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SUMMARY

Plants produce a staggering array of chemicals that are the basis for organismal function and important
human nutrients and medicines. However, it is poorly defined how these compounds evolved and are dis-
tributed across the plant kingdom, hindering a systematic view and understanding of plant chemical diver-
sity. Recent advances in plant genome/transcriptome sequencing have provided a well-defined molecular
phylogeny of plants, on which the presence of diverse natural products can be mapped to systematically
determine their phylogenetic distribution. Here, we built a proof-of-concept workflow where previously
reported diverse tyrosine-derived plant natural products were mapped onto the plant tree of life. Plant
chemical-species associations were mined from literature, filtered, evaluated through manual inspection of
over 2500 scientific articles, and mapped onto the plant phylogeny. The resulting “phylochemical” map con-
firmed several highly lineage-specific compound class distributions, such as betalain pigments and Amarylli-
daceae alkaloids. The map also highlighted several lineages enriched in dopamine-derived compounds,
including the orders Caryophyllales, Liliales, and Fabales. Additionally, the application of large language
models, using our manually curated data as a ground truth set, showed that post-mining processing can
largely be automated with a low false-positive rate, critical for generating a reliable phylochemical map.
Although a high false-negative rate remains a challenge, our study demonstrates that combining text min-
ing with language model-based processing can generate broader phylochemical maps, which will serve as a
valuable community resource to uncover key evolutionary events that underlie plant chemical diversity and
enable system-level views of nature’s millions of years of chemical experimentation.

Keywords: technical advance, plant natural products, biochemical evolution, tyrosine, phylochemistry, artifi-
cial intelligence.

INTRODUCTION .
et al., 2012; Hartmann, 2007). Importantly, about one third

Plants synthesize a vast array of chemical compounds that
are essential for their own physiological processes and
adaptation to the ecological niches they inhabit. These
plant natural products also serve as vital nutrients, flavors,
antioxidants, and neurotransmitters for other organisms.
To date, researchers have identified over 200 000 such
compounds, with estimates suggesting the existence of
more than a million distinct chemicals in the more than
300 000 species that make up the plant kingdom (Afendi
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of all pharmaceuticals approved in the last 35 years are
obtained from plant-derived substances, either directly or
as synthetic derivatives inspired by them (Leonard
et al., 2009; Newman & Cragg, 2016). Furthermore, roughly
two-thirds of the global population depends on plants as
primary medicinal resources (McChesney et al., 2007; Wu
& Chappell, 2008). Thus, while synthetic combinatorial
chemistry has produced extensive chemical libraries for
drug discovery, the intricate and specialized nature of
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plant-based compounds, honed by evolutionary processes,
render them a treasured source for new pharmaceutical
developments (Awan et al., 2016; Mitchell, 2011; Walsh &
Fischbach, 2010) and underscore the need for expanded
exploration of natural products across the plant tree of life.

Plant natural products are largely produced by com-
plex networks of metabolic pathways that evolve via various
mechanisms including gene duplication, enzyme neofunc-
tionalization, and altered gene expression (Maeda & Fer-
nie, 2021; Moghe & Last, 2015; Schenck & Busta, 2022;
Weng et al., 2012). Many of these plant pathways and their
products occur in lineage-specific patterns and thus are
referred to as lineage-specific or specialized metabolism, as
compared to primary metabolism which is conserved
across most organisms. The taxonomic distributions of
plant chemicals have been an active area of study for
decades, with contributions coming from diverse research
areas including chemotaxonomy, natural products
research, botany, drug discovery, and many others. Thus,
though the distribution of plant chemicals is complex, a
large amount of information is available about the detection
of various chemicals in different plant species. However,
this wealth of information was collected by many different
investigators using diverse approaches (including chroma-
tography, mass spectrometry, nuclear magnetic resonance,
infrared spectroscopy, etc.), and is distributed across a large
number of publications.

Recent studies integrating molecular phylogenies with
metabolite analyses have showcased the value of exploring
chemical distributions across the plant tree of life (Defossez
et al., 2021; Ernst et al., 2019; Zust et al., 2020). These ana-
lyses have focused on either a broad range of species with a
targeted set of metabolites, or a broad range of metabolites
across a specific group of species. Such targeted analyses
have, for example, helped predict chemical diversity hot-
spots (Fahmi et al., 2023), helped us understand some of the
genetic and evolutionary basis for specialized metabolism
(Fan et al., 2017; Lichman et al., 2020), and uncovered variant
metabolisms with industrial or agricultural applications
(Wang et al., 2017). These outcomes alone are exciting but
also hint at potentially transformative outcomes that could
result from broader analyses of plant chemical distributions
across the tree of life, i.e., by incorporating wide ranges of
both metabolites and species. The ingredients for such untar-
geted analyses are already available in the form of (i) mas-
sive molecular phylogenies enabled by recent advances in
sequencing technology and (ii) decades of literature docu-
menting the presence of lineage-specific plant chemicals.
Unfortunately, a bottleneck exists in the highly time consum-
ing and laborious tasks of systematically extracting
compound-species associations from the literature and doc-
umenting them in a way that enables them to be mapped
onto a phylogeny. By overcoming this bottleneck, we can
gain a much more holistic perspective of plant chemical
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diversity that will help us (i) understand the evolutionary his-
tory of diverse natural products and underlying metabolic
innovations, (ii) conduct targeted searches for new bioactiv-
ities, and (iii) derive novel hypotheses and design experi-
ments aimed at understanding the physiological and
ecological functions of plant specialized metabolites.

Several other groups have worked toward systemati-
cally extracting compound-species associations from litera-
ture. These efforts have led to several natural product
databases, including Duke’s Plant Natural Product, KNAP-
SAcK, the Dictionary of Natural Products, and NAPRALERT
(Afendi et al., 2012; Duke, 2023; Loub et al., 1895). These
databases are excellent tools for targeted searches and pro-
vide detailed information about bioactivities, mass spectral
signatures, physical properties of chemicals, and in some
cases compound-species associations. Nonetheless, these
resources are designed for targeted searches for a specific
compound(s) or a specie(s) of interest and not for untar-
geted analyses that require comprehensive phylogenetic
mapping of plant compounds. Some databases do make
compound-species association data available in an untar-
geted fashion, but are either not open access (Elsevier's
Reaxys) or are metadatabases that lack a systematic mecha-
nism for expansion and updating, like LOTUS (Rutz
et al., 2022). To bridge this gap, we have developed a novel
workflow (Figure 1) for creating a “phylochemical” data-
base in which chemical diversity is organized in the context
of a plant phylogeny and all data are simultaneously acces-
sible. This workflow consists of (i) text mining to identify
potential associations between chemical compounds and
specific plant species, (ii) evaluation of those associations,
and (iii) mapping of positive hits on molecular phylogeny to
populate a phylochemical database (Figure 1). Here, we first
used text mining and manual curation to identify and evalu-
ate over 3000 putative associations between specific plant
species and specific tyrosine-derived compounds. We then
analyzed the distribution of the tyrosine-derived com-
pounds across various plant lineages to gain insights into
their specialized metabolic pathways. Finally, we tested the
potential of large language models to complement our text
mining methods, revealing their effectiveness in processing
and accurately categorizing candidate compound-species
associations. Overall, our study demonstrates that a work-
flow combining text mining with language model-based
processing can open the bottleneck preventing the con-
struction of broader phylochemical maps that span large
portions of both chemical and plant diversity.

RESULTS

Text mining and manual curation to identify compound-
species associations

Our first aim was to identify previously reported associa-
tions between tyrosine-derived compounds and specific
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Figure 1. Overview of the workflow for identifying compound-species associations.

From left to right, the workflow consists of gathering relevant articles from a literature database together with a list of accepted plant species names, then apply-
ing text mining to identify co-occurrences of the names of chemical compounds and chemical species in the titles or abstracts. Next, the co-occurrences (candi-
date compound-species associations) are evaluated to isolate only associations that are supported with experimental evidence. Finally, the supported

compound-species associations are mapped on to a phylogeny.

plant species. Tyrosine-derived metabolites were useful in
developing a phylochemical mapping workflow because
some tyrosine-derived compounds are broadly distributed
while others are highly lineage-specific (Schenck &
Maeda, 2018). The latter include betalains and Amaryllida-
ceae alkaloids, which serve as internal positive controls.
We began by compiling a list of 71 tyrosine-derived plant
natural products, based on prior literature and the KEGG
plant chemical compound list (Kanehisa et al., 2006;
Schenck & Maeda, 2018), and grouped them based on their
upstream precursor molecules or commonly used com-
pound class names (e.g., “dopamine-derived compounds”,
“Amaryllidaceae alkaloids”, etc., Table S1). We then used
the Chemical Abstracts Service (CAS) SciFinder database
(Gabrielson, 2018) to retrieve references, including titles
and abstracts, for articles that mentioned the names of the
71 tyrosine-derived natural products. Subsequently, we fil-
tered the SciFinder search results to include only the arti-
cles that were associated with the keyword “plant” or
“taxonomy” in the SciFinder database, thereby eliminating
a large number of clinical reports, which were likely irrele-
vant to our plant-derived chemical focus. Even after filter-
ing, eight compounds, including epinephrine (adrenaline),
noradrenaline, dopamine, and colchicine had over 10 000
hits (Figure S1), most of which appeared to be due to
human clinical studies of these widely used pharmaceuti-
cals. It seemed likely that many of the co-occurrences of
these compounds and plant species names in the text of
these articles would not reflect endogenous production in
plants, so we excluded these compounds from further
analysis. The references for the remaining 63 compounds
were then filtered for articles that were written in English
and had titles or abstracts mentioning at least one plant
species name included in The World Flora Online (WFO)
Plant List—an open access resource for the most compre-
hensive plant list maintained by the global community of
taxonomy experts (https://wfoplantlist.org/plant-list). Over-
all, this process resulted in 2571 pertinent references, for
which titles and abstracts were downloaded for further
analysis.

In the next phase of our study, we assessed the acces-
sibility of full texts for the 2571 references using PubChem,
hosted by the National Center of Biotechnology Informa-
tion (NCBI). Unfortunately, full texts were available via
NCBI for only approximately 300 articles, with many of the
other articles’ full texts being located behind paywalls.
Consequently, we first turned our attention to examining
the titles and abstracts of the articles for compound-spe-
cies associations using automated, pattern
matching-based text mining. We recorded any occurrence
of a taxon name (genus and species names together)
within articles that mentioned one of the 63
tyrosine-derived compounds as an indicator of potential
presence of the compound in that taxon, yielding 3631 can-
didate associations (Table S2). To integrate these findings
with phylogenetic data, we mapped the associations onto
a phylogeny of orders within angiosperms (Qian &
Jin, 2016). Branches without reported compounds were
pruned for clearer visualization (Figure 2A). To account for
the varying species counts per order and the disparate
number of articles for each compound, we introduced a
normalized metric that highlights a compound’s lineage
specificity. This metric reflects the total number of reports
for a compound per order, divided both by the total num-
ber of reports of that compound and by the species count
within that order. The resulting phylochemical map
showed the expected lineage-specific occurrences of the
positive controls (betalains and Amaryllidaceae alkaloids in
Caryophyllales and Asparagales orders, respectively),
among other patterns (Figure 2B). This result demonstrates
the ability of text mining to extract compound-species
associations and capture their overall phylogenetic
distributions.

To assess the reliability of our text mining approach,
each of the 3631 candidate compound-species associations
identified were manually reviewed. The review involved
manually downloading and searching the full texts, figures,
and tables of the 2571 articles to determine whether each
association was a true positive (indicating the compound
was indeed present in the species) or a false positive (where
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Figure 2. Map of tyrosine-derived compounds across the angiosperm phylogeny.

(A) Cladogram of angiosperm orders. We mapped compound-species associations onto a previously published angiosperm order phylogeny (Qian & Jin, 2016),

removing branches where no compounds were detected for better clarity.
(B) All putative compound-species associations.

(C) All true positives. In B and C, to adjust for differences in species count per order and the number of articles for each compound, we used a normalized metric
to color the heat map. This metric is the log of the number of reports for a compound in each order, divided by the total reports of that compound and by the
species count in the order, thus emphasizing the compound’s specificity to certain lineages. White boxes in C represent associations that were present in B but

were all false positives and thus do not appear in the true positive map.

the compound and species co-occurred in the text without
evidence of the species producing the compound). We con-
sidered instances in which the source article reported the
pipeline-identified compound-species association either in
the abstract, the main text, or in a figure/table as true posi-
tives. Our manual evaluation revealed that, of the 3631 asso-
ciations detected via text mining, 2409 were true positives
(66.3%, Figure 2C), 863 were false positives (23.7%,
Figure S2), and 359 cases (10%) remained ambiguous due
to unclear language or indeterminate figures. Overall, the
revised map showing only these true positives (Figure 2C)
contained very similar patterns to the original map
(Figure 2B), though a number of associations for betalains
and Amaryllidaceae alkaloids were eliminated outside of
Caryophyllales and Asparagales.

During our manual evaluation of the literature, several
patterns emerged that enabled us to distinguish several
types of false positive associations. False positives often
included: (i) non-original mentions of compounds without
supporting data, (ii) discussions of biosynthetic pathways,
(iii) mentions of enzyme assays related to a compound
without reporting the compound itself, (iv) reports of a
compound’s absence in a species, and (v) references to
compounds in a context of artificial presence or absence
(Table S2). For example, instances of “non-original men-
tion” were flagged when papers cited a compound without
providing new evidence of its presence in the species. Sim-
ilarly, “biosynthetic precursor/derivative” hits occurred
when articles discussed related metabolic pathways or
derivatives without confirming the compound’s accumula-
tion. For example, a study mentioned “homogentisic acid”
while investigating its metabolic derivatives from Miliusa
balansae but did not provide evidence of homogentisic
acid accumulation (Huong et al., 2004). Some false posi-
tives also derived from sources reporting enzymes related
to a given compound, such as a large number of papers
referencing galantamine, an Amaryllidaceae alkaloid used
to treat early-stage Alzheimer’s disease (Ago et al., 2011),
as a positive control in acetylcholinesterase inhibition
assays using the extracts from various other plants (Mocan
et al., 2018; Siatka et al., 2017). Interestingly, the text min-
ing pipeline also produced false positive hits from papers
describing the absence of a compound (for example,
papers using targeted metabolomics approaches that

reported “not detected”). Similarly, broad surveys of multi-
ple species that reported the detection of multiple com-
pounds resulted in false positives. For example, one study
surveyed 10 Amaryllidaceae species for various com-
pounds including galantamine in Clivia miniata (Cortes
et al., 2018); however, galantamine was not detected in C.
miniata but found in different species presented in the
same table. Finally, some false positives resulted from
studies using transgenic plants or artificial introduction of
compounds to a heterologous species for the purposes of
screening enzyme activity or inhibition. These examples
and observations will help reduce false positive hits in
future iterations of extracting true compound-species
associations.

Exploration of tyrosine-derived compounds across the
plant phylogeny

Having compared maps of all putative associations against
maps of only true positive hits, we next examined patterns
in the true positive map in detail and observed several sur-
prising patterns. Unlike compounds with lineage-specific
occurrence such as betalains and Amaryllidaceae alkaloids,
we observed that other tyrosine-derived compounds were
unexpectedly distributed across multiple lineages, despite
them being generally considered as lineage-specific spe-
cialized metabolites. Some examples are the
tyramine-derived compounds N-methyl-4-tyramine and
hordenine, which were detected in 12 and 6 different plant
orders, respectively, many of which were only distantly
related to each other (e.g., Asparagales from monocots
and Gentianales and Sapindales from eudicots; Figure 2).
To further experimentally validate the somewhat
unexpected result described above, we conducted targeted
chemical investigations of hordenine and related com-
pounds (Figure 3A). We chose plant species that were
available in the Botany Greenhouse at UW-Madison and
belong to the same lineages reported to have hordenine,
harvested live tissues, and analyzed metabolites using lig-
uid chromatography-high-resolution mass spectrometry
(LC-HRMS). We found that hordenine and its precursors
(i.e., tyramine, N-methyl-4-tyramine) were indeed present
in diverse lineages of plants; four orders (Poales, Sapin-
dales, Gentianales, and Caryophyllales) with at least one
species in each order testing positive for hordenine
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Figure 3. Experimental validation of hordenine and its precursors.
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(A) Hordenine is synthesized from the aromatic amino acid L-tyrosine via tyramine and N-methyl-4-tyramine (NM4T) as intermediates.

(B) Metabolites were extracted from the leaf tissue of Stapelia hirsuta (Appocynaceae) and analyzed for the presence of hordenine and its upstream precursors
using LC-HRMS by comparison with corresponding authentic standards (100 uM concentration). Mass searches were performed using the exact mass of each
compound with an allowable error of 10 ppm at 5 decimal places, generating extracted ion current (EIC) traces shown.

(C) Further metabolite analysis of leaf and root tissues of Hordeum vulgare and the leaf tissues of other plant species showed that some non-Poaceae plants
also accumulate comparable or even greater levels (nmol/g dry weight of plant tissues, n = 3 technical replicates) of hordenine and its precursors than H. vul-

gare (Poaceae).

production (Figure 3B). Some non-Poaceae species accu-
mulated comparable or even higher levels of hordenine
and its precursors than Hordeum vulgare (Poaceae,
Figure 3C). These measurements showed that hordenine is
not restricted to one plant family and illustrated the ability
of the pipeline to provide unexpected, yet accurate phylo-
genetic distributions of certain chemicals.

Finally, the phylochemical map of tyrosine-derived
compounds presented here also revealed high lineage
specificity in the dopamine-derived compound class, with
clusters in Caryophyllales, Liliales, and Fabales (Figure 2C,
red arrows). For example, Liliales was reported to
accumulate several dopamine-derived compounds,
including the intermediates of colchicine biosynthesis,
such as (S)-Autumnaline and Demecolcine. In addition,
3,4,5-Trimethoxyphenethylamine (mescaline), which is well
known to be produced in peyote cactus (Lophophora spp.)
in Cactaceae (Caryophyllales order) (Aragane et al., 2011;
El-Seedi et al., 2005), was also detected in Fabales, specifi-
cally in the Fabaceae family, the Acasia genus within the
mimosoid clade (Clement et al., 1997, 1998). Finally, both
Caryophyllales and Fabales were found to produce other
dopamine-derived compounds such as anhalonidine and
anhalamine (Figure 2C, red arrows). These examples illus-
trate that the pipeline can highlight lineages with

© 2024 The Author(s).

concentrated occurrences of a group of related chemicals,
a potentially valuable tool in detecting examples of conver-
gent metabolic evolution beyond those already reported
(Pichersky & Lewinsohn, 2011).

The potential of large language models to complement
text mining approaches

So far, our work indicated that using text mining to find
co-occurrences of the names of plant chemicals and spe-
cies could generate a large number of candidate
compound-species associations (3631 in a set of
tyrosine-derived queries). However, by manually inspect-
ing each full text yielding these candidates, we found that
23.7% of hits were false positive associations, that is, the
name of a given compound and species appeared close
together in an article’s text, but the article did not provide
empirical data for the compound actually being detected in
an extract from that species. Still, even with a high false
positive rate, the text mining approach yielded useful and
sometimes unexpected, yet accurate, information as
described above. These outcomes supported the rationale
for constructing larger phylochemical maps with a text
mining approach but suggested that methods to reduce
the false positive rate (other than laborious manual inspec-
tion) should be explored. Recent studies in natural
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Figure 4. Language model-based evaluation of compound-species associations.

(A) Schematic of language model evaluation process.

(B, C) Comparison of OpenAl language models’ ability to assess compound-species associations based on title and abstract text in terms of the number of arti-

cles (B) and proportion of articles (C).

(D, E) Comparison of compound-species association assessment abilities of gpt-3.5-turbo-0613 using only title and abstract text versus when full texts are also
supplied in terms of number of articles (D) and proportion of articles (E). Note that the proportion of false positives and true negatives was identical between
the independent samples, so the error bar sizes are zero. Bar heights and error bars represent the means and standard deviations of n = 3 independent tests
(“replicates”) conducted using random sampling, respectively. Letters (“a”, “b”, “c") above bars indicate significant differences as determined by ANOVA and
post-hoc Tukey tests, P < 0.05. Some error bars in E are not visible due to constant proportions of false positive and true negatives observed among these repli-

cate analyses.

language processing have highlighted the abilities of large
language models to answer questions about the meaning
of text strings, including text describing chemical and bio-
logical concepts (Dunn et al., 2022; Jablonka et al., 2023;
Xiao et al., 2023), and such models are now readily acces-
sible. Accordingly, we next evaluated the abilities of large
language models to categorize candidate compound-spe-
cies associations by using the manually curated dataset as
a ground truth set (Figure 4A). If effective, such models
could greatly enhance our ability to generate accurate,
large-scale compound-species association maps directly
from existing literature.

Of the large language models that are publicly avail-
able, we tested three of OpenAl’s legacy models, babbage,
currie, and davinci, as well as two text models, gpt-3.5-
turbo-0613 and gpt-4-0613, because these were the most
accessible and advanced models at the time of study. To
test the models’ abilities, we began by filtering our manu-
ally evaluated compounds-species associations for only
those 3275 associations that could be distinguished as true
positives (2409) or false positives (863) from manual inspec-
tion, thus eliminating associations whose validity was
ambiguous. To test a language model’s abilities, we created
a query containing the text of an article’s abstract and title,

as well as a question: “Here is an article’s title and its
abstract <abstract>. Answer yes or no: is the compound
<compound name> found in <taxon name>?". In a first
round of queries, we randomly selected 200 putative associ-
ations from among the 3275 candidates and passed each
association, as a separate query, to each model. We con-
ducted a total of three rounds of queries using a different
random selection each time. These random selections
served as independent experiments (or “replicates”) in this
context. Then, we compared the models’ responses with
the results of our manual evaluation to categorize the
models’ responses as correct or incorrect (Figure 4A). Thus,
our approach consisted of “question-answering” tasks per-
formed by a language model, that is, we asked the language
model to answer a presence/absence question based on the
abstract of the peer-reviewed scientific article we provided.
This type of question-answering task is one of the many
tasks that language models are built to do at a fundamental
level (for a larger list of language model tasks, please see
huggingface.co/tasks). Our approach did not rely on the
content of the original training data used by OpenAl (the
model’s “built in knowledge”), nor did we train (or
“fine-tune”) an existing model using our manually curated
data on tyrosine-derived compounds.
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Using the question-answering task approach, our first
observation was that, compared with the legacy models,
the text models (e.g., gpt-4-0613) yielded a substantially
lower number of false positives (a negative association
erroneously identified by the model as positive, <6% ver-
sus >5%). However, the lower false positive rate was
accompanied by lower proportion of true positives (cor-
rectly identified positive associations; ~30% versus >30%;
Tukey HSD test, P < 0.05, Bonferroni correction applied;
Figure 4B,C). Relative to the legacy models, the text
models also produced a higher number of negatives—both
true negatives (correctly identified instances in which the
co-occurrence of a compound name and a species name
did not indicate the presence of that compound in that spe-
cies) and false negatives (erroneous claims that the
co-occurrence of a compound name and a species name
did not indicate the presence of that compound in that spe-
cies). At the risk of anthropomorphizing, one way to think
about the increase in negatives is an increase in “skepti-
cism” as model sophistication increases, or that the more
sophisticated models are able to distinguish between tex-
tual co-occurrence and biological co-occurrence. Overall,
our results indicate that language models, particularly the
text models, can greatly reduce the proportion of false pos-
itives, which is critical for enhancing the overall quality of
the resulting phylochemical mapping dataset, in an auto-
mated fashion.

In addition to comparing different language models,
we examined whether providing the full text of an article
improved the ability of a language model to classify candi-
date compound-species associations. For this test we
chose to work with gpt-3.5-turbo-0613 for three reasons: (i)
there were no significant differences in the performance of
gpt-3.5-turbo-0613 and the most advanced model, gpt-4-
0613, in our initial tests (Figure 4C), (ii) at the time of our
experiments there were rate limits imposed on gpt-4-0613
usage (only 25 queries per hour), and (iii) the availability of
gpt-3.5-turbo-16 k-0613, which was identical to gpt-3.5-
turbo-0613 except that it had a 16 000 token context win-
dow that would enable working with full text articles.
Using gpt-3.5-turbo-0613/gpt-3.5-turbo-16 k-0613, we again
performed three rounds of queries. In each round, we ran-
domly selected a set of 2560 compound-species associa-
tions and constructed two types of queries for each — one
that asked whether a given compound was found in the
species of interest based on the title and abstract alone,
and a second that asked the same question but also pro-
vided the full text in the query. When provided with full
texts, the model was able to produce a slightly higher pro-
portion of true negatives and true positives, as well as a
slightly lower proportion of false negatives and false posi-
tives (Tukey HSD test, P<0.05 Bonferroni correction
applied; Figure 4D,E). In other words, providing full texts
seems to result in a small but detectable improvement in
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language model-based classification of candidate
compound-species associations. It could be that the
improvements due to full texts were only modest because
of the “lost in the middle” phenomenon in which language
models (at least, at the time of our study) were prone to
overlooking a specific fact provided to them if it was buried
in the middle of a large corpus of text, as described at
github.com/gkamradt/LLMTest_NeedlelnAHaystack.
Overall, our work with the language models revealed
them to be an excellent complement to text mining in build-
ing phylochemical maps. For the scientific community to
utilize and further explore this approach, we provide the
code we used to perform our language model assessments
at https://github.com/thebustalab/phylochemical_mapping.
We also provide raw data in the form of candidate
compound-species associations with annotations, and true
compound-species associations missed by the text mining
pipeline (Table S2), as well as raw results from the language
model evaluations and the code used to create the figures
presented in this article at the link provided above. These
open resources will allow other scientists to further expand
the map and associate with other traits as discussed below.

DISCUSSION

In this study, we developed a proof-of-concept workflow for
building maps of chemical occurrence across a plant phy-
logeny using text mining and downstream processing. By
using tyrosine-derived compounds as test cases, we were
able to validate that this approach can indeed identify the
known presence of compounds in well-studied lineages and
highlight previously unrecognized patterns of chemical dis-
tribution, illustrating the efficacy and power of our work-
flow. In addition, the application of large language models,
combined with our manually curated dataset, showed that
downstream evaluation after text mining is critical but can
largely be automated in future iterations. Here, we discuss
the limitations of our workflow and potential solutions, as
well as future applications and how we can make more
comprehensive phylochemical maps that capture larger
bodies of literature and plant chemical diversity.

Limitations of the text mining workflow and potential
solutions

Our manual curations (i) showed that the text mining iden-
tifies a high rate of false positive hits for compound-spe-
cies associations (Figure S2) and (ii) identified several
types of false positive associations. Notably, further appli-
cation of language models to evaluate the potential associ-
ations, derived from the text-mining, produced a low rate
of false positives, which is advantageous in generating reli-
able and accurate phylochemical maps. However, our
results indicates that these models are quite conservative
in their assessments and tend to accept very few incorrect
compound-species associations, leading to the dismissal a
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considerable number of correct associations and hence a
high rate of false negatives. Such filtering resulted in
sacrificing the size of the output map for the sake of accu-
racy, leaving room for improvement in the sophistication
of the evaluation portion of our workflow. At the time of
the work reported here, OpenAl was the only sophisticated,
API-accessible language model, and the pace of language
model development was quite rapid. Accordingly, we
opted not to benchmark the false positive rates of a broad
array of language models with regard to the application
described here, in part since such benchmarking would
likely be obsolete within a short period of time. Neverthe-
less, one route for improving false positive rates could be
to use techniques like chain of thought prompting (Wei
et al., 2023), or dedicated techniques for the extraction of
structured data from unstructured texts (Li et al., 2023).
Alternatively, prior works have shown that performance
gains in classification tasks can be achieved by fine tuning
a language model using annotated examples (Bakker
et al., 2022; Chae & Davidson, 2023; Howard &
Ruder, 2018). Therefore, the evaluation portion of a future
workflow could be enhanced with a similar approach using
the several types of false negatives and false positives that
we manually annotated in this study to create a fine-tuned
classification model. Other approaches include a pipeline
that combines the natural language processing abilities of
language models with the classification abilities of
machine learning models. Regardless of the approach
used, it seems that it will be highly important for investiga-
tors to explore a variety of cutting-edge methods for opti-
mizing compound-species extraction/mapping, since the
newest models and prompting techniques developed by
the natural language processing community are likely to
have higher performance. Particular attention should be
paid to open-source models, since they may be less expen-
sive than closed source models when used at scale.

We also sought to evaluate the comprehensiveness of
the text mining process itself by looking for relevant stud-
ies that our text mining method might have missed.
Through manual searches using Google Scholar for each
of the 63 tyrosine-derived compounds (excluding 8 com-
pounds with very high number of medical articles,
Figure S1), we discovered 291 overlooked articles
(Table S3). These articles reported a total of 344 valid
compound-species associations, which we again con-
firmed through manual inspection. However, these articles
and associations were not identified through our text min-
ing process (Table S2), likely because they were not
included in the literature database (i.e., SciFinder) that we
initially used to search for information on tyrosine-derived
compounds. When we mapped these 344 newly found
associations, we found similar overall trends compared to
our existing text-mined dataset (Figure S3). Nevertheless,
these results suggest that when we scale to cover more

species and a broader range of chemical compounds, we
need to expand the range of databases that we query to
build more comprehensive phylochemical maps. Also, we
need to always keep in mind that a lack of reports does not
necessarily indicate the absence of a compound in a cer-
tain species.

Another limitation of the method described here was
that certain compounds had a very high number of papers
describing them (e.g., epinephrine, morphine, Figure S1).
In our workflow, we elected not to map these compounds
described in more than 10 000 papers, because many of
the reports detailed medicinal uses rather than the pres-
ence of these compounds in specific plant species. In other
words, the signal-to-noise ratio for widely studied medici-
nal compounds is low. Our decision to omit such com-
pounds led to notable absences in our maps: for example,
the absence of positive hits for isoquinoline alkaloids (such
as codeine and morphine) in Ranunculales, an order that
includes poppy plants and is well-known for producing
these compounds (Bisset, 1985). This limitation could be
addressed in future works by developing procedures to
effectively map compounds that are the subject of a large
volume of research, such as by eliminating only certain
articles (e.g., those from medical journals) for these
selected compounds or by training language models to
identify and dismiss medical articles while preserving
others. Alternative strategies could involve only mining
certain portions of an article (its results but not introduc-
tion section, for example) when generating candidate
compound-species associations.

Finally, a lack of sufficient reported data for some
compounds may create gaps within the map and their
underlying patterns of chemical distribution may be invisi-
ble (even if they exist). This situation can be compared to
the concept of sequencing depth: without sufficient data, it
is challenging to accurately identify genetic features. Fur-
thermore, since phylochemical maps are two-dimensional,
there is a parallel issue regarding phylogenetic resolution.
In cases where the phylogenetic data is limited (e.g., cer-
tain plant families), even abundant chemical data might
not reveal patterns of interest. While notable patterns of
certain chemicals at the level of plant orders emerged in
this study (Figure 2C), distributions at the levels of plant
families or genera may require further species sampling
and refinement in the molecular phylogeny. Therefore, our
study also highlights the importance of continued data
expansion of both axes—chemical and phylogenetic—
within the scientific community to achieve adequate depth
for generating useful maps.

Applications of the phylochemical database

One interesting finding from our mapping efforts was the
presence of dopamine-derived compounds in Caryophyl-
lales, Liliales, and Fabales (Figure 2C). These results raise
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the possibility that these distant lineages somehow inde-
pendently acquired highly active upstream pathways to
produce elevated amounts or availability of the dopamine
precursor. Prior studies showed that Caryophyllales and
Fabaceae within Fabales have highly active biosynthetic
pathways of tyrosine, an upstream precursor of dopamine
(Coley et al., 2019; Lopez-Nieves et al., 2018, 2022). The
current finding suggests that Liliales may also have altered
regulation of the upstream precursor supply pathway,
leading to enriched occurrence of dopamine-derived com-
pounds. This demonstrates one example where phylo-
chemical mapping can provide a novel hypothesis in an
unbiased or untargeted manner, which could be further
evaluated experimentally in future works. Similarly, a
larger, more comprehensive phylochemical database
developed in the future, could be used to isolate data from
certain plant orders or families and assess the characteris-
tics of certain regions of metabolism within that lineage,
which will offer a system-level view of the phylochemical
map and underlying metabolic evolution. Such data could
also be used with phylogenetic comparative methods,
ancestral state reconstruction, hot node identification, and
other approaches to potentially predict the presence of
compounds in unexplored lineages.

Another interesting pattern that emerged from our
mapping efforts was repeated reports of tyramine, N-
methyl-4-tyramine, and hordenine in multiple lineages
(e.g., Sapindales, Gentianales, Poales, Figures 2C and 3C).
While we know that these compounds are the intermedi-
ates and product (respectively) of the hordenine biosyn-
thetic pathway (Figure 3A), this result illustrates that
phylochemical mapping has the potential to illuminate
lineage-specific metabolic innovations, such as lineage-
specific modification or evolution of a specific branch of a
metabolic network. Increased resolution of the mapping,
as discussed above, could also predict when such evolu-
tionary innovation might have occurred. These results sug-
gest that, for chemicals generated by yet unknown
biosynthetic networks, phylochemical maps could identify
potential pathway intermediates. Together with systems
that apply logical rules to chemical structures or biochemi-
cal pathways (Hafner et al., 2021; Rodriguez-Lopez
et al., 2022), it may be possible to enhance predictions
about unknown or novel biochemical pathways and recon-
struct their lineage-specific metabolic evolution. A phylo-
chemical database could be also linked to metabolic
network databases, such as Plant Metabolic Network (Haw-
kins et al., 2021) to facilitate our understanding of phyloge-
netic distribution and thereby evolutionary history of plant
metabolic networks. Finally, we note that, in addition to
metabolic networks, metabolomic data could be integrated
with a phylochemical database which could potentially
help assign unknown peaks in metabolomic datasets by
linking the phylogenetic occurrence of those peaks to

© 2024 The Author(s).
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previously reported areas of metabolism within a given
lineage.

A phylochemical map could be further merged with
maps of other traits such as genetic, biochemical, mor-
phological, and physiological traits, as well as climatic
and geographic distribution patterns. Comparing the
phylogenetic distributions of multiple traits with com-
pound occurrence could potentially illuminate novel and
important links. For example, a recent study applied a
similar idea to identify a link between certain geographic
patterns and enzyme biochemical traits (Fahmi
et al.,, 2023). Also, since metabolites are synthesized
through enzymes encoded in genome of each individual,
the phylogenetic distribution of certain chemicals with
genomic and biochemical information could help identify
the genetic basis of chemical synthesis. Finally, the com-
parison of chemical distributions and ecological and
geographic patterns could infer potential biological func-
tions and ecological roles of plant specialized
metabolites.

In addition to providing research-oriented benefits,
maps of multiple trait types are also excellent catalysts for
interdisciplinary systems thinking, which have the potential
to help us strengthen the STEM workforce (Busta &
Russo, 2020). The manual curation process of this study
was carried out as a part of virtual undergraduate research
during the COVID pandemic, where five students worked
closely to critically evaluate scientific literature, contributed
to the interpretation of the findings, and also learned vari-
ous functions and distribution of diverse plant chemicals
at a larger phylogenetic context. To further facilitate such
research and educational efforts, software tools that allow
interaction with maps of multiple data types could be
highly useful. For example, a previously published fatty
acid database, PlantFADB, illustrates one potential plat-
form by which researchers and students could interact with
phylochemical maps (Ohlrogge et al., 2018). One excellent
feature of such a website is the ability to view the underly-
ing data on user selected phylogenetic level, such as the
abundance or presence of a given compound across differ-
ent plant orders, different plant families, or different gen-
era. Depending on when a biochemical pathway of interest
evolved, viewing the data at one phylogenetic level might
be more useful than other views. For example, higher-level
phylogenetic views might not provide any resolution for
more lineage-specific compounds, while a view at the
genus or even species-level might only highlight patchi-
ness in the data and such a map might not be a good tool
to test a given hypothesis. In short, larger phylochemical
databases developed in the future could benefit from the
option to be viewed in a dynamic fashion. Finally, we also
note that the open-source project LOTUS (Rutz
et al., 2022), hosted at Natural Products Online (lotus.
naturalproducts.net), accepts community additions of data
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via entries on Wikidata, and the pipeline described here or
its future versions could greatly expand that repository.

Generating more comprehensive phylochemical maps

While this study built a phylochemical map for a targeted
class of compounds (tyrosine-derived compound) as a case
study, the workflow we developed is capable of generating
plant chemical occurrence maps in a much more compre-
hensive and untargeted manner. This untargeted approach
would involve processing scientific articles with a lan-
guage model to extract compound-species associations
without focusing on specific chemical compounds or plant
species. As the capabilities of Al systems advance, an
approach that will probably be worth exploring is the use
of so-called “vision” Al models, models that understand
information embedded in images (jpeg, png, etc.), and
whether such can reliably extract compound-species rela-
tionships from figures and tables, such as those often
included in review articles. Another important consider-
ation is the source of material used to develop more
exhaustive databases. Currently, many research institu-
tions only allow data in the public domain to be passed to
closed source language models. For this reason, scaled up
workflows will likely need to be centered around public
domain resources like PubMed, or will need to rely on
open-source language models run on local hardware.
Either way, a scaled-up, untargeted approach to
compound-species relationship extraction would yield
untargeted maps, providing a broader view of plant chemi-
cal distributions to help us identify novel molecular mecha-
nisms that underpin chemical evolution, predict pathway
plasticity, unearth novel pathways (Rodriguez-Lopez
et al., 2022), and identify variant enzymes with potential
industrial or agricultural applications.

The creation of large, untargeted plant chemical maps
from extensive literature must consider the scalability of
the workflow, which comprises three main steps: accessing
or compiling a literature collection, extracting candidate
compound-species associations, and evaluating these
associations. Scaling the literature database(s) that can be
used for input into a mapping workflow seems essentially
complete with the availability of near-comprehensive and
programmatically accessible public databases like
PubMed, even if only abstracts and not full texts are avail-
able. Scaling up the extraction process of candidate
compound-species associations is also practical, since the
list of plant chemicals and species can be found in large
public repositories, such as PubChem and botanical data-
bases like World Flora Online. Finally, the evaluation of
these associations can be done through a computer pro-
gram capable of understanding natural language, though
small-scale manual curations could be helpful for valida-
tion and further training of language models. Fortunately,
unlike tasks with exponentially increasing solution spaces,

such as phylogeny building, the evaluation of compound-
species associations based on text excerpts is linear in
complexity. Therefore, the required time and effort can be
scaled linearly with the number of evaluations, which
makes the extensive expansion of phylochemical mapping
feasible. In fact, we could theoretically expand the work-
flow to encompass all known chemical space as well as
species outside of the plant kingdom. This scalability high-
lights the relevance of our work and its potential value to
researchers across various fields of natural product
research that span the tree of life.

MATERIALS AND METHODS
Text mining for compound-species associations

To prepare a list of tyrosine derived compounds for subsequent
literature mining, we inspected prior published literature and the
KEGG plant chemical compound list to identify 71 tyrosine derived
compounds that spanned a range from very common or ubiqui-
tous compounds produced in nearly all lineages to highly lineage
specific compounds known to be produced in only a select few
genera. SciFinder searches were performed manually by querying
the database for the CAS number associated with each of the 71
tyrosine derived compounds. The results page from each search
was filtered using the SciFinder filtering tool to obtain articles
associated with the keywords “plant” or “taxonomy”. Compounds
with more than 10 000 hits were excluded manually using SciFin-
der. The records for the remaining articles were temporarily
downloaded and compared against the World Flora Online Plant
List (https://wfoplantlist.org/plant-list) using regular expression-
based pattern matching in R (provided by the R Core Team).
Synonyms and unofficial names were not considered in our pat-
tern matching. The 2571 articles that mentioned a plant genus and
species name present in the World Flora Online Plant List were
retained and organized into a spreadsheet (Table S2), and the
other records were deleted from the local storage space.

Manual curation of compound-species associations

Full texts for each of the 2571 articles were obtained through our
university libraries. Each was manually inspected to determine
whether the putative compound-species associations found by
the pattern matching approach were true, false, or unclear. Addi-
tional metadata was also collected from each full text, including
data on the tissue types reported to accumulate the compound of
interest, other plant species reported to accumulate the target
compound within each article, and whether the report of the com-
pound included analytical quantification. To visualize the resulting
data, we pruned a published phylogenetic tree to include only the
orders that were represented in our association data. Phylochem-
ical maps were visualized by using the R package “ggtree” (Yu
et al., 2016) to visualize a pruned phylogeny (Qian & Jin, 2016)
plotted alongside a heatmap representing the association data
generated with ggplot2 (Wickham, 2016).

Analysis of metabolites by ultra-high-performance liquid
chromatography (UHPLC)-MS

Approximately 100 mg of healthy fresh plant tissue was harvested
from plants grown in the Botany Greenhouses of University of
Wisconsin-Madison and flash frozen in liquid nitrogen. The tissues
were then freeze dried using the Benchtop Freeze Dryer

© 2024 The Author(s).
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(Labconco) for no less than 48 h and pulverized with a bead
beater. Ten to twenty milligrams of frozen powders were ali-
quoted to new frozen tubes, weighed, and resuspended in 800 pl
of LC-MS grade methanol: chloroform, (v/v 2:1) with 10 uM 13¢(6)-
tyrosine (Cambridge Isotope, CLM-1542-0.25) as an internal recov-
ery standard. After rigorous vortexting for 10 min, the extracts
were centrifuged for 10 min at 21 000 g at room temperature, and
800 pul of the supernatant was transferred to a new tube, mixed
with 600 pl water and 250 pl chloroform, vortexed for 30 sec, and
then centrifuged again for 5 min at 21 000 g to generate phase
separation. The upper aqueous phase was transferred into a new
tube and dried down in a CentriVap SpeedVac (Labconco) over-
night at room temperature. The dried samples were resuspended
in 70 pl of 80% methanol by vortexing for 30 sec and sonicating
for 5 min, followed by centrifugation for 5 min at 21 000 g. Then,
30 pl of the supernatant was transferred to glass vials for injection
onto a Vanquish Horizon UHPLC Binary Pump H coupled to a
Q-Exactive MS (Thermo Scientific). All reagents were of LC-MS
quality. One microliter of the sample was injected onto a HSS T3
C18 reversed phase column (100 x 2.1 mm i.d., 1.8-um particle
size; Waters) and eluted using a 26-mi gradient comprising 0.1%
formic acid in water (solvent A) and 0.1% formic acid in acetoni-
trile (solvent B) at a flow rate of 0.40 ml/min and column tempera-
ture of 40°C, with the following linear gradient of solvent B: 0-
1 min, 1%; 1-10 min, 1-10%; 10-13 min, 10-25%; 13-18 min, 25—
99%; 18-22 min, 99%; 22-22 min, 99-1%; 22-26 min, 1%. Full MS
spectra were recorded between 0.55 and 18 min using the full
scan positive mode, with the following parameters: sheath gas
flow rate, 45; auxiliary gas flow rate, 13; sweep gas flow rate, 1;
spray voltage, 3.75 kV; capillary temperature, 350°C; S-lens RF
level, 50; resolution, 140 000; AGC target 1 x 10e6, maximum
scan time 200 ms; scan range 100-1000 m/z. Metabolites were
identified through a mass search of the compounds’ mass to
charge ratios (m/z), generating an extracted ion chromatogram
(EIC) from which retention time and mass spectra were matched
to high purity authentic standards: tyrosine (A11141, Alfa Aesar),
tyramine (AC140610050, Acros Organics), and N-methyl-4-
tyramine (OR-4655, Combi-Blocks), hordenine (04476, Sigma
Aldrich). Quantification of each compound was done by manual
integration of peak area using Xcalibur 3.0 (Qual Browser, Thermo
Scientific) and abundance was calculated by reference to the
authentic standards. The final compound contents were deter-
mined by normalizing based on the internal standard (% recovery)
and tissue weight for each sample.

Language model evaluation of candidate compound-
species associations

Candidate compound-species associations were evaluated using
language models created by OpenAl (2023). Compound species
associations were evaluated inside a loop in which each candidate
association was passed to the OpenAl APl using an R script like:
query
"Here is the title: ", dataStitle[i],
"Here is the abstract: ", dataSabstract[i],
" classify your response as \"yes\" or \"no\": was ",
data$compound_name[i], " found in ", data$species[i],
"? Donot include aperiod in your response. Respond only
withyes or noandno other explanationor text."
)

The system prompt used was “You are an expert in scientific
literature and can easily and accurately parse text for scientific lit-
erature tasks.” The output from the model was used directly in
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downstream analysis. A full example of the code used to evaluate
the language models is included at the project GitHub site. Once
the responses from the language model had been tabulated,
ANOVA and post-hoc Tukey tests, implemented in R via the “sta-
tix” (rstatix, 2020) were used to test for any significant differences.
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