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Abstract: Hyaluronan (HA) plays well-recognized mechanical and biological roles in articular 
cartilage and synovial fluid where it contributes to tissue structure and lubrication. An 
understanding of how HA contributes to the structure of other musculoskeletal tissues, including 
muscle, bone, tendon and intervertebral discs is growing. In addition, the use of HA-based 
therapies to restore damaged tissue is becoming more prevalent. Nevertheless, the relationship 
between biomechanical stimuli and HA synthesis, degradation, and signaling in musculoskeletal 
tissues remains understudied, limiting the utility of HA in regenerative medicine. In this review 
we discuss the various roles and significance of endogenous HA in musculoskeletal tissues. We 
use what is known and unknown to motivate new lines of inquiry into HA biology within 
musculoskeletal tissues and in the mechanobiology governing HA metabolism, by suggesting 
questions that remain regarding the relationship and interaction between biological and 
mechanical roles of HA in musculoskeletal health and disease. 
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1 Introduction 
Hyaluronan (HA) is a ubiquitous extracellular matrix (ECM) molecule in many solid tissues of 
the body, as well as certain biofluids. The simplicity of a repeating disaccharide chain belies 
HA’s myriad functions throughout the body; HA plays major roles in development, homeostasis, 
and the response to injury (1). Many of these roles arise from the differential synthesis of HA, 
both in terms of its molecular weight and localization and interactions after synthesis in the 
pericellular space, as well as its breakdown, turnover, and interactions with other matrix 
components. In addition, many factors can regulate HA metabolism, such as the availability of 
precursors, cytokine signaling, and physical cues. The role of HA in various tissues, including 
blood vessels, lung, and kidney, and health states, including inflammation and cancer, have been 
studied; however, despite the long-appreciated role of HA in cartilage and synovial fluid, the 
mechanical and bioactive roles of HA in other musculoskeletal tissues is understudied. This 
review will provide an overview of our current knowledge of HA in a number of musculoskeletal 
tissues, with particular emphasis on those associated with the synovial joint and of the 
intersection of mechanical cues and responses (i.e., mechanobiology) with HA metabolism. We 
propose that improved understanding of the interrelationship between HA biology and 
mechanobiology is vital to understanding the physiology and pathophysiology of 
musculoskeletal tissues. Identifying the tissue-specific effects and role of HA is critical for the 
success of biomedical engineering applications of HA-based tissue repairs, replacements, or drug 
delivery strategies, which are becoming increasingly prevalent for the treatment of a spectrum of 
joint diseases (2). 
 
1.1 Hyaluronan in the ECM 
HA is a nonsulfated glycosaminoglycan (GAG) consisting of repeating disaccharides that is 
found in nearly all vertebrate solid tissues and fluids, including the human musculoskeletal 
system (Error! Reference source not found.). The linear structure of HA coils randomly and its 
negative charge enables retention of high fluid volume, supporting osmotic pressure. HA is an 
integral part of the ECM, where it can be found directly surrounding cells in a localized 
pericellular matrix (PCM). It is also found within the interstitial matrix, between individual 
collagen fibrils (3) and acts as a space-filling amorphous hydrogel by complexing with 
proteoglycans (PGs) (4). Lecticans (e.g. aggrecan) are a family of PGs that are characterized by 
multiple, long GAG chains extending from a protein core to bind between a globular domain on 
the N-terminal of the protein core to HA, which is stabilized by Link protein. HA also interacts 
with and aggregates other matrix molecules, including bikunin, inter-alpha-trypsin-inhibitor 
proteins (IαI), and TSG-6 (encoded by gene TNFAIP6) to further stabilize PCM and ECM (5), as 
reviewed by others (see Related Resources). The density of HA and the composition of the 
binding partners is an important factor that varies among different tissues and changes as a 
function of development and disease, suggesting that modulation of HA can have significant 
effects on tissue properties and function under physiologic or pathologic conditions. 
  



 
 
Figure 1. Hyaluronan (HA) is a high molecular weight glycosaminoglycan, made up of repeating 
dimers of glucuronic acid (GlcUA) and N-acetylglucosamine (GlcNAc; top). Intracellular 
GlcUA and GlcNAc are assembled into long, linear chains by hyaluronidase synthases 1-3 that 
reside on the plasma membrane and HA is directly extruded into the extracellular space. Various 
receptors and ECM can bind HA and those discussed in the text are highlighted in the schematic 
(bottom). 
  



1.2 Hyaluronan Synthesis and Breakdown 
Turnover and removal of HA affects biomechanics by altering the composition of tissues and the 
interaction of HA with other ECM components. HA is synthesized at the cell membrane by 
hyaluronan synthases (HASs) as a long chain GAG made up of alternating N-acetyl-β-D-
glucosamine (GlcNAc) and β-D-glucuronic acid (GlcUA) disaccharide units. There are three 
different HASs (HAS1-3), which are differentially regulated at multiple levels (transcription, 
translation, post-translation) (6). The isoforms produce HA of differing molecular weight and 
localization on the cell surface after synthesis (7; 8), and are differentially expressed among cell 
types (9). HA produced by HAS1 or HAS2 ranges from 2 × 105 to 2 × 106 Da, while HAS3 
produces HA chains between 1 × 105 and 1 × 106 Da (10). Breakdown of HA occurs by free 
radicals (11-13) and catabolic enzyme activity (14). Degradative enzymes that act on HA include 
hyaluronidases 1-4 (HYAL1-4), cell migration-inducing hyaluronidases (CEMIP, also known as 
HYBID or KIAA1199, and CEMIP2, also known as TMEM2), and PH20 (15). 
 
1.3 Hyaluronan Receptors and Interactions 
The primary receptors for HA associated to musculoskeletal tissues are CD44 (16) and RHAMM 
(17), although other HA receptors are found elsewhere in the body, including LYVE-1, stabilin-
2/HARE, and layilin. CD44 (cluster of differentiation 44) is a transmembrane glycoprotein and 
the major HA receptor in most cell types (18-21), interacting with PCM and ECM 
macromolecules and mediating cell-matrix crosstalk (22). Aside from anchoring cells to their 
matrix via HA, CD44 also functions to regulate cell migration, proliferation, and a host of other 
cell functions that are well reviewed elsewhere (see Related Resources). RHAMM also binds to 
HA near the cell surface and is associated with not just cell motility but also tissue responses to 
injury. RHAMM has also been shown to bind to both extracellular and intracellular 
macromolecules, suggesting a multitude of functions in cell signaling and cell-matrix 
interactions (23). HA interactions with both its receptors at the cell membrane and molecules in 
its pericellular and extracellular environments thus affect not only the tissue mechanics but also 
cell-matrix interactions that enable mechanotransduction (24). 
 
 

2 Hyaluronan in Musculoskeletal Tissues 
Although HA is present in all musculoskeletal tissues, its synthesis, turnover, and other aspects 
of its biology differ by tissue type, development stage, and health status. We will focus our 
discussion mainly on the tissues of the synovial joint, starting with HA synthesis, breakdown, 
and interactions within synovial fluid and the synovium and moving to articular cartilage, bone, 
tendon and ligament, and skeletal muscle, before briefly summarizing what is known about HA 
in other musculoskeletal connective tissues (Figure 2). This section covers the tissue-specific 
role of HA in musculoskeletal biomechanics, whereas Section 3 will focus on HA and 
mechanobiology. 
  



 
Figure 2. The distribution and concentration of HA varies across musculoskeletal tissues. The 
relative distribution of HA, fibrillar collagens and cells are shown for 4 representative tissues.  
  



 
2.1 Synovium and Synovial Fluid 
Intraarticular synovial fluid is produced by the synovium, also known as the synovial membrane, 
and other tissues lining the joint. The synovial membrane consists of macrophage-like (type A) 
and fibroblast-like (type B) synovial cells, or synoviocytes within a collagenous ECM (25-27). 
Healthy synovial fluid is associated with high content (2-3 mg/mL) and molecular weight (2.5 
MDa or greater) of HA (28-30), and overall concentration at all molecular weight ranges 
decreases with age, even in the absence of known joint disease (30). This viscous solution works 
to reduce friction between the articulating surfaces of the joint and is a depot for nutrients and 
signaling molecules (31). HA also helps to resist interstitial fluid drainage during joint 
pressurization (32), a mechanism termed outflow buffering that is attributed to the osmotic 
pressure generated by high molecular weight HA (33).  

The lubricating ability of synovial fluid is due largely to HA and PRG4 (or lubricin), 
secreted by both chondrocytes and synoviocytes (34; 35). HA and PRG4 form a complex that 
contributes synergistically to synovial fluid’s role in facilitating cartilage lubrication (31; 36-39). 
When PRG4 interacts with high HA concentrations, viscosity is reduced; however, PRG4 
increases synovial fluid viscosity at low HA concentrations (40). HA also complexes with 
surface-active phospholipids in synovial fluid to contribute to boundary lubrication at the 
cartilage surface (31; 41).  

In synovial tissues, HAS1 mRNA was reported to be the most highly expressed isoform, 
with HAS activity and utilization in uncultured synovial tissues similar to that of cultured cells 
(9). Notably, increased expression of the HA synthases did not directly correlate to increased HA 
production, indicating that control of HAS gene expression and mRNA levels is only one aspect 
of controlling HA biosynthesis (9). Inflammatory cytokines may also modulate the synthesis of 
HA in the synovium, with synoviocytes responding robustly to interleukin 1 beta (IL-1β) through 
increased HAS gene expression, both in the presence of IL-1β only and in synergy with 
transforming growth factor beta (TGFβ) signaling (9). Separately, cultured rabbit synovial 
membrane cells increased gene expression of HAS2 and HAS3 when stimulated by IL-1β and 
tumor necrosis factor alpha (TNFα), with interferon gamma (IFNγ) also increasing HAS3 
transcription (42). An increase in the precursor GlcNAc also enhanced HA production in 
explants from human osteoarthritic (OA) synovium (43). In addition to the production of HA in 
synovial fluid, synovial fibroblasts may generate HA-coated extracellular vesicles, which have 
been documented in human synovial fluid (44), potentially derived from the long HAS+ cellular 
protrusions. 

The half-life of HA within synovial joints has been estimated to be from about 10 to 24 
hours, depending on the measurement technique and the health status of the joint (45; 46). 
Degradation of HA by free radicals (11; 12) and catabolic enzyme activity contribute to this high 
turnover rate. HYAL1 and HYAL2 genes are expressed in synovial cells, although activity levels 
in vitro are low in the absence of load (47).  

Colocalization of HA and CD44 is a hallmark of the synovial lining (16; 21). CD44 
expression decreased in joints affected by rheumatoid arthritis (RA), and RA synoviocytes 
showed a reduction of CD44+ cytoplasmic extensions when cultured (18). RHAMM expression, 
on the other hand, was greater in a murine model of inflammatory arthritis than control and 
higher in RA compared to OA fibroblast-like synoviocytes (48). Both CD44 and RHAMM 
expression increased with human OA in knee synovial tissue (49). 



The content and molecular weight distribution of HA in synovial fluid are altered with 
aging, injury, and diseases such as OA and RA (30; 50-52). In general, the distribution of HA 
molecular weight shifted downward with cartilage injury (51) and degeneration (30) and 
osteoarthritis progression (50; 53). In addition to already being highly expressed in healthy 
synoviocytes (9), HAS1 was also upregulated with OA synovitis (54). Synovial fluid 
hyaluronidase activity increased, with both rheumatoid arthritis and OA, and correlated with 
markers of synovitis (55). Hyal2 expression increased in OA, shifting the molecular weight 
distribution lower (56). CEMIP expression increased with OA (57) and was associated with 
inflammation, fibrosis, and synovial hyperplasia via TGFβ pathway (58). Altered content and 
reduced molecular weight of HA in synovial fluid result from an imbalance between synthesis 
and degradation, leading to higher friction coefficients within the joint (59). 
 
2.2 Articular Cartilage 
Articular cartilage is the thin layer of load-bearing material that lines the bony ends of all 
diarthrodial joints. The primary functions of this tissue are to support and distribute forces 
generated during joint loading and to provide a low-friction surface to prevent wear of the joint 
with physiologic movement and loading. HA is concentrated around the immediate pericellular 
space of articular chondrocytes, a specialized PCM that makes up, along with the cell itself, a 
functional unit known as a chondron (24; 60). HA also exists within the ECM, beyond the PCM, 
where its primary structural function is to promote aggregation of proteoglycans. HA has long 
been recognized to contribute to the mechanical behavior of articular cartilage. Within the 
cartilage ECM, aggrecan molecules are bound to a single long chain of HA to form large 
proteoglycan aggregates that also immobilize and restrain it within the fibrillar type II collagen 
network. Furthermore, HA generally serves a scaffold-like role that integrates many other ECM 
molecules (61). Because of the large net negative charge of aggregated PGs, cartilage is highly 
hydrophilic, with a tendency to imbibe fluid and “swell,” to maintain a physicochemical and 
mechanical equilibrium (62; 63). This property significantly contributes to the mechanical 
function of articular cartilage by generating a large swelling pressure that facilitates load support 
and tissue recovery from deformation (64). 

In addition to aggregating PGs in cartilage, high molecular weight HA has been shown to 
be protective of cartilage through the inhibition of the expression and/or activity of ADAMTS (A 
Disintegrin and Metalloproteinase with Thrombospondin motifs). HA-driven inhibition of 
ADAMTS9 mRNA expression was associated with blockage of aggrecan cleavage in OA rats 
(65). Others have found that HA formed a complex with ADAMTS5, acting to sequester this 
aggrecanase within the PCM (66). Similar in effect to direct binding/sequestration of ADAMTS 
in cartilage/chondrocytes, the presence of high molecular weight HA was involved in the 
suppression of ADAMTS4 expression by synoviocytes (67).  

In healthy cartilage, HA is primarily produced by HAS2 and is required for PG 
aggregation and retention (68). HAS3 has also been detected in chondrocytes (69), though at 
significantly lower transcript levels  (70; 71). The inhibition of HAS2 using antisense mRNA in 
human articular chondrocytes, in turn, inhibited PG retention and matrix assembly (70), further 
evidencing HAS2’s role as the primary synthase in healthy cartilage. Changes to HAS1-3 
relative gene expression levels were also a hallmark of articular chondrocyte de- and 
redifferentiation when primary cells were grown in culture (72). Dedifferentiated primary 
chondrocytes shared a common pattern of HAS mRNA expression, which were altered during 
passaging and expansion, but returned to levels equivalent to passage-0 and tissue chondrocytes 



with pellet culture (73). However, HAS enzymatic activity levels in uncultured cartilage were 
like those in cultured cells (9). Unsurprisingly, these shifts in HAS expression also correlated 
with changes in molecular weight of HA synthesized by cells in culture (73). Together, these 
indicated that HAS expression is tied to chondrocyte phenotype and tissue health.  

Hyal1 and Hyal2 are the constitutively active hyaluronidases in healthy cartilage with the 
latter expressed at higher levels by chondrocytes (74). Both enzymes are expressed in early 
cartilage matrix formation and hypertrophic cartilage in costal cartilage (75), indicating that 
hyaluronidase expression and activity are critical to chondrocyte differentiation. CEMIP 
expression has also been detected in primary chondrocytes (76). Catabolism of HA is also key to 
cartilage homeostasis, as conditional knockout of Hyal2 in cartilage stimulated OA progression 
in mice (77). Some studies suggest that intracellular localization of Hyal2 indicates that HA 
degradation in chondrocytes is primarily dependent on receptor-mediated endocytosis and 
delivery of HA to low-pH organelles containing hyaluronidases (78), albeit not without 
controversy (74; 79). A later study showed that CD44 and HYAL2 were also bound at surface of 
chondrocytes, where HYAL2 was released when CD44 is shed (80). Interestingly, HA fragments 
also activated the production of nitric oxide, via nitric oxide synthase, by chondrocytes (81), 
potentiating HA degradation via reactive oxygen species.  

Beyond aggregation of PGs in the cartilage matrix, HA interaction with its receptors and 
other ECM also modulates the mechanics of cartilage. HA receptors facilitated the directed 
assembly of chondrocyte PCM (82) and pericellular HA of chondrocytes (83) (reviewed in (61)), 
where the introduction of GlcNAc and GlcUA to competitively bind HA receptors resulted in the 
inhibition of PCM aggregation of PGs (83). CD44-HA interactions also play a major role in a 
variety of signaling pathways related to chondrocyte proliferation, matrix synthesis, and 
remodeling (84) 

Alterations to cartilage homeostasis are often associated with disease. Lower HA MW 
distribution is associated with a risk of osteoarthritis (OA) progression (50). Intriguingly, it is the 
overall turnover, and not simply HA synthesis, that is associated with disease. The residence 
time of [3H]HA in rabbit stifles increased in half-life with OA, indicating a reduction in HA 
turnover. Increased expression of CEMIP and TMEM2 in chondrocytes is associated with OA 
inflammation and fibrosis (85-88). Similarly, Hyal2 conditional knockout mice demonstrated 
increased OA progression compared to wildtype (77).  
 
2.3 Bone 
Bone consists of mineral, organic matrix, and water phases, with the mineral phase consisting of 
primarily hydroxyapatite and the matrix phase comprised of type I collagen, fibronectin, and 
other molecules (89). Bone is typically classified as either cortical (compact) or trabecular 
(cancellous or spongy) at the macroscale; however, the mineral-matrix composite is common 
between cortical and trabecular bone at the cell scale. Homeostatic bone remodeling occurs 
through a process of osteoclast-driven resorption of bone and osteoblast deposition of new ECM, 
enabling bone to adapt to altered mechanical loading. In contrast to synovial fluid and cartilage, 
the contribution of HA to overall mechanical behavior of bone is less clear. Nevertheless, there is 
growing evidence that HA plays an important role in bone biology (90). HA is implicated in 
bone development, particularly during endochondral ossification (76; 91; 92), a premise strongly 
supported by the role that HA plays in cartilage. All three HAS isoforms are involved in 
endochondral ossification (93), suggesting that changes to HA synthesis could impact bone 
formation. Indeed, genetic knockout of Has1 and Has3 in a mouse model resulted in different 



matrix and mineral content and mechanical behavior (94). In addition, osteogenesis imperfecta is 
a collagen-related bone disorder that is marked by altered hyaluronan content (95), manifesting 
in a reduced mineral-to-matrix ratio (96) which impacted tissue mechanics. (97) Downregulation 
of HAS3 and reduction in HA production compared to non-mineralizing cells has been shown in 
human mineralizing osteoblasts (97), suggesting a link between mineralization and HA 
production by Has3 in mice. Exogenous high molecular weight HA also stimulated osteoblast 
activity, increasing mineralization (98). HA synthesis increased in a dose-dependent manner in 
response to parathyroid hormone (PTH) and was also correlated with PTH-induced bone 
resorption (99; 100), although this effect may have been via metabolic pathways rather than 
through demineralization processes (101). Together, these reports supported the hypothesis that 
HA modulates osteoclast-mediated bone resorption (102). In contrast, even less is known about 
the role of HA catabolic enzymes in bone. CEMIP enhanced recruitment and migration of 
osteoblastic stem cells (103) but also inhibited osteoblast differentiation (104). A deficiency in 
Hyal1 resulted in decreased bone mineral density, femoral length, and altered osteoblast and 
osteoclast activity (105).  

HA receptor interactions may also alter bone structure and mechanics. Binding of HA to 
CD44 may modulate osteocyte migration and cell-cell communication (106). HA may inhibit 
osteoclastogenesis of precursor cells via TLR-4 binding (107). Some studies demonstrated that 
HA stimulates expression of receptor activator of nuclear factor κB ligand (RANKL), an 
osteoclast differentiation factor, via CD44 (108; 109), while another showed that enzymatic 
degradation of HA in and around bone marrow stromal cells promoted osteoclast formation 
(110). While siRNA knockdown of HAS2 enhanced dexamethasone and 1,25-Dihydroxyvitamin 
D3 induced RANKL expression, RANKL expression was down-regulated by TGF-β1 induction 
of HA synthesis (110). 
 
2.4 Tendon and Ligament 
Tendons and ligaments are predominantly made up of aligned, type I collagen fibers and are 
relatively acellular compared to muscle and bone. Linear arrays of tenocytes reside in between 
collagen fibers and are responsible for maintaining and remodeling the surrounding ECM. In 
areas of tensile loading, HA expression is low, whereas regions that undergo compression have 
increased HA and PGs to resist transverse compression (111). Removal of compression results in 
a decrease in HA in fibrocartilages, whereas removal of tension increases HA in tensile regions 
(112). 

HA is the predominant GAG in fetal tendons, but concentration decreased rapidly during 
maturation (113; 114), and was hypothesized to minimize collagen fibril diameter during early 
tendon (and other connective tissue) growth (115). In addition, the rapid decrease in HA/increase 
in fibril diameter correlated with the onset of muscle activity in multiple animals (116), 
suggesting an influence of mechanical loading on fibrillogenesis. In vitro studies support these 
hypotheses; the addition of HA to cultured rabbit Achilles tenocytes downregulated collagens at 
the gene level as well as lysyl oxidase (117). Nevertheless, the effect on proliferation remains 
unclear; in vitro exogenous application of HA to tendon fragments (118) and isolated cells 
reduced cell proliferation (119; 120). In contrast, it was reported that HA increased tendon cell 
viability and proliferation in vitro (121). 

Knockout of Has1 and Has3 did not substantially affect the development or material 
properties of the murine Achilles tendon; however, the retrocalcaneal bursa (which separates and 
protects the Achilles from the calcaneus) was absent when Has1 was knocked out (122). 



Notably, Has3 mRNA was not detected in this study (122), but was upregulated in a rabbit model 
of injury (123). 

Various forms of injury lead to an increase in HA, including acute fatigue (124), tendon 
rupture (125), or experimental repair (126). Has2 and Has3 were significantly upregulated for the 
first two weeks in a rabbit model of flexor tendon injury, which are hypothesized to potentially 
help with adhesion formation, or as a target to prevent adhesion formation (123). CD44 is 
present in tendon cells and is upregulated during healing of adult tendons (127). Notably, 
knockout of CD44 in mice appeared to improve the mechanical properties of injured patellar 
tendons, leading the authors to conclude that since HA is degraded primarily through CD44, 
removal of CD44 may help increase HA in the injured environment and reduce scar formation 
(128). CD44 and apoptosis were upregulated in biceps tendinopathy; when CD44 was 
antagonized via anti-CD44 monoclonal antibody OX-50 in a rat model of inflammation (induced 
by injection of collagenase), the number of apoptotic cells significantly increased along with 
other inflammatory mediators, whereas the expression of collagens I and III were decreased. The 
authors conclude that CD44 expression and activation attenuates the inflammatory response 
(129). Hyaluronidases also likely play a role in clearing out excess HA, as Hyal2 was 
significantly upregulated in equine tendonitis (130); however, similar to bone, little is known 
about hyaluronidases in tendon.  
 
2.5 Skeletal Muscle 
Myofibers, the cells responsible for muscle contractility, are multinuclear, striated and densely 
packed with contractile machinery. Satellite cells, the mononuclear adult muscle stem cell, lie 
quiescent on the myofiber surface. Surrounding individual myofibers and the resident satellite 
cells is a laminin-rich basement membrane, which is linked to fibrillar collagens and elastic 
fibers embedded in an amorphous matrix of HA and PGs (131). Even though it appears that HA 
lies outside of the basement membrane, in homeostatic muscle, HAS1-3, Hyal1 and Hyal2 are 
expressed by satellite cells (132), suggesting that these cells directly contribute to HA synthesis 
in muscle. 

When muscle is damaged (e.g. via toxin injection, mechanical overload), HA content as 
well as Has1, Has2 and Hyal2 expression greatly increased in satellite cells and other muscle-
resident cells (132; 133). This increase in HA is thought to promote myoblast proliferation (134-
136) and migration (134-137). HA also inhibited fusion (134; 137), which was mediated by 
binding to HA through CD44 and/or RHAMM (136-138). The activation of Has2 in damaged 
muscle was recently shown to be driven by histone demethylation (via JMJD3), which enabled 
satellite cells to re-enter the cell cycle (139). 

In developing muscle, expression of HA is initially high, which is thought to promote 
myogenic progenitor migration in vivo (140). Has2 and Has3 were upregulated during muscle 
development (133; 136), and knockdown of Has2 negatively affected muscle cell migration in 
vivo (138), mediated by CD44 (136; 138). During subsequent differentiation, the abundance of 
HA decreased around differentiating muscle in vivo (134; 136) and in vitro (141), suggesting that 
HA negatively influences differentiation. These observations are supported by in vitro studies in 
which exogenously supplied HA, either via substrate coating or in the media, inhibited 
differentiation (134; 142-145). In contrast, knockdown of Has2 in C2C12 cells negatively 
affected differentiation (133). This discrepancy may be due to differences in exogenously vs 
endogenously applied HA and the model system used (e.g. cell line vs. primary cells, in vivo vs. 



in vitro). Nevertheless, HA appears to facilitate the increase in myogenic progenitor number to 
generate adequate cells to form/restore myofibers. 

In contrast, an increase in HA may be indicative of a disease state. In insulin-resistant 
mice (induced by a high fat diet), HA and CD44 content increased, while insulin resistance could 
be reversed by systemic treatment with intravenous pegylated recombinant PH20 (146). When 
CD44 was knocked out concomitant with a high fat diet, muscle no longer developed insulin 
resistance, indicating the interaction of HA with CD44 mediated insulin resistance (147). An 
increase in HA was also observed in response to stroke, which was hypothesized to increase the 
passive stiffness of muscle (148). 
 
2.6 Intervertebral Disc and Other Fibrocartilages 
Like articular cartilage, fibrocartilaginous tissues such as the intervertebral disc (IVD), menisci, 
and labrum serve as important load-bearing connective tissues in the body. The IVD is made up 
of the annulus fibrosus (AF), which has concentric rings (lamellae) of ligament-like tissue and 
surrounds the hydrogel-like nucleus pulposus (NP). The organization of the AF and NP enable 
the IVD to facilitate movement of the vertebral elements in torsion, tension, and compression. 
HA content is highest in the NP (149), and the concentration of HA and other GAGs increases 
from the cervical to lumbar discs (150). PGs, such as aggrecan, bound to HA maintain the high 
water content needed in the NPs to resist compression. At the onset of IVD formation, there is 
little HA, but the content increases over development (150; 151). Hydrostatic pressure may 
influence HA synthesis as it was shown that in vitro stimulation of bovine NP cells increased 
expression of HAS2 (and other chondrogenic genes) over controls (152). Furthermore, CD44 is 
hypothesized to play a role in anchoring HA to cells during IVD formation (153). 

When HA deposition was disrupted via knockout of Has2 in type II collagen-expressing 
cells, the initial formation of the IVD was not perturbed, but substantially affected further 
development (154). Vertebrae were affected as well in this model; however, endochondral 
ossification still occurred (154). While the IVD progenitors remained when Has2 was knocked 
out and aggrecan was still synthesized (154), the absence of HA likely affected the retention of 
aggrecan into a cohesive matrix, which was dependent on HA and Has2 (68). 

The cells from the AF and NP appear to respond to HA differently. HA stimulation of 
human AF cells in vitro did not induce chondrogenic genes like type II collagen (COL2A1) and 
aggrecan but did promote the upregulation of type X collagen (COL10A1) and matrix 
metalloproteinase (MMP) 13 (155). When TGFβ was included, COL2A1 and COL10A1 were 
significantly downregulated in AF cells (156). In contrast, HA treatment of NP cells slightly 
increased overall PG and type II collagen gene expression (157). 

During disc degeneration, high molecular weight HA was thought to suppress the 
inflammatory response and nerve growth factor and brain-derived neurotrophic factor gene 
expression in bovine NP cells (158), and HAS2 was upregulated in AF cells from degenerated 
human discs compared to controls (159), suggesting HA is beneficial. However, expression of 
HYAL1, HYAL2, HYAL3 and CEMIP were also reported to increase in IVD disease (160; 161), 
where HYAL2 is hypothesized to be the most relevant hyaluronidase (161).  
 
 



3 Hyaluronan in Mechanotransduction and Mechanobiology 
As detailed above, the structural and mechanical role of HA in synovial fluid and articular 
cartilage is well described and mediated through interactions with PGs. In bone, tendon, 
ligament, muscle, and other tissues, the direct contribution of HA to mechanics is less clear, 
although the absence or reduction of HA is associated with changes to structure-function 
relationships. While the overall physical properties of HA will likely be similar in other tissues, 
it is apparent that the exact function of this molecule is highly context-dependent and thus its 
behavior may differ among different musculoskeletal tissues. Nevertheless, HA’s structural role 
in synovial fluid and musculoskeletal connective tissues links it to multi-scale synovial joint 
function and mechanics and implies a direct role in transduction of tissue-scale mechanical 
loading into mechanoresponsive cell behaviors.  

Efforts to design biomaterials for tissue engineering often seek to mimic the native ECM, 
including its component biomolecules and their complex interactions (4), to recapitulate both the 
mechanical behavior and the signaling environment encountered by resident cells. With the 
growing appreciation of mechanobiology in the maturation, integration, and maintenance of 
repair and regenerated tissues, biomedical engineering of HA-rich tissues must also consider the 
roles of HA both in driving mechanical behavior and in response to altered mechanics (2). We 
consider both how HA in the ECM affects the transduction of mechanical cues and how 
mechanical cues alter HA metabolism. 
 
3.1 Hyaluronan Modulation of Mechanotransduction 
The HA-rich glycocalyx or pericellular coat of cells plays a role in transducing mechanical cues 
from the ECM to the cell (61; 162). As noted above, each HAS isoform produces HA of varying 
molecular weight and localization on the cell surface (7; 8) as well as differential expression 
among different cell types (9). The localization of HA at the PCM influences the transmission of 
external force in various ways. For example, plasma membrane protrusions into the HA-rich 
pericellular coat (163) suggest a potential interface by which mechanical cues can be transduced 
through the glycocalyx into the cell. In the joint, inhibition of p38 MAPK inhibited assembly of 
HA-rich PCM during development via regulation of MEK-ERK pathway in a manner specific to 
cyclic uniaxial loading (164). Similarly, removal of the HA-rich glycocalyx from myoblasts and 
myotubes in vitro inhibited the ability of C2C12 myotubes to generate nitric oxide in response to 
shear stress (165).  

The binding of HA with adjacent ECM components, receptors, and other molecules may 
also play a role in mechanotransduction, although we are not aware of any studies directly 
probing these interactions in musculoskeletal tissues. Hyaluronan-CD44 interactions that inhibit 
osteocyte migration and cell-cell communication (106) are thought to affect the transmission of 
mechanical cues from the ECM to osteocytes. Because strong expression of CD44 is found in 
osteocyte lacunae (19; 20; 166), pericellular HA content and localization likely modulates 
osteocyte mechanobiology. HA may also directly influence cell-matrix interactions, a premise 
suggested by evidence that HA can augment integrin-mediated mechanotransduction (167). 
Indeed, a soft hydrogel with both HA and type I collagen mimicked the effect of a stiff substrate, 
resulting in the generation of stress fibers and large focal adhesions (168). Although these 
observations were made in a hepatocyte cell line, similar mechanisms may be behind 
observations that introduction of HA alters cell and tissue responses to load in musculoskeletal 
tissues. For example, HA suppressed mechanical stress-induced expression of ADAMTS4, 



ADAMTS5, MMP13 in human articular chondrocytes exposed to cyclic tensile strain at 10%, 
0.5 Hz (169). 
 
3.2 Mechanoregulation of Hyaluronan and Mechanobiological Interactions 
Mechanical loading modulates endogenous production of HA; an early study showed joint 
immobilization in sheep reduced HA concentration within synovial fluid (170) whereas cyclic 
movement stimulated HA secretion (171; 172). Supporting these in vivo observations, primary 
rabbit synoviocytes increase production of HA under static stretch (173) via Ca2+ dependent 
PKCα-MAPK signaling pathway (174). Cyclic compression upregulated HAS2 and HAS3 in 
synoviocytes embedded within a collagen gel (175), and in vitro stimulation of bovine NP cells 
increased expression of HAS2 and other chondrogenic genes (152). 

Mechanical cues also modulate the expression and activity of HA catabolic enzymes. Cyclic 
tensile stretch of over 20% in rabbit synovial cells increased HYAL1 and HYAL2 gene 
expression, with enzymatic activity detectable in loaded but not unloaded cells (47). In a human 
synoviocyte cell line, strain-level dependent expression changes in HYAL1, HYAL2, and TMEM 
were observed alongside net decreases in HA content in the cell medium and increased 
intracellular staining for HA (176), indicative of HA reuptake for breakdown (177). Excessive 
tension of cultured chondrocytes led to significant upregulation of HYAL1, HYAL2, and IL-1β 
expression and moderate increases in TNFα (178). 

 
3.3 Potential Interactions with Mechanical Loading 

Mechanical loading may also modulate the effects of other known factors that regulate 
HA synthesis and catabolic enzyme activity. Because few studies directly address potential 
interactions between mechanobiology and HA metabolism, we provide instead of a brief 
overview of potential factors. Oguchi and others found that inflammatory cytokines can be used 
to differentially stimulate HAS activity (179). Has1 requires higher glucosamine (180) and 
glucose (181) concentrations or the presence of inflammatory signaling (i.e., IL-1β, TNFα, 
TGFβ) to produce a robust, CD44-dependent hyaluronan coat (181). As noted above, both CD44 
interactions and the HA coat play roles in mechanotransduction. In addition, a higher cellular 
content of uridine diphosphate (UDP)-GlcNAc precursors was required for HAS1 activity 
compared to HAS2 and HAS3 (180). Increasing UDP-GlcNAc availability alone was 
advantageous for HA synthesis but only up to a point (182), as there appear to be other yet-
unknown factors that contribute to control of HA molecular weight. Given the relationship 
between biomechanics and ECM remodeling, these unknown factors likely include cell-cell and 
cell-matrix interactions and substrate stiffness. 

Because of the association with HA content and disease, manipulation of HA content in 
synovial fluid has been used as a therapeutic tool to alter joint mechanics. Exogenous 
administration of HA into the synovial joint – often referred to as viscosupplementation – has 
been associated with improvements to lubrication and reduction of inflammation and fibrosis 
(183-187), albeit short-lived due in part to the fast clearance of HA from the joint (188). 
Furthermore, several meta-analyses of randomized controlled trials of HA injections as a therapy 
for knee pain or OA suggest that current treatment approaches are not clinically effective 
compared to placebo or other injectable therapies, and in fact introduce a risk for adverse events 
such as joint inflammation response following the treatment (189; 190). Thus, a better 
understanding of HA structure, properties, and interactions with other molecules have the 
potential to assist the development of new intra-articular therapies for viscosupplementation (2). 



For example, increasing expression of HAS2 has been shown to increase HA concentrations 
(191; 192), suggesting that promoting endogenous HA production – potentially by enhancing 
mechanobiological signaling – may be a more effective long-term solution than injection of 
exogenous HA.  

 
 

4 Future Issues 
Despite the ubiquity of HA in many tissues of the body and the importance of ECM content to 
musculoskeletal tissue mechanics and mechanobiology, there remain significant knowledge gaps 
in the underlying biology and mechanobiology of HA metabolism in musculoskeletal tissues. For 
example, the distribution of hyaluronidases and HA receptors beyond CD44 remain unknown in 
tendons. These gaps in our understanding of the fundamental workings of HA impair the 
biomedical engineer in using HA as a biomaterial, designing optimal strategies for tissue repair 
and regeneration, and directly manipulating HA content and interactions. Little is known in 
musculoskeletal tissues about the mechanisms by which mechanobiological pathways may 
govern HA metabolism in musculoskeletal health and orthopedic disease, nor how these 
mechanisms may interact with disease-related factors such as injury, inflammation, and aging. 
The roles of physical cues such as substrate stiffness and cyclic mechanical loading in driving 
HA synthesis, hyaluronidase activity, and inhibition of hyaluronidase – and their associated 
mechanisms – remains unclear. Despite the importance of HA in healthy tissues and tissue 
engineering, much remains to be uncovered about the factors that maintain homeostatic levels of 
HA in healthy musculoskeletal tissues and those may upset the balance between HA synthesis 
and degradation and between hyaluronidases and their inhibitors. 
 
 

5 Summary 
HA plays a critical role in multiple musculoskeletal tissues and biofluids. However, its 

function and properties are relatively understudied, particularly outside of its roles in articular 
cartilage and synovial fluid. Beyond mechanobiology and therapeutics, this review has shown 
that there is much room for growth in our basic understanding of the role of HA content and 
metabolism in bone, tendon, ligament, and fibrocartilage biomechanics. A more thorough 
understanding of the structure-function relationships of HA with other ECM molecules, as well 
as its multiple roles in regulating cell behavior, will provide important insights into the 
development of new therapies for musculoskeletal conditions. 
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8 Key Terms and Definitions List 

Abbreviation Definition  
CD44 cluster of differentiation 44 

CEMIP 
cell migration inducing hyaluronidase (also KIAA1199 and hyaluronan 
binding protein (HYBID)) 

CEMIP2 
cell migration inducing hyaluronidase 2 (also transmembrane protein 2 
(TMEM2)) 

ECM extracellular matrix 
GAG glycosaminoglycan 
GlcNAc N-acetyl-β-D-glucosamine 
GlcUA β-D-glucuronic acid  
HA hyaluronan (also hyaluronic acid or hyaluronate) 
HAS hyaluronan synthase 
HYAL hyaluronidase 
IL-1 interleukin 1 
IVD intervertebral disc 
OA osteoarthritis 
PCM pericellular matrix 
PG proteoglycan 
PRG4 proteoglycan 4 (also lubricin or superficial zone protein) 
PTH parathyroid hormone 
RA rheumatoid arthritis 

RANKL 

receptor activator of nuclear factor kappa-Β ligand (also tumor necrosis 
factor ligand superfamily member 11, osteoprotegerin ligand, or osteoclast 
differentiation factor) 

RHAMM 
receptor for hyaluronan-mediated motility (also hyaluronan-mediated 
motility receptor) 

TGFb transforming growth factor beta 
TNFa tumor necrosis factor alpha 



TSG-6 
tumor necrosis factor-inducible gene 6 protein (also tumor necrosis factor-
stimulated gene 6 protein) 

 


