

1

2 **Whistler Mode Wave-Driven Electron Scattering Properties from ELFIN**
3 **Measurements of the Precipitation Ratio**

4

5 **Xiao-Chen Shen¹, Wen Li¹, Qianli Ma^{1,2}, Murong Qin¹, Luisa Capannolo¹, Miroslav
6 Hanzelka^{1,3,4}, Vassilis Angelopoulos⁵, Anton V. Artemyev⁵, Colin Wilkins⁵, Jiang Liu⁵, and
7 Ethan Tsai⁵**

8 ¹ Center for Space Physics, Boston University, Boston, MA, USA

9 ² Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA,
10 USA

11 ³ GFZ German Research Centre for Geosciences, Potsdam, Germany

12 ⁴ Department of Space Physics, Institute of Atmospheric Physics of the Czech Academy of
13 Sciences, Prague, Czechia

14 ⁵ Department of Earth, Planetary, and Space Sciences, UCLA, Los Angeles, CA, USA

15

16 Corresponding authors:

17 Xiao-Chen Shen (sdusxc@gmail.com)

18

19 **Key Points:**

20

21

22

23

24

25

26

- Properties of electron scattering driven by whistler waves are revealed from ELFIN measurements of precipitation ratio
- This precipitation efficiently extends to high energies when the 63 keV electron precipitation ratio becomes large especially on dayside
- Strong precipitation at ~63 keV correlates with active geomagnetic levels and is concentrated over the midnight-dawn-noon sector at $L > 5$

27 **Abstract**

28 Whistler-mode chorus and hiss waves play an important role in Earth's radiation belt electron
 29 dynamics. Direct measurements of whistler wave-driven electron precipitation and the resultant
 30 pitch angle distribution were previously limited by the insufficient resolution of low Earth orbit
 31 satellites. In this study, we use recent measurements from the Electron Losses and Fields
 32 INvestigation (ELFIN) CubeSats, which provide energy- and pitch angle-resolved electron
 33 distributions to statistically evaluate electron scattering properties driven by whistler waves. Our
 34 survey indicates that events with increasing precipitating-to-trapped flux ratios (evaluated at 63
 35 keV unless otherwise specified) correlate with increasing trapped flux at energies up to \sim 750
 36 keV. Weak precipitation events (precipitation ratio <0.2) are evenly distributed, while stronger
 37 precipitation events tend to be concentrated at $L>5$ over midnight-to-noon local times during
 38 disturbed geomagnetic conditions. These results are crucial for characterizing the whistler-mode
 39 wave driven electron scattering properties and evaluating its impact on the ionosphere.

40 **Plain Language Summary**

41 Chorus and hiss are two key whistler-mode electromagnetic waves in Earth's magnetosphere
 42 that interact with trapped energetic electrons, scattering them into the upper atmosphere.
 43 However, previous satellites at low Earth orbit (LEO) had limited resolution in measuring
 44 electron pitch angle (the angle between the electron velocity and the magnetic field) and energy,
 45 making it challenging to fully understand whistler wave-driven electron precipitation properties.
 46 In this study, we use recently acquired measurements from Electron Losses and Fields
 47 INvestigation (ELFIN) CubeSats, which provide full electron energy and pitch angle
 48 distributions from LEO, to statistically evaluate whistler wave-driven electron precipitation
 49 properties. We sort the identified events by the precipitation ratio (the ratio of the precipitating to
 50 trapped flux). Our results indicate that (a) events with large precipitation ratios correlate with
 51 increased trapped flux, indicating highly efficient electron precipitation; (b) dayside precipitation
 52 occurs at higher energies compared to nightside precipitation; (c) small ratio events distribute
 53 evenly across local times, while large ratio events tend to be concentrated at large distances from
 54 midnight to noon local times, particularly during more intense geomagnetic activities. These
 55 findings are critical for characterizing the electron scattering and precipitation properties and
 56 assessing their impact on the ionosphere.

57 **1 Introduction**

58 Whistler mode chorus and hiss waves are right-hand polarized electromagnetic emissions
 59 typically observed outside and inside the plasmasphere, respectively (e.g., Agapitov et al., 2018;
 60 Aryan et al., 2022; W. Li et al., 2009; Meredith et al., 2012, 2018, 2021). Chorus waves are
 61 discrete and coherent emissions with frequencies over $0.1\text{--}0.8 f_{ce}$ (f_{ce} denotes the electron
 62 cyclotron frequency) and normally have a gap near $0.5 f_{ce}$ likely due to Landau damping (J. Li et
 63 al., 2019) separating them into lower ($<0.5f_{ce}$) and upper ($>0.5f_{ce}$) bands. The typical scale size
 64 of chorus waves is several hundred kilometers as determined from multi-satellite observations
 65 (Agapitov et al., 2017; Shen et al., 2019; S. Zhang et al., 2021). Chorus wave distributions
 66 exhibit a strong dependence on geomagnetic conditions, as electron injection during substorms is
 67 an important source of chorus waves (Meredith et al., 2001, 2020). Hiss waves are broadband
 68 incoherent emissions with frequencies over 20–2000 Hz (W. Li et al., 2013b; Meredith et al.,
 69 2018). Sources of hiss waves in Earth's magnetosphere are complex and include propagation

70 from chorus waves and/or lightning-generated whistler waves, and local generation due to
 71 plasma instabilities (Bortnik et al., 2008, 2009; Chen et al., 2012; Draganov et al., 1992; He et al.,
 72 2019, 2020; Kim et al., 2015; W. Li et al., 2013b; Meredith et al., 2006). Hiss waves are mostly
 73 observed inside the plasmasphere with an average wave amplitude of tens of pT on the dayside
 74 (Malaspina et al., 2016, 2017; Meredith et al., 2018). Large amplitude hiss waves tend to be
 75 observed close to the plasmapause or in plumes from the post-midnight to the noon sector during
 76 geomagnetically active periods (Shen et al., 2024).

77 Both chorus and hiss waves play an important role in scattering energetic electrons, ranging
 78 from several keV to hundreds of keV, into the loss cone through resonant interactions.
 79 Subsequently, these electrons precipitate into the Earth's atmosphere, potentially contributing to
 80 electron microbursts (Breneman et al., 2017; Chen et al., 2021, 2022; Shumko et al., 2018) and
 81 the formation of pulsating and diffuse auroras (e.g., Bortnik & Thorne, 2007; Horne & Thorne,
 82 2003; W. Li et al., 2014, 2019; Ma et al., 2020, 2021, 2022; Ni et al., 2008, 2014b; Nishimura et
 83 al., 2010; Ozaki et al., 2018; Shen et al., 2023). Moreover, electron precipitation observed by
 84 multiple NOAA POES satellites has been used to infer the global distribution of chorus waves
 85 (W. Li et al., 2013a).

86 Although electron precipitation driven by chorus and hiss waves has been extensively studied
 87 (Bortnik & Thorne, 2007; H. Li et al., 2016; W. Li et al., 2014, 2019; Ma et al., 2020, 2021;
 88 Ozaki et al., 2019), high resolution electron measurements in both energy and pitch angle remain
 89 limited. In particular, a systematic analysis of pitch angle and energy-resolved electron
 90 precipitation distribution driven by whistler waves, directly measured at low altitudes, is still
 91 lacking. In this study, we utilize electron pitch angle and energy distributions recently measured
 92 by the Electron Losses and Fields INvestigation (ELFIN) CubeSats (2019-2022) to evaluate the
 93 detailed properties of whistler wave-driven electron precipitation into the Earth's upper
 94 atmosphere.

95 **2 Dataset and Event Analysis**

96 We use electron measurements from the Energetic Particle Detector for Electrons (EPDE)
 97 onboard the dual-CubeSat ELFIN mission (Angelopoulos et al., 2020). ELFIN was launched on
 98 September 15, 2018 into a Low Earth Orbit (LEO) at ~450 km altitude with an orbital period of
 99 ~90 minutes. The EPDE instrument provides differential electron flux in 16 energy channels
 100 from ~50 keV up to 6 MeV. The pitch angle is resolved by computing the angle between the
 101 detector's look direction and the magnetic field orientation from the IGRF model. Full pitch
 102 angle coverage is obtained in each half spin (~1.5 s). We bin ELFIN measurements in each half
 103 spin period to obtain the electron pitch angle distribution. The measurement from the EPDE
 104 electron detector is considered as saturated when total electron counts in all energy channels goes
 105 above 130k/s. These events often occur during large ratio electron precipitation events with a
 106 precipitation ratio around or above one (X.-J. Zhang et al., 2022). In this study, we have
 107 excluded saturated events and are not focusing on electron precipitation events with a
 108 precipitation ratio close or even larger than one. Therefore, our results are not affected by
 109 saturation events. A visual inspection is applied to remove data periods when the phase angle
 110 (the angle between the detector and the background magnetic field) is not well resolved or with
 111 contamination from solar energetic proton events. Additionally, the geomagnetic Auroral
 112 Electrojet (AE) index is used to evaluate the dependence of whistler wave-driven electron
 113 precipitation events on geomagnetic activity.

114 Figure 1 shows an example of ELFIN measurements of energetic electron distributions at
 115 low altitudes on January 27, 2021. During the event, the solar wind dynamic pressure (Figure 1a, black)
 116 remained low and relatively stable from 1 to 1.5 nPa for at least three hours before the
 117 ELFIN measurements (~1820 UT; marked by two dashed vertical red lines in Figures 1a–1b).
 118 The interplanetary magnetic field (IMF) B_z component in Geocentric Solar Magnetospheric
 119 (GSM) coordinates (Figure 1a, red) was negative and turned to values close to zero ~80 minutes
 120 prior to the ELFIN observations. A moderate substorm occurred with AE* (the maximum AE
 121 during the preceding three hours) reaching up to ~500 nT (Figure 1b).

122 Within ~4.5 minutes, from 18:17:30 to 18:23:00 UT, ELFIN-A traveled from $L \sim 3.5$ to $L \sim 7$,
 123 providing electron pitch angle measurements at various energies (Figures 1c–1d) across the outer
 124 radiation belt. Starting from ~18:19:40 UT, a significant electron flux intensification is observed
 125 for both trapped (near 90°) and precipitating (within the local loss cone close to 180°) electrons.
 126 These electron flux enhancements are observed until $L \sim 6.4$ and are more intense at tens of keV
 127 energy channels than at hundreds of keV energy channels (Figures 1c–1d). In each half-spin, the
 128 ELFIN CubeSat can measure a full range of pitch angles. During each half-spin, the average flux
 129 in the local loss cone, precipitating into the Earth's upper atmosphere, is calculated as the
 130 average flux inside the loss cone; the average flux locally trapped between the loss cone and the
 131 anti-loss cone is calculated as the average flux outside the loss cone. Two bins very close to the
 132 local loss cone are excluded in the calculation to reduce the influence of uncertainties in
 133 determining the realistic loss cone. The bounce loss cone is estimated from the IGRF model by
 134 assuming particles to be lost at 100 km above the Earth surface. The loss cone angle at the
 135 ELFIN altitudes is nearly constant around 67°. By calculating the average energy flux outside
 136 and inside the loss cone (refers to the half-bounce loss cone in this study) respectively, locally
 137 trapped and precipitating energy fluxes are shown in Figures 1e–1f. Energy spectrograms of
 138 trapped and precipitating electrons show that during the period of enhanced electron flux, the
 139 energy flux of electrons from tens of keV up to < 1 MeV increases significantly. The
 140 precipitation ratio, which is the ratio between precipitating and trapped electron energy flux
 141 (Figure 1g), exhibits a value close to 1 during several strong flux enhancements at low energies
 142 (from 18:19:40 to 18:20:50 UT). A value close to one indicates a full loss cone (i.e., strong pitch
 143 angle diffusion). This electron precipitation is suggested to be primarily caused by pitch angle
 144 diffusion by whistler mode waves near the magnetic equator. Whistler mode chorus wave is not
 145 prominent on the dusk side near MLT~18 at $L \sim 4.8$, while whistler mode hiss and plume hiss are
 146 more frequently occurring in this region (Meredith et al., 2021). Plasmaspheric hiss and plume
 147 hiss are typically present on the dayside and duskside especially when the plasmasphere expands
 148 (Meredith et al., 2021; W. Zhang et al., 2019). Both chorus and hiss waves drive electron
 149 precipitation with a similar energy spectrum in the regions of interest, peaking at tens of keV and
 150 decreasing with increasing energy (Shen et al., 2023). At $L < 3$, the peak energy of electron
 151 precipitation driven by hiss typically occurs at hundreds of keV, which is the main cause of the
 152 energy and L dependent slot region and the bump-on-tail electron distribution (Claudepierre et
 153 al., 2019; Ma et al., 2016; Zhao et al., 2019). From ELFIN measurements, electron precipitation
 154 driven by chorus and hiss cannot be well separated. Therefore, in this study, we present
 155 precipitation properties from the combined effects of chorus and hiss waves.

156 Electron precipitation driven by electromagnetic ion cyclotron (EMIC) waves peaks at
 157 relativistic energies (Angelopoulos et al., 2023; Blum et al., 2015; Capannolo et al., 2022, 2023;
 158 Jordanova et al., 2008; Miyoshi et al., 2008; Omura & Zhao, 2012; Qin et al., 2018, 2020; X.-J.

159 Zhang et al., 2021) and can extend to subrelativistic electrons (Capannolo et al., 2018, 2019),
 160 potentially/partially due to nonresonant wave-particle interactions (An et al., 2022; Chen et al.,
 161 2016). We require the peak precipitation ratio to be at energy below 100 keV to exclude EMIC-
 162 driven precipitation. Current sheet scattering (CSS) is mostly observed on the nightside,
 163 exhibiting an energy dispersion feature along the L shell: higher energy precipitation occurs at
 164 lower L shells, while lower energy precipitation occurs at higher L shells (Hajducek et al., 2019;
 165 Sergeev et al., 1983; Wilkins et al., 2023; Yue et al., 2014). We restrict our analysis to $3 < L < 8$,
 166 covering the outer radiation belt and require the minimum energy flux of 300 keV trapped
 167 electrons to be greater than $10^6 \text{ keV/(s}\cdot\text{sr}\cdot\text{cm}^2\cdot\text{MeV)}$ to ensure that the measurements are within
 168 the outer radiation belt with sufficient high-energy electron fluxes. This selected threshold is
 169 validated through visual inspections. Note that the median energy flux of 300 keV trapped
 170 electrons measured near the equator at $L \sim 5$ ($L \sim 3$) is around 10^9 (10^7) $\text{keV/(s}\cdot\text{sr}\cdot\text{cm}^2\cdot\text{MeV)}$ by
 171 Van Allen Probes (Shen et al., 2017). By incorporating the criterion mentioned above, which
 172 stipulates that the peak precipitation ratio should be below 100 keV, CSS-driven precipitation is
 173 excluded.

174 We apply these selection criteria to ELFIN measurements between 2019 and 2022 to obtain
 175 statistical properties of whistler-mode wave-driven electron precipitation in the following section.

176 3 Statistical Results

177 3.1 Pitch Angle Distribution

178 We record the electron pitch angle distribution measured by ELFIN from ~ 50 keV to 6 MeV
 179 during selected whistler wave-driven precipitation events. The pitch angle along a single look
 180 direction changes with the spacecraft's spin. The changing rate of pitch angle depends on the
 181 angle between the spin plane and the background magnetic field direction. To obtain an unbiased
 182 dataset due to the inclusion of different samples of events, in each half spin (from the smallest to
 183 the largest pitch angle), we linearly interpolate the observed electron flux on a logarithmic scale
 184 onto the pitch angle grids to be used for our following statistical analyses. We also require that
 185 each half spin measurements cover pitch angles at least from 30° to 150° . Therefore, all selected
 186 events (half spin measurements) are included in each pitch angle bin and included only once. We
 187 flipped pitch angles observed in the southern hemisphere so that a pitch angle close to 0° (180°)
 188 points towards the loss cone (anti-loss cone).

189 Figures 2a–2d show the median electron energy flux as a function of pitch angle sorted by
 190 the precipitation ratio at multiple energies over 63–753 keV. As the loss cone fills up (i.e., from
 191 small to large precipitation ratios), there is a continuous trend of increasing trapped flux,
 192 resulting in highly efficient electron precipitation into the loss cone during large precipitation
 193 ratio events. This trend is observed for all the energy channels and is most significant at 63 keV,
 194 which shows around one order of magnitude stronger precipitating flux during large precipitation
 195 ratio events (> 0.7) than those during small ratio events (0.1–0.2). Figures 2e–2h show the
 196 normalized distribution by the energy flux at the 90° pitch angle. It shows that events with a
 197 larger precipitation ratio can extend to significantly higher energies (at least 520 keV), though
 198 the high-energy precipitation is less efficient. These results highlight the importance of large
 199 ratio events, likely driven by intense whistler waves, in filling the loss cone at low energies and
 200 extending to higher energies. Electrons at $> 90^\circ$ pitch angles are mirroring back to the equator.
 201 Overfilling events with a precipitation ratio greater than one, which might be caused by

202 nonlinear wave-particle interactions between electrons and oblique chorus waves (X.-J. Zhang et
203 al., 2022), are included in the category of precipitation ratio > 0.7 .

204 **3.2 Correlation Between Electron Precipitation Ratio at 63 keV and Higher Energies**

205 We evaluate the correlation between the precipitation ratio at 63 keV and that at higher energies
206 to further examine how the precipitation ratio changes from tens of keV to hundreds of keV.
207 Figure 3a shows an example of the analysis at MLT \sim 14 h. The precipitation ratio at 183 keV
208 increases as the precipitation ratio at 63 keV increases. Based on the quasi-linear theory, electron
209 precipitation ratio can be estimated (Ni et al., 2014b) as following

210
$$\chi(E) = \frac{2 \int_0^1 I_0[Z_0(E)\tau] \cdot \tau \cdot d\tau}{I_0[Z_0(E)]}, \quad (1)$$

211 where I_0 is the modified Bessel function of the first kind, $Z_0 = \sqrt{\frac{D_{SD}}{(\langle D_{\alpha\alpha} \rangle|_{LC})}}$ is the square root of
212 the ratio of strong diffusion limit and pitch angle diffusion rate at the loss cone, and τ is an
213 integration variable. For a given dipole L shell, D_{SD} is fixed and the precipitation ratio only
214 depends on the $\langle D_{\alpha\alpha} \rangle|_{LC}$ for various energies. Therefore, the ratio of precipitation between
215 different energy channels only depends on the $\langle D_{\alpha\alpha} \rangle|_{LC}$ of these two energy channels and
216 can be explicitly calculated (Figure 4). The calculated relation between precipitation ratios of 63
217 keV and higher energy electrons indicates that although the relation of precipitation ratios at two
218 energies exhibits an exponential-like dependence on the precipitation ratio, a linear approach is
219 well enough to capture this relation at a precipitation ratio of 63 keV electrons < 0.8 . In this work,
220 we therefore use linear fitting to precipitation ratios below 0.8 to simplify the process to compare
221 the efficiencies of extending to higher energies for the studied categories. We can reasonably
222 assume that the precipitation ratio at 183 keV decreases to zero when the ratio at 63 keV is zero.
223 The red line in Figure 3a represents the fitted line to the observations, with a slope $k=0.49$.
224 Figure 3b is another example of the fitting analysis applied to a higher energy channel at 520
225 keV. We apply this analysis to multiple energies and MLTs, and obtain k values as a function of
226 energy and MLT, as shown in Figure 3c. The slope k decreases with increasing energy,
227 indicating that the whistler-mode wave-driven precipitation ratio decreases with increasing
228 energy above 63 keV, as also expected from quasi-linear theory. More interestingly, it shows that
229 the slope k is larger on the dayside ($6 < \text{MLT} < 18$) for energies up to 500 keV. Electrons at $>$
230 700 keV are not always observed, thus potentially resulting in a large uncertainty in the statistical
231 values. This suggests that dayside whistler-mode waves result in a harder energy spectrum of
232 electron precipitation ratio compared to other local times, possibly due to the dependence of the
233 latitudinal extent of whistler waves on MLT. Previous statistical surveys indicate that dayside
234 whistler-mode waves can extend to higher latitudes (Agapitov et al., 2018; W. Li et al., 2009;
235 Meredith et al., 2012, 2021), driving higher-energy electron precipitation due to the increased
236 minimum resonant energy. In addition to the precipitation ratio, the energy spectrum of trapped
237 energetic electron fluxes at the equator is harder on the dayside than on the nightside due to
238 electron drift and pitch angle scattering loss (Ma et al., 2020). All these factors potentially lead to
239 the obtained k value to be higher on the dayside than on the nightside.

240 **3.3 Preferential Location and Geomagnetic Conditions of Whistler Wave-Driven**
 241 **Precipitation Events**

242 Lastly, we assess where and when electron precipitation events driven by whistler-mode
 243 waves occur. Figure 5 shows the occurrence rate and average AE* in an L-MLT map categorized
 244 by the precipitation ratio of electrons at 63 keV.

245 Small ratio events (0.1–0.2) occur quite evenly across L and MLT, with an occurrence rate
 246 ranging from ~20% to 40% (Figure 5a), suggesting that both chorus and hiss may drive these
 247 small ratio events. For events with a precipitation ratio of 0.2 to 0.4, the occurrence rates
 248 decrease to ~5% to 15%, with a preferential occurrence at $L > 4$ and a peak in the postnoon
 249 sector (Figure 5b). This peak is potentially caused by plume hiss, which frequently occurs in the
 250 afternoon sector (Chan & Holzer, 1976; R. Shi et al., 2019). For events with higher precipitation
 251 ratios (0.4–0.7), the relatively high occurrence rates move to $L > 5$, peaking from midnight to
 252 prenoon and in the afternoon sector with a gap near noon (Figure 5c). This suggests a combined
 253 effect of electron precipitation driven by chorus and plume hiss. For large ratio precipitation
 254 events greater than 0.7, events are mostly concentrated in the midnight to noon sector at large L
 255 shells with a peak occurrence rate below ~5% (Figure 5d), consistent with the global occurrence
 256 map of large amplitude chorus (e.g., Li et al., 2011). A small portion of large precipitation events
 257 are located in the postnoon sector, may be related to plume hiss. The global occurrence rate
 258 distribution sorted by precipitation ratio is mostly consistent with the chorus wave distribution at
 259 varying amplitudes (W. Li et al., 2009, 2011) from midnight to noon. Small amplitude chorus
 260 waves can be frequently observed in a broad range of L shells and MLTs, while large amplitude
 261 chorus waves tend to be concentrated from midnight to pre-noon. However, in the postnoon
 262 sector, a high occurrence rate is observed for small to moderate precipitation ratio events ($0.2 <$
 263 $\text{Ratio} < 0.7$), though it is not contiguous with the chorus wave distribution. This may be due to
 264 contributions from other mechanisms, such as precipitation driven by plasmaspheric hiss or
 265 plume hiss, or ULF wave modulated precipitation near the flanks (Bashir et al., 2022; Brito et al.,
 266 2012, 2015; W. Li et al., 2019; Ma et al., 2021; X. Shi et al., 2022; Yin et al., 2023; W. Zhang et
 267 al., 2019).

268 Figures 5e-5h show the average AE* in each L-MLT bin categorized by the precipitation
 269 ratio. Small precipitation ratio (0.1–0.2) events are observed during an average AE* of ~450 nT
 270 (Figure 5e). Events with increasing precipitation ratios tend to be observed alongside rising
 271 average AE* (Figures 5e-5h). This is consistent with the feature of stronger chorus and hiss wave
 272 activity during periods of larger AE*. Moreover, lower L shell electron precipitation events in
 273 each category are roughly associated with more intense geomagnetic activity. This trend is
 274 observed for events with precipitation ratios of < 0.7 , and cannot be concluded for precipitation
 275 ratios > 0.7 due to the low sample numbers. As reported, hiss waves are much stronger closer to
 276 the edge of the plasmapause ($\Delta L < \sim 2$) and become weaker deep inside the plasmasphere
 277 (Malaspina et al., 2016). The plasmasphere will become significantly eroded and move closer to
 278 the Earth during intense geomagnetic activity. This may potentially serve to explain the cause of
 279 the observed feature that lower L shell electron precipitation is associated with more intense
 280 geomagnetic activity.

281 **4 Summary**

282 In this study, we used pitch angle-resolved electron measurements from the dual-probe
 283 ELFIN mission at LEO to statistically evaluate the properties of whistler wave driven

284 precipitation, by focusing on their ratio dependence and pitch angle distribution. Our main
 285 findings are summarized below.

286 (a) Large electron precipitation ratio events (at 63 keV), likely driven by intense whistler-
 287 mode waves, are associated with high flux outside the loss cone, and extend to higher
 288 energies at least up to several hundred keV;

289 (b) Dayside whistler-mode waves drive larger precipitation ratios at higher energies,
 290 extending up to ~500 keV, compared to those on the nightside, likely due to the
 291 latitudinal distribution of dayside waves extending to higher latitudes;

292 (c) Small electron precipitation ratio events are widely distributed across L shells from 3 to 8
 293 at all MLTs, while large electron precipitation ratio events exhibit two peaks at $L > 5$:
 294 one from the midnight to prenoon sector, and another in the afternoon. Those two peaks
 295 are suggested to be driven by large-amplitude chorus waves and plume hiss, respectively.

296 (d) Whistler wave-driven precipitation events show a clear dependence on geomagnetic
 297 conditions, with larger precipitation ratio events being associated with more intense
 298 geomagnetic activity.

299 Based on the above statistical results and previous studies, we highlight the importance of
 300 intense whistler mode waves in driving electron precipitation, especially at higher energies
 301 (~hundreds of keV), into the upper atmosphere. Although the occurrence rate of intense whistler
 302 waves is much lower than moderate amplitude whistler waves (X.-J. Zhang et al., 2019, 2022),
 303 they are found to be correlated with higher trapped flux (e.g., about one order of magnitude
 304 higher trapped flux at 63 keV), leading to extremely efficient electron precipitation. Dayside
 305 whistler waves are also likely to play an important role in precipitating higher energy electrons
 306 potentially due to the fact that dayside whistler waves can extend to higher latitudes, compared to
 307 the nightside whistler waves (Meredith et al., 2012).

308 With assumptions on wave and plasma parameters, including wave normal distribution, wave
 309 latitudinal distribution, total electron density, and other parameters, precipitation ratio estimated
 310 from only two look directions from the POES satellite has been used to derive global chorus
 311 wave distributions (W. Li et al., 2013a; Ni et al., 2014a). A full pitch angle and energy
 312 distribution of electron precipitation has the potential to be used to largely advance the capability
 313 of inferring global chorus wave distributions from the LEO satellites. Moreover, a fine pitch
 314 angle and energy distribution of electron precipitation is crucial for accurately understanding the
 315 impact of electron precipitation on the upper atmosphere, as smaller pitch angle inside the loss
 316 cone and higher energy electrons may reach lower altitudes.

317 The obtained slope between the precipitation ratio and electron energy can be applied to
 318 electron measurements by LEO satellites, such as POES satellites, which lack a fine energy
 319 resolution, to estimate the energy spectra of electron precipitation driven by whistler mode waves.

320 Acknowledgments

321 XS, WL, and QM would like to acknowledge the NASA grants 80NSSC20K0698,
 322 80NSSC20K0196, 80NSSC21K1312, 80NSSC20K0704, and 80NSSC24K0572,

323 80NSSC24K0239, 80NSSC24K0266, and NSF grants AGS-2019950, AGS-2225445, AGS-
324 2247774, AGS-1847818, and AGS-2402179. MH received funding from the Alexander von
325 Humboldt Foundation.

326

327 **Open Research**

328 Data from the ELFIN is publicly available at NASA's Space Physics Data Facility (ELFIN,
329 2024). The geomagnetic AE index is from Kyoto University (Nose et al., 2015). We use
330 SPEDAS in IDL to process data files (Angelopoulos et al., 2019). Data to reproduce statistical
331 results in Figures 2, 3, and 5 are made available to the public through Figshare (Shen et al., 2025).

332 **References**

333 Agapitov, O., Mourenas, D., Artemyev, A. V., Mozer, F. S., Hospodarsky, G., Bonnell, J., &
 334 Krasnoselskikh, V. (2018). Synthetic Empirical Chorus Wave Model From Combined
 335 Van Allen Probes and Cluster Statistics. *Journal of Geophysical Research: Space Physics*,
 336 123(1), 297–314. <https://doi.org/10.1002/2017JA024843>

337 Agapitov, O., Blum, L. W., Mozer, F. S., Bonnell, J. W., & Wygant, J. (2017). Chorus whistler
 338 wave source scales as determined from multipoint Van Allen Probe measurements:
 339 Chorus Whistler Wave Source Scales. *Geophysical Research Letters*, 44(6), 2634–2642.
 340 <https://doi.org/10.1002/2017GL072701>

341 An, X., Artemyev, A., Angelopoulos, V., Zhang, X., Mourenas, D., & Bortnik, J. (2022).
 342 Nonresonant Scattering of Relativistic Electrons by Electromagnetic Ion Cyclotron
 343 Waves in Earth's Radiation Belts. *Physical Review Letters*, 129(13), 135101.
 344 <https://doi.org/10.1103/PhysRevLett.129.135101>

345 Angelopoulos, V., Cruce, P., Drozdov, A., Grimes, E. W., Hatzigeorgiu, N., King, D. A., Larson,
 346 D., Lewis, J. W., McTiernan, J. M., Roberts, D. A., Russell, C. L., Hori, T., Kasahara, Y.,
 347 Kumamoto, A., Matsuoka, A., Miyashita, Y., Miyoshi, Y., Shinohara, I., Teramoto,
 348 M., ... Schroeder, P. (2019). The Space Physics Environment Data Analysis System
 349 (SPEDAS). *Space Science Reviews*, 215(1), 9. <https://doi.org/10.1007/s11214-018-0576-4>

351 Angelopoulos, V., Zhang, X.-J., Artemyev, A. V., Mourenas, D., Tsai, E., Wilkins, C., Runov,
 352 A., Liu, J., Turner, D. L., Li, W., Khurana, K., Wirz, R. E., Sergeev, V. A., Meng, X., Wu,
 353 J., Hartinger, M. D., Raita, T., Shen, Y., An, X., ... Zarifian, A. (2023). Energetic
 354 Electron Precipitation Driven by Electromagnetic Ion Cyclotron Waves from ELFIN's
 355 Low Altitude Perspective. *Space Science Reviews*, 219(5), 37.
 356 <https://doi.org/10.1007/s11214-023-00984-w>

357 Angelopoulos, V., Tsai, E., Bingley, L., Shaffer, C., Turner, D. L., Runov, A., Li, W., Liu, J.,
 358 Artemyev, A. V., Zhang, X.-J., Strangeway, R. J., Wirz, R. E., Shprits, Y. Y., Sergeev, V.
 359 A., Caron, R. P., Chung, M., Cruce, P., Greer, W., Grimes, E., ... Zhang, G. Y. (2020).
 360 The ELFIN Mission. *Space Science Reviews*, 216(5), 103.
 361 <https://doi.org/10.1007/s11214-020-00721-7>

362 Aryan, H., Bortnik, J., Sibeck, D. G., & Hospodarsky, G. (2022). Global Map of Chorus Wave
 363 Sizes in the Inner Magnetosphere. *Journal of Geophysical Research: Space Physics*,
 364 127(3), e2021JA029768. <https://doi.org/10.1029/2021JA029768>

365 Bashir, M. F., Artemyev, A., Zhang, X., & Angelopoulos, V. (2022). Energetic Electron
 366 Precipitation Driven by the Combined Effect of ULF, EMIC, and Whistler Waves.
 367 *Journal of Geophysical Research: Space Physics*, 127(1).
 368 <https://doi.org/10.1029/2021JA029871>

369 Blum, L. W., Halford, A., Millan, R., Bonnell, J. W., Goldstein, J., Usanova, M., Engebretson,
 370 M., Ohnsted, M., Reeves, G., Singer, H., Clilverd, M., & Li, X. (2015). Observations of
 371 coincident EMIC wave activity and duskside energetic electron precipitation on 18–19
 372 January 2013: EMIC Waves and Electron Precipitation. *Geophysical Research Letters*,
 373 42(14), 5727–5735. <https://doi.org/10.1002/2015GL065245>

374 Bortnik, J., Thorne, R. M., & Meredith, N. P. (2008). The unexpected origin of plasmaspheric
375 hiss from discrete chorus emissions. *Nature*, 452(7183), 62–66.
376 <https://doi.org/10.1038/nature06741>

377 Bortnik, J., Li, W., Thorne, R. M., Angelopoulos, V., Cully, C., Bonnell, J., Le Contel, O., &
378 Roux, A. (2009). An Observation Linking the Origin of Plasmaspheric Hiss to Discrete
379 Chorus Emissions. *Science*, 324(5928), 775–778.
380 <https://doi.org/10.1126/science.1171273>

381 Bortnik, J., & Thorne, R. M. (2007). The dual role of ELF/VLF chorus waves in the acceleration
382 and precipitation of radiation belt electrons. *Journal of Atmospheric and Solar-
383 Terrestrial Physics*, 69(3), 378–386. <https://doi.org/10.1016/j.jastp.2006.05.030>

384 Breneman, A. W., Crew, A., Sample, J., Klumpar, D., Johnson, A., Agapitov, O., Shumko, M.,
385 Turner, D. L., Santolik, O., Wygant, J. R., Cattell, C. A., Thaller, S., Blake, B., Spence,
386 H., & Kletzing, C. A. (2017). Observations Directly Linking Relativistic Electron
387 Microbursts to Whistler Mode Chorus: Van Allen Probes and FIREBIRD II. *Geophysical
388 Research Letters*, 44(22), 11,265–11,272. <https://doi.org/10.1002/2017GL075001>

389 Brito, T., Woodger, L., Hudson, M., & Millan, R. (2012). Energetic radiation belt electron
390 precipitation showing ULF modulation: ULF WAVES AND RADIATION BELTS.
391 *Geophysical Research Letters*, 39(22). <https://doi.org/10.1029/2012GL053790>

392 Brito, T., Hudson, M. K., Kress, B., Paral, J., Halford, A., Millan, R., & Usanova, M. (2015).
393 Simulation of ULF wave-modulated radiation belt electron precipitation during the 17
394 March 2013 storm: PRECIPITATION ON MARCH 17 2013. *Journal of Geophysical
395 Research: Space Physics*, 120(5), 3444–3461. <https://doi.org/10.1002/2014JA020838>

396 Capannolo, L., Li, W., Ma, Q., Qin, M., Shen, X.-C., Angelopoulos, V., Artemyev, A., Zhang,
397 X.-J., & Hanzelka, M. (2023). Electron Precipitation Observed by ELFIN Using Proton
398 Precipitation as a Proxy for Electromagnetic Ion Cyclotron (EMIC) Waves. *Geophysical
399 Research Letters*, 50(21), e2023GL103519. <https://doi.org/10.1029/2023GL103519>

400 Capannolo, L., Li, W., Ma, Q., Chen, L., Shen, X. -C., Spence, H. E., Sample, J., Johnson, A.,
401 Shumko, M., Klumpar, D. M., & Redmon, R. J. (2019). Direct Observation of
402 Subrelativistic Electron Precipitation Potentially Driven by EMIC Waves. *Geophysical
403 Research Letters*, 46(22), 12711–12721. <https://doi.org/10.1029/2019GL084202>

404 Capannolo, L., Li, W., Ma, Q., Zhang, X. -J., Redmon, R. J., Rodriguez, J. V., Kletzing, C. A.,
405 Kurth, W. S., Hospodarsky, G. B., Engebretson, M. J., Spence, H. E., & Reeves, G. D.
406 (2018). Understanding the Driver of Energetic Electron Precipitation Using Coordinated
407 Multisatellite Measurements. *Geophysical Research Letters*, 45(14), 6755–6765.
408 <https://doi.org/10.1029/2018GL078604>

409 Capannolo, L., Li, W., Millan, R., Smith, D., Sivadas, N., Sample, J., & Shekhar, S. (2022).
410 Relativistic Electron Precipitation Near Midnight: Drivers, Distribution, and Properties.
411 *Journal of Geophysical Research: Space Physics*, 127(1), e2021JA030111.
412 <https://doi.org/10.1029/2021JA030111>

413 Chan, K.-W., & Holzer, R. E. (1976). ELF hiss associated with plasma density enhancements in
414 the outer magnetosphere. *Journal of Geophysical Research*, 81(13), 2267–2274.
415 <https://doi.org/10.1029/JA081i013p02267>

416 Chen, L., Bortnik, J., Li, W., Thorne, R. M., & Horne, R. B. (2012). Modeling the properties of
417 plasmaspheric hiss: 1. Dependence on chorus wave emission: HISS SPECTRUM
418 MODELING, 1. *Journal of Geophysical Research: Space Physics*, 117(A5), n/a-n/a.
419 <https://doi.org/10.1029/2011JA017201>

420 Chen, L., Zhang, X.-J., Artemyev, A., Zheng, L., Xia, Z., Breneman, A. W., & Horne, R. B.
421 (2021). Electron Microbursts Induced by Nonducted Chorus Waves. *Frontiers in*
422 *Astronomy and Space Sciences*, 8. <https://doi.org/10.3389/fspas.2021.745927>

423 Chen, L., Zhang, X.-J., Artemyev, A., Angelopoulos, V., Tsai, E., Wilkins, C., & Horne, R. B.
424 (2022). Ducted Chorus Waves Cause Sub-Relativistic and Relativistic Electron
425 Microbursts. *Geophysical Research Letters*, 49(5), e2021GL097559.
426 <https://doi.org/10.1029/2021GL097559>

427 Chen, L., Thorne, R. M., Bortnik, J., & Zhang, X.-J. (2016). Nonresonant interactions of
428 electromagnetic ion cyclotron waves with relativistic electrons. *Journal of Geophysical*
429 *Research: Space Physics*, 121(10), 9913–9925. <https://doi.org/10.1002/2016JA022813>

430 Claudepierre, S. G., O'Brien, T. P., Looper, M. D., Blake, J. B., Fennell, J. F., Roeder, J. L.,
431 Clemons, J. H., Mazur, J. E., Turner, D. L., Reeves, G. D., & Spence, H. E. (2019). A
432 Revised Look at Relativistic Electrons in the Earth's Inner Radiation Zone and Slot
433 Region. *Journal of Geophysical Research: Space Physics*, 124(2), 934–951.
434 <https://doi.org/10.1029/2018JA026349>

435 Draganov, A. B., Inan, U. S., Sonwalkar, V. S., & Bell, T. F. (1992). Magnetospherically
436 reflected whistlers as a source of plasmaspheric hiss. *Geophysical Research Letters*,
437 19(3), 233–236. <https://doi.org/10.1029/91GL03167>

438 ELFIN. (2024). Electron losses and fields investigation (ELFIN) data archive. ELFIN. [Dataset].
439 Retrieved from <https://data.elfin.ucla.edu/>

440 Haiducek, J. D., Ganushkina, N. Y., Dubyagin, S., & Welling, D. T. (2019). The Role of Current
441 Sheet Scattering in the Proton Isotropic Boundary Formation During Geomagnetic
442 Storms. *Journal of Geophysical Research: Space Physics*, 124(5), 3468–3486.
443 <https://doi.org/10.1029/2018JA026290>

444 He, Z., Chen, L., Liu, X., Zhu, H., Liu, S., Gao, Z., & Cao, Y. (2019). Local Generation of High-
445 Frequency Plasmaspheric Hiss Observed by Van Allen Probes. *Geophysical Research*
446 *Letters*, 46(3), 1141–1148. <https://doi.org/10.1029/2018GL081578>

447 He, Z., Yu, J., Chen, L., Xia, Z., Wang, W., Li, K., & Cui, J. (2020). Statistical Study on Locally
448 Generated High-Frequency Plasmaspheric Hiss and Its Effect on Suprathermal Electrons:
449 Van Allen Probes Observation and Quasi-linear Simulation. *Journal of Geophysical*
450 *Research: Space Physics*, 125(10), e2020JA028526.
451 <https://doi.org/10.1029/2020JA028526>

452 Horne, R. B., & Thorne, R. M. (2003). Relativistic electron acceleration and precipitation during
453 resonant interactions with whistler-mode chorus: RELATIVISTIC ELECTRON
454 ACCELERATION. *Geophysical Research Letters*, 30(10).
455 <https://doi.org/10.1029/2003GL016973>

456 Jordanova, V. K., Albert, J., & Miyoshi, Y. (2008). Relativistic electron precipitation by EMIC
457 waves from self-consistent global simulations: EMIC WAVES AND RELATIVISTIC

458 ELECTRONS. *Journal of Geophysical Research: Space Physics*, 113(A3).
459 <https://doi.org/10.1029/2008JA013239>

460 Kim, K.-C., Lee, D.-Y., & Shprits, Y. (2015). Dependence of plasmaspheric hiss on solar wind
461 parameters and geomagnetic activity and modeling of its global distribution. *Journal of*
462 *Geophysical Research: Space Physics*, 120(2), 1153–1167.
463 <https://doi.org/10.1002/2014JA020687>

464 Li, H., Yuan, Z., Wang, D., Huang, S., Qiao, Z., & Yu, X. (2016). Statistical characteristics of
465 potentially chorus-driven energetic electron precipitation from POES observations.
466 *Journal of Geophysical Research: Space Physics*, 121(10), 9531–9546.
467 <https://doi.org/10.1002/2016JA023101>

468 Li, J., Bortnik, J., An, X., Li, W., Angelopoulos, V., Thorne, R. M., Russell, C. T., Ni, B., Shen,
469 X., Kurth, W. S., Hospodarsky, G. B., Hartley, D. P., Funsten, H. O., Spence, H. E., &
470 Baker, D. N. (2019). Origin of two-band chorus in the radiation belt of Earth. *Nature*
471 *Communications*, 10(1), 4672. <https://doi.org/10.1038/s41467-019-12561-3>

472 Li, W., Bortnik, J., Thorne, R. M., & Angelopoulos, V. (2011). Global distribution of wave
473 amplitudes and wave normal angles of chorus waves using THEMIS wave observations.
474 *Journal of Geophysical Research: Space Physics*, 116, A12205.
475 <https://doi.org/10.1029/2011JA017035>

476 Li, W., Ni, B., Thorne, R. M., Bortnik, J., Nishimura, Y., Green, J. C., Kletzing, C. A., Kurth, W.
477 S., Hospodarsky, G. B., Spence, H. E., Reeves, G. D., Blake, J. B., Fennell, J. F.,
478 Claudepierre, S. G., & Gu, X. (2014). Quantifying hiss-driven energetic electron
479 precipitation: A detailed conjunction event analysis. *Geophysical Research Letters*, 41(4),
480 1085–1092. <https://doi.org/10.1002/2013GL059132>

481 Li, W., Ni, B., Thorne, R. M., Bortnik, J., Green, J. C., Kletzing, C. A., Kurth, W. S., &
482 Hospodarsky, G. B. (2013a). Constructing the global distribution of chorus wave
483 intensity using measurements of electrons by the POES satellites and waves by the Van
484 Allen Probes: GLOBAL DISTRIBUTION OF CHORUS WAVES. *Geophysical*
485 *Research Letters*, 40(17), 4526–4532. <https://doi.org/10.1002/grl.50920>

486 Li, W., Shen, X.-C., Ma, Q., Capannolo, L., Shi, R., Redmon, R. J., Rodriguez, J. V., Reeves, G.
487 D., Kletzing, C. A., Kurth, W. S., & Hospodarsky, G. B. (2019). Quantification of
488 Energetic Electron Precipitation Driven by Plume Whistler Mode Waves, Plasmaspheric
489 Hiss, and Exohiss. *Geophysical Research Letters*, 46(7), 3615–3624.
490 <https://doi.org/10.1029/2019GL082095>

491 Li, W., Thorne, R. M., Angelopoulos, V., Bortnik, J., Cully, C. M., Ni, B., LeContel, O., Roux,
492 A., Auster, U., & Magnes, W. (2009). Global distribution of whistler-mode chorus waves
493 observed on the THEMIS spacecraft. *Geophysical Research Letters*, 36(9), L09104.
494 <https://doi.org/10.1029/2009GL037595>

495 Li, W., Thorne, R. M., Bortnik, J., Reeves, G. D., Kletzing, C. A., Kurth, W. S., Hospodarsky, G.
496 B., Spence, H. E., Blake, J. B., Fennell, J. F., Claudepierre, S. G., Wygant, J. R., &
497 Thaller, S. A. (2013b). An unusual enhancement of low-frequency plasmaspheric hiss in
498 the outer plasmasphere associated with substorm-injected electrons. *Geophysical*
499 *Research Letters*, 40(15), 3798–3803. <https://doi.org/10.1002/grl.50787>

500 Ma, Q., Li, W., Thorne, R. M., Bortnik, J., Kletzing, C. A., Kurth, W. S., & Hospodarsky, G. B.
501 (2016). Electron scattering by magnetosonic waves in the inner magnetosphere. *Journal*
502 *of Geophysical Research: Space Physics*, 121(1), 274–285.
503 <https://doi.org/10.1002/2015JA021992>

504 Ma, Q., Connor, H. K., Zhang, X. -J., Li, W., Shen, X. -C., Gillespie, D., Kletzing, C. A., Kurth,
505 W. S., Hospodarsky, G. B., Claudepierre, S. G., Reeves, G. D., & Spence, H. E. (2020).
506 Global Survey of Plasma Sheet Electron Precipitation due to Whistler Mode Chorus
507 Waves in Earth's Magnetosphere. *Geophysical Research Letters*, 47(15).
508 <https://doi.org/10.1029/2020GL088798>

509 Ma, Q., Li, W., Zhang, X.-J., Bortnik, J., Shen, X.-C., Connor, H. K., Boyd, A. J., Kurth, W. S.,
510 Hospodarsky, G. B., Claudepierre, S. G., Reeves, G. D., & Spence, H. E. (2021). Global
511 Survey of Electron Precipitation due to Hiss Waves in the Earth's Plasmasphere and
512 Plumes. *Journal of Geophysical Research: Space Physics*, 126(8), e2021JA029644.
513 <https://doi.org/10.1029/2021JA029644>

514 Ma, Q., Xu, W., Sanchez, E. R., Marshall, R. A., Bortnik, J., Reyes, P. M., Varney, R. H.,
515 Kaeppler, S. R., Miyoshi, Y., Matsuoka, A., Kasahara, Y., Matsuda, S., Tsuchiya, F.,
516 Kumamoto, A., Kasahara, S., Yokota, S., Keika, K., Hori, T., Mitani, T., ... Tam, S. W.-
517 Y. (2022). Analysis of Electron Precipitation and Ionospheric Density Enhancements Due
518 To Hiss Using Incoherent Scatter Radar and Arase Observations. *Journal of Geophysical*
519 *Research: Space Physics*, 127(8), e2022JA030545.
520 <https://doi.org/10.1029/2022JA030545>

521 Malaspina, D. M., Jaynes, A. N., Hospodarsky, G., Bortnik, J., Ergun, R. E., & Wygant, J.
522 (2017). Statistical properties of low-frequency plasmaspheric hiss. *Journal of*
523 *Geophysical Research: Space Physics*, 122(8), 8340–8352.
524 <https://doi.org/10.1002/2017JA024328>

525 Malaspina, D. M., Jaynes, A. N., Boulé, C., Bortnik, J., Thaller, S. A., Ergun, R. E., Kletzing, C.
526 A., & Wygant, J. R. (2016). The distribution of plasmaspheric hiss wave power with
527 respect to plasmapause location. *Geophysical Research Letters*, 43(15), 7878–7886.
528 <https://doi.org/10.1002/2016GL069982>

529 Meredith, N. P., Horne, R. B., & Anderson, R. R. (2001). Substorm dependence of chorus
530 amplitudes: Implications for the acceleration of electrons to relativistic energies. *Journal*
531 *of Geophysical Research: Space Physics*, 106(A7), 13165–13178.
532 <https://doi.org/10.1029/2000JA900156>

533 Meredith, N. P., Horne, R. B., Clilverd, M. A., Horsfall, D., Thorne, R. M., & Anderson, R. R.
534 (2006). Origins of plasmaspheric hiss. *Journal of Geophysical Research: Space Physics*,
535 111(A9). <https://doi.org/10.1029/2006JA011707>

536 Meredith, N. P., Horne, R. B., Shen, X.-C., Li, W., & Bortnik, J. (2020). Global Model of
537 Whistler Mode Chorus in the Near-Equatorial Region ($|\lambda_m| < 18^\circ$). *Geophysical Research*
538 *Letters*, 47(11). <https://doi.org/10.1029/2020GL087311>

539 Meredith, N. P., Bortnik, J., Horne, R. B., Li, W., & Shen, X.-C. (2021). Statistical Investigation
540 of the Frequency Dependence of the Chorus Source Mechanism of Plasmaspheric Hiss.
541 *Geophysical Research Letters*, 48(6). <https://doi.org/10.1029/2021GL092725>

542 Meredith, N. P., Horne, R. B., Sicard-Piet, A., Boscher, D., Yearby, K. H., Li, W., & Thorne, R.
543 M. (2012). Global model of lower band and upper band chorus from multiple satellite
544 observations: GLOBAL MODEL OF WHISTLER MODE CHORUS. *Journal of*
545 *Geophysical Research: Space Physics*, 117(A10). <https://doi.org/10.1029/2012JA017978>

546 Meredith, N. P., Horne, R. B., Kersten, T., Li, W., Bortnik, J., Sicard, A., & Yearby, K. H.
547 (2018). Global Model of Plasmaspheric Hiss From Multiple Satellite Observations.
548 *Journal of Geophysical Research: Space Physics*, 123(6), 4526–4541.
549 <https://doi.org/10.1029/2018JA025226>

550 Miyoshi, Y., Sakaguchi, K., Shiokawa, K., Evans, D., Albert, J., Connors, M., & Jordanova, V.
551 (2008). Precipitation of radiation belt electrons by EMIC waves, observed from ground
552 and space. *Geophysical Research Letters*, 35(23), L23101.
553 <https://doi.org/10.1029/2008GL035727>

554 Nose M., Iyemori T., Sugiura M. and Kamei T. (2015). Geomagnetic AE index [Dataset]. *World*
555 *Data Center for Geomagnetism*. doi:10.17593/15031-54800.

556 Ni, B., Thorne, R. M., Shprits, Y. Y., & Bortnik, J. (2008). Resonant scattering of plasma sheet
557 electrons by whistler-mode chorus: Contribution to diffuse auroral precipitation.
558 *Geophysical Research Letters*, 35(11), L11106. <https://doi.org/10.1029/2008GL034032>

559 Ni, B., Li, W., Thorne, R. M., Bortnik, J., Green, J. C., Kletzing, C. A., Kurth, W. S.,
560 Hospodarsky, G. B., & de Soria-Santacruz Pich, M. (2014a). A novel technique to
561 construct the global distribution of whistler mode chorus wave intensity using low-
562 altitude POES electron data: A novel technique for global wave model. *Journal of*
563 *Geophysical Research: Space Physics*, 119(7), 5685–5699.
564 <https://doi.org/10.1002/2014JA019935>

565 Ni, B., Bortnik, J., Nishimura, Y., Thorne, R. M., Li, W., Angelopoulos, V., Ebihara, Y., &
566 Weatherwax, A. T. (2014b). Chorus wave scattering responsible for the Earth's dayside
567 diffuse auroral precipitation: A detailed case study. *Journal of Geophysical Research:*
568 *Space Physics*, 119(2), 897–908. <https://doi.org/10.1002/2013JA019507>

569 Nishimura, Y., Bortnik, J., Li, W., Thorne, R. M., Lyons, L. R., Angelopoulos, V., Mende, S. B.,
570 Bonnell, J. W., Le Contel, O., Cully, C., Ergun, R., & Auster, U. (2010). Identifying the
571 Driver of Pulsating Aurora. *Science*, 330(6000), 81–84.
572 <https://doi.org/10.1126/science.1193186>

573 Omura, Y., & Zhao, Q. (2012). Nonlinear pitch angle scattering of relativistic electrons by EMIC
574 waves in the inner magnetosphere: ELECTRON PRECIPITATION BY EMIC WAVES.
575 *Journal of Geophysical Research: Space Physics*, 117(A8).
576 <https://doi.org/10.1029/2012JA017943>

577 Ozaki, M., Shiokawa, K., Miyoshi, Y., Hosokawa, K., Oyama, S., Yagitani, S., Kasahara, Y.,
578 Kasaba, Y., Matsuda, S., Kataoka, R., Ebihara, Y., Ogawa, Y., Otsuka, Y., Kurita, S.,
579 Moore, R. C., Tanaka, Y. -M., Nosé, M., Nagatsuma, T., Connors, M., ... Shinohara, I.
580 (2018). Microscopic Observations of Pulsating Aurora Associated With Chorus Element
581 Structures: Coordinated Arase Satellite-PWING Observations. *Geophysical Research*
582 *Letters*, 45(22), 12,125-12,134. <https://doi.org/10.1029/2018GL079812>

583 Ozaki, M., Miyoshi, Y., Shiokawa, K., Hosokawa, K., Oyama, S., Kataoka, R., Ebihara, Y.,
 584 Ogawa, Y., Kasahara, Y., Yagitani, S., Kasaba, Y., Kumamoto, A., Tsuchiya, F.,
 585 Matsuda, S., Katoh, Y., Hikishima, M., Kurita, S., Otsuka, Y., Moore, R. C., ...
 586 Shinohara, I. (2019). Visualization of rapid electron precipitation via chorus element
 587 wave–particle interactions. *Nature Communications*, 10(1), 257.
 588 <https://doi.org/10.1038/s41467-018-07996-z>

589 Qin, M., Hudson, M., Millan, R., Woodger, L., & Shekhar, S. (2018). Statistical Investigation of
 590 the Efficiency of EMIC Waves in Precipitating Relativistic Electrons. *Journal of*
 591 *Geophysical Research: Space Physics*, 123(8), 6223–6230.
 592 <https://doi.org/10.1029/2018JA025419>

593 Qin, M., Hudson, M., Millan, R., Woodger, L., & Shen, X. (2020). Statistical Dependence of
 594 EMIC Wave Scattering on Wave and Plasma Parameters. *Journal of Geophysical*
 595 *Research: Space Physics*, 125(4), e2020JA027772.
 596 <https://doi.org/10.1029/2020JA027772>

597 Sergeev, V. A., Sazhina, E. M., Tsyganenko, N. A., Lundblad, J. Å., & Søraas, F. (1983). Pitch-
 598 angle scattering of energetic protons in the magnetotail current sheet as the dominant
 599 source of their isotropic precipitation into the nightside ionosphere. *Planetary and Space*
 600 *Science*, 31(10), 1147–1155. [https://doi.org/10.1016/0032-0633\(83\)90103-4](https://doi.org/10.1016/0032-0633(83)90103-4)

601 Shen, X.-C., Li, W., Ma, Q., Qin, M., Capannolo, L., Hanzelka, M., Huang, S., & Chu, X. (2024).
 602 Large Amplitude Whistler Waves in Earth’s Plasmasphere and Plasmaspheric Plumes.
 603 *Geophysical Research Letters*, 51(8), e2023GL105244.
 604 <https://doi.org/10.1029/2023GL105244>

605 Shen, X.-C., Li, W., Capannolo, L., Ma, Q., Qin, M., Artemyev, A. V., Angelopoulos, V., Zhang,
 606 X.-J., & Huang, S. (2023). Modulation of Energetic Electron Precipitation Driven by
 607 Three Types of Whistler Mode Waves. *Geophysical Research Letters*, 50(8),
 608 e2022GL101682. <https://doi.org/10.1029/2022GL101682>

609 Shen, X.-C., Li, W., Ma, Q., Agapitov, O., & Nishimura, Y. (2019). Statistical Analysis of
 610 Transverse Size of Lower Band Chorus Waves Using Simultaneous Multisatellite
 611 Observations. *Geophysical Research Letters*, 46(11), 5725–5734.
 612 <https://doi.org/10.1029/2019GL083118>

613 Shen, X.-C., Hudson, M. K., Jaynes, A. N., Shi, Q., Tian, A., Claudepierre, S. G., Qin, M.-R.,
 614 Zong, Q.-G., & Sun, W.-J. (2017). Statistical study of the storm time radiation belt
 615 evolution during Van Allen Probes era: CME- versus CIR-driven storms: Radiation Belt
 616 Electron Evolution. *Journal of Geophysical Research: Space Physics*, 122(8), 8327–8339.
 617 <https://doi.org/10.1002/2017JA024100>

618 Shen, X.-C., Li, W., Ma, Q., Qin, M., Capannolo, L., Hanzelka, M., Angelopoulos, V., Artemyev,
 619 A., Wilkins, C., Liu J., Tsai, E. (2025). Dataset for Whistler Mode Wave-Driven Electron
 620 Scattering Properties from ELMIN Measurements of the Precipitation Ratio. *Figshare*,
 621 <https://doi.org/10.6084/m9.figshare.28603769>

622 Shi, R., Li, W., Ma, Q., Green, A., Kletzing, C. A., Kurth, W. S., Hospodarsky, G. B.,
 623 Claudepierre, S. G., Spence, H. E., & Reeves, G. D. (2019). Properties of Whistler Mode
 624 Waves in Earth’s Plasmasphere and Plumes. *Journal of Geophysical Research: Space*
 625 *Physics*, 124(2), 1035–1051. <https://doi.org/10.1029/2018JA026041>

626 Shi, X., Zhang, X.-J., Artemyev, A., Angelopoulos, V., Hartinger, M. D., Tsai, E., & Wilkins, C.
627 (2022). On the Role of ULF Waves in the Spatial and Temporal Periodicity of Energetic
628 Electron Precipitation. *Journal of Geophysical Research: Space Physics*, 127(12),
629 e2022JA030932. <https://doi.org/10.1029/2022JA030932>

630 Shumko, M., Sample, J., Johnson, A., Blake, B., Crew, A., Spence, H., Klumpar, D., Agapitov,
631 O., & Handley, M. (2018). Microburst Scale Size Derived From Multiple Bounces of a
632 Microburst Simultaneously Observed With the FIREBIRD-II CubeSats. *Geophysical
633 Research Letters*, 45(17), 8811–8818. <https://doi.org/10.1029/2018GL078925>

634 Wilkins, C., Angelopoulos, V., Runov, A., Artemyev, A., Zhang, X.-J., Liu, J., & Tsai, E. (2023).
635 Statistical Characteristics of the Electron Isotropy Boundary. *Journal of Geophysical
636 Research: Space Physics*, 128(10), e2023JA031774.
637 <https://doi.org/10.1029/2023JA031774>

638 Yin, Z.-F., Zhou, X.-Z., Li, W., Shen, X.-C., Rankin, R., Liu, J., Hu, Z.-J., Liu, J.-J., Zong, Q.-G.,
639 Li, L., & Wang, Y.-F. (2023). Characteristics of Electron Precipitation Directly Driven
640 by Poloidal ULF Waves. *Journal of Geophysical Research: Space Physics*, 128(3),
641 e2022JA031163. <https://doi.org/10.1029/2022JA031163>

642 Yue, C., Wang, C.-P., Lyons, L., Liang, J., Donovan, E. F., Zaharia, S. G., & Henderson, M.
643 (2014). Current sheet scattering and ion isotropic boundary under 3-D empirical force-
644 balanced magnetic field. *Journal of Geophysical Research: Space Physics*, 119(10),
645 8202–8211. <https://doi.org/10.1002/2014JA020172>

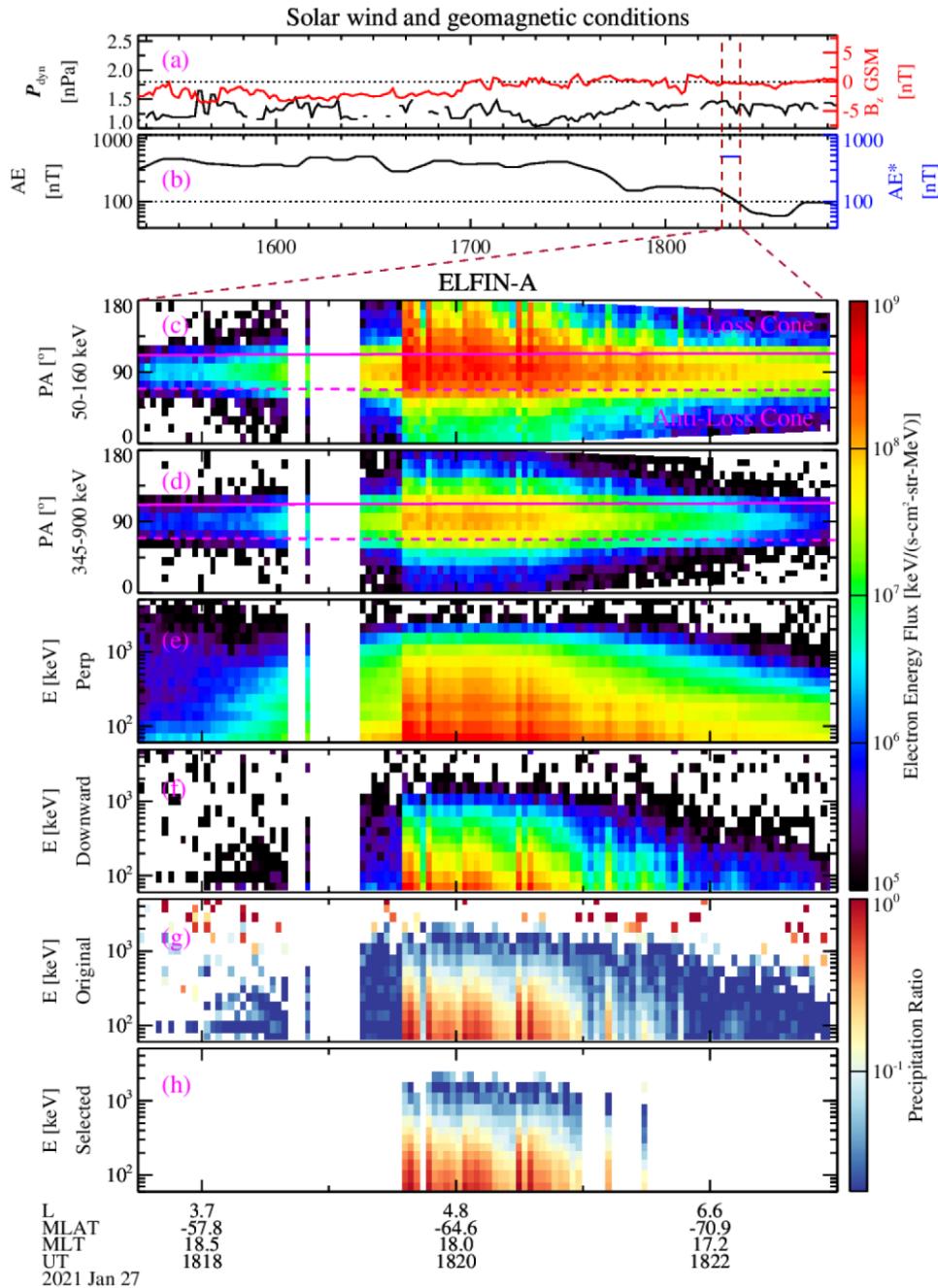
646 Zhang, S., Rae, I. J., Watt, C. E. J., Degeling, A. W., Tian, A., Shi, Q., Shen, X.-C., Yao, S., Guo,
647 R., Wang, M., Zhu, X., & Wang, H. (2021). Determining the Global Scale Size of Chorus
648 Waves in the Magnetosphere. *Journal of Geophysical Research: Space Physics*, 126(11),
649 e2021JA029569. <https://doi.org/10.1029/2021JA029569>

650 Zhang, W., Ni, B., Huang, H., Summers, D., Fu, S., Xiang, Z., Gu, X., Cao, X., Lou, Y., & Hua,
651 M. (2019). Statistical Properties of Hiss in Plasmaspheric Plumes and Associated
652 Scattering Losses of Radiation Belt Electrons. *Geophysical Research Letters*, 46(11),
653 5670–5680. <https://doi.org/10.1029/2018GL081863>

654 Zhang, X.-J., Mourenas, D., Shen, X.-C., Qin, M., Artemyev, A. V., Ma, Q., Li, W., Hudson, M.
655 K., & Angelopoulos, V. (2021). Dependence of Relativistic Electron Precipitation in the
656 Ionosphere on EMIC Wave Minimum Resonant Energy at the Conjugate Equator.
657 *Journal of Geophysical Research: Space Physics*, 126(5), e2021JA029193.
658 <https://doi.org/10.1029/2021JA029193>

659 Zhang, X.-J., Mourenas, D., Artemyev, A. V., Angelopoulos, V., Bortnik, J., Thorne, R. M.,
660 Kurth, W. S., Kletzing, C. A., & Hospodarsky, G. B. (2019). Nonlinear Electron
661 Interaction With Intense Chorus Waves: Statistics of Occurrence Rates. *Geophysical
662 Research Letters*, 46(13), 7182–7190. <https://doi.org/10.1029/2019GL083833>

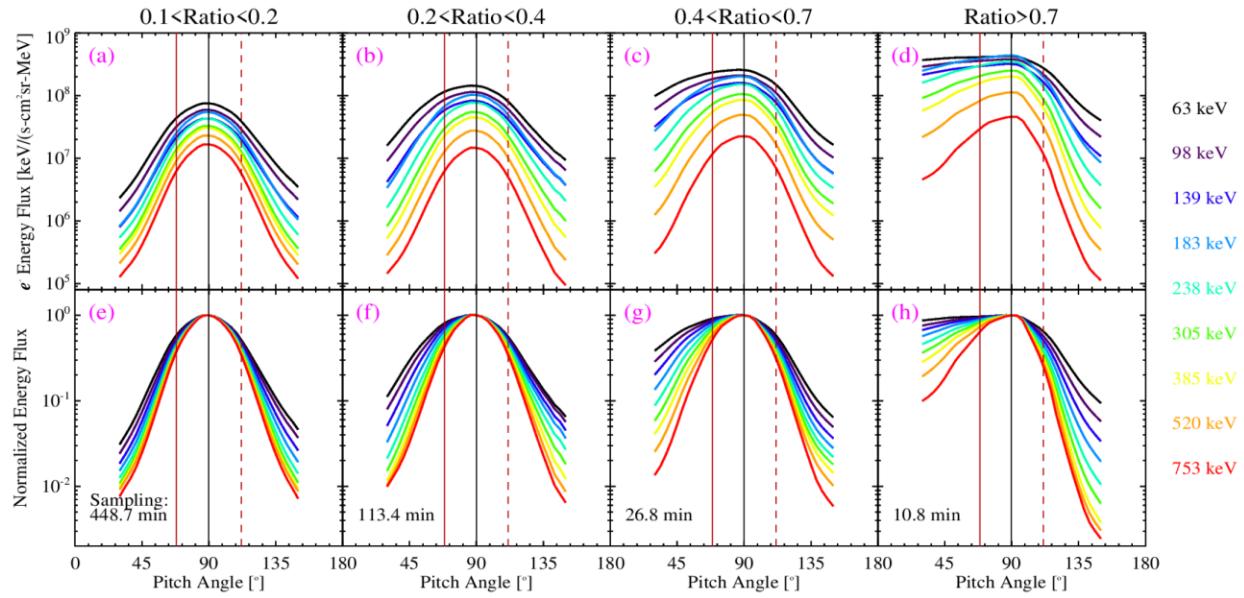
663 Zhang, X.-J., Artemyev, A., Angelopoulos, V., Tsai, E., Wilkins, C., Kasahara, S., Mourenas, D.,
664 Yokota, S., Keika, K., Hori, T., Miyoshi, Y., Shinohara, I., & Matsuoka, A. (2022).
665 Superfast precipitation of energetic electrons in the radiation belts of the Earth. *Nature
666 Communications*, 13(1), 1611. <https://doi.org/10.1038/s41467-022-29291-8>


667 Zhao, H., Ni, B., Li, X., Baker, D. N., Johnston, W. R., Zhang, W., Xiang, Z., Gu, X., Jaynes, A.
668 N., Kanekal, S. G., Blake, J. B., Claudepierre, S. G., Temerin, M. A., Funsten, H. O.,
669 Reeves, G. D., & Boyd, A. J. (2019). Plasmaspheric hiss waves generate a reversed
670 energy spectrum of radiation belt electrons. *Nature Physics*, 15(4), 367–372.
671 <https://doi.org/10.1038/s41567-018-0391-6>

672

673

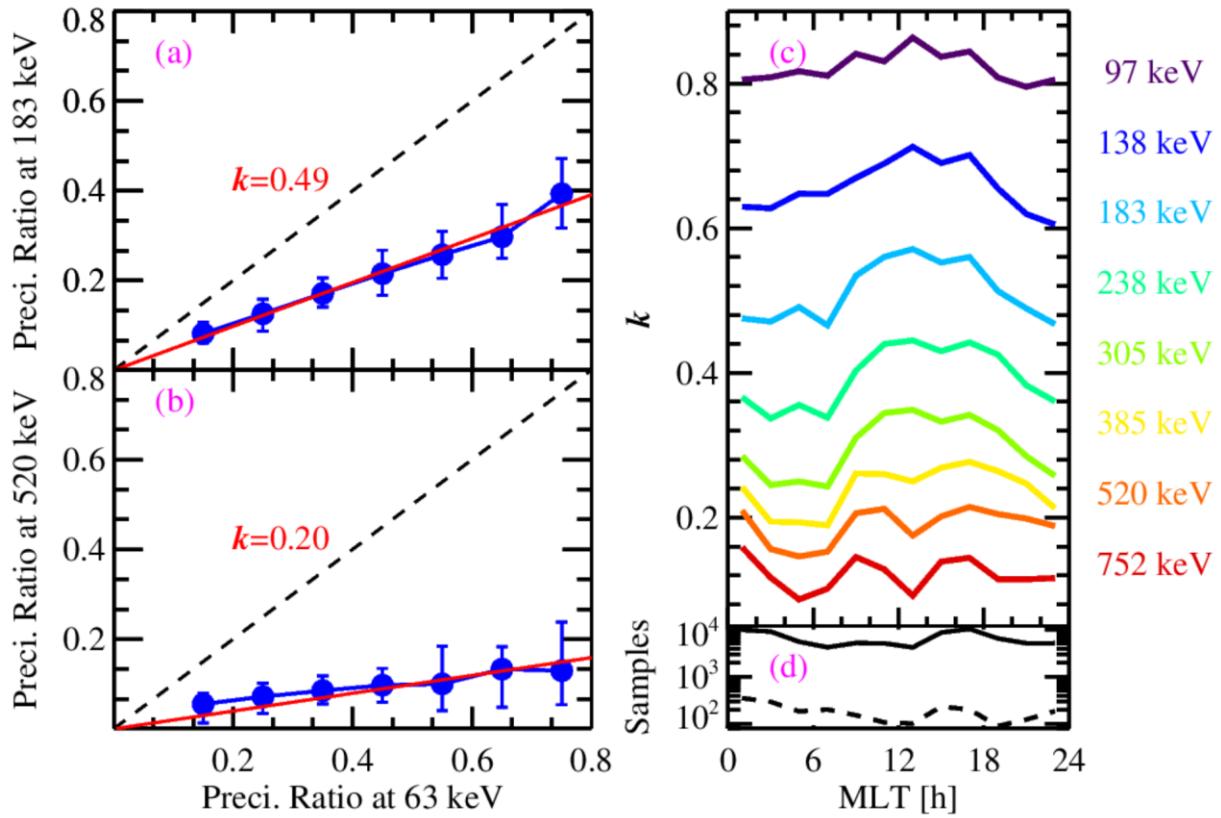
674


675

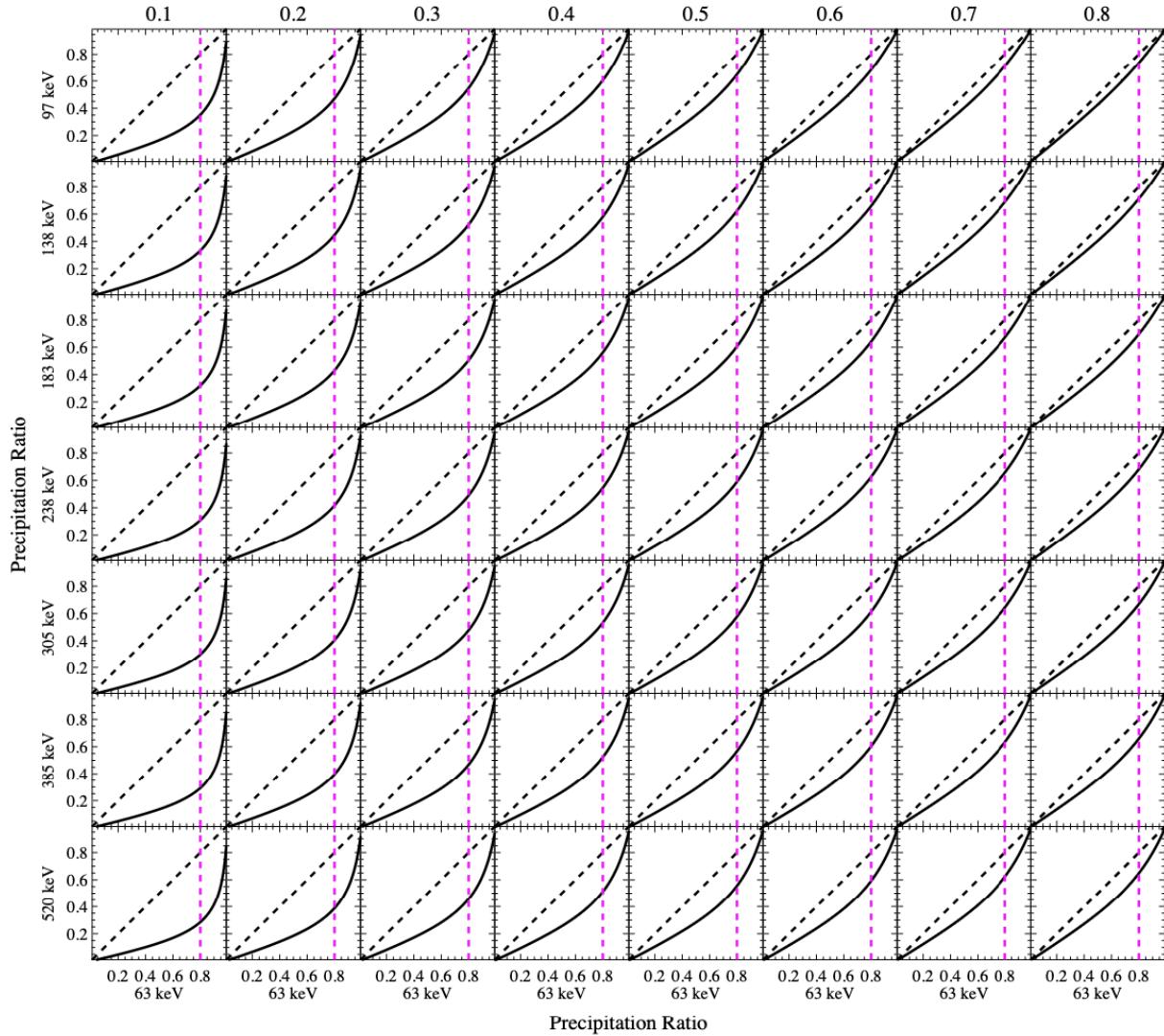
676 **Figures and Captions**

677

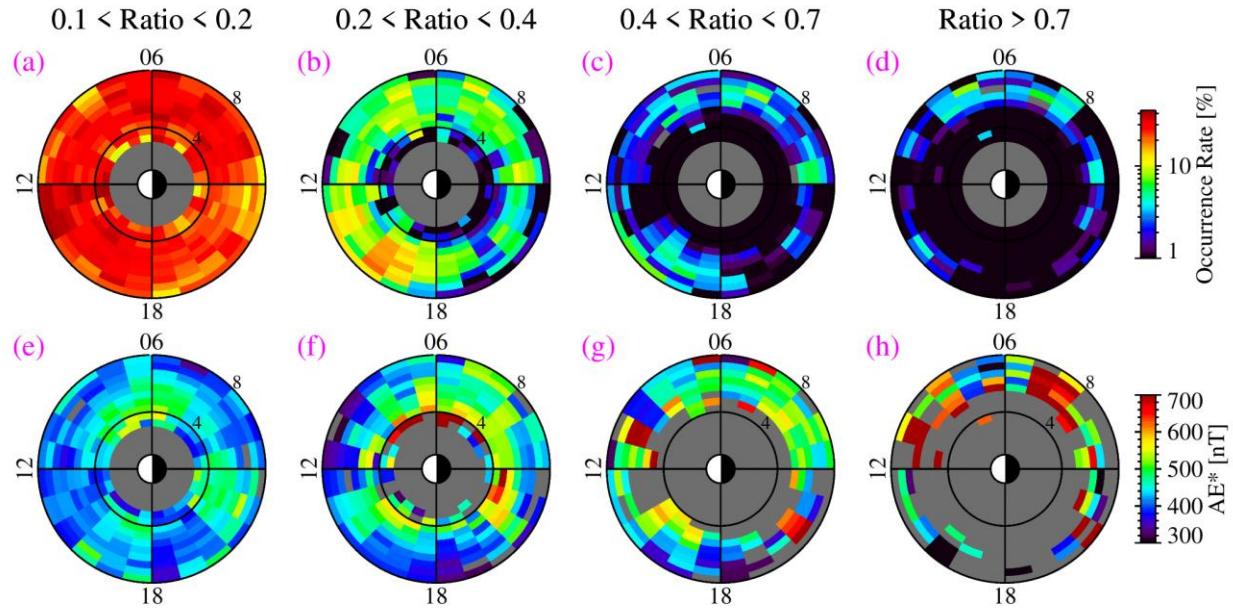
678 **Figure 1.** Overview of solar wind and geomagnetic conditions from the OMNI dataset and
 679 electron flux observed by ELFIN-A. (a) Solar wind dynamic pressure (black) and interplanetary
 680 magnetic field (IMF) B_z component (red) in GSM coordinates. (b) Geomagnetic AE (black) and
 681 AE* (maximum value in the preceding three hours; blue) index. (c–d) Pitch angle distribution of
 682 50–160 keV and 345–900 keV electrons, respectively. (e–f) Energy spectrogram of trapped and
 683 precipitating electron energy flux. (g) Energy spectrogram of electron precipitation ratio
 684 (calculated as the average precipitating energy flux divided by the average trapped energy flux).
 685 (h) Selected electron precipitation ratio driven by whistler mode waves.



687


688 **Figure 2.** Statistical results of whistler wave-driven electron pitch angle distributions from the
 689 ELFIN observations. (a-d) Median pitch angle distributions of electron energy flux for events
 690 with a precipitation ratio at 63 keV from 0.1 to 0.2, from 0.2 to 0.4, from 0.4 to 0.7, and larger
 691 than 0.7, respectively color coded for various energies from 63 keV to 753 keV. (e-h) Same
 692 format as (a-d) but for the pitch angle distributions divided by the flux at 90° pitch angle in each
 693 energy channel.

694

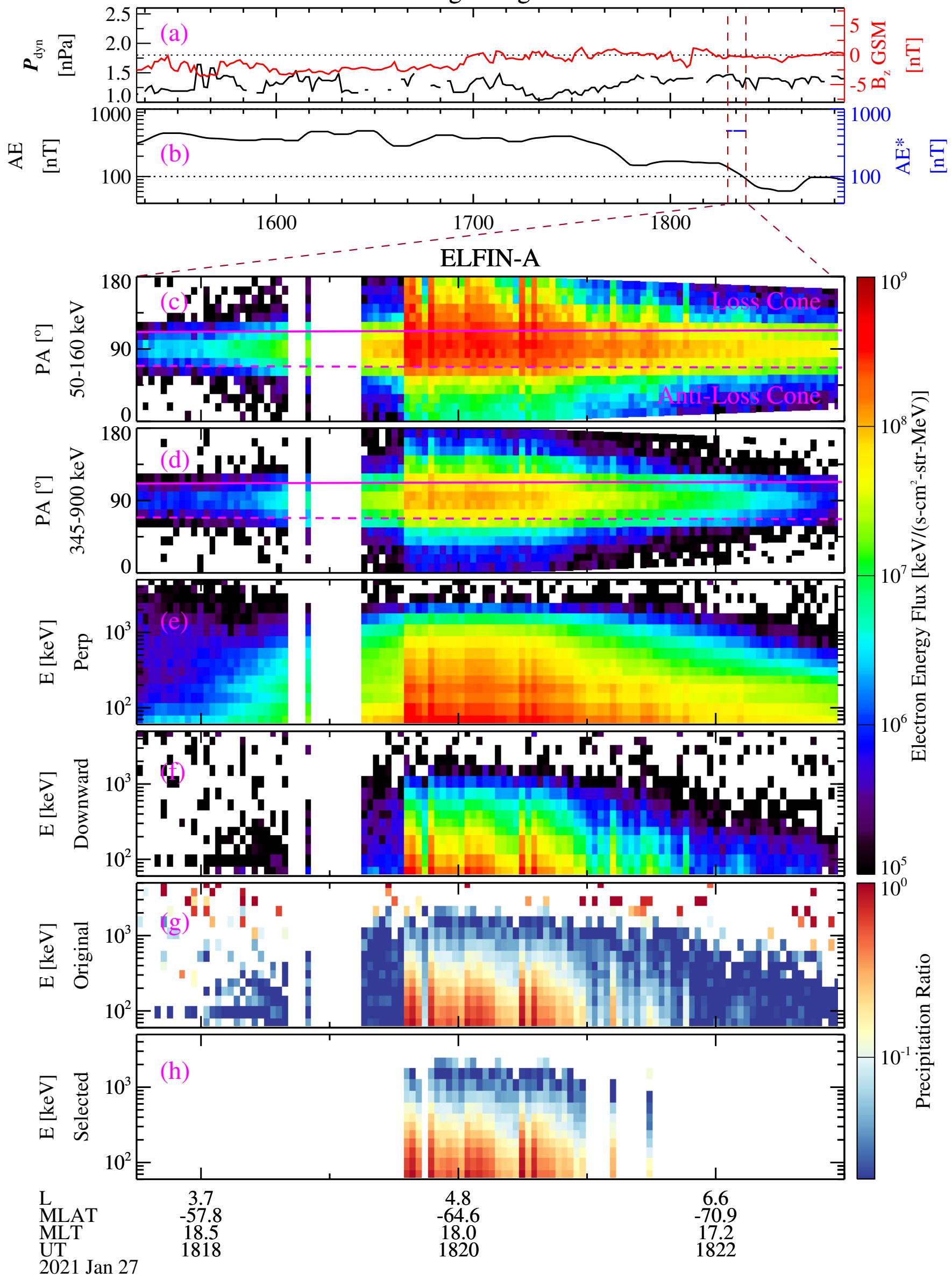


695
696
697
698
699
700
701
702
703
704

Figure 3. Relation of precipitation ratios between different energies. (a) Median (blue dotted line) and quartiles (error bar) of precipitation ratio at 183 keV as a function of precipitation ratio at 63 keV. The red line illustrates the linear fitting of the median values with its slope k marked on the panel. Black dashed line represents a slope value of 1 for reference. (b) Similar to panel (a) but for 520 keV. (c) Fitted slope value k as a function of MLT color coded for various energies. (d) Number of samples (each sample is one half spin measurement, ~ 1.5 s) for precipitation events with a moderate precipitation ratio (0.1 – 0.6; solid line) and precipitation events with an intense precipitation ratio (0.6 – 0.8; dashed line).

705
706
707708
709
710
711
712
713
714
715

Figure 4. Relation between precipitation ratios at > 63 keV energy channels and 63 keV electrons estimated from the quasi-linear theory. Top to bottom rows are for different energy channels from 97 keV to 520 keV, corresponding to the ELFIN energy channels. The left to right columns are for different ratios of $\langle D_{\alpha\alpha}|E_{high} \rangle / \langle D_{\alpha\alpha}|63 \text{ keV} \rangle$, where E_{high} is the selected energy channel marked to the left of each row. The black dashed line in each panel indicates a slope of one; the magenta dashed line in each panel marks the precipitation ratio of 63 keV electrons to be 0.8.



716

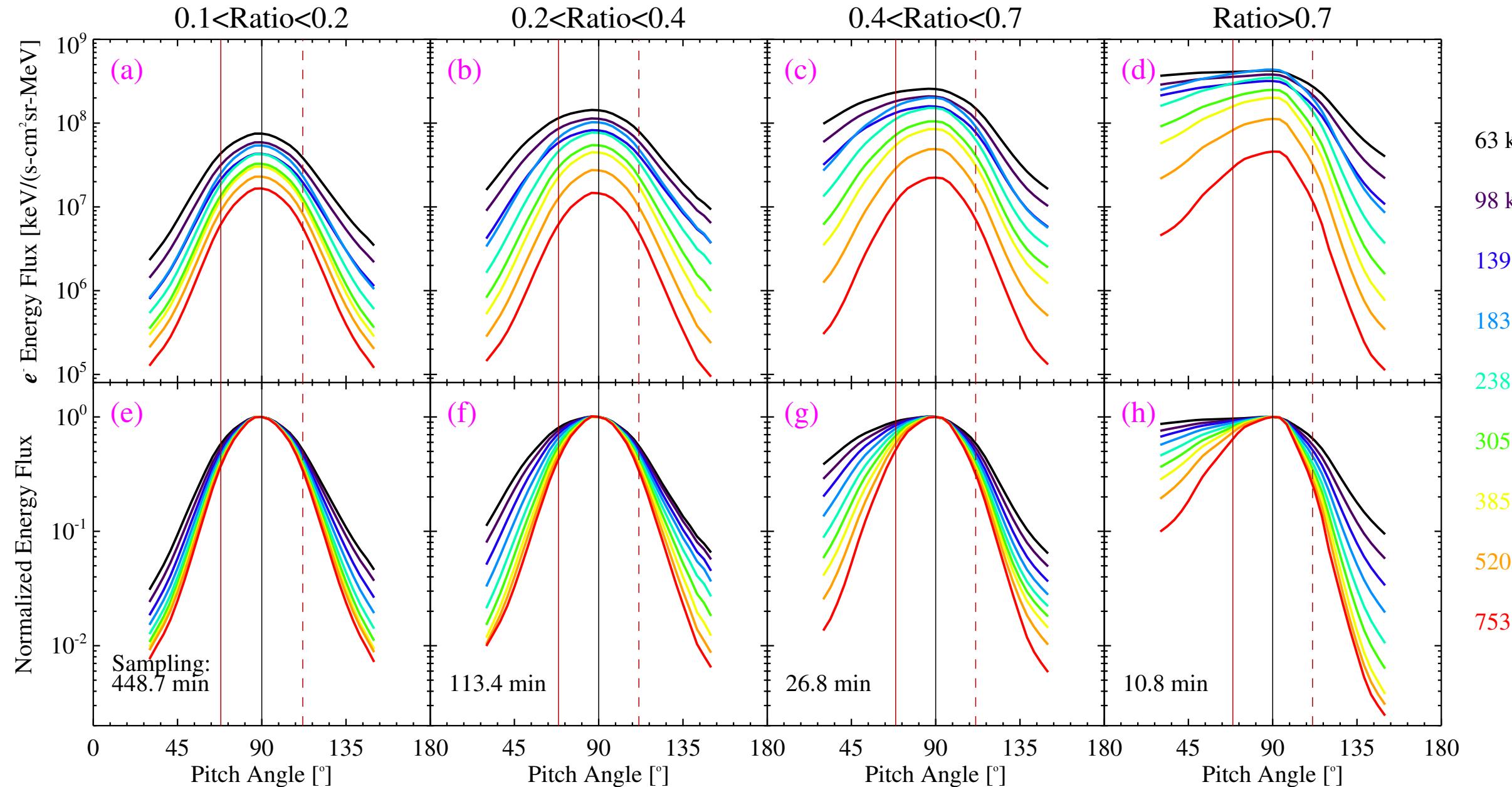
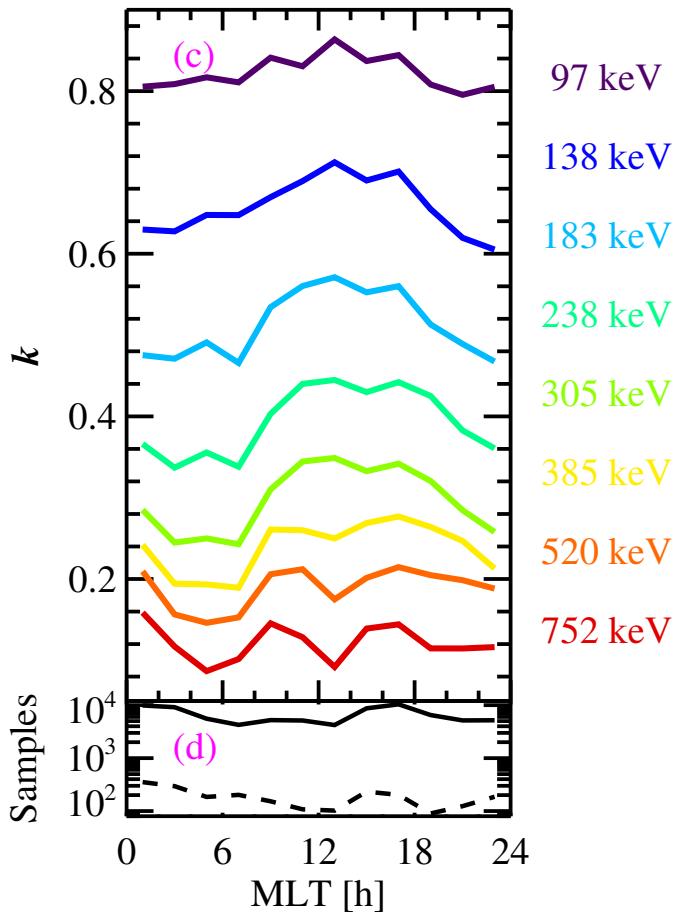
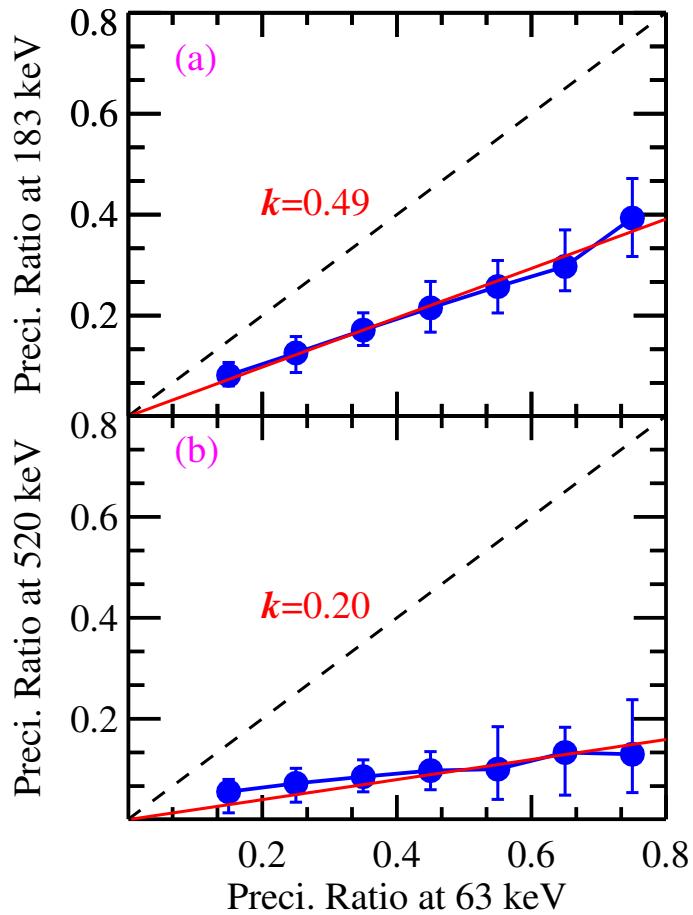

717 **Figure 5.** Occurrence rate (top) and average AE* (bottom) of whistler wave-driven precipitation
 718 events sorted by precipitation ratio at 63 keV. (a-d) Occurrence rate of whistler wave-driven
 719 electron precipitation events in the L-MLT coordinates with a precipitation ratio of 0.1–0.2, 0.2–
 720 0.4, 0.4–0.7, and > 0.7, respectively. (e-f) Same format as panels (a-d) but for average AE*.

Figure 1.



Solar wind and geomagnetic conditions

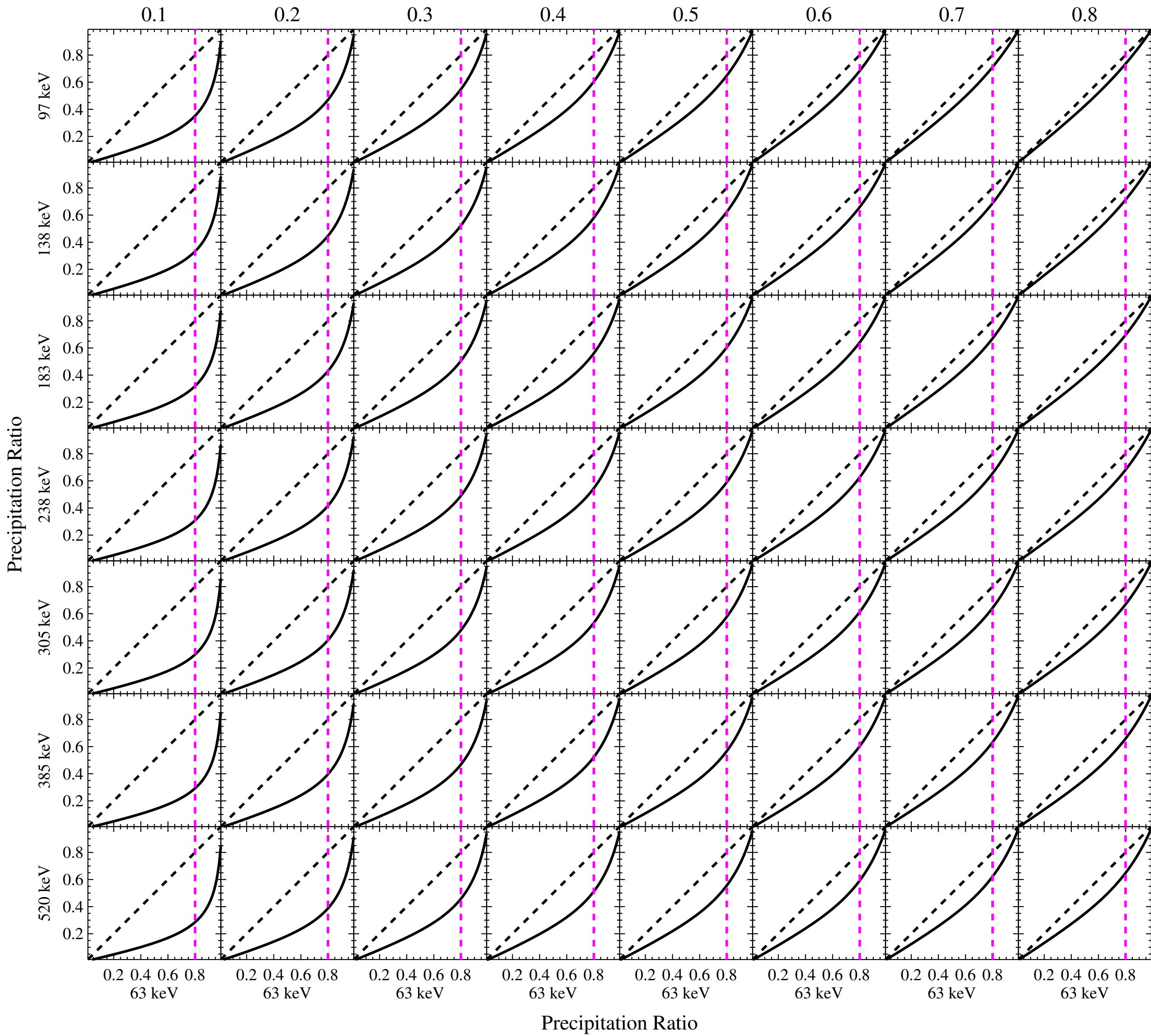

Figure 2.

Figure 3.

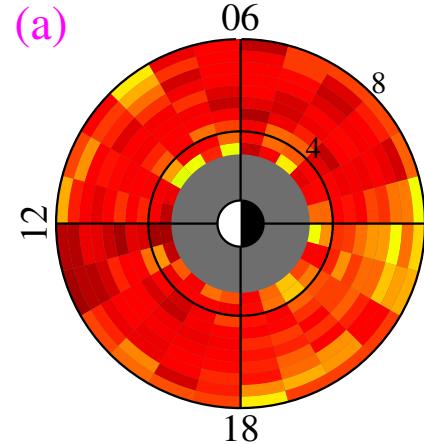


Figure 4.

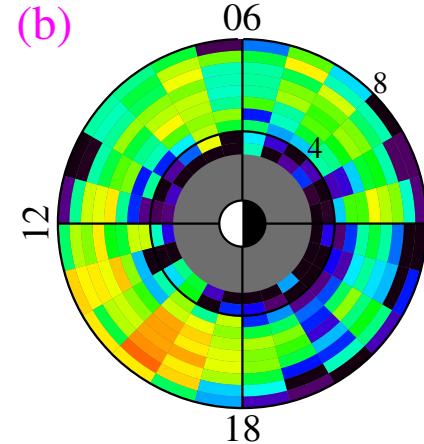
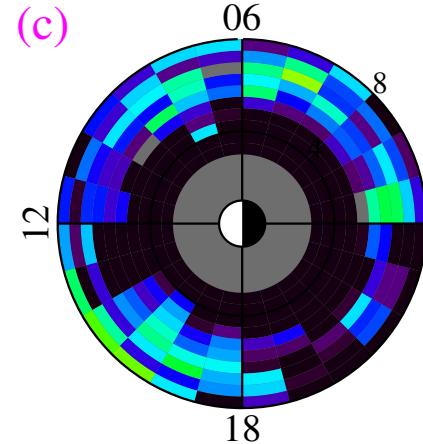
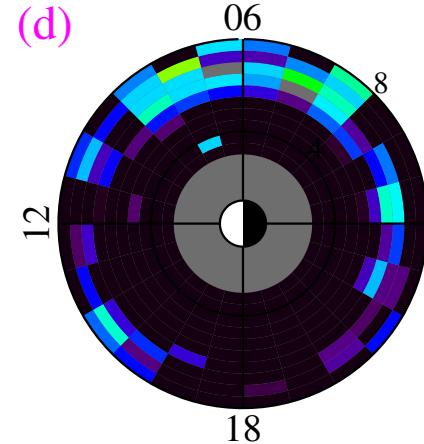
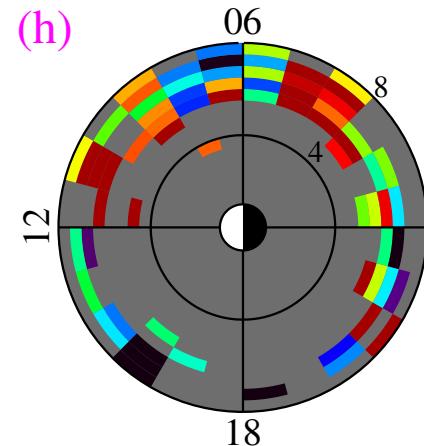
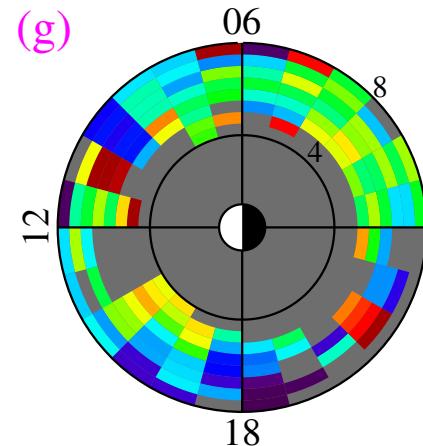
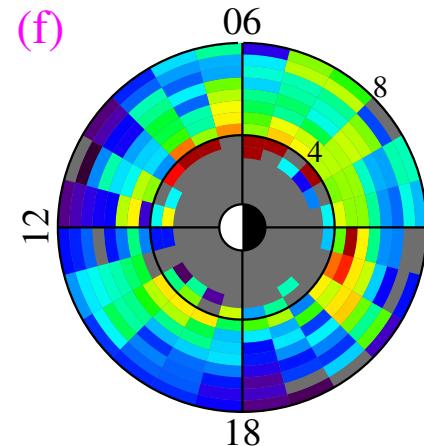
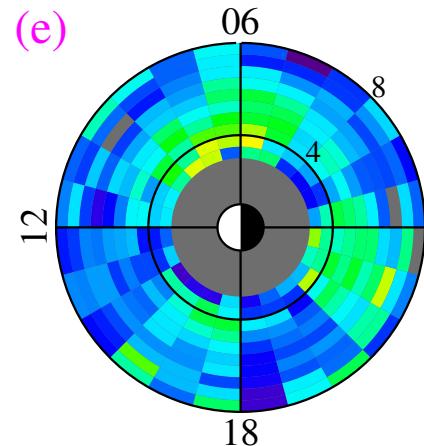


Figure 5.


$0.1 < \text{Ratio} < 0.2$


$0.2 < \text{Ratio} < 0.4$

$0.4 < \text{Ratio} < 0.7$





$\text{Ratio} > 0.7$

Occurrence Rate [%]

10
1

A vertical color bar indicating the occurrence rate in percent, ranging from 1% (dark purple) to 10% (red).

AE* [nT]

700
600
500
400
300

A vertical color bar indicating the AE* value in nT, ranging from 300 (dark purple) to 700 (red).