].

3) MODEL LEARNING BOTTLENECK

When the model’s updates propagate across the nodes for
aggregation, it could lead to notable delays and inefficiencies;
and consequently, a bottleneck limits the scalability of the
system [94]. This can limit the system’s ability to respond
to emerging threats in real-time in the following ways.

• Varied Computation Times: Nodes may have different
computational capabilities, leading to variations in the
time it takes to generate model updates [81].

• Communication Overhead: The need to exchange large
amounts of model update data between nodes can lead
to network congestion and delays [27].

4) DATA HETEROGENEITY

Merging different types of datasets from diverse sources with
varying quality and formats could pose challenges for FL
models. This data heterogeneity may result in less accurate
fraud detection models. It could limit the system’s ability
to recognize new fraud patterns, leading to inaccurate fraud
detection models [27]. Some features of data heterogeneity
that affect the federated process include:

• Temporal Variations: The inherent characteristics of
data can change over time due to factors such as
device upgrades and user behavior. This can make
it challenging to train and update federated learning
models consistently [3].

• Data Quality: Data collected from various sources may
contain noise, missing values, or inconsistencies. This
can lead to inaccurate model predictions and hinder
fraud detection [69].

5) NON-UNIFORM BLOCK STRUCTURES

The absence of standardized block structures across different
BCFL implementations poses interoperability challenges,
complicating the exchange and processing of data among
participating entities in the BCFL system. Standardization
refers to establishing standard protocols and formats for
data exchange and communication between different BCFL
systems. Each system may have its own proprietary block
structure without standardization, preventing seamless inte-
gration and interoperability [61]. This fragmentation could

impede broader acceptance by crypto exchanges and financial
institutions in two ways:

• Compatibility: Incompatibility among different block
structures makes it difficult for BCFL systems to
exchange data and model updates [95].

• Integration Complexity: Complexity in integrating dif-
ferent BCFL systems as each system has its own unique
data formats and communication protocols [96].

6) SUSCEPTIBILITY TO ADVERSARIAL THREATS

As the number of nodes in the BCFL network increases,
the system becomes increasingly vulnerable to adversarial
attacks that aim to manipulate or disrupt the consensus
process. Such attacks can potentially compromise the fraud
detection system’s integrity, reliability, and scalability [53].

7) NETWORK LATENCY

Communication delays are expected in a growing network
with the addition of more nodes to a blockchain. This has
the potential to slow down communication and is particularly
challenging for real-time fraud detection [47].

8) CHALLENGES IN ACHIEVING CONSENSUS

With the growing number of nodes, verifying and validating
transaction updates and model parameters from every other
node in the network in reaching consensus becomes computa-
tionally demanding and complex. This increased complexity
leads to potential disruptions and delays in the fraud detection
process [68]. Some factors contribute to the difficulty in
achieving consensus in large-scale BCFL networks include:

• Byzantine Fault Tolerance: BCFL systems must tolerate
Byzantine faults, where nodes fail or behave mali-
ciously. This requires sophisticated consensus mecha-
nisms that maintain system integrity even in the presence
of faults [22].

• Increased Communication Overhead: As the number
of nodes grows, the communication overhead between
nodes increases due to the need to exchange transactions
and model update data. This can lead to network
congestion and delays in message propagation [92].

• Limited Node Capacity: Each node has limited compu-
tational and storage resources, which can constrain its
ability to process and verify large amounts of data. This
can lead to bottlenecks and slow down the consensus
process [93].

9) MANAGING PROOFS

Verifying the authenticity of transactions and preventing
double-spending in a scalable manner is technically chal-
lenging with BCFL systems. Double-spending occurs when
a user spends the same cryptocurrency multiple times. This
is a critical issue in crypto fraud detection as it can be
used to manipulate the system for fraudulent gains. For
scalable systems to function optimally, addressing these
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challenges is crucial to avoid vulnerabilities and fraud within
the system [97].

10) CHALLENGES WITH REAL-WORLD IMPLEMENTATION

Real-world implementation of blockchain-based federated
learning systems, particularly in detecting cryptocurrency
fraud, faces several practical challenges [63], [89], [98].
These can be broadly classified into network-related
issues [99], hardware constraints [89], and participant
computational resource discrepancies [92]. Addressing these
issues is pivotal for the system’s success in real-world
applications [6].

11) NETWORK CONNECTIVITY CHALLENGES

Achieving stable and consistent network connectivity is
crucial for BFL, as intermittent connections can hinder the
training process and impede the synchronization of model
updates [100]. Potential strategies to address these challenges
include:

• Incorporating resilience mechanisms, such as robust
peer-to-peer networking protocols and dynamic node
discovery [2].

• Network redundancy should be employed to ensure
alternative pathways for data transmission and enhance
resilience [101].

• Edge computing is utilized for local data processing,
decreasing reliance on continuous network connectiv-
ity [102].

• Implement local caching of updates to safeguard against
data loss during connectivity disruptions and synchro-
nize updates upon connection restoration or timed cache
deletion [103].

• Using decentralized storage solutions, like distributed
file systems or content delivery networks, can help miti-
gate the impact of network failures on the availability of
model updates and training data [10].

12) HARDWARE CONSTRAINTS

The variability in hardware capabilities among participants
can result in bottlenecks that slow down the federated learn-
ing process [98]. Strategies to mitigate hardware limitations
may include:

• Establishing minimum hardware requirements for par-
ticipation in the federated learning network [89].

• Adaptive learning approaches that tailor model training
tasks to the hardware capabilities of individual partici-
pants [81].

• Cloud-based virtualization solutions allow participants
to access standardized virtual hardware, ensuring con-
sistent performance across the network [74].

13) VARIATION IN PARTICIPANT COMPUTATION

CAPABILITIES

Differences in computational power among participants may
create imbalances in contributions to the federated model,

which could impact the learning process [100]. Addressing
this challenge may involve:

• Deploying algorithms that account for variations in com-
puting power, ensuring equitable weighting of updates
regardless of the source’s computational strength [55].

• Employing resource-aware task assignments to align
model training tasks with participants’ computational
capacities [42].

• Promoting asynchronous updates, allowing participants
to update the model at their own pace and preventing
more capable participants from overwhelming the
training process [60].

D. ADDRESSING THE SCALABILITY AND PERFORMANCE

CHALLENGES OF BCFL FOR CRYPTO FRAUD DETECTION

While several research works have been conducted in this
domain [2], [9], [101], [104], it is essential to highlight how
combining some of these proposed solutions and techniques
gives a decent solution to the scalability and performance
challenges experienced in the BCFL system.

1) DATA STORAGE CHALLENGES
• Data Pruning: Data pruning techniques can reduce
the storage requirements of nodes in a blockchain.
These techniques encompass the removal of obsolete or
redundant data from the blockchain. One such method
involves eliminating old transactions from participating
crypto entities once they have been finalized and
integrated into the blockchain; their details can be
deleted from individual nodes, thereby reducing storage
overhead. Another approach is the elimination of
redundant data. By identifying and eliminating identical
or duplicate data, the overall size of the blockchain
can be reduced. Also, purging inactive accounts by
archiving or removing data linked with dormant or
inactive accounts contributes to the conservation of
storage space [105].

• Sharding: Due to the partitioning that occurs during
sharding, nodes will only store relevant portions of the
data, thereby reducing the overall storage requirements
for each node [106].

• Distributed Storage: Distributed storage solutions such
as Interplanetary File System (IPFS) and Swarm can
share data across multiple nodes in the federated process
such that storage requirements for individual crypto
entities participating are reduced [93].

• State Channels: State channels are off-chain mecha-
nisms allowing direct and private transactions between
parties without broadcasting every transaction to the
main blockchain. This can significantly reduce the
amount of data stored on the blockchain, as only the final
state of the channel is recorded on-chain. However, this
approach has concerns about security constraints [99].

2) LEARNING BOTTLENECKS ON MULTIPLE DEVICES
Delay issues that arise during the aggregation process in
BCFL can be minimized by implementing more efficient
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aggregation algorithms or protocols that aggregate model
updates and parameters faster [9]. Also, implementing the
Stochastic Gradient Descent (SGD) technique [12], which
processes smaller subsets of data independently, can help
speed up model updates and their subsequent aggregations.
A combination of data pruning and SGD allows for efficient
utilization of resources in the learning process so available
nodes efficiently execute ongoing computations [107].
Strategies for workload allocation could be developed

to address the issue of varying computational times across
nodes [108]. These strategies would distribute tasks in
accordance with the computational capacity of each node.
Additionally, implementing machine learning algorithms that
accommodate the heterogeneity among devices or nodes
could prove advantageous [65], [102].

To mitigate the issues of communication overhead, tech-
niques such as gradient compression can be employed [12].
This decreases the volume of data exchanged between
nodes during the updating of models. Additionally, using
an asynchronous communication protocol, where model
updates are transmitted and received independently of syn-
chronization with all nodes in the network, can be beneficial.
This approach can aid in reducing network congestion and
delays, thereby enhancing the efficiency of the learning
process [100].
The application of incremental learning can enhance the

efficiency of the learning process. Incremental learning in
BCFL is a strategy that facilitates continuous adaptation and
improvement of the learning model as new data becomes
available. It is a beneficial approach to the federated process
with the decentralization and constant update of data [30],
[109].
A recent study proposed a blockchain-based differential

optimization federated incremental learning algorithm,which
integrates incremental learning into the federated learning
framework [109]. This approach was demonstrated to not
only improve the accuracy of the model but also reduce
the risk of data leakage stemming from gradient updates.
Incremental learning also reduces resource consumption
by eliminating the need for complete model retraining
with each new data instance, a critical feature in crypto
transactions where new data is constantly available. It enables
real-time fraud detection and mitigates the challenge of
catastrophic forgetting, a phenomenon where a model
loses previously learned information when new data is
encountered [103].

3) NON-UNIFORM BLOCK STRUCTURE
• Data Governance Frameworks: Establishing data gov-
ernance frameworks can facilitate the integration of
diverse BCFL systems. These frameworks can provide
data security, privacy, and ethical use guidelines, thereby
fostering broader adoption by a larger pool of participat-
ing crypto entities [110].

• Standardization: Establishing standard protocols and
formats for data exchange and communication between

different BCFL systems can ensure the interoperability
of participating crypto entities. This would involve
creating a standardized block structure that all BCFL
systems adhere to, facilitating seamless integration and
data exchange [63].

• Integration Tools & Interoperability Protocols: Imple-
menting integration tools and interoperability proto-
cols or standards can significantly reduce integration
complexity associated with incorporating different data
formats and BCFL systems. This could involve settling
on a standard data format and communication protocol,
enabling effective communication and data exchange
between systems [61].

• Compatibility Measures: Creating middleware or inter-
face systems capable of translating and interpreting
diverse block structures can be a viable solution for
compatibility challenges. These systems would serve
as intermediaries that allow different BCFL systems
to communicate with each other. Translating the data
and model updates into a standard format enables an
effective exchange of information despite the variations
in block structures across different systems. This can
mitigate compatibility issues, facilitate system integra-
tion, and enhance overall scalability [111].

4) SUSCEPTIBILITY TO ADVERSARIAL THREATS

• Enhanced Security Measures: Incorporating robust
security measures like cryptographic techniques and
implementing intrusion detection tools can offer protec-
tion against adversarial threats early [112].

• Byzantine Fault Tolerance Mechanisms: Byzantine fault
tolerance mechanisms can enhance system resilience
against adversarial attacks by ensuring system integrity
even if some nodes behave maliciously [22].

• Reputation Based Systems: The deployment of a system
that assigns credibility ratings to nodes, grounded in
their historical conduct, can aid in pinpointing and
isolating harmful nodes before they inflict damage [9].

5) NETWORK LATENCY

Efficient and optimized communication protocols are needed
to minimize the network latency [47]. BCFL latency opti-
mization demands a holistic framework that jointly optimizes
data offloading, node transmit power, channel bandwidth
allocation, node computation, and hash power allocation [47].
It is essential also to understand the specific needs in the
BCFL decentralized network to select the protocols that
best fit, such as asynchronous updates or innovative edge
computing techniques [113]. Some protocols, such as QUIC,
have reduced latency compared to TCP, making it useful for
BCFL systems with real-time efficiency requirements [81].

6) CHALLENGES IN ACHIEVING CONSENSUS

• Adoption of Scalable Consensus Protocols: Implement-
ing protocols such as the Practical Byzantine Fault
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TABLE 5. A comparison of the BCFL architectures for crypto fraud detection.

Tolerance, Delegated Proof of Stake, or Sharding
can be beneficial as these protocols are designed to
ensure quick consensus despite the growing number of
nodes [92].

• Limited Node Capacity: Solutions like greedy algo-
rithms for node selection and discarding nodes with poor
communication conditions can equally help improve
overall efficiency [101].

• Dealing with Byzantine Fault Tolerance Mechanisms
with protocols like PBFT Protocol or Federated Byzan-
tine Agreement can ensure the system continues func-
tioning correctly even if some nodes fail or behave
maliciously [114].

7) MANAGING PROOFS
• Implementation of Transaction Validating Protocols:
Protocols such as Two-Phase Commit Protocol (2PC),
Atomic Commit Protocol (ACP), and Three-Phase Com-
mit(3PC) [115] ensure the authenticity and consistency
of operations between participating crypto entities in
the BCFL system. 2PC involves a coordinator node
sending a commit or abort request to participating nodes.
Nodes respond with agreement or disagreement; if all
agree, the transaction is committed; otherwise, it is
aborted. Conversely, ACP is designed for distributed
networks and guarantees that a series of changes is
dedicated to all nodes successfully, or not at all. 3PC is
an improvement of 2PC and adds a ‘prepared commit’
phase before the commit/abort phase to reduce the risk of
data inconsistency in the event of network failure [112].

• Implementation of Zero-Knowledge Proofs: The appli-
cation of Zero-Knowledge Proof-based Federated
Learning (ZKP-FL) strategies [97] allows for the
verification of computational processes without needing
raw data [114]. This significantly reduces the computa-
tional load associated with proof management. Specific
strategies, such as the Practical ZKP-FL (PZKP-FL),
support fractional and non-linear operations that might
occur in the nodes of participating entities. Performance
analyses of the PZKP-FL scheme indicate that the total
runtime is less than a minute when executed in parallel.

VI. DISCUSSION AND CONCLUSION

This paper effectively highlights the potential of leverag-
ing BCFL to detect and mitigate cryptocurrency fraud.
It underscores its pivotal role in enhancing data privacy,
bolstering reliability, and ensuring scalability within the
realm of crypto fraud detection. By analyzing the most
recent advancements and existing gaps in this domain,
it is clear that the decentralization, privacy preservation,
and scalability attributes of the BCFL approach make it
a promising strategy for tackling the mounting issues of
cryptocurrency fraud. Most critical contributions from the
studies reviewed point to the importance of ensuring data
privacy, dealing with scalability issues, reducing the risk of
inference and malicious attacks, and managing decentralized
communication.
In summary, various BCFL architectures for crypto fraud

detection have been presented in literature [37], falling
broadly into three categories: (1) fully integrated BCFL,
(2) flexibly integrated BCFL and (3) loosely integrated
BCFL. Table 5 compares these architectures in terms of
pros, cons, and the best scenarios when they should be
employed in the industry. Each BCFL architecture is designed
to incorporate a learning model that leverages diverse data
sources, including transaction data, user data, and device
data. This integration facilitates the identification of specific
fraudulent transaction patterns.
The type of crypto fraud targeted during the job creation

phase of the BCFL workflow, coupled with the resources
available to the entities participating in the federated
system, largely dictates the most appropriate architecture to
adopt. This ensures that computational resources undergo
thorough analysis before deployment. In certain scenarios,
customization specific to the system may be required to
optimize performance [115].
The BCFL workflow phases of crypto fraud detection

extend over multiple stages, each of which contributes to
developing and implementing an effective predictive model
capable of identifying crypto fraud [42]. From establishing
a task to deploying the updated global model, every step is
instrumental in ensuring a robust, scalable, and secure crypto
fraud detection system [52].
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Further elaborations on the existing issues in BCFL,
mainly stemming from privacy and scalability, are needed
for further studies. In particular, the scalability challenge
is displayed in several forms, such as computational power
requirements, energy expenditure, data storage challenges,
and learning bottlenecks, all of which can constrain the
efficiency and effectiveness of the BCFL system. Also,
privacy threats like inference attacks remain a concern due to
the exposure of sensitive data during the consensus process.
Additionally, the BCFL system is critically vulnerable to
adversarial threats aiming to manipulate or disrupt the con-
sensus process, which can compromise the fraud detection
system’s integrity, reliability, and scalability.
Generally, a mash-up of the different techniques and

approaches presented in this study could offer scalable and
privacy solutions and potentially significantly impact fraud
detection in the BCFL system. Additionally, ML approaches
can work hand-by-hand with BCFL to mitigate crypto fraud.
However, the scarcity of genuine financial transaction data
impedes the development of modernMLmodels for detecting
fraud in crypto transactions, which remains a grand challenge
to achieve this objective.
In summary, this paper presented a comprehensive analysis

of various research studies and methodologies that under-
score the substantial potential of BCFL in mitigating fraud-
ulent activities in cryptocurrency transactions. Despite the
challenges posed by privacy concerns, scalability constraints,
and threats from adversarial attacks, the inherent benefits
of decentralization, security, and privacy preservation that
BCFL offers make it a promising solution in dealing with
crypto fraud.
Incorporating blockchain not only decentralizes the learn-

ing system but also provides transparency, immutability, and
a high degree of security, which are critical in preventing
crypto fraud. To achieve scalability and privacy in BCFL,
a combination of various proposed solutions has the potential
to enhance crypto fraud detection significantly. However, the
initial step involves the establishment of a data governance
framework and standardization, which will serve as a guide
for interoperability and integration for multiple participating
entities interested in model training in the federated system.
This sets the tone and comforts crypto companies in par-
ticipating in the training. While several solutions have been
proposed in this study, a geographically distributed cloud
computing model that utilizes SMPC [83] and lightweight
consensus algorithms and protocols will be a beneficial and
recommended approach. This model effectively manages
computational overheads and privacy, enabling the federated
system to scale.
There is still a need to develop and implement protocols for

managing sensitive data in compliance with global privacy
standards, such as the General Data Protection Regulation
(GDPR) and local regulatory requirements for contributing
entities. The integration of advanced cryptographic tech-
niques, including homomorphic encryption, enables secure
computation on encrypted data, ensuring the confidentiality

and integrity of information throughout the federated learning
process.

The success of BCFL for crypto fraud detection hinges
on the effective coordination and integration of multiple
participating entities, each with its own data, infrastruc-
ture, and objectives. Establishing a robust data governance
framework and standardization is crucial to facilitate seam-
less interoperability and integration. This data governance
framework could be collaboratively developed by the partic-
ipating crypto entities, regulators, and other stakeholders to
ensure alignment with industry best practices and regulatory
requirements. The proposed framework should consider the
following aspects:

• Data Sharing Agreements: Development of standardized
agreements that define the terms of data sharing,
including permissions, responsibilities, andmechanisms
for dispute resolution.

• Data Ownership and Sovereignty: It is essential to
establish explicit ownership and control protocols for the
data provided by each participating entity to maintain
data sovereignty throughout the federated learning
process.

• Data Security and Privacy: Given the sensitive nature
of cryptocurrency transactions, the framework should
incorporate stringent security measures to protect data
from unauthorized access and breaches. This may
include encryption and anonymization techniques to
protect user privacy and ensure the confidentiality of
transactional data.

• Compliance and Audit Trails: Establish mechanisms for
monitoring data origin and ensuring compliance with
regulatory standards. This includes using blockchain
technology to maintain immutable audit trails, thereby
facilitating transparency and accountability throughout
the data lifecycle.

• Data Quality and Standardization: Defining data quality
standards, formats, and validation procedures to ensure
the reliability and consistency of the data used for model
training across the federated system across participating
entities.

• Governance Structure and Decision-Making: Defining
the governance structure, roles, and decision-making
processes for managing the overall federated learning
system, including model updates, conflict resolution,
and system maintenance.

• Standardization for Interoperability: Beyond the data
governance framework, implementing industry-wide
standardization is essential to facilitate smooth interop-
erability and integration among the varied participants
in the blockchain-federated learning ecosystem globally.
Financial institutions, such as banks, can join as
participants in the model training process, making it
imperative to establish standards that enable efficient
interoperability.

• Protocol and Interface Standards: Defining common
communication and data exchange protocols that ensure
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seamless interactions between different blockchain
platforms and federated learning systems is essential.
One such protocol could be obtained from the IEEE
Standards for Blockchain-based Federated Machine
Learning. The IEEE has proposed several standards
for blockchain-based federated machine learning. For
example, P3127 is a guide for a blockchain-based fed-
erated machine learning architectural framework. Other
standards include P3227 for a reference framework of
data security circulation system based on blockchain and
federated computation and P3229 for industrial software
applications based on blockchain.

• Model Exchange Formats: Standards can be established
for the representation and exchange of ML models,
facilitating the sharing of models among entities without
compatibility challenges.

• Blockchain Integration and Consensus Mechanisms:
Defining standard approaches for integrating the fed-
erated learning system with the underlying blockchain
infrastructure, including the consensus protocol, trans-
action formats, and smart contract specifications.

• Auditing and Compliance: Developing standardized
auditing and compliance frameworks to ensure the over-
all blockchain-federated learning system’s transparency,
accountability, and regulatory adherence. For instance,
the VFChain is a verifiable and auditable federated
learning framework based on the blockchain system
that can be implemented. It addresses the problem of
designing a secure federated learning framework to
ensure the correctness of the training procedure.

• Standardization: Standardization and interoperability
are critical elements in ensuring the seamless integration
of systems across various entities, especially within
the financial industry, which includes cryptocurrency
entities. By aligning with existent frameworks such
as the Financial Information eXchange protocol(FIX),
which is widely used for the communication of financial
information, blockchain federated learning systems can
ensure a common language and set of processes for
information sharing and transactions. With the FIX
protocol, the integration complexity between disparate
blockchain and federated learning systems is signif-
icantly reduced, as they can utilize a standardized
method of data transmission. The advantage of the
reduced learning curve is that entities do not need
to invest as heavily in training staff or developing
custom interfaces for their systems, as the FIX protocol
provides a universally recognized standard for financial
communication.

• Interoperability: By establishing robust data governance
frameworks and industry-wide standardization, the
blockchain-federated learning system for crypto fraud
detection can achieve high interoperability, integration,
and trust among the participating entities. This, in turn,
will enable the effective and coordinated deployment of
the system, ultimately enhancing its scalability, security,

and real-world impact in combating financial crimes in
the cryptocurrency and DeFi ecosystem.

• Geographically Distributed Cloud Computing: A geo-
graphically distributed cloud computing infrastructure
can efficiently scale to accommodate the growing
amount of data and computational demand from various
entities. This will potentially support more significant,
more complex federated learning models and larger
numbers of transactions. By distributing the computa-
tional resources and storage across multiple cloud data
centers regionally, the system can better handle the
increasing volume of data and model updates from the
participating cryptocurrencies or participating entities.

• Performance Enhancement: By strategically locating
cloud resources closer to the data source or end-users,
latency can be reduced, leading to faster processing
times for model updates and improved overall system
performance. Also, the geographic distribution of the
cloud nodes can enhance the resilience and fault
tolerance of the system, as the failure or compromise of
a single node will have a limited impact on the overall
operation.

• Secure Multi-Party Computation (SMPC): SMPC is
specifically designed to allow entities to engage in
computation without exposing their private data. In the
context of federated learning, this means that cryptocur-
rency entities can contribute to a shared model without
risking sensitive transactional data.

• Off-chain Computation Techniques: The leading
blockchain network minimizes the computational
burden by utilizing off-chain mechanisms, such as
sidechains or state channels. This improves transaction
throughput and reduces the costs associated with
on-chain operations.

In conclusion, integrating geographically distributed cloud
computing and secure multi-party computation within a
blockchain-federated learning system presents a promising
approach to enhance scalability, performance, and privacy.
This combination can create a more resilient and efficient
infrastructure for handling the computational and data
demands of blockchain-federated learning systems, which
are crucial for the secure and collaborative model training
processes desired by cryptocurrency entities.
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