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Key Points:

e Properties of electron scattering driven by whistler waves are revealed from ELFIN
measurements of precipitation ratio

e This precipitation efficiently extends to high energies when the 63 keV electron
precipitation ratio becomes large especially on dayside

e Strong precipitation at ~63 keV correlates with active geomagnetic levels and is
concentrated over the midnight-dawn-noon sector at L>5
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Abstract

Whistler-mode chorus and hiss waves play an important role in Earth’s radiation belt electron
dynamics. Direct measurements of whistler wave-driven electron precipitation and the resultant
pitch angle distribution were previously limited by the insufficient resolution of low Earth orbit
satellites. In this study, we use recent measurements from the Electron Losses and Fields
INvestigation (ELFIN) CubeSats, which provide energy- and pitch angle-resolved electron
distributions to statistically evaluate electron scattering properties driven by whistler waves. Our
survey indicates that events with increasing precipitating-to-trapped flux ratios (evaluated at 63
keV unless otherwise specified) correlate with increasing trapped flux at energies up to ~750
keV. Weak precipitation events (precipitation ratio <0.2) are evenly distributed, while stronger
precipitation events tend to be concentrated at L>5 over midnight-to-noon local times during
disturbed geomagnetic conditions. These results are crucial for characterizing the whistler-mode
wave driven electron scattering properties and evaluating its impact on the ionosphere.

Plain Language Summary

Chorus and hiss are two key whistler-mode electromagnetic waves in Earth’s magnetosphere
that interact with trapped energetic electrons, scattering them into the upper atmosphere.
However, previous satellites at low Earth orbit (LEO) had limited resolution in measuring
electron pitch angle (the angle between the electron velocity and the magnetic field) and energy,
making it challenging to fully understand whistler wave-driven electron precipitation properties.
In this study, we use recently acquired measurements from Electron Losses and Fields
INvestigation (ELFIN) CubeSats, which provide full electron energy and pitch angle
distributions from LEO, to statistically evaluate whistler wave-driven electron precipitation
properties. We sort the identified events by the precipitation ratio (the ratio of the precipitating to
trapped flux). Our results indicate that (a) events with large precipitation ratios correlate with
increased trapped flux, indicating highly efficient electron precipitation; (b) dayside precipitation
occurs at higher energies compared to nightside precipitation; (c) small ratio events distribute
evenly across local times, while large ratio events tend to be concentrated at large distances from
midnight to noon local times, particularly during more intense geomagnetic activities. These
findings are critical for characterizing the electron scattering and precipitation properties and
assessing their impact on the ionosphere.

1 Introduction

Whistler mode chorus and hiss waves are right-hand polarized electromagnetic emissions
typically observed outside and inside the plasmasphere, respectively (e.g., Agapitov et al., 2018;
Aryan et al., 2022; W. Li et al., 2009; Meredith et al., 2012, 2018, 2021). Chorus waves are
discrete and coherent emissions with frequencies over 0.1-0.8 f.. (fc. denotes the electron
cyclotron frequency) and normally have a gap near 0.5 f;. likely due to Landau damping (J. Li et
al., 2019) separating them into lower (< 0.5f..) and upper (> 0.5fc.) bands. The typical scale size
of chorus waves is several hundred kilometers as determined from multi-satellite observations
(Agapitov et al., 2017; Shen et al., 2019; S. Zhang et al., 2021). Chorus wave distributions
exhibit a strong dependence on geomagnetic conditions, as electron injection during substorms is
an important source of chorus waves (Meredith et al., 2001, 2020). Hiss waves are broadband
incoherent emissions with frequencies over 20-2000 Hz (W. Li et al., 2013b; Meredith et al.,
2018). Sources of hiss waves in Earth’s magnetosphere are complex and include propagation
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from chorus waves and/or lightning-generated whistler waves, and local generation due to
plasma instabilities (Bortnik et al., 2008, 2009; Chen et al., 2012; Draganov et al., 1992; He et al.,
2019, 2020; Kim et al., 2015; W. Li et al., 2013b; Meredith et al., 2006). Hiss waves are mostly
observed inside the plasmasphere with an average wave amplitude of tens of pT on the dayside
(Malaspina et al., 2016, 2017; Meredith et al., 2018). Large amplitude hiss waves tend to be
observed close to the plasmapause or in plumes from the post-midnight to the noon sector during
geomagnetically active periods (Shen et al., 2024).

Both chorus and hiss waves play an important role in scattering energetic electrons, ranging
from several keV to hundreds of keV, into the loss cone through resonant interactions.
Subsequently, these electrons precipitate into the Earth’s atmosphere, potentially contributing to
electron microbursts (Breneman et al., 2017; Chen et al., 2021, 2022; Shumko et al., 2018) and
the formation of pulsating and diffuse auroras (e.g., Bortnik & Thorne, 2007; Horne & Thorne,
2003; W. Lietal., 2014, 2019; Ma et al., 2020, 2021, 2022; Ni et al., 2008, 2014b; Nishimura et
al., 2010; Ozaki et al., 2018; Shen et al., 2023). Moreover, electron precipitation observed by
multiple NOAA POES satellites has been used to infer the global distribution of chorus waves
(W. Lietal., 2013a).

Although electron precipitation driven by chorus and hiss waves has been extensively studied
(Bortnik & Thorne, 2007; H. Li et al., 2016; W. Li et al., 2014, 2019; Ma et al., 2020, 2021;
Ozaki et al., 2019), high resolution electron measurements in both energy and pitch angle remain
limited. In particular, a systematic analysis of pitch angle and energy-resolved electron
precipitation distribution driven by whistler waves, directly measured at low altitudes, is still
lacking. In this study, we utilize electron pitch angle and energy distributions recently measured
by the Electron Losses and Fields INvestigation (ELFIN) CubeSats (2019-2022) to evaluate the
detailed properties of whistler wave-driven electron precipitation into the Earth’s upper
atmosphere.

2 Dataset and Event Analysis

We use electron measurements from the Energetic Particle Detector for Electrons (EPDE)
onboard the dual-CubeSat ELFIN mission (Angelopoulos et al., 2020). ELFIN was launched on
September 15, 2018 into a Low Earth Orbit (LEO) at ~450 km altitude with an orbital period of
~90 minutes. The EPDE instrument provides differential electron flux in 16 energy channels
from ~50 keV up to 6 MeV. The pitch angle is resolved by computing the angle between the
detector’s look direction and the magnetic field orientation from the IGRF model. Full pitch
angle coverage is obtained in each half spin (~1.5 s). We bin ELFIN measurements in each half
spin period to obtain the electron pitch angle distribution. The measurement from the EPDE
electron detector is considered as saturated when total electron counts in all energy channels goes
above 130k/s. These events often occur during large ratio electron precipitation events with a
precipitation ratio around or above one (X.-J. Zhang et al., 2022). In this study, we have
excluded saturated events and are not focusing on electron precipitation events with a
precipitation ratio close or even larger than one. Therefore, our results are not affected by
saturation events. A visual inspection is applied to remove data periods when the phase angle
(the angle between the detector and the background magnetic field) is not well resolved or with
contamination from solar energetic proton events. Additionally, the geomagnetic Auroral
Electrojet (AE) index is used to evaluate the dependence of whistler wave-driven electron
precipitation events on geomagnetic activity.
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Figure 1 shows an example of ELFIN measurements of energetic electron distributions at
low altitudes on January 27, 2021. During the event, the solar wind dynamic pressure (Figure 1a,
black) remained low and relatively stable from 1 to 1.5 nPa for at least three hours before the
ELFIN measurements (~1820 UT; marked by two dashed vertical red lines in Figures 1a—1b).
The interplanetary magnetic field (IMF) B, component in Geocentric Solar Magnetospheric
(GSM) coordinates (Figure 1a, red) was negative and turned to values close to zero ~80 minutes
prior to the ELFIN observations. A moderate substorm occurred with AE* (the maximum AE
during the preceding three hours) reaching up to ~500 nT (Figure 1b).

Within ~4.5 minutes, from 18:17:30 to 18:23:00 UT, ELFIN-A traveled from L ~3.5to L ~7,
providing electron pitch angle measurements at various energies (Figures 1c—1d) across the outer
radiation belt. Starting from ~18:19:40 UT, a significant electron flux intensification is observed
for both trapped (near 90°) and precipitating (within the local loss cone close to 180°) electrons.
These electron flux enhancements are observed until L~6.4 and are more intense at tens of keV
energy channels than at hundreds of keV energy channels (Figures 1c—1d). In each half-spin, the
ELFIN CubeSat can measure a full range of pitch angles. During each half-spin, the average flux
in the local loss cone, precipitating into the Earth’s upper atmosphere, is calculated as the
average flux inside the loss cone; the average flux locally trapped between the loss cone and the
anti-loss cone is calculated as the average flux outside the loss cone. Two bins very close to the
local loss cone are excluded in the calculation to reduce the influence of uncertainties in
determining the realistic loss cone. The bounce loss cone is estimated from the IGRF model by
assuming particles to be lost at 100 km above the Earth surface. The loss cone angle at the
ELFIN altitudes is nearly constant around 67°. By calculating the average energy flux outside
and inside the loss cone (refers to the half-bounce loss cone in this study) respectively, locally
trapped and precipitating energy fluxes are shown in Figures le—1f. Energy spectrograms of
trapped and precipitating electrons show that during the period of enhanced electron flux, the
energy flux of electrons from tens of keV up to < 1 MeV increases significantly. The
precipitation ratio, which is the ratio between precipitating and trapped electron energy flux
(Figure 1g), exhibits a value close to 1 during several strong flux enhancements at low energies
(from 18:19:40 to 18:20:50 UT). A value close to one indicates a full loss cone (i.e., strong pitch
angle diffusion). This electron precipitation is suggested to be primarily caused by pitch angle
diffusion by whistler mode waves near the magnetic equator. Whistler mode chorus wave is not
prominent on the dusk side near MLT~18 at L~4.8, while whistler mode hiss and plume hiss are
more frequently occurring in this region (Meredith et al., 2021). Plasmaspheric hiss and plume
hiss are typically present on the dayside and duskside especially when the plasmasphere expands
(Meredith et al., 2021; W. Zhang et al., 2019). Both chorus and hiss waves drive electron
precipitation with a similar energy spectrum in the regions of interest, peaking at tens of keV and
decreasing with increasing energy (Shen et al., 2023). At L < 3, the peak energy of electron
precipitation driven by hiss typically occurs at hundreds of keV, which is the main cause of the
energy and L dependent slot region and the bump-on-tail electron distribution (Claudepierre et
al., 2019; Ma et al., 2016; Zhao et al., 2019). From ELFIN measurements, electron precipitation
driven by chorus and hiss cannot be well separated. Therefore, in this study, we present
precipitation properties from the combined effects of chorus and hiss waves.

Electron precipitation driven by electromagnetic ion cyclotron (EMIC) waves peaks at
relativistic energies (Angelopoulos et al., 2023; Blum et al., 2015; Capannolo et al., 2022, 2023;
Jordanova et al., 2008; Miyoshi et al., 2008; Omura & Zhao, 2012; Qin et al., 2018, 2020; X.-J.
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Zhang et al., 2021) and can extend to subrelativistic electrons (Capannolo et al., 2018, 2019),
potentially/partially due to nonresonant wave-particle interactions (An et al., 2022; Chen et al.,
2016). We require the peak precipitation ratio to be at energy below 100 keV to exclude EMIC-
driven precipitation. Current sheet scattering (CSS) is mostly observed on the nightside,
exhibiting an energy dispersion feature along the L shell: higher energy precipitation occurs at
lower L shells, while lower energy precipitation occurs at higher L shells (Haiducek et al., 2019;
Sergeev et al., 1983; Wilkins et al., 2023; Yue et al., 2014). We restrict our analysis to 3 <L <38,
covering the outer radiation belt and require the minimum energy flux of 300 keV trapped
electrons to be greater than 10° keV/(s-sr-cm*-MeV) to ensure that the measurements are within
the outer radiation belt with sufficient high-energy electron fluxes. This selected threshold is
validated through visual inspections. Note that the median energy flux of 300 keV trapped
electrons measured near the equator at L~5 (L~3) is around 10° (10) keV/(s'sr-cm®-MeV) by
Van Allen Probes (Shen et al., 2017). By incorporating the criterion mentioned above, which
stipulates that the peak precipitation ratio should be below 100 keV, CSS-driven precipitation is
excluded.

We apply these selection criteria to ELFIN measurements between 2019 and 2022 to obtain
statistical properties of whistler-mode wave-driven electron precipitation in the following section.

3 Statistical Results
3.1 Pitch Angle Distribution

We record the electron pitch angle distribution measured by ELFIN from ~50 keV to 6 MeV
during selected whistler wave-driven precipitation events. The pitch angle along a single look
direction changes with the spacecraft’s spin. The changing rate of pitch angle depends on the
angle between the spin plane and the background magnetic field direction. To obtain an unbiased
dataset due to the inclusion of different samples of events, in each half spin (from the smallest to
the largest pitch angle), we linearly interpolate the observed electron flux on a logarithmic scale
onto the pitch angle grids to be used for our following statistical analyses. We also require that
each half spin measurements cover pitch angles at least from 30° to 150°. Therefore, all selected
events (half spin measurements) are included in each pitch angle bin and included only once. We
flipped pitch angles observed in the southern hemisphere so that a pitch angle close to 0° (180°)
points towards the loss cone (anti-loss cone).

Figures 2a—2d show the median electron energy flux as a function of pitch angle sorted by
the precipitation ratio at multiple energies over 63—753 keV. As the loss cone fills up (i.e., from
small to large precipitation ratios), there is a continuous trend of increasing trapped flux,
resulting in highly efficient electron precipitation into the loss cone during large precipitation
ratio events. This trend is observed for all the energy channels and is most significant at 63 keV,
which shows around one order of magnitude stronger precipitating flux during large precipitation
ratio events (> 0.7) than those during small ratio events (0.1-0.2). Figures 2e—2h show the
normalized distribution by the energy flux at the 90° pitch angle. It shows that events with a
larger precipitation ratio can extend to significantly higher energies (at least 520 keV), though
the high-energy precipitation is less efficient. These results highlight the importance of large
ratio events, likely driven by intense whistler waves, in filling the loss cone at low energies and
extending to higher energies. Electrons at > 90° pitch angles are mirroring back to the equator.
Overfilling events with a precipitation ratio greater than one, which might be caused by
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nonlinear wave-particle interactions between electrons and oblique chorus waves (X.-J. Zhang et
al., 2022), are included in the category of precipitation ratio > 0.7.

3.2 Correlation Between Electron Precipitation Ratio at 63 keV and Higher Energies

We evaluate the correlation between the precipitation ratio at 63 keV and that at higher energies
to further examine how the precipitation ratio changes from tens of keV to hundreds of keV.
Figure 3a shows an example of the analysis at MLT ~14 h. The precipitation ratio at 183 keV
increases as the precipitation ratio at 63 keV increases. Based on the quasi-linear theory, electron
precipitation ratio can be estimated (Ni et al., 2014b) as following

2 [} Io[Zo(B)t)T-dt
Io[Zo (E)] ’

x(E) = (1)

where [ is the modified Bessel function of the first kind, Z, = /ﬁ is the square root of
aa~ILC

the ratio of strong diffusion limit and pitch angle diffusion rate at the loss cone, and T is an
integration variable. For a given dipole L shell, Dgp is fixed and the precipitation ratio only
depends on the < D,, > |, for various energies. Therefore, the ratio of precipitation between
different energy channels only depends on the < D,, > |, of these two energy channels and
can be explicitly calculated (Figure 4). The calculated relation between precipitation ratios of 63
keV and higher energy electrons indicates that although the relation of precipitation ratios at two
energies exhibits an exponential-like dependence on the precipitation ratio, a linear approach is
well enough to capture this relation at a precipitation ratio of 63 keV electrons < 0.8. In this work,
we therefore use linear fitting to precipitation ratios below 0.8 to simplify the process to compare
the efficiencies of extending to higher energies for the studied categories. We can reasonably
assume that the precipitation ratio at 183 keV decreases to zero when the ratio at 63 keV is zero.
The red line in Figure 3a represents the fitted line to the observations, with a slope £=0.49.
Figure 3b is another example of the fitting analysis applied to a higher energy channel at 520
keV. We apply this analysis to multiple energies and MLTs, and obtain & values as a function of
energy and MLT, as shown in Figure 3c. The slope k decreases with increasing energy,
indicating that the whistler-mode wave-driven precipitation ratio decreases with increasing
energy above 63 keV, as also expected from quasi-linear theory. More interestingly, it shows that
the slope £ is larger on the dayside (6 < MLT < 18) for energies up to 500 keV. Electrons at >
700 keV are not always observed, thus potentially resulting in a large uncertainty in the statistical
values. This suggests that dayside whistler-mode waves result in a harder energy spectrum of
electron precipitation ratio compared to other local times, possibly due to the dependence of the
latitudinal extent of whistler waves on MLT. Previous statistical surveys indicate that dayside
whistler-mode waves can extend to higher latitudes (Agapitov et al., 2018; W. Li et al., 2009;
Meredith et al., 2012, 2021), driving higher-energy electron precipitation due to the increased
minimum resonant energy. In addition to the precipitation ratio, the energy spectrum of trapped
energetic electron fluxes at the equator is harder on the dayside than on the nightside due to
electron drift and pitch angle scattering loss (Ma et al., 2020). All these factors potentially lead to
the obtained k value to be higher on the dayside than on the nightside.
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3.3 Preferential Location and Geomagnetic Conditions of Whistler Wave-Driven
Precipitation Events

Lastly, we assess where and when electron precipitation events driven by whistler-mode
waves occur. Figure 5 shows the occurrence rate and average AE* in an L-MLT map categorized
by the precipitation ratio of electrons at 63 keV.

Small ratio events (0.1-0.2) occur quite evenly across L and MLT, with an occurrence rate
ranging from ~20% to 40% (Figure 5a), suggesting that both chorus and hiss may drive these
small ratio events. For events with a precipitation ratio of 0.2 to 0.4, the occurrence rates
decrease to ~5% to 15%, with a preferential occurrence at L > 4 and a peak in the postnoon
sector (Figure 5b). This peak is potentially caused by plume hiss, which frequently occurs in the
afternoon sector (Chan & Holzer, 1976; R. Shi et al., 2019). For events with higher precipitation
ratios (0.4—0.7), the relatively high occurrence rates move to L > 5, peaking from midnight to
prenoon and in the afternoon sector with a gap near noon (Figure 5c¢). This suggests a combined
effect of electron precipitation driven by chorus and plume hiss. For large ratio precipitation
events greater than 0.7, events are mostly concentrated in the midnight to noon sector at large L
shells with a peak occurrence rate below ~5% (Figure 5d), consistent with the global occurrence
map of large amplitude chorus (e.g., Li et al., 2011). A small portion of large precipitation events
are located in the postnoon sector, may be related to plume hiss. The global occurrence rate
distribution sorted by precipitation ratio is mostly consistent with the chorus wave distribution at
varying amplitudes (W. Li et al., 2009, 2011) from midnight to noon. Small amplitude chorus
waves can be frequently observed in a broad range of L shells and MLTs, while large amplitude
chorus waves tend to be concentrated from midnight to pre-noon. However, in the postnoon
sector, a high occurrence rate is observed for small to moderate precipitation ratio events (0.2 <
Ratio < 0.7) , though it is not contiguous with the chorus wave distribution. This may be due to
contributions from other mechanisms, such as precipitation driven by plasmaspheric hiss or
plume hiss, or ULF wave modulated precipitation near the flanks (Bashir et al., 2022; Brito et al.,
2012, 2015; W. Li et al., 2019; Ma et al., 2021; X. Shi et al., 2022; Yin et al., 2023; W. Zhang et
al., 2019).

Figures 5e-5h show the average AE* in each L-MLT bin categorized by the precipitation
ratio. Small precipitation ratio (0.1-0.2) events are observed during an average AE* of ~450 nT
(Figure 5e). Events with increasing precipitation ratios tend to be observed alongside rising
average AE* (Figures 5e-5h). This is consistent with the feature of stronger chorus and hiss wave
activity during periods of larger AE*. Moreover, lower L shell electron precipitation events in
each category are roughly associated with more intense geomagnetic activity. This trend is
observed for events with precipitation ratios of < 0.7, and cannot be concluded for precipitation
ratios > (0.7 due to the low sample numbers. As reported, hiss waves are much stronger closer to
the edge of the plasmapause (AL < ~2) and become weaker deep inside the plasmasphere
(Malaspina et al., 2016). The plasmasphere will become significantly eroded and move closer to
the Earth during intense geomagnetic activity. This may potentially serve to explain the cause of
the observed feature that lower L shell electron precipitation is associated with more intense
geomagnetic activity.

4 Summary

In this study, we used pitch angle-resolved electron measurements from the dual-probe
ELFIN mission at LEO to statistically evaluate the properties of whistler wave driven



284
285

286
287
288

289
290
291

292
293
294
295

296
297
298

299
300
301
302
303
304
305
306
307

308
309
310
311
312
313
314
315
316

317
318
319

320

321
322

Confidential manuscript submitted to Journal of Geophysical Research: Space Physics

precipitation, by focusing on their ratio dependence and pitch angle distribution. Our main
findings are summarized below.

(a) Large electron precipitation ratio events (at 63 keV), likely driven by intense whistler-
mode waves, are associated with high flux outside the loss cone, and extend to higher
energies at least up to several hundred keV;

(b) Dayside whistler-mode waves drive larger precipitation ratios at higher energies,
extending up to ~500 keV, compared to those on the nightside, likely due to the
latitudinal distribution of dayside waves extending to higher latitudes;

(c) Small electron precipitation ratio events are widely distributed across L shells from 3 to 8
at all MLTs, while large electron precipitation ratio events exhibit two peaks at L > 5:
one from the midnight to prenoon sector, and another in the afternoon. Those two peaks
are suggested to be driven by large-amplitude chorus waves and plume hiss, respectively.

(d) Whistler wave-driven precipitation events show a clear dependence on geomagnetic
conditions, with larger precipitation ratio events being associated with more intense
geomagnetic activity.

Based on the above statistical results and previous studies, we highlight the importance of
intense whistler mode waves in driving electron precipitation, especially at higher energies
(~hundreds of keV), into the upper atmosphere. Although the occurrence rate of intense whistler
waves 1s much lower than moderate amplitude whistler waves (X.-J. Zhang et al., 2019, 2022),
they are found to be correlated with higher trapped flux (e.g., about one order of magnitude
higher trapped flux at 63 keV), leading to extremely efficient electron precipitation. Dayside
whistler waves are also likely to play an important role in precipitating higher energy electrons
potentially due to the fact that dayside whistler waves can extend to higher latitudes, compared to
the nightside whistler waves (Meredith et al., 2012).

With assumptions on wave and plasma parameters, including wave normal distribution, wave
latitudinal distribution, total electron density, and other parameters, precipitation ratio estimated
from only two look directions from the POES satellite has been used to derive global chorus
wave distributions (W. Li et al., 2013a; Ni et al.,, 2014a). A full pitch angle and energy
distribution of electron precipitation has the potential to be used to largely advance the capability
of inferring global chorus wave distributions from the LEO satellites. Moreover, a fine pitch
angle and energy distribution of electron precipitation is crucial for accurately understanding the
impact of electron precipitation on the upper atmosphere, as smaller pitch angle inside the loss
cone and higher energy electrons may reach lower altitudes.

The obtained slope between the precipitation ratio and electron energy can be applied to
electron measurements by LEO satellites, such as POES satellites, which lack a fine energy
resolution, to estimate the energy spectra of electron precipitation driven by whistler mode waves.
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678  Figure 1. Overview of solar wind and geomagnetic conditions from the OMNI dataset and
679  electron flux observed by ELFIN-A. (a) Solar wind dynamic pressure (black) and interplanetary
680  magnetic field (IMF) B, component (red) in GSM coordinates. (b) Geomagnetic AE (black) and
681  AE* (maximum value in the preceding three hours; blue) index. (c—d) Pitch angle distribution of
682  50-160 keV and 345-900 keV electrons, respectively. (e—f) Energy spectrogram of trapped and
683  precipitating electron energy flux. (g) Energy spectrogram of electron precipitation ratio
684  (calculated as the average precipitating energy flux divided by the average trapped energy flux).
685  (h) Selected electron precipitation ratio driven by whistler mode waves.
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Figure 2. Statistical results of whistler wave-driven electron pitch angle distributions from the
ELFIN observations. (a—d) Median pitch angle distributions of electron energy flux for events
with a precipitation ratio at 63 keV from 0.1 to 0.2, from 0.2 to 0.4, from 0.4 to 0.7, and larger
than 0.7, respectively color coded for various energies from 63 keV to 753 keV. (e-h) Same
format as (a-d) but for the pitch angle distributions divided by the flux at 90° pitch angle in each

energy channel.
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Figure 3. Relation of precipitation ratios between different energies. (a) Median (blue dotted line)
and quartiles (error bar) of precipitation ratio at 183 keV as a function of precipitation ratio at 63

keV. The red line illustrates the linear fitting of the median values with its slope £ marked on the

panel. Black dashed line represents a slope value of 1 for reference. (b) Similar to panel (a) but

for 520 keV. (c) Fitted slope value k as a function of MLT color coded for various energies. (d)

Number of samples (each sample is one half spin measurement, ~1.5 s) for precipitation events

with a moderate precipitation ratio (0.1 — 0.6; solid line) and precipitation events with an intense
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Figure 5. Occurrence rate (top) and average AE* (bottom) of whistler wave-driven precipitation
events sorted by precipitation ratio at 63 keV. (a-d) Occurrence rate of whistler wave-driven
electron precipitation events in the L-MLT coordinates with a precipitation ratio of 0.1-0.2, 0.2—
0.4, 0.4-0.7, and > 0.7, respectively. (e-f) Same format as panels (a-d) but for average AE*.
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