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Key Points:

e We integrate physical and deep learning approaches to simulate electron precipitation due
to whistler mode waves in a storm event

e The simulation captures the dynamics of the electron precipitation observed by POES
throughout the storm period

e Electron precipitation is primarily driven by chorus waves during the main phase, but
plume hiss becomes important in the recovery phase
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Abstract

Whistler mode waves scatter energetic electrons, causing them to precipitate into the
Earth’s atmosphere. While the interactions between whistler mode waves and electrons are well
understood, the global distribution of electron precipitation driven by whistler mode waves needs
futher investigations. We present a two-stage method, integrating neural networks and quasi-
linear theory, to simulate global electron precipitation driven by whistler mode waves. By
applying this approach to the 17 March 2013 geomagnetic storm event, we reproduce the rapidly
varying precipitation pattern over various phases of the storm. Then we validate our simulation
results with POES/MetOp satellite observations. The precipitation pattern is consistent between
simulations and observations, suggesting that most of the observed electron precipitation can be
attributed to scattering by whistler mode waves. Our results indicate that chorus waves drive
electron precipitation over the premidnight-to-afternoon sector during the storm main phase, with
simulated peak energy fluxes of 20 erg/cm?/s and characteristic energies of 10-50 keV. During
the recovery phase, plume hiss in the afternoon sector can have a comparable or stronger effect
than chorus, with peak fluxes of ~1 erg/cm?/s and characteristic energies between 10 and 200
keV. This study highlights the importance of integrating physics-based and deep learning
approaches to model the complex dynamics of electron precipitation driven by whistler mode
waves.

Plain Language Summary

Whistler mode hiss and chorus waves are electromagnetic waves in Earth’s
magnetosphere that interact with electrons, altering their motion and causing them to precipitate
into the atmosphere. Understanding electron evolution is crucial, as precipitating electrons affect
ionospheric conductivity and atmospheric chemistry, leading to aurorae and other phenomena.
However, direct observations of electron precipitation caused by these waves are scarce, and
global simulations are challenging due to the dynamic nature of wave-particle interactions. This
study presents a two-stage simulation framework that models global wave activities using deep
learning and runs physics-based simulations with the neural network output as inputs. We
validate our results by comparing them with the multi-point POES/MetOp observations during a
geomagnetic storm event on 17 March 2013, successfully reproducing the dynamic evolution of
the observed precipitation. We found that chorus waves predominantly drive energetic electron
precipitation during the storm main phase, while plume hiss causes comparable or stronger
precipitation during the recovery phase. Our study highlights the importance of whistler mode
waves in electron precipitation, identifies the quantitative contribution of hiss and chorus waves
at different storm phases, and demonstrates how deep learning can advance scientific research in
understanding the complex dynamics of electron precipitation in Earth’s magnetosphere.

1. Introduction

Whistler mode waves are right-hand polarized electromagnetic emissions with
frequencies below the electron cyclotron frequency (Stix, 1992). Through pitch angle diffusion,
whistler mode waves scatter radiation belt electrons, leading to electron precipitation into Earth's
atmosphere (Abel & Thorne, 1998; Millan & Thorne, 2007; Thorne et al., 2021). Among them,
hiss waves are broadband emissions primarily confined to high-density regions, including the
plasmasphere and plumes. Hiss waves significantly contribute to the decay of energetic electrons
ranging from tens of keV to 1 MeV in the outer radiation belt during both quiet and
geomagnetically disturbed periods (Lam et al., 2007; Ma et al., 2015, 2016; Meredith et al.,
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2006) and are responsible for the formation of the slot region (Lyons et al., 1972; Meredith et al.,
2007, 2009). In the plasma trough, whistler mode chorus waves are observed over the night-
dawn-noon sector along the electron drift path (Li et al., 2009, 2011; Meredith et al., 2001,
2012), and are excited by anisotropic electron distributions injected from the magnetotail (Fu et
al., 2014; Li et al., 2008; Su et al., 2014). Chorus waves are considered as an important driver of
electron precipitation, especially at energies ranging from a few to hundreds of keV, in the outer
radiation belt (Ni et al., 2008; Hikishima et al., 2010; Ma et al., 2012), leading to the formation
of diffuse and pulsating aurora (Kasahara et al., 2018; Ni et al., 2014; Nishimura et al., 2010,
2013; Thorne et al., 2010).

Recent studies have linked signatures of electron precipitation with whistler mode waves.
Qin et al. (2021) identified a high temporal correlation between whistler mode waves and
precipitating electrons from multi-point observations. Breneman et al. (2015) provided evidence
of radiation belt electron loss caused by hiss, with a spatial scale comparable to the
plasmasphere, suggesting a general role of hiss waves in driving electron precipitation. Statistical
studies indicate that the precipitating electron flux increases with geomagnetic activity, peaking
during active conditions outside of the plasmapause on the dawnside (Lam et al., 2010),
consistent with the evolution of chorus waves. However, direct observations of precipitating
electron flux driven by whistler mode waves are very limited. As illustrated in Figure 1a,
electron precipitation into the Earth’s atmosphere can be detected by Low-Earth-Orbiting (LEO)
satellites, while plasma waves are typically observed by high-altitude satellites near the
equatorial plane. Thus, conjunction events are rare and have only been examined in a small
number of case studies (e.g., Li et al., 2019; Shen et al., 2023).

To estimate the global effect of whistler mode waves on electron precipitation, statistical
methods have been developed. Ma et al. (2020, 2021) conducted global surveys of electron
precipitation and indicated that during disturbed times (AE > 500 nT), chorus waves precipitate
3-10 erg/cmz/s energy flux with characteristic energy mostly around 10-20 keV on the dawn
side, while hiss waves precipitate 0.3-1 erg/cm?/s energy flux with characteristic energy from
tens of keV to ~100 keV on the dusk side, with plume hiss being more effective in driving
electron precipitation than plasmaspheric hiss. However, the global maps of electron
precipitation patterns and precipitating energy flux levels are averaged over a long period and
cannot reproduce storm-time dynamics on a short time scale when the wave evolution is highly
dynamic and/or very intense precipitation occurs (Chakraborty et al., 2021; Zhu et al., 2018).
Furthermore, Reidy et al. (2021) conducted MLT-dependent electron precipitation simulations
due to statistically derived chorus and hiss waves and compared results with the POES
observations. They found that the best agreement occurs at L™>5 on the dawnside in the >30 keV
electron channel, which is consistent with the precipitation driven by lower band chorus.
However, additional mechanisms are needed to explain the flux at higher energies and on the
dusk side. Therefore, a more realistic wave and electron density model is required to simulate
global electron precipitation with higher spatial and temporal resolution and understand the
relative contributions from various types of whistler mode waves under different storm phases.

In recent years, machine learning techniques have been applied to study the dynamics of
the inner magnetosphere, including plasma density (Bortnik et al., 2016; Chu et al., 2017a,b;
Huang et al., 2022; Zhelavskaya et al., 2017), chorus and hiss waves (Bortnik et al., 2018; Chu et
al., 2023, 2024; Huang et al., 2023), and electron fluxes (Chu et al., 2021; Ma et al., 2023, 2024),
demonstrating their advantages over statistical methods. Huang et al. (2022) showed that with a
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deep learning approach, the evolution of electron density and the formation of a dayside plume
can be well reproduced. Such dynamics are key to facilitate electron precipitation through wave-
particle interactions (Breneman et al., 2015). The simulations conducted by Huang et al. (2023),
which adopted hiss wave distributions based on a deep learning model, reproduced the fast decay
of energetic electrons in the storm main phase, demonstrating the potential of combining deep
learning techniques with physics-based simulations to improve accuracy. In the present study, we
propose a new framework integrating deep learning with quasi-linear diffusion theory to model
the global electron precipitation induced by whistler mode waves. The simulation methodology
for electron precipitation, which includes both the deep learning model and physics-based
simulation, is described in Section 2. In Section 3, we present the observations of electron
precipitation during the March 17, 2013 storm. The simulation results of electron precipitation
on a global scale, as well as their comparison to the observations, are shown in Section 4.
Finally, we summarize our principal findings in Section 5.

2. Simulation Methodology of Electron Precipitation
2.1 Deep Learning Model of Density, Waves, and Trapped Electron Flux

To perform a global simulation of electron precipitation driven by whistler mode waves
(Figure 1a), we first train the neural network on electron density, whistler mode wave amplitude,
and electron fluxes from the 7-year observations by Van Allen Probes (RBSP) (Mauk et al., 2013;
VAP, 2013a, 2013b). Electron density is inferred from the upper hybrid resonance frequency
from the High Frequency Receiver (HFR) measurement (Kurth et al., 2015). Waves are
measured by the Waveform Receiver (WFR) of the Electric and Magnetic Field Instrument Suite
and Integrated Science (EMFISIS) instrument (Kletzing et al., 2013). Whistler mode hiss
(chorus) waves were selected with the following criteria (Li et al., 2015; Shen et al., 2019): a)
inside (outside) plasmasphere based on the ECH wave power (Shen et al., 2019), b) wave
ellipticity >0.7 (>0.7), ¢) wave planarity >0.2 (>0.6), d) spectral frequency range between 20—
4000 Hz (0.05-0.8 electron cyclotron frequency). Hiss and chorus wave amplitudes are
calculated by integrating their magnetic wave power over the corresponding frequency ranges.
Electron fluxes at energies of 1 keV — 1 MeV were obtained from the electron flux
measurements at pitch angles of ~18° by HOPE (Funsten et al., 2013) and ~24.5° by MagEIS
(Blake et al., 2013) from the Energetic Particle Composition and Thermal Plasma (ECT) suite
(Spence et al., 2013), as an estimate of the fluxes just outside the loss cone (Ma et al., 2020).
These electron fluxes were interpolated into 30 energy channels evenly distributed on a
logarithmic scale. All data were averaged per minute and normalized before training.

As shown in Figure 1b, we developed a primary and an auxiliary model. The auxiliary
model (Figure 1b bottom) is an autoencoder of several fully-connected neural network layers,
useful for data compression (e.g., Wang et al., 2014) and reducing the dimensionality of the
electron flux from 30 energy channels to a dimension of 5. The auxiliary model limits the data
size of the trapped electron flux in the primary model training while preserving the energy
profile measured by RBSP. This method is preferred over simple linear interpolation which
limits the information content of the entire energy spectrum. The primary deep learning model
(Figure 1b top) follows Huang et al. (2023), where the history of geomagnetic indices (SYM-H,
SMU, SML, and Hp30; Gjerloev, 2012; Matzka et al., 2022; Papitashvili et al., 2020) and the
satellite location are processed with an encoder-decoder architecture to provide maps of electron
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density, hiss wave amplitude, chorus wave amplitude, and compressed electron flux. The model
structure is organized as follows: a Long Short-Term Memory (LSTM; Hochreiter &
Schmidhuber, 1997) neural network takes the historical geomagnetic indices as inputs and
compresses the information into a vector, which represents the inner magnetospheric state at the
current time; the extracted information, together with the satellite location, is processed by
another fully connected neural network to estimate the distribution of the parameter (mean and
standard deviation) at a given location; according to the distribution, a final output is randomly
sampled, representing the uncertainty in both data and model.

We train one model for the density and the whistler mode waves, and another model for
the electron flux in the 5 compressed energy channels. After the models are trained, we predict
the global distribution of the parameters by applying models to an artificial spatial grid which
covers the whole equatorial plane (with 0.2 L and 0.5 MLT resolution). We advance the
prediction every 1 minute to obtain the global evolution of the parameters. To obtain the electron
flux from the modeled compressed flux, we apply the trained decoder in the auxiliary model to
recover the 30 original electron channels that will be used for the following simulation (Figure
Ic and Section 2.2). Detailed configurations of the neural networks and the neural network
model performance can be found in the Supporting Information (Text S1-S2, Figures S1-S3).

((a) Diagram of Electron Precipitation by Waves I (b) Training Stage with RBSP Data | (c) Inference Stage for Global Precipitation Evolution )
Compressed
Dipole ﬂ - ﬂux : Geo Quasi-linear theory
magnetic field "
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N - odel "
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Figure 1. Overview of the 2-stage method for simulating electron precipitation. (a) Diagram of
electron precipitation driven by whistler mode waves (chorus and hiss) and orbits of POES
(green) and RBSP (pink) satellites. (b) Workflow for training neural networks of electron
density, hiss, chorus, and trapped flux. (c) Simulation process of global electron precipitation
using trained neural network models.

2.2 Quasilinear Modeling of Electron Precipitation Driven by Whistler Mode Waves

After the neural network models are trained, we perform simulations to calculate the
global electron precipitation flux, as shown in Figure 1c. The maps of electron density, hiss wave
amplitude, chorus wave amplitude, and compressed trapped flux are obtained by applying the
trained neural networks on an artificial spatial grid that covers L-shells from 1.2 to 6.6 and all
magnetic local times (MLT), with resolution of 0.2 L and 0.5 MLT. The electron density and
amplitude of chorus and hiss waves are used as inputs to the Full Diffusion Code based on quasi-
lineary theory (Ma et al., 2018; Ni et al., 2008) to calculate the electron pitch angle diffusion
coefficients due to chorus and hiss waves. The Full Diffusion Code also requires information on
the wave spectra and wave normal angle distribution. In the simulation, chorus and hiss wave
frequency spectra were adopted based on the statistical results (Li et al., 2015, 2016). The
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latitudinal coverage of chorus waves is 0°-15° at 00-04 MLT, 0°-25° at 04-08 MLT, 0°-45° at
08-16 MLT, and 0°-20° at 16-24 MLT based on the statistical results (e.g., Meredith et al.,
2012), assuming a constant wave magnetic field amplitude along the field line. The wave normal
angle (0) distribution of chorus wave magnetic power is assumed as a Gaussian distribution in
tan 0, with central 6,, = 0°, width 6, = 30°, minimum 6,,,;, = 0°, and maximum 6,,,, = 45°.
The hiss wave latitude range is 0°-45°, and the wave normal angles change from quasi-field-
aligned near the magnetic equator to more oblique at higher latitudes following the latitudinally-
varying model by Ni et al. (2013).

After the diffusion coefficients are calculated, we use the method of Ma et al. (2020,
2021) to calculate the electron flux inside the loss cone. The ratio between electron fluxes at a
pitch angle near the center of the loss cone and outside the loss cone is

2 [, Iol[Zo(E)t]vdt
Ip[Zo (E)]

Zy(E) = \/Dsp/{Daalic (2)

where E is electron kinetic energy, I, is the modified Bessel function, Dgp is the strong diffusion
limit, and (D, )¢ is the bounce-averaged pitch angle diffusion coefficient at the loss cone. We
calculate the precipitating flux inside the loss cone (Jpr.) as a function of time, L, MLT, and
energy by multiplying the ratio y(E) with modeled trapped electron flux just outside the loss
cone. Using the energy profile of the precipitating electron flux, we calculate the characteristic
precipitating energy E. (keV)

X(E) = (1)

Emax
-E-dE
— “Emin Jprec

Ec=—Fma, - €)

dE
Emin Jprec

and the total precipitating energy flux Q. (erg-cm™s™)
Emax
Qtot = ﬂfEmin ]prec E-dE (4)

with an energy range between 1 keV and 1 MeV. The integral directional flux of precipitating
electrons Iy, (cm™s'sr™) for energies >30 keV is calculated as

Emax
Itot = f ]prec -dE (5)

Emin

with E\,;, = 30keV and E|,,,x = 1MeV, to be consistent with the POES observations, as
discussed in Section 4.

3. Electron Precipitation During a Storm Event
3.1 Electron Precipitation Observation by POES

We use data from the POES/MetOp constellation (POES, 2012), which consists of up to
7 LEO (~800-850 km of altitude) satellites that provide wide spatial coverage (Evans & Greer,
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2004). Onboard each satellite, the Medium Energy Proton and Electron Detector (MEPED)
measures electron flux in three integral channels (>30 keV, >100 keV, >300 keV) and proton
flux in several differential channels (30-80 keV, 80-250 keV, and 250-800 keV), with two
telescopes measuring predominantly precipitating flux (0°) and trapped flux (90°) (Rodger et al.,
2010). In our analysis, we use the precipitating electron flux at the >30 keV energy channel
(Green, 2013). As the POES electron channels are affected by proton contamination (Capannolo
et al., 2019; Yando et al., 2011), we remove the periods of intense proton contamination when
the 80250 keV precipitating proton count rate exceeds 10°/s (indicating strong proton
precipitation) and is larger than the >30 keV precipitating electron count rate. While this method
is not as sophisticated as existing ones (Peck et al., 2015; Pettit et al., 2021), it discards heavily
contaminated events while preserving as much data as possible. In the following sections, we
present results from all available POES satellites using this cleaned electron precipitating flux.

3.2 Overview of the 17 March 2013 Storm Event

Figure 2 presents a case study of electron precipitation during a storm event on 17 March
2013 with a minimum SYM-H index of -130 nT driven by a massive coronal mass ejection
(Baker et al., 2014). Figures 2b-2e show the >30 keV electron precipitation flux observed by
POES at different L-shells and MLTs. Before the storm onset, the inner magnetosphere was quiet
with weak precipitation. After the storm onset at 06:00 UT on March 17, intense precipitation
occurred over 21-09 MLT, especially at L >5, possibly caused by enhanced chorus waves.
During the main phase (09-24 UT), enhanced electron precipitation was observed at all MLTs,
extending to L ~3. Electron precipitation from 15 to 21 MLT is weaker than other MLTs. In the
storm recovery phase on March 18, precipitation over 15-03 MLT persisted at higher L than at
03-15 MLT. Overall, the observed precipitation is highly dynamic, with varying intensities
depending on L and MLT during different phases of the storm.

Figure 2f shows the integral electron flux at >30 keV energy observed by RBSP near
midnight. We use differential fluxes averaged at pitch angles of 8° and 172° to estimate the
upper limit of the precipitation flux. Electron density, hiss, and chorus wave amplitudes are
shown in Figures 2g-21 for RBSP-A in blue and RBSP-B in orange for both satellite observations
(darker solid line) and deep learning (primary) model predictions (lighter dashed line). At the
beginning of the storm, electron density responded quickly, the plasmapause density gradient
was sharpened (Figure 2g), and strong chorus waves (Figure 21) were immediately excited.
Increased precipitating flux at L >3 was observed during the storm main phase and the
precipitation region moved to larger L shells during the recovery phase. In addition, chorus
waves were intensified during the main phase, while the intensification of hiss wave activity was
more evident in the recovery phase (Figure 2h). Overall, the deep learning model reproduced the
observed dynamics of density, hiss and chorus wave amplitudes reasonably well.

The 17 March 2013 storm has been studied extensively, covering interplanetary drivers,
electron acceleration by chorus waves (Li et al., 2014; Xiao et al., 2014; Ma et al., 2018), and
ionospheric response (Lyons et al., 2016; Schunk et al., 2021). However, simulating the global
evolution of electron loss relies heavily on the global wave distribution, which cannot be
obtained from in-situ observations alone. In this event, RBSP was located on the nightside (21-
03 MLT, Figure 2j), thus did not provide direct wave observations to explain the precipitation
patterns observed by POES at other MLTs. Due to the lack of global wave observations, MLT-
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260  averaged wave parameters are usually adopted (Chen et al., 2019; Seraas et al., 2018), and thus it
261 is difficult to estimate the MLT-dependent electron precipitation during different storm phases.
262 In Section 4, we present our global simulation results and compare them to the POES

263 observations.
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265  Figure 2. Overview of the 17 March 2013 geomagnetic storm. (a) Geomagnetic indices SYM-H,
266  SML, and Kp. (b-e) Precipitating electron flux (>30 keV) observed by POES in different MLT
267  ranges. (f) Integral electron flux (>30 keV) averaged at pitch angles of 8° and 172° observed by
268  RBSP. (g-i) Electron density, hiss, and chorus wave amplitudes from RBSP observations (darker
269  solid lines) and primary model predictions (lighter dashed lines) for RBSP-A (blue) and RBSP-B

270  (orange).
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4. Simulation Result
4.1 Simulated Global Evolution of Precipitating Electron Energy Flux

Figure 3 presents results from two simulations: Simulation 1 with deep learning density,
hiss and chorus wave amplitudes as inputs (Figures 3b-3d), and Simulation 2 using statistical
wave and density parameters as inputs (Figure 3e-3g). The statistical parameters are obtained
from Model 4 (Ma et al., 2023), parameterized with Hp30™ and SML. This model generally
shows low error compared to RBSP observations but can exhibit large deviations near the
dynamic plasmapause or in plumes. We use this recently developed model to represent the
performance of simulations using statistical models as inputs in general. The simulation results
on the equatorial plane are shown for Times 1-5, covering different storm phases. Figure 3b
shows the whistler mode wave amplitude using the deep learning model, with the magenta circle
representing the plasmapause location (30 cm™ density contour), separating waves into hiss
(inside) and chorus (outside). Figures 3¢ and 3d show the global evolution of simulated
characteristic energy (E.) and total precipitating energy flux (Q;,;) from Equations (3) and (4),
respectively.

Before the storm, wave activity (Figure 3b1) was weak, with characteristic energies of
~40 keV for both hiss and chorus, and low electron flux precipitating into the atmosphere. At the
storm onset (Time 2), coincident with injected electrons from the nightside, strong chorus waves
were excited at L > 4 over 0-12 MLT. As the convection electric field increased, a
plasmaspheric plume was formed with intense plume hiss inside of it. The characteristic energy
of precipitating electrons decreased to ~10 keV due to enhanced low-energy electron
precipitation, and the peak precipitating energy flux increased to ~3 erg/cm?/s for chorus and ~1
erg/cm?/s for hiss, significantly higher than those during quiet times. In the storm main phase
(Time 3), plume hiss quickly developed while chorus waves remained strong. Precipitation was
thus dominated by chorus waves with peak Q;,, reaching 20 erg/cm?/s at 21-12 MLT. In the
early recovery phase (Time 4), chorus waves dissipated rapidly. Remnants of plume hiss
scattered electrons from 50 keV (L = 6) to 200 keV (L = 3.5), with Q,,, close to 1 erg/cm?/s,
comparable to chorus waves that scattered electrons from 20 keV (MLT=15) to 50 keV
(MLT=0). At Time 5, the inner magnetosphere returned to a quiet state with weak wave activity
at L > 4 and little precipitation driven by either wave mode.

Figures 3e-3g show Simulation 2 results based on the statistical distributions of density,
hiss, and chorus, with trapped flux from the deep learning model. Overall, the simulation using
statistical distributions presents a similar precipitation level to the simulation using the deep
learning model (Simulation 1). However, before the storm the statistical results indicate a
moderate level of wave activity (Figure 3e Time 1), while weak wave activity is expected during
quiet times. Moreover, in the recovery phase, statistical results exhibit small variations in wave
activity. Because Hp30* is higher than 6, the plasmasphere is compressed with moderate chorus
waves persistent over the nightside-dawn-dayside sector for more than 20 hours after the storm
main phase. In contrast, the deep learning model demonstrates the rotation of the plasmasphere
and a quick response of the wave activity therein, with little chorus waves up to L=6.6. As a
result, the Simulation 2 results exhibit less dynamics in electron precipitation as well as wave
activity compared to Simulation 1 due to the difficulty of statistical models in resolving the
spatial and temporal evolution of storm-time dynamics.
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SML, and Kp indices. (b) Whistler mode wave amplitudes based on the deep learning model at
times marked in (a). Magenta line denotes the plasmapause location from the density model,
separating hiss (inside) from chorus (outside). (c) Simulated characteristic energy of precipitating
electrons. (d) Simulated electron precipitating energy flux. (e-g) Same as (b-d) but for simulation
results using statistical models as inputs.

4.2 Comparison of Simulated and Observed Precipitating Electron Fluxes

We validate the simulation results by comparing them to the POES observations of
precipitating electron flux (Figure 4). POES observations (Figure 4d) are binned in every 2
hours, 0.5 L, and 1 MLT to balance spatial coverage and resolution. Waves from the deep
learning model are shown in Figure 4b, with the magenta line indicating the plasmapause
location from the density model. The simulated precipitating electron flux is presented in Figures
4c (Simulation 1 with the deep learning model) and 4e (Simulation 2 with the statistical model).
In this comparison, we focus on the storm main phase and early recovery phase when
geomagnetic activity was most intense and dynamic, and structured precipitation patterns were
evident. Different columns represent snapshots at different times, as marked in Figure 4a.

During the storm main phase (Times 1 and 2), POES observed strong precipitation on the
dawn side (L > 3, 3-12 MLT) and enhanced precipitation at MLT~14, coinciding with the
modeled plume region. Both simulations (Figures 4c and 4¢) showed similar features, with
strong chorus-induced precipitation on the dawn side and enhanced precipitation within the
plume due to hiss. Note that during the storm main phase, POES was subject to proton
contamination, thus the observation on the night side was challenging to interpret. During the
recovery phase from Time 3 to 6, POES observed strong precipitation at 03-12 MLT, which
decreased quickly over time, suggesting weakening of chorus waves. Interestingly, within the
modeled plume region on the dusk side, POES first observed weak precipitation and then intense
precipitation (L=4-6.5) within 2 hours. This feature moved to later MLTs at Times 5 and 6,
suggesting corotation with the Earth. The location of intense precipitation aligned well with the
modeled plasmapause. Simulation 1 predicted the same precipitation evolution, with strong
chorus-induced precipitation on the dawn side until the end of the storm main phase, and
intensified plume hiss waves driving distinct precipitation that corotated with the Earth before
dissipating. In contrast, Simulation 2 captured similar precipitation flux levels during the storm
main phase but did not resolve the spatial patterns driven by individual waves, particularly the
evolution of plume hiss waves. The electron precipitation evolution from observations and
simulations during the entire period is shown in Movie S1 in the Supporting Information.

The absolute precipitating flux values differ between simulation and observation due to
several reasons: (1) MEPED telescopes have a limited field of view and nonuniform angular
response, thus do not capture the precipitating flux in the entire loss cone (Selesnick et al., 2020);
(2) the differential flux observed by RBSP does not have sufficient pitch angle resolution to
measure the trapped flux, thus overestimates the induced precipitation (Castillo et al., 2024); (3)
potential bias may be present in estimating chorus and hiss wave intensity due to their highly
imbalanced dataset (Chu et al., 2023). (4) the whistler-mode wave models and parameters may
have uncertainties compared to those during a specific event, including the wave normal angle
distribution, wave power distribution along the field line, and wave frequency spectrum.
Nevertheless, the precipitation dynamics induced by hiss and chorus waves agree very well both
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359  spatially and temporally, allowing us to draw conclusions on the relative contribution of whistler
360  mode waves to electron precipitation on a global scale.
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362 Figure 4. Comparison of simulated and observed precipitating electron fluxes. (a) Geomagnetic
363 indices. (b) Whistler mode wave amplitudes modeled with neural networks at times marked in
364  (a). The magenta line indicates the plasmapause location, separating hiss (inside) and chorus
365  (outside). (c) Simulated precipitating electron flux using parameters from the deep learning

366  approach. (d) Binned POES observations of precipitating electron flux at > 30 keV. (e)

367  Simulated precipitating electron flux using statistical parameters.

368 5. Conclusions and Discussion

369  Understanding the complex dynamics of electron precipitation is challenging due to limited wave
370  observations on a global scale. We performed a two-stage simulation to quantify the evolution of
371 electron precipitation driven by whistler mode chorus and hiss waves. First, we modeled the

372 global evolution of electron density, hiss and chorus wave amplitudes, and trapped electron flux
373  using neural networks trained on RBSP observations. Then, based on quasi-linear theory, we

374  computed the pitch angle scattering effect driven by the modeled whistler mode waves and

375  calculated electron flux within the loss cone. We applied this simulation to the 17 March 2013
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geomagnetic storm and compared results with the POES observations.

During the storm main phase, the simulated precipitating energy flux was an order of magnitude
higher than during quiet times, mostly driven by chorus waves with peak energy flux of 20
erg/cm?/s from the premidnight to noon sector, and characteristic energies ranging from 10 keV
(early main phase) to 50 keV (later main phase). Hiss-driven precipitation was most significant
in the plume region during the recovery phase, with energy flux up to 3 erg/cm?/s, comparable to
or even slightly stronger than chorus-driven precipitation. The characteristic energy of hiss-
driven precipitation varied from 10 keV (L > 6 in the early main phase) to 200 keV (L ~3.5 in
the recovery phase). The simulation using statistical density and wave parameters showed similar
precipitation levels when averaged over time. However, it exhibited less dynamics compared to
the modeling results using neural networks, since the statistical distribution of wave activity
could not adequately capture the temporal and spatial evolution of waves after the storm main
phase where the whole plasmasphere and associated waves were actively evolving.

Comparing simulation results with the POES observations, we found remarkable correlations: 1.
strong precipitation driven by chorus waves over 03-12 MLT throughout the storm main phase,
gradually decaying in the recovery phase; 2. isolated precipitation within the plasmaspheric
plume in the storm main phase, with a burst at the start of the recovery phase; 3. regions of
strong precipitation rotating with the Earth for hours, residing just inside the modeled
plasmapause, suggesting plume hiss as its dominant driver.

With a 2-hour time resolution, our simulation demonstrates that, for this specific event, the
electron precipitation observed by POES from the midnight to the afternoon sector can be
primarily explained by the scattering effect of whistler mode chorus and hiss waves. This study
quantifies the relative contribution of each wave mode at different storm phases, with chorus
waves dominating throughout the storm main phase over 21-12 MLT, and plume hiss playing a
key role in scattering electrons from 10 keV to 200 keV on the dusk side, particularly in the
recovery phase. It is noteworthy that the conclusions drawn in this study are specific to this
particular storm event and may not be applicable to other events in general. Further validation
with additional data and case studies is necessary to draw broader conclusions. Nonetheless, this
study provides an example of how to combine deep learning models with physics-based models
to reproduce complex nonlinear systems and wave-particle interaction physics. The integration
of more complex simulations and a comprehensive analysis of additional events will be pursued
in the future.

Data Availability Statement

The Van Allen Probes data from the EMFISIS instrument (Kletzing et al., 2013) were accessed
via the University of lowa’s EMFISIS website (VAP, 2013a). Data from the ECT instrument
suite (Spence et al., 2013) were retrieved from the public archive hosted by the New Mexico
Consortium (VAP, 2013b). The POES/MetOp satellite data were obtained from NOAA's
National Centers for Environmental Information (POES, 2012). Geomagnetic indices used in
model training, including SYM-H, were accessed from NASA’s OMNIWeb (Papitashvili et al.,
2020). The SML and SMU indices (Newell and Gjerloev, 2011) were accessed through the
SuperMAG service (Gjerloev, 2012), and the Hp30 index (Matzka et al., 2022) was obtained
from the GFZ Potsdam archive. All data used to produce figures are publicly available at
https://doi.org/10.6084/m9.figshare.25612809.
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