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Key Points:

e We conduct an 8-year survey on the distributions of dayside whistler-mode waves and 1-
20 keV electrons using THEMIS data.

e Whistler wave amplitude, electron anisotropy, and PSD increase with rising solar wind
dynamic pressure and AE index from dawn to noon.

e Statistical results show that dayside waves are generated near the equator, with
propagation needed to explain waves at higher latitudes.
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Abstract

While whistler-mode waves are generated by injected anisotropic electrons on the nightside, the
observed day-night asymmetry of wave distributions raises an intriguing question about their
generation on the dayside. In this study, we evaluate the distributions of whistler-mode wave
amplitudes and electrons as a function of distance from the magnetopause on the dayside from 6
h to 18 h in magnetic local time (MLT) within £18° of magnetic latitude using the Time History
of Events and Macroscale Interaction During Substorms (THEMIS) measurements from June
2010 to August 2018. Specifically, under different levels of solar wind dynamic pressure and
geomagnetic index, we conduct a statistical analysis to examine whistler-mode wave amplitude,
as well as anisotropy and phase space density (PSD) of source electrons across 1-20 keV
energies, which potentially provide a source of free energy for wave generation. In coordinates
relative to the magnetopause, we find that lower-band (0.05-0.5 f..) waves occur much closer to
the magnetopause than upper-band (0.5-0.8 f.) waves, where .. 1s electron cyclotron frequency.
Our statistical results reveal that strong waves are associated with high anisotropy and high PSD
of source electrons near the equator, indicating a preferred region for local wave generation on
the dayside. Over 10—14 h in MLT, as latitude increases, electron anisotropy decreases, while
whistler-mode wave amplitudes increase, suggesting that wave propagation from the equator to
higher latitudes, along with amplification along the propagation path, is necessary to explain the
observed waves on the dayside.

1 Introduction

Whistler-mode waves, which are right-hand circularly polarized electromagnetic
emissions, play a crucial role in energetic electron dynamics in the magnetosphere. These waves
affect the dynamics of energetic electrons through resonant interactions, contributing to the
acceleration of radiation belt electrons (Chen et al., 2007; Horne et al., 2005; Thorne et al., 2013)
and producing diffuse and pulsating aurora (Nishimura et al., 2010; Thorne et al., 2010).
Therefore, it is essential to understand the critical parameters responsible for the generation and
propagation of whistler-mode waves.

Whistler-mode waves in the Earth’s magnetosphere are categorized into several types,
including, but not limited to, chorus waves, hiss waves and lightning-generated whistlers
(LGWs). Hiss waves, which are present inside the plasmasphere or high-density plumes, are
often incoherent and broadband emissions with a frequency range from ~100 Hz to ~2 kHz
(Meredith et al., 2004; Thorne et al., 1973). In contrast to chorus waves (Li et al., 2010; Meredith
et al., 2012), which are typically observed from the midnight to the afternoon sector, hiss waves
preferentially occur on the dayside (Meredith et al., 2006). The generation of hiss remains an
active area of research. The unstable electron distributions within the plasmasphere provide
preferential amplification for hiss in the equatorial region (Church & Thorne, 1983; Solomon et
al., 1988). Previous studies suggest that LGWSs can evolve into hiss after several magnetospheric
reflections (Draganov et al., 1992; Green et al., 2005). Moreover, whistler-mode chorus waves
can propagate to higher latitudes, refract into the plasmasphere, and evolve into hiss (Bortnik et
al., 2009, 2011; Chen et al., 2012a, 2012b).

Whistler-mode chorus waves typically consist of short coherent bursts with discrete
elements of rising or falling tones (e.g., Zhang et al., 2020). They typically occur in two
frequency bands: the lower band (0.05-0.5 fc.) and the upper band (0.5—0.8 f.), where f. 1s the
equatorial electron cyclotron frequency (Burtis & Helliwell, 1969; Hayakawa et al., 1984; Koons
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& Roeder, 1990; Tsurutani & Smith, 1977). Chorus emissions, especially on the nightside, are
preferentially excited in low-density regions outside the plasmapause near the geomagnetic
equator (Kennel & Petschek, 1966; Lauben et al., 2002; LeDocq et al., 1998; Omura et al., 2008;
Santolik et al., 2003). Substorm injections provide favorable conditions by supplying anisotropic
plasma sheet electrons, often referred to as source electrons, which are responsible for generating
chorus waves and have energies from a few keV to tens of keV (Li et al., 2010). As these
electrons drift eastward, the cyclotron instability continues to develop, leading to the extensive
observation of chorus waves from the postmidnight sector through the dawn into the noon sector.

Previous studies have demonstrated a strong correlation between substorm injections and
chorus waves from postmidnight to dawn (Abel et al., 2006; Li et al., 2008, 2010; Meredith et
al., 2001, 2012; Smith et al., 1999; Thorne et al., 1977; Tsurutani & Smith, 1977). Nightside
chorus waves are known to be confined to the equatorial plane within around 10° magnetic
latitude, while dayside chorus waves can extend to much higher latitudes above 20° (Agapitov et
al., 2018; Burton & Holzer, 1974; Li et al., 2009; Meredith et al., 2001, 2012). In the dayside
outer magnetosphere near the magnetopause, the occurrence rate of chorus is even surprisingly
higher than that in other regions and appears less dependent on substorm activity (Koons &
Roeder, 1990; Li et al., 2009; Santolik et al., 2005). Tsurutani & Smith (1977) analyzed one-year
data from the OGO-5 spacecraft in highly elliptical orbits and identified two favored regions for
chorus: equatorial chorus at low L-shells on both the nightside and dayside, and dayside chorus
at large L-shells and high magnetic latitudes, called “minimum B pockets.”

Compared to the nightside chorus waves that are confined near the equator, dayside
chorus waves tend to propagate to higher latitudes due to weaker Landau damping (e.g., Bortnik
et al., 2006, 2007; Meredith et al., 2012). As a result, dayside chorus waves resonate with higher-
energy electrons, leading to MeV microburst precipitation, which is critical for energetic electron
losses in the magnetosphere (Horne et al., 2003; Li et al., 2007; Lorentzen et al., 2001; O’Brien
et al., 2004). Previous studies suggest that chorus waves can be generated near the equator,
propagate to high latitudes (Bortnik et al., 2007; Chen et al., 2013; Colpitts et al., 2020; Omura et
al., 2008), and even reflect back to the equator under certain conditions (Agapitov et al., 2011;
Breuillard et al., 2013; Chum & Santolik, 2015; Santolik et al., 2014). In addition, they can also
be generated in minimum B pockets near the cusp (Pickett et al., 2001; Tsurutani & Smith, 1977;
Vaivads et al., 2007).

Keika et al. (2012) observed a long-lasting chorus amplification event under near-zero
dB/ds and quiet conditions in the dayside uniform zone, which is located between the near-Earth
dipole zone and minimum B pockets. Using numerical experiments, Tao et al. (2014)
demonstrated that the dayside uniform field configuration could significantly reduce the
threshold for chorus generation, as the field configuration is essential for the effectiveness of
nonlinear interactions between chorus waves and energetic electrons (Albert et al., 2000; Bortnik
et al., 2008; Gan et al., 2020; Tao et al., 2014; Zhang et al., 2018). Consequently, it is believed
that drift shell splitting and/or low magnetic field inhomogeneity play important roles in the
extensive presence of dayside chorus (Agapitov et al., 2018; Li et al., 2010; Meredith et al.,
2012; Spasojavic & Inan, 2010; Voshchepynets et al., 2024).

Our study focuses on a statistical survey of dayside whistler-mode wave distributions and
their associated source electron distributions. To highlight the effect of magnetic field
inhomogeneity, we use a new coordinate system based on the relative L-shell distance to the
magnetopause location, instead of L-shell. In Section 2, we describe the wave and particle data
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from the Time History of Events and Macroscale Interaction during Substorms (THEMIS)
spacecraft. The overall statistical surveys of chorus wave amplitude, electron phase space
density, and electron anisotropy are presented in Section 3.1. Sections 3.2 and 3.3 analyze the
response of these parameters to varying levels of solar wind dynamic pressure and geomagnetic
activity. The key findings of our study are discussed and summarized in Sections 4 and 5.

2 THEMIS Data Analysis

The THEMIS satellites, launched in 2007, have been orbiting in the near-equatorial plane
with an apogee above 10 Rg and a perigee below 2 Ri (Angelopoulos, 2008). These orbits make
them ideally suited for studying whistler-mode wave emissions in Earth’s dayside
magnetosphere. Electron measurements are obtained from the Electrostatic Analyzer (ESA) over
an energy range from a few eV to 30 keV (McFadden et al., 2008). The wave power spectra data
collected during the fast survey (fff mode) provides measurements with a time resolution down
to 1 s and includes 32 or 64 bands logarithmically spaced across a frequency range of 4-4,000 Hz
(Cully et al., 2008). The Fluxgate Magnetometer (FGM) (Auster et al., 2008) measures the
background magnetic fields and low-frequency fluctuations. The total magnetic field magnitude
obtained from FGM measurements is utilized to calculate the local electron cyclotron frequency.

We obtained the magnetic wave amplitudes of upper-band (UB) waves by integrating the
ftf data of magnetic spectral density over 0.5—0.8 f... For lower-band (LB) waves, the frequency
range 1s chosen from the higher value between 30 Hz and f../43 (to avoid low frequency noise) to
0.5 fee. The value of f../43 approximately corresponds to the lower hybrid resonance frequency

(fru ® \[feefep ® fee/ 43, Where fo 1s proton cyclotron frequency). It is noteworthy that
although most of the waves are chorus waves, the dataset also includes whistler-mode waves
observed in the plumes, as no specific density criteria were used to exclude them. The solar wind
dynamic pressure (Dp) and the geomagnetic auroral electrojet index (AE) values were obtained
from the OMNI database with a 1-min resolution. The wave power spectrogram in fff mode has
a time resolution of either 8 s or 1s. For statistical purposes, the OMNI data were interpolated to
match the cadence of the wave data.

Among the five THEMIS satellites, two of them (Probes B and C) transitioned to orbiting
the Moon after 2010 (Angelopoulos, 2011). Therefore, we utilize THEMIS A, D and E from
June 2010 to August 2018 to investigate the dayside whistler-mode wave distributions under
various conditions relative to the magnetopause. To identify the location of magnetopause from
the THEMIS observation, we first divide the event interval into a half-orbit during which the
satellite traverses across the magnetopause between its perigee and apogee. If the spacecraft is
located at L > 8, the measured electron temperature (7) is less than 300 eV and the total ion
velocity with a 15-minute running average subtracted (7;) exceeds 30 km/s (Haaland et al., 2019),
the measurement closest to Earth during each half-orbit is identified as the magnetopause.
Regions with L-shells larger than the identified magnetopause location are classified being
outside the magnetopause (flag = 2); otherwise, they are considered to be inside the
magnetopause (flag = 1). To avoid misidentification due to local short-term variations in the
space environment, we require flag = 2 to persist for at least 3 minutes. Our study focuses on the
whistler-mode waves inside magnetopause and excludes those in the magnetosheath.
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The modeled magnetopause is based on the model by Shue et al. (1997). Since the
magnetopause location predicted by the Shue et al. (1997) model may be different from actual
observation, we scaled the modeled magnetopause along the THEMIS half-orbit using the
observed magnetopause location and the shape of the Shue et al. (1997) model:

Lyp(t=tg)
SLyp(t) = mLyp(t) M» )]

where sLyp 1s the scaled modeled magnetopause, mLyp 1s the modeled magnetopause, 7 is the
time of observation, and 7, 1s the time at the observed magnetopause flag on the same half-orbit.
Since the THEMIS probes may not always observe the magnetopause crossing on the dawn or
dusk side, we implement sLyp for events where the observed magnetopause crossings occur on
the dayside (8—16 MLT), and mLyp for the events when the magnetopause crossing was not
observed. For simplicity, we use Lyp-L throughout the rest of the paper. We also tested the
magnetopause location using only the Shue et al. (1997) model and found that the statistical
results (Figures 2—8) closely align with the present results.

Figure 1 shows an event observed by THEMIS D over 1000—-1600 UT on 15 December
2012. During this event, THEMIS D moved from an L-shell of 3.7 to 10.6, crossing the
magnetopause at ~12.7 MLT, as shown in Figure 1b. The interpolated values of Dp and AE are
shown in Figure 1a. Figure 1c shows various L-shell parameters: the L-shell of the satellite is
depicted by the red solid line, the distance from the satellite to the modeled magnetopause
(mLyp-L) by the orange solid line, and the distance to the scaled magnetopause (sLap-L) by the
blue dashed line. The modeled magnetopause closely matches the observation, so mLyp 1s nearly
identical to sLyp during this event. Figure 1d presents the total electron density inferred from the
spacecraft potential, confirming the identification of magnetopause location. Figure le shows the
wave magnetic spectral density, with white lines representing electron cyclotron frequency (fc.),
half and 0.05 times of local f... Figure 1f shows the spin-averaged magnetic wave amplitudes
integrated from the power spectral density. The strongest lower-band (LB) whistler-mode waves,
shown by the black line, were observed closer to the magnetopause (MP), while upper-band
waves (UB), shown by the blue line, were observed closer to the Earth. Note that electron
anisotropy is calculated based on equation (2) in Chen et al. (1999) for each energy channel. The
energy-time spectrograms showed enhanced electron energy fluxes (Figure 1g) with
predominantly positive electron anisotropy from ~1 keV to 30 keV (Figure 1h), providing
favorable conditions for whistler-mode wave generation.

3 Survey of whistler-mode waves and electron distributions in the dayside magnetosphere
3.1 Statistical distribution of whistler-mode waves and electrons

Our study uses fff wave spectra data from THEMIS A, D and E collected between June
2010 and December 2018. An overview of the occurrence rate distributions for UB and LB
whistler-mode waves is shown in Figure 2. The top two rows show the wave distribution relative
to the magnetopause (Lyp-L, denoted as ALyp) for the UB (Figures 2a—2c¢) and LB (Figures 2d—
2f), respectively. Since the UB wave amplitude 1s much weaker than that of LB, we set different
amplitude ranges for analysis. Figures 2h—2m show the wave amplitudes in the same format as
Figure 2a—2f, but as a function of L-shell. The L-shell is calculated using the IGRF magnetic
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field model (Alken et al., 2021) for simplicity. The bin size 1s set to 0.5 MLT x 0.5 L (or ALyp).
The occurrence rate is calculated as the ratio between the time when whistler waves are recorded
within each range and the total time when fff data is available inside the magnetosphere. Figures
2¢g and 2n show the satellite data collection time. Figures 2a-2f show that the wave distributions
in the ALyp-MLT coordinate exhibit a diagonal trend; wave occurrences tend to peak at ~6 ALyp
near dawn and decrease to less than ~1 ALyp near noon. For larger wave amplitudes, regions
with high occurrence rates of LB and UB waves are confined to a narrower L-shell range and are
located closer to Earth. Specifically, weak and moderate UB waves (Figure 2a & 2b) extend up
to ~2 ALyp, while large-amplitude UB waves (Figure 2¢) are observed closer to the Earth.
However, LB waves typically occur within 1 ALy of the magnetopause across all amplitude
ranges near ~12 MLT (Figures 2d-2f). Their amplitudes and occurrence rates are higher in the
prenoon sector (6—12 MLT) compared to the postnoon sector (12—18 MLT) at latitudes within
+18°. It 1s noteworthy that a few bins with a high occurrence rate of weak LB waves (Figure 2d)
near dusk, close to Earth, are likely due to hiss in plumes, as determined by detailed examination
of individual events. In the L-MLT coordinate, wave distributions no longer display evident
diagonal trends. Nevertheless, the waves still tend to occur at higher L-shells from the dawn to
the noon sector, which is consistent with the drift-shell splitting feature of energetic electrons. It
1s important to note that UB waves are predominantly confined to lower L-shells of ~6-8,
whereas LB waves extend to higher L-shells (~7-10).

To select the electron energy channel which is most likely associated with whistler-mode
wave generation, we estimate the minimum resonant energy for parallel propagating waves with
nonrelativistic electrons:

2

gCyclotron _ 1. 2 Jée Jee 1 — £ 3 5
min 2 e JF]?B f ( fCB) ( )
Landau _ 1 2 fe I €056 —f/fce

Emin 5 meC fge fre ( cos2e )! (6)

where f e 1s the plasma frequency, 6 is wave normal angle, m, is the electron mass, and c 1s the
fpe

fce
2010, 2016), we estimate the characteristic electron energies resonating with waves at various

frequencies: ~1.5 keV for cyclotron resonance with UB waves, ~4.5 keV for cyclotron or Landau
resonance with waves at 0.5 f,,., and ~14 keV for cyclotron resonance with LB waves. It 1s
noteworthy that these values represent the approximate energies, and the actual values could vary

depending on the wave frequency, wave normal angle, and %ratio. However, these estimates

serve our purpose of evaluating the trend in source electron distributions potentially responsible
for the LB and UB wave generation.

speed of light. Using statistical results of wave frequency spectra and typical == ratios (Li et al.,

An overview of electron anisotropy and omni-directional PSDs at 1.5, 4.5 and 14 keV 1s
shown in Figure 3. Figures 3a—3c indicate that high anisotropy extends from the dawnside, away
from the magnetopause, toward the noon sector, moving closer to the magnetopause.
Additionally, the high anisotropy for higher-energy electrons is distributed closer to the
magnetopause than for lower-energy electrons. This pattern may be explained by pitch angle and
energy dependent electron drift path which causes drift shell splitting. As electrons with pitch
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angles close to 90° drift to larger radial distances from the nightside to the dayside, regions of
high anisotropy move closer to the magnetopause from dawn until these electrons are lost to the
magnetopause near noon. The electron PSD distributions are also influenced by the loss
processes through pitch angle scattering (Figures 3d—3f). The regions of high PSD move radially
inward as energy increases, possibly because the lower-energy electrons drift to higher L-shells
than higher-energy electrons from the nightside, through dawn, to the dayside, due to the more
dominant electric drift. In the L-MLT coordinate (Figures 3g—31), the high anisotropy region at
1.5 keV 1s concentrated at L ~6—8, which is consistent with the previous UB wave distributions.
At 14 keV, the regions of high anisotropy are distributed at a larger radial distance. PSD
distributions as a function of L (Figures 3j—31) also move closer to Earth as energy increases.
Based on the minimum resonance energy calculation discussed above, we evaluate the
relationship between 1.5 keV electrons and UB waves, 14 keV electrons and LB waves, as well
as 4.5 keV electrons and the features of Landau resonance.

3.2 Dependence on solar wind dynamic pressure

For simplicity, we will only present the results in the Lyp-L coordinate in the following
section. To investigate the generation of dayside whistler-mode waves, we present the waves
together with the relevant electron distribution, which potentially provides the free energy
needed for wave generation.

Figure 4 (from top to bottom) shows UB wave amplitude, electron anisotropy, omni-
directional electron PSD at 1.5 keV, and the number of samples under various Dp conditions. UB
wave amplitude increases as Dp increases and shifts toward the magnetopause from dawn to
noon. The average anisotropy reaches as high as 0.6 under quiet conditions (Figure 4d), increases
with Dp, and follows the drift pattern of electrons. PSD generally increases with increasing Dp
and remains high over 6-9 MLT. At ~12 MLT, anisotropy significantly increases while PSD
remains low as Dp increases. The overlap of high anisotropy and high PSD regions is largely
consistent with areas of strong UB wave amplitude, suggesting that whistler-mode wave
generation requires both high anisotropy and high PSD of resonating electrons.

Figure 5 shows the same format as Figure 4 but for the LB waves and electron
distributions at 14 keV. LB wave amplitude increases with rising Dp and exhibits broader spatial
coverage compared to UB waves. Strong LB waves (>30 pT) are primarily distributed before 10
MLT within 5 ALyp. The anisotropy distribution follows the electron drift path, extending from
dawn to postnoon, and slightly moves toward magnetopause under more compressed conditions.
The PSD distribution exhibits a similar diagonal trend to that of LB waves. Strong LB waves are
found in regions where high electron anisotropy and high PSD overlap, with this coverage being
broader than that for UB waves. The MLT ranges of high PSD and LB waves extend up to the
noon sector, while anisotropy extends to later ML Ts. This confirms the critical role that the
fraction of resonant electrons plays in whistler-mode wave growth.

3.3 Dependence on geomagnetic activity

In addition to the solar wind dynamic pressure effect, we also evaluate the effects of
substorm injections using the AE index as a proxy. Figure 6 presents the overall wave
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distribution across different levels of AE index and magnetic latitudes (A1). Since UB wave
amplitude i1s much weaker than LB and the number of samples during active geomagnetic
conditions at high latitudes is limited, we combine UB and LB waves to present the total
whistler-mode wave amplitude (integrated over the frequency range of 0.05-0.8 fc.). Whistler-
mode wave amplitude increases as AE increases, while only the near-equatorial wave
distribution (top row) exhibits a diagonal trend. As latitude increases, wave amplitudes near the
dawn sector (6—10 MLT) decrease but increase near 12 MLT at a distance near 5 ALy under all
AE conditions. This suggests that dawnside waves are most intense near the equator and become
weaker as they propagate to higher latitudes, primarily due to Landau damping. Conversely,
dayside waves near noon tend to become stronger as they propagate to higher latitudes, likely
due to weaker Landau damping and favorable conditions for continuous wave growth in the
compressed geomagnetic field lines.

To investigate the generation mechanism of whistler-mode waves, we first focus on the
equatorial region in Figure 7, which follows a format similar to Figures 4 and 5. Since LB waves
contribute more to the whistler-mode wave power, we use 14 keV electron distribution to
compare with the waves. While equatorial anisotropy of 14 keV electrons does not exhibit a clear
dependence on the AE index, PSD significantly increases under more compressed conditions
over 610 MLT, primarily due to injected electrons from the nightside during enhanced substorm
activity. By comparing the distribution patterns, the equatorial region of strong waves is
consistent with the region where both electron anisotropy and PSD are strong, creating a
favorable condition for whistler-mode wave excitation near the equator.

To evaluate latitudinal dependence, we present the wave and 14 keV electron
distributions under active AE conditions in Figure 8. Anisotropy decreases from ~0.6 at the
equator (Figure 8d) to ~0.3 at higher latitudes (Figure 8f) over 6—12 MLT, and the electron drift
pattern becomes less distinct at higher latitudes. As shown in Figures 8g—81, the PSD only
slightly decreases at higher latitudes.

As discussed earlier, whistler-mode wave intensity increases at noon around ALyp ~ 5 at
high latitudes. However, in this region, neither anisotropy nor PSD remains high. This suggests
that waves at high-latitude regions may originate from the equator and then propagate to higher
latitudes, with wave amplitudes potentially being amplified during propagation due to the
compressed field line configuration and weak Landau damping (e.g., Bortnik et al., 2007).
However, other possibilities cannot be completely ruled out. Whistler-mode waves generated
within minimum B pockets can propagate equatorward or poleward (Agapitov et al., 2013; da
Silva et al., 2016; Santolik et al., 2003), or remain highly localized after their generation (e.g.,
Kang et al., 2021).

4 Discussion

The overall dawn-dusk asymmetry of whistler-mode wave distribution is consistent with
the previous studies using different satellite missions (Agapitov et al., 2013, 2018; Aryan et al.,
2014; Bortnik et al., 2007; Meredith et al., 2001, 2014; Sigsbee et al., 2010). Our statistical
findings also indicate that positive anisotropy tends to trigger dayside whistler-mode wave
generation inside the magnetopause. The anisotropic electron distribution naturally develops
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from injected electrons originating in the magnetotail, which subsequently drift from the
nightside, through dawn, to the dayside, accompanied by drift-shell splitting (Kennel & Petschek,
1966; Ma et al., 2022; Min et al., 2010). This process tends to form the pancake distributions

with higher anisotropies observed at higher L-shells (e.g., L1 et al., 2010), where geomagnetic
fields are more uniform (e.g., Keika et al., 2012). The combination of these two effects may
provide favorable locations for whistler-mode wave excitation in the dayside outer
magnetosphere.

Since Tsurutani & Smith (1977) proposed the concept of minimum B pockets, many
studies have shown strong whistler-mode waves and enhanced electron fluxes at higher latitudes
(~20°-40°) in the dayside outer magnetosphere (Antonova & Nikolaeva, 1979; Keika et al., 2012;
Spasojavic & Inan, 2010). Although our statistical survey is confined to latitudes within 18° due
to the THEMIS orbits, the results support the idea that increasing solar wind pressure can alter
the field configuration and enhance the linear and nonlinear growth rates of whistler-mode waves,
facilitating phase trapping of electrons inside the wave potential well (Bell & Inan, 1981;
Dowden et al., 1978; Fu et al., 2012; Fujiwara et al., 2022; Katoh & Omura, 2013; Nunn, 1974;
Omura et al., 1991, Tao et al., 2014; Zhou et al., 2015).

Peng et al. (2020) reported a chorus wave event on the dayside in the magnetosphere,
accompanied by solar wind dynamic pressure fluctuations. Their linear wave growth rate
calculations indicated that dayside electron flux enhancements driven by increased dynamic
pressure provided free energy necessary for chorus wave amplification. However, in another
storm-time event, He et al. (2015) showed that the calculated linear growth rate on the dayside
was lower than on the nightside due to the lack of a sufficient free energy source, as energetic
electron fluxes were lower. Moreover, considering nonlinear wave growth effects,
Voshchepynets et al. (2024) used multi-point observations to show that nonlinear growth rates
more closely matched measured values compared to linear growth rates, particularly for wave
amplification at magnetic latitudes larger than 5°. It is important to note that linear instability is
not the sole factor governing wave growth and spectral evolution; nonlinear effects also play a
crucial role in the wave growth process (e.g., Omura et al., 2008; Voshchepynets et al., 2014).
However, these nonlinear processes are known to initiate with seed waves at frequencies near the
maximum linear growth rate (Omura et al., 2008). Therefore, the linear wave growth rate serves
as a valuable proxy for estimating the approximate frequency range where positive wave growth
1s possible.

Despite these findings, additional factors should be considered when examining the high
occurrence rates of dayside whistler-mode waves. For example, drift shell bifurcation, a non-
adiabatic process (Oztiirk & Wolf, 2007; Shabansky, 1971), allows electrons to access the two
off-equatorial branches from dawn, where the resonant energies are minimized. Moreover, ULF
wave modulation can also impact whistler-mode wave growth (Manninen et al., 2010; Kimura et
al., 1974; Spanswick et al., 2005).

5 Conclusions

We used eight years of high-resolution data from the THEMIS satellites to statistically
evaluate the properties of dayside whistler-mode waves and source electrons, which potentially
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provide the free energy for wave generation. Since the generation of dayside whistler-mode
waves 1s closely related to the geometry of the Earth’s magnetic field lines, we used the new
Lap-L coordinate to assess these properties, which distinguishes our approach from previous
studies. The main findings of our study are summarized below:

1. The occurrence rates of lower-band (LB) and upper-band (UB) waves are higher in regions
farther from the magnetopause at dawn and dusk, whereas they are distributed closer to the
magnetopause near noon. Additionally, LB waves are observed closer to the magnetopause
compared to UB waves.

2. For larger wave amplitudes, regions with high occurrence rates of LB and UB waves are
confined to a narrower L-shell range and are located closer to Earth. Their amplitudes and
occurrence rates are higher in the prenoon sector (612 MLT) compared to the post-noon
sector (12—18 MLT) at latitudes within +18°.

3. When analyzing electron distributions potentially responsible for whistler-mode wave
generation, the overall electron phase space density (PSD) at 1.5, 4.5 and 14 keV decreases
from 6 to 14 MLT. Additionally, the PSD i1s higher on the dawn side compared to the dusk
side. The distributions of electron anisotropy follow the drift shell splitting pattern, with high
anisotropy of a few keV electrons distributed closer to the magnetopause from dawn to noon.

4. The evaluation of the responses of whistler-mode waves and electron distributions under
different conditions indicates that wave amplitude, electron anisotropy and PSD increase as
dynamic pressure and AE index increase, particularly from the dawn to the afternoon sector.
The overlap regions of high anisotropy and high PSD are mostly consistent with areas of
strong wave amplitude, with this coverage being broader for LB waves compared to UB
waves.

5. Near the equator, wave amplitude and electron PSD increase with a rising AE index, while
anisotropy exhibits minimal variation, remaining within the range of ~0.4—0.6. Under
disturbed conditions, electron anisotropy decreases from 0.6 to 0.3 with increasing magnetic
latitudes in the prenoon sector, whereas whistler-mode wave amplitudes remain steady at 20—
30 pT or even slightly increase near noon at ~5 ALyp. These features suggest that wave
propagation from the equator to higher latitudes, along with amplification along the
propagation path, 1s necessary to explain the observed waves on the dayside.
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Figure 1. Overview of whistler-mode waves observed by THEMIS-D during 10-16 UT on 15
December 2012. (a) AE index in blue and solar wind dynamic pressure (Dp) in black; (b) flag for
inside (1) or outside (2) the magnetopause; (c) L-shell (red solid line), modeled distance to the
magnetopause mLyp-L (orange solid line), and scaled distance to the magnetopause sLyp-L (blue
dashed line); (d) total electron density inferred from the spacecraft potential; (¢) wave magnetic
power spectral density with different fractions of electron cyclotron frequency as white lines; (f)
upper-band (blue) and lower-band (black) whistler-mode wave amplitudes; (g) energy
spectrogram of omni-directional electron energy flux; and (h) electron anisotropy.



745

746
747

748
749
750
751
752
753

manuscript submitted to Journal of Geophysical Research: Space Physics

T Oce.%
5

2.5

ol

d)l_l_i_l <LB<25pT
2n

E]O
)

]D T T .I
6 8 10 12 14 16 18

- (h5<UB< l[)p1

6 8 10 12 14 16 18

Figure 2. Occurrence rate of whistler-mode waves at various MLTs and L-shells. (a)(c)
Occurrence rate of UB, and (d—f) LB whistler-mode waves with different amplitude levels as
functions of MLT and Lyp-L. (h—m) The same format as panels (a—f), but in the L-shell
coordinate. (g) Number of samples as functions of MLT and Lyp-L: (n) Number of samples as

functions of ML T and L.

(h)10 < UB < 25

T

6 8 10 12 14 16 18

i) 10 <UB <25 pT

h

.

) 25<LB<350pT

6 8 10 12 14 16 18
MLT

UB=>25pT

©

6 8 10 12 14 16 18

UB > 25pT

LB >50plT

6 8 10 12 14 16 18

Oce.%

E
E

5
25

(_ﬂ.)Data Collection Time
=

6 8 10 12 14 16 18




manuscript submitted to Journal of Geophysical Research: Space Physics

754
4.5 keV os
'-
10 12 14 16 18 10 12 14 16 18
4.5 ke\fl (i) 14 keV -
8 10 12 14 16 18 6 8 10 12 14 16 18 8 10 12 14 16 18
755 MLT
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