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Abstract 20 

Whistler mode waves scatter energetic electrons, causing them to precipitate into the 21 
Earth’s atmosphere. While the interactions between whistler mode waves and electrons are well 22 
understood, the global distribution of electron precipitation driven by whistler mode waves needs 23 
futher investigations. We present a two-stage method, integrating neural networks and quasi-24 
linear theory, to simulate global electron precipitation driven by whistler mode waves. By 25 
applying this approach to the 17 March 2013 geomagnetic storm event, we reproduce the rapidly 26 
varying precipitation pattern over various phases of the storm. Then we validate our simulation 27 
results with POES/MetOp satellite observations. The precipitation pattern is consistent between 28 
simulations and observations, suggesting that most of the observed electron precipitation can be 29 
attributed to scattering by whistler mode waves. Our results indicate that chorus waves drive 30 
electron precipitation over the premidnight-to-afternoon sector during the storm main phase, with 31 
simulated peak energy fluxes of 20 erg/cm2/s and characteristic energies of 10-50 keV. During 32 
the recovery phase, plume hiss in the afternoon sector can have a comparable or stronger effect 33 
than chorus, with peak fluxes of ~1 erg/cm2/s and characteristic energies between 10 and 200 34 
keV. This study highlights the importance of integrating physics-based and deep learning 35 
approaches to model the complex dynamics of electron precipitation driven by whistler mode 36 
waves. 37 

Plain Language Summary 38 

Whistler mode hiss and chorus waves are electromagnetic waves in Earth’s 39 
magnetosphere that interact with electrons, altering their motion and causing them to precipitate 40 
into the atmosphere. Understanding electron evolution is crucial, as precipitating electrons affect 41 
ionospheric conductivity and atmospheric chemistry, leading to aurorae and other phenomena. 42 
However, direct observations of electron precipitation caused by these waves are scarce, and 43 
global simulations are challenging due to the dynamic nature of wave-particle interactions. This 44 
study presents a two-stage simulation framework that models global wave activities using deep 45 
learning and runs physics-based simulations with the neural network output as inputs. We 46 
validate our results by comparing them with the multi-point POES/MetOp observations during a 47 
geomagnetic storm event on 17 March 2013, successfully reproducing the dynamic evolution of 48 
the observed precipitation. We found that chorus waves predominantly drive energetic electron 49 
precipitation during the storm main phase, while plume hiss causes comparable or stronger 50 
precipitation during the recovery phase. Our study highlights the importance of whistler mode 51 
waves in electron precipitation, identifies the quantitative contribution of hiss and chorus waves 52 
at different storm phases, and demonstrates how deep learning can advance scientific research in 53 
understanding the complex dynamics of electron precipitation in Earth’s magnetosphere. 54 

1. Introduction 55 

Whistler mode waves are right-hand polarized electromagnetic emissions with 56 
frequencies below the electron cyclotron frequency (Stix, 1992). Through pitch angle diffusion, 57 
whistler mode waves scatter radiation belt electrons, leading to electron precipitation into Earth's 58 
atmosphere (Abel & Thorne, 1998; Millan & Thorne, 2007; Thorne et al., 2021). Among them, 59 
hiss waves are broadband emissions primarily confined to high-density regions, including the 60 
plasmasphere and plumes. Hiss waves significantly contribute to the decay of energetic electrons 61 
ranging from tens of keV to 1 MeV in the outer radiation belt during both quiet and 62 
geomagnetically disturbed periods (Lam et al., 2007; Ma et al., 2015, 2016; Meredith et al., 63 
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2006) and are responsible for the formation of the slot region (Lyons et al., 1972; Meredith et al., 64 
2007, 2009). In the plasma trough, whistler mode chorus waves are observed over the night-65 
dawn-noon sector along the electron drift path (Li et al., 2009, 2011; Meredith et al., 2001, 66 
2012), and are excited by anisotropic electron distributions injected from the magnetotail (Fu et 67 
al., 2014; Li et al., 2008; Su et al., 2014). Chorus waves are considered as an important driver of 68 
electron precipitation, especially at energies ranging from a few to hundreds of keV, in the outer 69 
radiation belt (Ni et al., 2008; Hikishima et al., 2010; Ma et al., 2012), leading to the formation 70 
of diffuse and pulsating aurora (Kasahara et al., 2018; Ni et al., 2014; Nishimura et al., 2010, 71 
2013; Thorne et al., 2010). 72 

Recent studies have linked signatures of electron precipitation with whistler mode waves. 73 
Qin et al. (2021) identified a high temporal correlation between whistler mode waves and 74 
precipitating electrons from multi-point observations. Breneman et al. (2015) provided evidence 75 
of radiation belt electron loss caused by hiss, with a spatial scale comparable to the 76 
plasmasphere, suggesting a general role of hiss waves in driving electron precipitation. Statistical 77 
studies indicate that the precipitating electron flux increases with geomagnetic activity, peaking 78 
during active conditions outside of the plasmapause on the dawnside (Lam et al., 2010), 79 
consistent with the evolution of chorus waves. However, direct observations of precipitating 80 
electron flux driven by whistler mode waves are very limited. As illustrated in Figure 1a, 81 
electron precipitation into the Earth’s atmosphere can be detected by Low-Earth-Orbiting (LEO) 82 
satellites, while plasma waves are typically observed by high-altitude satellites near the 83 
equatorial plane. Thus, conjunction events are rare and have only been examined in a small 84 
number of case studies (e.g., Li et al., 2019; Shen et al., 2023).  85 

To estimate the global effect of whistler mode waves on electron precipitation, statistical 86 
methods have been developed. Ma et al. (2020, 2021) conducted global surveys of electron 87 
precipitation and indicated that during disturbed times (AE > 500 nT), chorus waves precipitate 88 
3-10 erg/cm2/s energy flux with characteristic energy mostly around 10-20 keV on the dawn 89 
side, while hiss waves precipitate 0.3-1 erg/cm2/s energy flux with characteristic energy from 90 
tens of keV to ~100 keV on the dusk side, with plume hiss being more effective in driving 91 
electron precipitation than plasmaspheric hiss. However, the global maps of electron 92 
precipitation patterns and precipitating energy flux levels are averaged over a long period and 93 
cannot reproduce storm-time dynamics on a short time scale when the wave evolution is highly 94 
dynamic and/or very intense precipitation occurs (Chakraborty et al., 2021; Zhu et al., 2018). 95 
Furthermore, Reidy et al. (2021) conducted MLT-dependent electron precipitation simulations 96 
due to statistically derived chorus and hiss waves and compared results with the POES 97 
observations. They found that the best agreement occurs at L*>5 on the dawnside in the >30 keV 98 
electron channel, which is consistent with the precipitation driven by lower band chorus. 99 
However, additional mechanisms are needed to explain the flux at higher energies and on the 100 
dusk side. Therefore, a more realistic wave and electron density model is required to simulate 101 
global electron precipitation with higher spatial and temporal resolution and understand the 102 
relative contributions from various types of whistler mode waves under different storm phases. 103 

In recent years, machine learning techniques have been applied to study the dynamics of 104 
the inner magnetosphere, including plasma density (Bortnik et al., 2016; Chu et al., 2017a,b; 105 
Huang et al., 2022; Zhelavskaya et al., 2017), chorus and hiss waves (Bortnik et al., 2018; Chu et 106 
al., 2023, 2024; Huang et al., 2023), and electron fluxes (Chu et al., 2021; Ma et al., 2023, 2024), 107 
demonstrating their advantages over statistical methods. Huang et al. (2022) showed that with a 108 
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deep learning approach, the evolution of electron density and the formation of a dayside plume 109 
can be well reproduced. Such dynamics are key to facilitate electron precipitation through wave-110 
particle interactions (Breneman et al., 2015). The simulations conducted by Huang et al. (2023), 111 
which adopted hiss wave distributions based on a deep learning model, reproduced the fast decay 112 
of energetic electrons in the storm main phase, demonstrating the potential of combining deep 113 
learning techniques with physics-based simulations to improve accuracy. In the present study, we 114 
propose a new framework integrating deep learning with quasi-linear diffusion theory to model 115 
the global electron precipitation induced by whistler mode waves. The simulation methodology 116 
for electron precipitation, which includes both the deep learning model and physics-based 117 
simulation, is described in Section 2. In Section 3, we present the observations of electron 118 
precipitation during the March 17, 2013 storm. The simulation results of electron precipitation 119 
on a global scale, as well as their comparison to the observations, are shown in Section 4. 120 
Finally, we summarize our principal findings in Section 5. 121 

2. Simulation Methodology of Electron Precipitation  122 

2.1 Deep Learning Model of Density, Waves, and Trapped Electron Flux 123 

To perform a global simulation of electron precipitation driven by whistler mode waves 124 
(Figure 1a), we first train the neural network on electron density, whistler mode wave amplitude, 125 
and electron fluxes from the 7-year observations by Van Allen Probes (RBSP) (Mauk et al., 2013; 126 
VAP, 2013a, 2013b). Electron density is inferred from the upper hybrid resonance frequency 127 
from the High Frequency Receiver (HFR) measurement (Kurth et al., 2015). Waves are 128 
measured by the Waveform Receiver (WFR) of the Electric and Magnetic Field Instrument Suite 129 
and Integrated Science (EMFISIS) instrument (Kletzing et al., 2013). Whistler mode hiss 130 
(chorus) waves were selected with the following criteria (Li et al., 2015; Shen et al., 2019): a) 131 
inside (outside) plasmasphere based on the ECH wave power (Shen et al., 2019), b) wave 132 
ellipticity >0.7 (>0.7), c) wave planarity >0.2 (>0.6), d) spectral frequency range between 20–133 
4000 Hz (0.05-0.8 electron cyclotron frequency). Hiss and chorus wave amplitudes are 134 
calculated by integrating their magnetic wave power over the corresponding frequency ranges. 135 
Electron fluxes at energies of 1 keV – 1 MeV were obtained from the electron flux 136 
measurements at pitch angles of ~18° by HOPE (Funsten et al., 2013) and ~24.5° by MagEIS 137 
(Blake et al., 2013) from the Energetic Particle Composition and Thermal Plasma (ECT) suite 138 
(Spence et al., 2013), as an estimate of the fluxes just outside the loss cone (Ma et al., 2020). 139 
These electron fluxes were interpolated into 30 energy channels evenly distributed on a 140 
logarithmic scale. All data were averaged per minute and normalized before training.  141 

As shown in Figure 1b, we developed a primary and an auxiliary model. The auxiliary 142 
model (Figure 1b bottom) is an autoencoder of several fully-connected neural network layers, 143 
useful for data compression (e.g., Wang et al., 2014) and reducing the dimensionality of the 144 
electron flux from 30 energy channels to a dimension of 5. The auxiliary model limits the data 145 
size of the trapped electron flux in the primary model training while preserving the energy 146 
profile measured by RBSP. This method is preferred over simple linear interpolation which 147 
limits the information content of the entire energy spectrum. The primary deep learning model 148 
(Figure 1b top) follows Huang et al. (2023), where the history of geomagnetic indices (SYM-H, 149 
SMU, SML, and Hp30; Gjerloev, 2012; Matzka et al., 2022; Papitashvili et al., 2020) and the 150 
satellite location are processed with an encoder-decoder architecture to provide maps of electron 151 
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density, hiss wave amplitude, chorus wave amplitude, and compressed electron flux. The model 152 
structure is organized as follows: a Long Short-Term Memory (LSTM; Hochreiter & 153 
Schmidhuber, 1997) neural network takes the historical geomagnetic indices as inputs and 154 
compresses the information into a vector, which represents the inner magnetospheric state at the 155 
current time; the extracted information, together with the satellite location, is processed by 156 
another fully connected neural network to estimate the distribution of the parameter (mean and 157 
standard deviation) at a given location; according to the distribution, a final output is randomly 158 
sampled, representing the uncertainty in both data and model.  159 

We train one model for the density and the whistler mode waves, and another model for 160 
the electron flux in the 5 compressed energy channels. After the models are trained, we predict 161 
the global distribution of the parameters by applying models to an artificial spatial grid which 162 
covers the whole equatorial plane (with 0.2 L and 0.5 MLT resolution). We advance the 163 
prediction every 1 minute to obtain the global evolution of the parameters. To obtain the electron 164 
flux from the modeled compressed flux, we apply the trained decoder in the auxiliary model to 165 
recover the 30 original electron channels that will be used for the following simulation (Figure 166 
1c and Section 2.2). Detailed configurations of the neural networks and the neural network 167 
model performance can be found in the Supporting Information (Text S1-S2, Figures S1–S3). 168 

 169 

Figure 1. Overview of the 2-stage method for simulating electron precipitation. (a) Diagram of 170 
electron precipitation driven by whistler mode waves (chorus and hiss) and orbits of POES 171 
(green) and RBSP (pink) satellites. (b) Workflow for training neural networks of electron 172 
density, hiss, chorus, and trapped flux. (c) Simulation process of global electron precipitation 173 
using trained neural network models. 174 

2.2 Quasilinear Modeling of Electron Precipitation Driven by Whistler Mode Waves 175 

After the neural network models are trained, we perform simulations to calculate the 176 
global electron precipitation flux, as shown in Figure 1c. The maps of electron density, hiss wave 177 
amplitude, chorus wave amplitude, and compressed trapped flux are obtained by applying the 178 
trained neural networks on an artificial spatial grid that covers L-shells from 1.2 to 6.6 and all 179 
magnetic local times (MLT), with resolution of 0.2 L and 0.5 MLT. The electron density and 180 
amplitude of chorus and hiss waves are used as inputs to the Full Diffusion Code based on quasi-181 
lineary theory (Ma et al., 2018; Ni et al., 2008) to calculate the electron pitch angle diffusion 182 
coefficients due to chorus and hiss waves. The Full Diffusion Code also requires information on 183 
the wave spectra and wave normal angle distribution. In the simulation, chorus and hiss wave 184 
frequency spectra were adopted based on the statistical results (Li et al., 2015, 2016). The 185 
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latitudinal coverage of chorus waves is 0-15 at 00-04 MLT, 0-25 at 04-08 MLT, 0-45 at 186 
08-16 MLT, and 0-20 at 16-24 MLT based on the statistical results (e.g., Meredith et al., 187 
2012), assuming a constant wave magnetic field amplitude along the field line. The wave normal 188 
angle (𝜃) distribution of chorus wave magnetic power is assumed as a Gaussian distribution in 189 
tan 𝜃, with central 𝜃𝑚 = 0°, width 𝜃𝑤 = 30°, minimum 𝜃𝑚𝑖𝑛 = 0°, and maximum 𝜃𝑚𝑎𝑥 = 45°. 190 
The hiss wave latitude range is 0-45, and the wave normal angles change from quasi-field-191 
aligned near the magnetic equator to more oblique at higher latitudes following the latitudinally-192 
varying model by Ni et al. (2013). 193 

After the diffusion coefficients are calculated, we use the method of Ma et al. (2020, 194 
2021) to calculate the electron flux inside the loss cone. The ratio between electron fluxes at a 195 
pitch angle near the center of the loss cone and outside the loss cone is 196 

 χ(𝐸) =
2 ∫ 𝐼0[𝑍0(𝐸)τ]

1
0 ⋅τ⋅𝑑τ

𝐼0[𝑍0(𝐸)]
  (1) 197 

 𝑍0(𝐸) = √𝐷SD/⟨𝐷𝛼𝛼⟩LC  (2) 198 

where 𝐸 is electron kinetic energy, 𝐼0 is the modified Bessel function, 𝐷𝑆𝐷 is the strong diffusion 199 
limit, and ⟨𝐷𝛼𝛼⟩LC is the bounce-averaged pitch angle diffusion coefficient at the loss cone. We 200 
calculate the precipitating flux inside the loss cone (𝐽𝑝𝑟𝑒𝑐) as a function of time, L, MLT, and 201 
energy by multiplying the ratio 𝜒(𝐸) with modeled trapped electron flux just outside the loss 202 
cone. Using the energy profile of the precipitating electron flux, we calculate the characteristic 203 
precipitating energy 𝐸𝑐 (keV) 204 

 𝐸c =
∫ 𝐽prec 

𝐸max
𝐸min

⋅𝐸⋅𝑑𝐸

∫ 𝐽prec 
𝐸max

𝐸min
⋅𝑑𝐸

  (3) 205 

and the total precipitating energy flux 𝑄𝑡𝑜𝑡 (erg⋅cm-2⋅s-1) 206 

 𝑄𝑡𝑜𝑡 = π ∫ 𝐽prec
𝐸max

𝐸min
⋅ 𝐸 ⋅ 𝑑𝐸  (4) 207 

with an energy range between 1 keV and 1 MeV. The integral directional flux of precipitating 208 
electrons 𝐼𝑡𝑜𝑡 (cm-2⋅s-1sr-1) for energies >30 keV is calculated as 209 

 𝐼𝑡𝑜𝑡 = ∫ 𝐽prec
𝐸max

𝐸min
⋅ 𝑑𝐸  (5) 210 

with 𝐸min = 30keV and 𝐸max = 1MeV, to be consistent with the POES observations, as 211 
discussed in Section 4. 212 

3. Electron Precipitation During a Storm Event 213 

3.1 Electron Precipitation Observation by POES 214 

We use data from the POES/MetOp constellation (POES, 2012), which consists of up to 215 
7 LEO (~800-850 km of altitude) satellites that provide wide spatial coverage (Evans & Greer, 216 
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2004). Onboard each satellite, the Medium Energy Proton and Electron Detector (MEPED) 217 
measures electron flux in three integral channels (>30 keV, >100 keV, >300 keV) and proton 218 
flux in several differential channels (30–80 keV, 80–250 keV, and 250–800 keV), with two 219 
telescopes measuring predominantly precipitating flux (0°) and trapped flux (90°) (Rodger et al., 220 
2010). In our analysis, we use the precipitating electron flux at the >30 keV energy channel 221 
(Green, 2013). As the POES electron channels are affected by proton contamination (Capannolo 222 
et al., 2019; Yando et al., 2011), we remove the periods of intense proton contamination when 223 
the 80–250 keV precipitating proton count rate exceeds 103/s (indicating strong proton 224 
precipitation) and is larger than the >30 keV precipitating electron count rate. While this method 225 
is not as sophisticated as existing ones (Peck et al., 2015; Pettit et al., 2021), it discards heavily 226 
contaminated events while preserving as much data as possible. In the following sections, we 227 
present results from all available POES satellites using this cleaned electron precipitating flux. 228 

3.2 Overview of the 17 March 2013 Storm Event 229 

Figure 2 presents a case study of electron precipitation during a storm event on 17 March 230 
2013 with a minimum SYM-H index of -130 nT driven by a massive coronal mass ejection 231 
(Baker et al., 2014). Figures 2b-2e show the >30 keV electron precipitation flux observed by 232 
POES at different L-shells and MLTs. Before the storm onset, the inner magnetosphere was quiet 233 
with weak precipitation. After the storm onset at 06:00 UT on March 17, intense precipitation 234 
occurred over 21-09 MLT, especially at L >5, possibly caused by enhanced chorus waves. 235 
During the main phase (09-24 UT), enhanced electron precipitation was observed at all MLTs, 236 
extending to L ~3. Electron precipitation from 15 to 21 MLT is weaker than other MLTs. In the 237 
storm recovery phase on March 18, precipitation over 15-03 MLT persisted at higher L than at 238 
03-15 MLT. Overall, the observed precipitation is highly dynamic, with varying intensities 239 
depending on L and MLT during different phases of the storm. 240 

Figure 2f shows the integral electron flux at >30 keV energy observed by RBSP near 241 
midnight. We use differential fluxes averaged at pitch angles of 8° and 172° to estimate the 242 
upper limit of the precipitation flux. Electron density, hiss, and chorus wave amplitudes are 243 
shown in Figures 2g-2i for RBSP-A in blue and RBSP-B in orange for both satellite observations 244 
(darker solid line) and deep learning (primary) model predictions (lighter dashed line). At the 245 
beginning of the storm, electron density responded quickly, the plasmapause density gradient 246 
was sharpened (Figure 2g), and strong chorus waves (Figure 2i) were immediately excited. 247 
Increased precipitating flux at L >3 was observed during the storm main phase and the 248 
precipitation region moved to larger L shells during the recovery phase. In addition, chorus 249 
waves were intensified during the main phase, while the intensification of hiss wave activity was 250 
more evident in the recovery phase (Figure 2h). Overall, the deep learning model reproduced the 251 
observed dynamics of density, hiss and chorus wave amplitudes reasonably well. 252 

The 17 March 2013 storm has been studied extensively, covering interplanetary drivers, 253 
electron acceleration by chorus waves (Li et al., 2014; Xiao et al., 2014; Ma et al., 2018), and 254 
ionospheric response (Lyons et al., 2016; Schunk et al., 2021). However, simulating the global 255 
evolution of electron loss relies heavily on the global wave distribution, which cannot be 256 
obtained from in-situ observations alone. In this event, RBSP was located on the nightside (21-257 
03 MLT, Figure 2j), thus did not provide direct wave observations to explain the precipitation 258 
patterns observed by POES at other MLTs. Due to the lack of global wave observations, MLT-259 
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averaged wave parameters are usually adopted (Chen et al., 2019; Søraas et al., 2018), and thus it 260 
is difficult to estimate the MLT-dependent electron precipitation during different storm phases. 261 
In Section 4, we present our global simulation results and compare them to the POES 262 
observations. 263 

 264 

Figure 2. Overview of the 17 March 2013 geomagnetic storm. (a) Geomagnetic indices SYM-H, 265 
SML, and Kp. (b-e) Precipitating electron flux (>30 keV) observed by POES in different MLT 266 
ranges. (f) Integral electron flux (>30 keV) averaged at pitch angles of 8° and 172° observed by 267 
RBSP. (g-i) Electron density, hiss, and chorus wave amplitudes from RBSP observations (darker 268 
solid lines) and primary model predictions (lighter dashed lines) for RBSP-A (blue) and RBSP-B 269 
(orange). 270 

UT
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4. Simulation Result 271 

4.1 Simulated Global Evolution of Precipitating Electron Energy Flux 272 

Figure 3 presents results from two simulations: Simulation 1 with deep learning density, 273 
hiss and chorus wave amplitudes as inputs (Figures 3b-3d), and Simulation 2 using statistical 274 
wave and density parameters as inputs (Figure 3e-3g). The statistical parameters are obtained 275 
from Model 4 (Ma et al., 2023), parameterized with Hp30* and SML. This model generally 276 
shows low error compared to RBSP observations but can exhibit large deviations near the 277 
dynamic plasmapause or in plumes. We use this recently developed model to represent the 278 
performance of simulations using statistical models as inputs in general. The simulation results 279 
on the equatorial plane are shown for Times 1-5, covering different storm phases. Figure 3b 280 
shows the whistler mode wave amplitude using the deep learning model, with the magenta circle 281 
representing the plasmapause location (30 cm-3 density contour), separating waves into hiss 282 
(inside) and chorus (outside). Figures 3c and 3d show the global evolution of simulated 283 
characteristic energy (𝐸c) and total precipitating energy flux (𝑄𝑡𝑜𝑡) from Equations (3) and (4), 284 
respectively.  285 

Before the storm, wave activity (Figure 3b1) was weak, with characteristic energies of 286 
~40 keV for both hiss and chorus, and low electron flux precipitating into the atmosphere. At the 287 
storm onset (Time 2), coincident with injected electrons from the nightside, strong chorus waves 288 
were excited at L  4 over 0–12 MLT. As the convection electric field increased, a 289 
plasmaspheric plume was formed with intense plume hiss inside of it. The characteristic energy 290 
of precipitating electrons decreased to ~10 keV due to enhanced low-energy electron 291 
precipitation, and the peak precipitating energy flux increased to ~3 erg/cm2/s for chorus and ~1 292 
erg/cm2/s for hiss, significantly higher than those during quiet times. In the storm main phase 293 
(Time 3), plume hiss quickly developed while chorus waves remained strong. Precipitation was 294 
thus dominated by chorus waves with peak 𝑄𝑡𝑜𝑡 reaching 20 erg/cm2/s at 21-12 MLT. In the 295 
early recovery phase (Time 4), chorus waves dissipated rapidly. Remnants of plume hiss 296 
scattered electrons from 50 keV (L = 6) to 200 keV (L = 3.5), with 𝑄𝑡𝑜𝑡 close to 1 erg/cm2/s, 297 
comparable to chorus waves that scattered electrons from 20 keV (MLT=15) to 50 keV 298 
(MLT=0). At Time 5, the inner magnetosphere returned to a quiet state with weak wave activity 299 
at L > 4 and little precipitation driven by either wave mode. 300 

Figures 3e-3g show Simulation 2 results based on the statistical distributions of density, 301 
hiss, and chorus, with trapped flux from the deep learning model. Overall, the simulation using 302 
statistical distributions presents a similar precipitation level to the simulation using the deep 303 
learning model (Simulation 1). However, before the storm the statistical results indicate a 304 
moderate level of wave activity (Figure 3e Time 1), while weak wave activity is expected during 305 
quiet times. Moreover, in the recovery phase, statistical results exhibit small variations in wave 306 
activity. Because Hp30* is higher than 6, the plasmasphere is compressed with moderate chorus 307 
waves persistent over the nightside-dawn-dayside sector for more than 20 hours after the storm 308 
main phase. In contrast, the deep learning model demonstrates the rotation of the plasmasphere 309 
and a quick response of the wave activity therein, with little chorus waves up to L=6.6. As a 310 
result, the Simulation 2 results exhibit less dynamics in electron precipitation as well as wave 311 
activity compared to Simulation 1 due to the difficulty of statistical models in resolving the 312 
spatial and temporal evolution of storm-time dynamics. 313 
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 314 

Figure 3. Snapshots of simulation results in the L-MLT coordinates. (a) Geomagnetic Sym-H, 315 

(1) (2) (3) (4) (5)

L=6.6Plasmapause



manuscript submitted to Journal of Geophysical Research: Space physics 

 

SML, and Kp indices. (b) Whistler mode wave amplitudes based on the deep learning model at 316 
times marked in (a). Magenta line denotes the plasmapause location from the density model, 317 
separating hiss (inside) from chorus (outside). (c) Simulated characteristic energy of precipitating 318 
electrons. (d) Simulated electron precipitating energy flux. (e-g) Same as (b-d) but for simulation 319 
results using statistical models as inputs. 320 

4.2 Comparison of Simulated and Observed Precipitating Electron Fluxes 321 

We validate the simulation results by comparing them to the POES observations of 322 
precipitating electron flux (Figure 4). POES observations (Figure 4d) are binned in every 2 323 
hours, 0.5 L, and 1 MLT to balance spatial coverage and resolution. Waves from the deep 324 
learning model are shown in Figure 4b, with the magenta line indicating the plasmapause 325 
location from the density model. The simulated precipitating electron flux is presented in Figures 326 
4c (Simulation 1 with the deep learning model) and 4e (Simulation 2 with the statistical model). 327 
In this comparison, we focus on the storm main phase and early recovery phase when 328 
geomagnetic activity was most intense and dynamic, and structured precipitation patterns were 329 
evident. Different columns represent snapshots at different times, as marked in Figure 4a. 330 

During the storm main phase (Times 1 and 2), POES observed strong precipitation on the 331 
dawn side (L > 3, 3-12 MLT) and enhanced precipitation at MLT~14, coinciding with the 332 
modeled plume region. Both simulations (Figures 4c and 4e) showed similar features, with 333 
strong chorus-induced precipitation on the dawn side and enhanced precipitation within the 334 
plume due to hiss. Note that during the storm main phase, POES was subject to proton 335 
contamination, thus the observation on the night side was challenging to interpret. During the 336 
recovery phase from Time 3 to 6, POES observed strong precipitation at 03-12 MLT, which 337 
decreased quickly over time, suggesting weakening of chorus waves. Interestingly, within the 338 
modeled plume region on the dusk side, POES first observed weak precipitation and then intense 339 
precipitation (L=4-6.5) within 2 hours. This feature moved to later MLTs at Times 5 and 6, 340 
suggesting corotation with the Earth. The location of intense precipitation aligned well with the 341 
modeled plasmapause. Simulation 1 predicted the same precipitation evolution, with strong 342 
chorus-induced precipitation on the dawn side until the end of the storm main phase, and 343 
intensified plume hiss waves driving distinct precipitation that corotated with the Earth before 344 
dissipating. In contrast, Simulation 2 captured similar precipitation flux levels during the storm 345 
main phase but did not resolve the spatial patterns driven by individual waves, particularly the 346 
evolution of plume hiss waves. The electron precipitation evolution from observations and 347 
simulations during the entire period is shown in Movie S1 in the Supporting Information.  348 

The absolute precipitating flux values differ between simulation and observation due to 349 
several reasons: (1) MEPED telescopes have a limited field of view and nonuniform angular 350 
response, thus do not capture the precipitating flux in the entire loss cone (Selesnick et al., 2020); 351 
(2) the differential flux observed by RBSP does not have sufficient pitch angle resolution to 352 
measure the trapped flux, thus overestimates the induced precipitation (Castillo et al., 2024); (3) 353 
potential bias may be present in estimating chorus and hiss wave intensity due to their highly 354 
imbalanced dataset (Chu et al., 2023). (4) the whistler-mode wave models and parameters may 355 
have uncertainties compared to those during a specific event, including the wave normal angle 356 
distribution, wave power distribution along the field line, and wave frequency spectrum. 357 
Nevertheless, the precipitation dynamics induced by hiss and chorus waves agree very well both 358 
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spatially and temporally, allowing us to draw conclusions on the relative contribution of whistler 359 
mode waves to electron precipitation on a global scale. 360 

 361 

Figure 4. Comparison of simulated and observed precipitating electron fluxes. (a) Geomagnetic 362 
indices. (b) Whistler mode wave amplitudes modeled with neural networks at times marked in 363 
(a). The magenta line indicates the plasmapause location, separating hiss (inside) and chorus 364 
(outside). (c) Simulated precipitating electron flux using parameters from the deep learning 365 
approach. (d) Binned POES observations of precipitating electron flux at > 30 keV. (e) 366 
Simulated precipitating electron flux using statistical parameters. 367 

5. Conclusions and Discussion 368 

Understanding the complex dynamics of electron precipitation is challenging due to limited wave 369 
observations on a global scale. We performed a two-stage simulation to quantify the evolution of 370 
electron precipitation driven by whistler mode chorus and hiss waves. First, we modeled the 371 
global evolution of electron density, hiss and chorus wave amplitudes, and trapped electron flux 372 
using neural networks trained on RBSP observations. Then, based on quasi-linear theory, we 373 
computed the pitch angle scattering effect driven by the modeled whistler mode waves and 374 
calculated electron flux within the loss cone. We applied this simulation to the 17 March 2013 375 

(1) (2) (3) (4) (5) (6)

L=6.6Plasmapause
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geomagnetic storm and compared results with the POES observations. 376 

During the storm main phase, the simulated precipitating energy flux was an order of magnitude 377 
higher than during quiet times, mostly driven by chorus waves with peak energy flux of 20 378 
erg/cm2/s from the premidnight to noon sector, and characteristic energies ranging from 10 keV 379 
(early main phase) to 50 keV (later main phase). Hiss-driven precipitation was most significant 380 
in the plume region during the recovery phase, with energy flux up to 3 erg/cm2/s, comparable to 381 
or even slightly stronger than chorus-driven precipitation. The characteristic energy of hiss-382 
driven precipitation varied from 10 keV (L > 6 in the early main phase) to 200 keV (L ~3.5 in 383 
the recovery phase). The simulation using statistical density and wave parameters showed similar 384 
precipitation levels when averaged over time. However, it exhibited less dynamics compared to 385 
the modeling results using neural networks, since the statistical distribution of wave activity 386 
could not adequately capture the temporal and spatial evolution of waves after the storm main 387 
phase where the whole plasmasphere and associated waves were actively evolving.  388 

Comparing simulation results with the POES observations, we found remarkable correlations: 1. 389 
strong precipitation driven by chorus waves over 03-12 MLT throughout the storm main phase, 390 
gradually decaying in the recovery phase; 2. isolated precipitation within the plasmaspheric 391 
plume in the storm main phase, with a burst at the start of the recovery phase; 3. regions of 392 
strong precipitation rotating with the Earth for hours, residing just inside the modeled 393 
plasmapause, suggesting plume hiss as its dominant driver.  394 

With a 2-hour time resolution, our simulation demonstrates that, for this specific event, the 395 
electron precipitation observed by POES from the midnight to the afternoon sector can be 396 
primarily explained by the scattering effect of whistler mode chorus and hiss waves. This study 397 
quantifies the relative contribution of each wave mode at different storm phases, with chorus 398 
waves dominating throughout the storm main phase over 21-12 MLT, and plume hiss playing a 399 
key role in scattering electrons from 10 keV to 200 keV on the dusk side, particularly in the 400 
recovery phase. It is noteworthy that the conclusions drawn in this study are specific to this 401 
particular storm event and may not be applicable to other events in general. Further validation 402 
with additional data and case studies is necessary to draw broader conclusions. Nonetheless, this 403 
study provides an example of how to combine deep learning models with physics-based models 404 
to reproduce complex nonlinear systems and wave-particle interaction physics. The integration 405 
of more complex simulations and a comprehensive analysis of additional events will be pursued 406 
in the future.  407 

Data Availability Statement 408 

The Van Allen Probes data from the EMFISIS instrument (Kletzing et al., 2013) were accessed 409 
via the University of Iowa’s EMFISIS website (VAP, 2013a). Data from the ECT instrument 410 
suite (Spence et al., 2013) were retrieved from the public archive hosted by the New Mexico 411 
Consortium (VAP, 2013b). The POES/MetOp satellite data were obtained from NOAA's 412 
National Centers for Environmental Information (POES, 2012). Geomagnetic indices used in 413 
model training, including SYM-H, were accessed from NASA’s OMNIWeb (Papitashvili et al., 414 
2020). The SML and SMU indices (Newell and Gjerloev, 2011) were accessed through the 415 
SuperMAG service (Gjerloev, 2012), and the Hp30 index (Matzka et al., 2022) was obtained 416 
from the GFZ Potsdam archive. All data used to produce figures are publicly available at 417 
https://doi.org/10.6084/m9.figshare.25612809. 418 
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