

1 **Potential survival of some, but not all, diversification methods**

2 **Running title (40 characters max): Diversification method survival**

3 **Authors:** Brian C. O'Meara^{1*} and Jeremy M. Beaulieu²

4 **Affiliations:**

5 ¹Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville,
6 Tennessee, 37996-1610 USA

7 ²Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, 72701 USA

8
9 ***Corresponding author:** Department of Ecology and Evolutionary Biology, University of
10 Tennessee, Knoxville, Tennessee, 37996-1610 USA; email: bomeara@utk.edu

11
12 **Author contributions:** BCO and JMB take equal responsibility for the contents of this article.

13
14
15 **Acknowledgements:** We thank members of the Beaulieu and O'Meara labs for their comments
16 and discussions of the ideas presented here. We would also like to thank Andrew Alverson, Jim
17 Fordyce, and Ben Fitzpatrick for their insightful comments. This work was funded by the
18 National Science Foundation grants DEB-1916558 and DEB- 1916539.

19
20
21 **Data Availability Statement:** Code supporting this article is made freely available at
22 <http://flippedcoin.info/>, <https://github.com/bomeara/diversificationlives>, and
23 <https://github.com/bomeara/CondamineEtAlExample>.

24
25
26
27 **Conflict of Interest:** The authors have declared no conflict of interest.

28
29

30

31

32

33

34

35

36

37 **Abstract**

38 Models have long been used for understanding changing diversification patterns over time. The
39 rediscovery that models with very different rates through time can fit a phylogeny equally well
40 has led to great concern about the use of these models. We share and add to these concerns: even
41 with time heterogeneous models without these issues, the distribution of the data means that
42 estimates will be very uncertain. However, we argue that congruence issues such as this also
43 occur in models as basic as Brownian motion and coin flipping. Taxon-heterogeneous models
44 such as many SSE models appear not to have this particular issue.

45

46

47 **Keywords:** diversification, congruence, likelihood, identifiability

48

49

50

51

52

53

54

55

56

57

58

59

60 **Introduction**

61 For decades, molecular phylogenies have served as vital sources of historical information
62 for deciphering the birth and the death dynamics of lineages. Thousands of studies of molecular
63 phylogenies have been dedicated to investigating diversification. In theory, estimating constant
64 birth and death rates separately is possible because each has distinguishable effects on the tree
65 shape and branch length distributions (Nee et al. 1994). There are several extensions that expand
66 this simple model for characterizing diversification as a function of time or diversity (e.g., Nee et
67 al. 1992; Rabosky 2006, 2009; Bokma 2008; Rabosky and Lovette 2008; Morlon et al. 2011;
68 Etienne et al. 2012), which are used to reconstruct lines showing speciation and extinction rates
69 scrolling into the past, like the pen of a seismometer tracking vibrations through time. A sudden
70 sweep up of the extinction rate arm could mean a mass extinction. A slow, downward trajectory
71 of the speciation rate arm as time approaches the present could mean available niches have
72 become filled up, limiting the possibilities of adding new species. And, as with constant rate
73 birth-death models, we have been working under the assumption that even tiny changes in
74 speciation and/or extinction through time should leave distinct signatures on the tree shape and
75 branching structure in a molecular phylogeny.

76 In a recent paper by Louca and Pennell (2020), the entire enterprise of estimating
77 diversification rates, at least from molecular phylogenies alone, has been called into question. As
78 it turns out, for any given phylogeny there are an infinite array of congruent models each having
79 unique functions of speciation and/or extinction rates smoothly varying through time. This is
80 based on the property of both constant rate birth-death and time-varying models in which every
81 lineage at any given time-point experiences the same rates, and so sampling times for either a

82 speciation or extinction event are drawn from the same distribution (also known as a coalescent
83 point process or CPP; see Lambert and Stadler, 2013). Under such conditions, the likelihood of a
84 tree under a given birth-death model can be inferred simply in terms of the lineage-through-time
85 (LTT) curve, which is a retrospective counting of the number of lineages that led to a set of
86 species observed today, and there are always multiple qualitatively different models that can
87 produce the same curves with the same probability. For example, one model may infer the
88 observed diversity of Cetaceans (i.e., whales, dolphins, and relatives) is a product of dramatic
89 changes in the rate of speciation and extinction rates over time, whereas another, *equally likely*
90 model, may infer modern whale diversity is the product of no extinction and ever so slight
91 changes to the speciation rate. In other words, two diametrically opposed models, particularly
92 with regards to the role of extinction, provide *equally* valid explanations for the mode and tempo
93 of Cetacean diversification. In some cases, such as our example above, these models will have
94 the same number of parameters, rendering them truly indistinguishable.

95 It should come as no surprise, then, that one popular interpretation of these findings is
96 that any attempt to learn anything about diversification rates from molecular phylogenies is a
97 completely futile enterprise. A different response, which we also have seen, is the continued and
98 uncritical use of these suspect methods sanitized with a “but see Louca and Pennell (2020)”
99 citation. It is also worth noting that the findings of Louca and Pennell (2020) are substantially
100 similar, though much more detailed, to the ones presented by Kubo and Iwasa (1995) a quarter
101 century ago. These authors also described an infinite array of birth and death models fitting the
102 data equally well, which has been effectively ignored by most later workers.

103 The issues raised by Louca and Pennell (2020) and Kubo and Iwasa (1995) do represent
104 substantial methodological problems for comparative biology. However, this does not signal the

105 end of studying diversification rates on molecular phylogenies, as some have claimed, as these
106 problems do not extend to *all* models of diversification. Instead, they are limited to situations
107 where the goal is to interpret diversification rates through time using what we refer to as, “time-
108 varying, lineage homogeneous” models — again, models in which all lineages experience the
109 same variable rates at any given point in time. These would be analogous to a non-heritable trait-
110 dependent process (Lambert and Stadler, 2013), where changes in a trait occur the same in all
111 species independently (e.g., global CO₂, sea-level changes, global temperature patterns). We
112 argue that what we refer to as “lineage-specific heterogeneous” models, in which rates vary
113 among lineages across time points, perhaps due to the inheritance of a trait (e.g., state-speciation
114 and extinction, or SSE models; Maddison et al. 2007), should be immune to the issues of
115 identifiability raised above. This comes with the substantial caveat that this is true if, and
116 probably only if, the heritable rate changes are modeled as containing a single speciation and
117 extinction rate that do not vary through time. Essentially, we will show that these models do
118 “work” if we limit the model space to those with single rates at any time point.

119 We also address some of the other procedures proposed, explicitly or implicitly, by
120 Louca and Pennell (2020): continuing with pulled diversification rate reconstruction, focusing on
121 a point estimate only, no longer penalizing for model complexity, and how information is
122 distributed on trees.

123 Overall, we make four points:

124 1. Model congruence can occur in areas as different as coin flipping and Brownian
125 motion: it does not mean these models must be given up, only that certain
126 questions are infeasible.

127 2. Time-varying, lineage homogeneous models that use just the information from a
128 lineage through time curve to estimate changing speciation, extinction,
129 diversification, turnover, or extinction fraction should be avoided due to
130 congruence issues.

131 3. Pulled speciation and pulled diversification rate analyses (Louca and Pennell
132 2020) are identifiable, but they fail to incorporate the substantial uncertainty in
133 reconstructions that come as a result of typically exponentially decreasing number
134 of data points (lineages) as one approaches the root of a tree (this also plagues the
135 methods in point 2)

136 4. Some SSE methods, and likely other methods that investigate heterogeneity
137 across taxa, use information beyond that in a lineage through time curve and their
138 utility remains intact in the face of Louca and Pennell (2020) and Kubo and Iwasa
139 (1995).

140

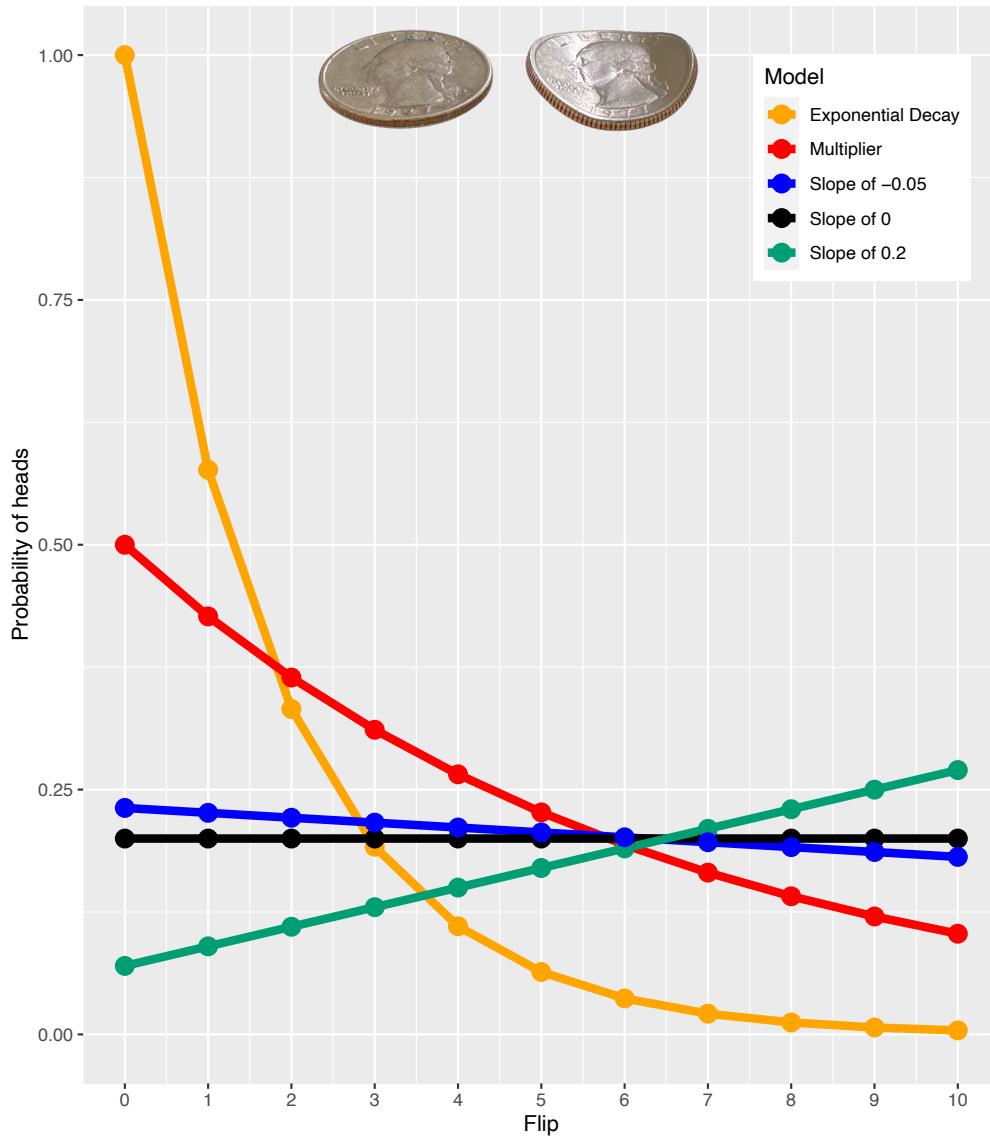
141 **Model congruence is common**

142 It may come as a surprise that this issue of two models fitting data equally well is not new
143 to comparative methods. Take, for instance, the inference of evolutionary trends, which, broadly
144 defined, are identifiable patterns of trait evolution in a given direction through time. Using only
145 extant species, can we detect horses getting bigger and with fewer digits, or increases in the
146 mean seed size in flowering plants since the Cretaceous (e.g., Tifney 1984; Eriksson et al. 2000),
147 or, more generally, uncover an evolutionary arms race between predator and prey (e.g., Dawkins
148 and Krebs 1979; Abrams 1986)? It is trivial to extend a simple Brownian motion model to
149 include a parameter that allows for the focal trait to evolve along a trend, and this is available in

150 popular software like the R package *geiger* (Pennell et al. 2014). The likelihood for these models
151 given the data is finite, and the simple no trend model is even nested within the trend model, so
152 comparisons between the two are straightforward. However, as Felsenstein (1988) and Hansen
153 and Martins (1996) have pointed out, even though trait values move in a given direction under a
154 Brownian motion with a trend model, this does not affect the expected covariances among
155 species trait values. That is, the expected trait differences among species is still linearly
156 dependent on time, meaning closely related species are still expected to be more phenotypically
157 similar than more distantly related species, which is an identical assumption under a standard
158 Brownian motion model. Consequently, the two models have identical likelihoods when fitted to
159 extant species only, making them indistinguishable based on their probability alone.

160 One might argue that in cases of clear non-identifiability any careful scientist would
161 avoid fitting a degenerate model such as Brownian motion with a trend with just coeval
162 terminals. However, the problem of identifiability between Brownian motion models with and
163 without a trend is further compounded when considering the potential for dramatic effects on
164 ancestral state reconstructions. For example, the ancestor of a clade of taxa with body sizes
165 ranging from 10-12 kg might have a reconstructed state near 11 kg under a no trend model but
166 could have a reconstructed state of 50 kg under a model with a trend of an incremental trait
167 decrease through time. Such ancestral state reconstruction remains widely popular. Nevertheless,
168 it is still a rather large leap to assert that, because these models are unidentifiable, models using
169 Brownian motion are generally invalid for use on trees containing only modern taxa. We can still
170 compare Brownian motion models with more complex models, such as Ornstein-Uhlenbeck
171 models (e.g., Butler and King 2004; Beaulieu et al. 2012), Brownian models with more than one
172 rate (e.g., O'Meara et al. 2006; Thomas et al. 2006), or models where the Brownian motion rate

173 itself changes over time (e.g., Revell, 2021). In other words, while Brownian motion with a trend
174 model is unidentifiable with modern taxa only, we would not, for instance, say that any model



175 **Figure 1:** Probability of heads per flip on different models of coin flipping. Each of these models
176 can fit the same dataset of two heads, eight tails with equal likelihood but make very different
177 predictions about the next flip.

178

179 that attempts to estimate rates of evolution on such trees is uninterpretable. Some models in this
180 space give the same likelihoods and cannot be distinguished, but many others can, which calls
181 for care and analysis, not panic.

182 We also point out that model congruence occurs in other statistically based disciplines.
183 Consider the classic coin-flipping example. Suppose we toss a coin 10 times, and 2 of those
184 tosses come up heads. The most straightforward fitted binomial model indicates that the
185 probability of observing 2 heads in 10 flips is 0.3 for a biased coin with each flip having a 20%
186 chance of landing on heads. Now suppose that every time we touch the coin, it gets slightly
187 dented, or a bit of metal is worn away, and it becomes less and less likely to land on one side
188 than the other. We can devise several models that have different slopes to alter the probability of
189 heads after a set of coin flips (Figure 1). For instance, the probability of heads can linearly
190 increase with each flip, such that by the end the probability of heads is 10% higher than when we
191 started flipping, and a model where the probability of heads decreases with each flip so that by
192 the end it is 5% lower than when it started (Figure 1). Interestingly, the probability of observing
193 2 heads in 10 flips of the coin in each of these models is the *same* as the simple binomial model,
194 though the linear change models infer different initial probability of heads before any flips are
195 made as well as what the probability of the next flip being heads is. If we pre-set the 5% lower or
196 20% higher parameters ahead of time rather than fitting them, these have the same number of
197 free parameters as the homogeneous binomial model.

198

199 **Avoid inference of congruent diversification models**

200 While millions of students struggling with their statistics homework might cheer the
201 destruction of the concept of estimating the probability of heads from a set of coin flips, it is
202 important to emphasize that even though these models are functionally congruent, each provides
203 different predictions after a new set of coin flips are made (e.g., what is the likeliest outcome of
204 the eleventh flip?). That is, even though they are indistinguishable from a probabilistic point of

205 view, we can still distinguish them when new data becomes available. Of course, with
206 comparative methods we cannot simply “flip” evolution more times to distinguish among a set of
207 congruent models. The emphasis, then, as Morlon et al. (2020) recently pointed out, becomes
208 what we are trying to learn about the world, given what we know about how it works. It is
209 generally true that with coins, we have a good idea that the probability of heads does not change
210 meaningfully over flips, so we may be willing to assume a standard binomial model and then
211 question the fairness of a coin, perhaps as a way of extrapolating to other coins (i.e., if this Euro
212 coin has a probability of heads of 0.502, is that true for other Euro coins?). In other words, the
213 parameter can be of interest because the model is not really in question.

214 With many diversification models, the central question is about which model fits best,
215 which is at odds with a general lack of knowledge about any system to clearly know which kind
216 of model is appropriate ahead of time. Even with diversification models that explicitly link rates
217 to abiotic variables such as temperature or sea level changes (e.g., Condamine et al. 2013; 2019)
218 the goal seems more focused on which model fits best. In our view, we are not yet at the stage
219 where we can confidently rule out a congruent model where extinction rates are driven by the
220 position of a hypothetical dwarf star outside our solar system, which triggers periods of increased
221 comet activity on Earth (e.g., Raup and Sepkowski 1984), over a more “sensible” model of, say,
222 temperature clearly affecting speciation but not extinction rates. In such cases, asking questions
223 about which of several indistinguishable models fit does not seem to us a good use of our time.

224 It is also important to emphasize that our argument here is not that the issues Louca and
225 Pennell (2020) point out are trivial. In fact, there are many papers, and even entire research
226 programs, dedicated to the development of time-varying, lineage homogeneous models of
227 diversification, and trying to draw conclusions based on which models fit best. But, as with coin

228 flipping or Brownian motion, knowing what conclusions can be made given the models and data
229 and limiting our work to those areas can be important. Moreover, if even coin flipping has
230 congruent models, there is no guarantee that even models that currently seem to avoid the
231 congruence issue, such as pulled diversification rates recommended by Louca and Pennell
232 (2020), do not have other congruent models with different parameters, such as models that
233 change rates by taxa rather than solely by time.

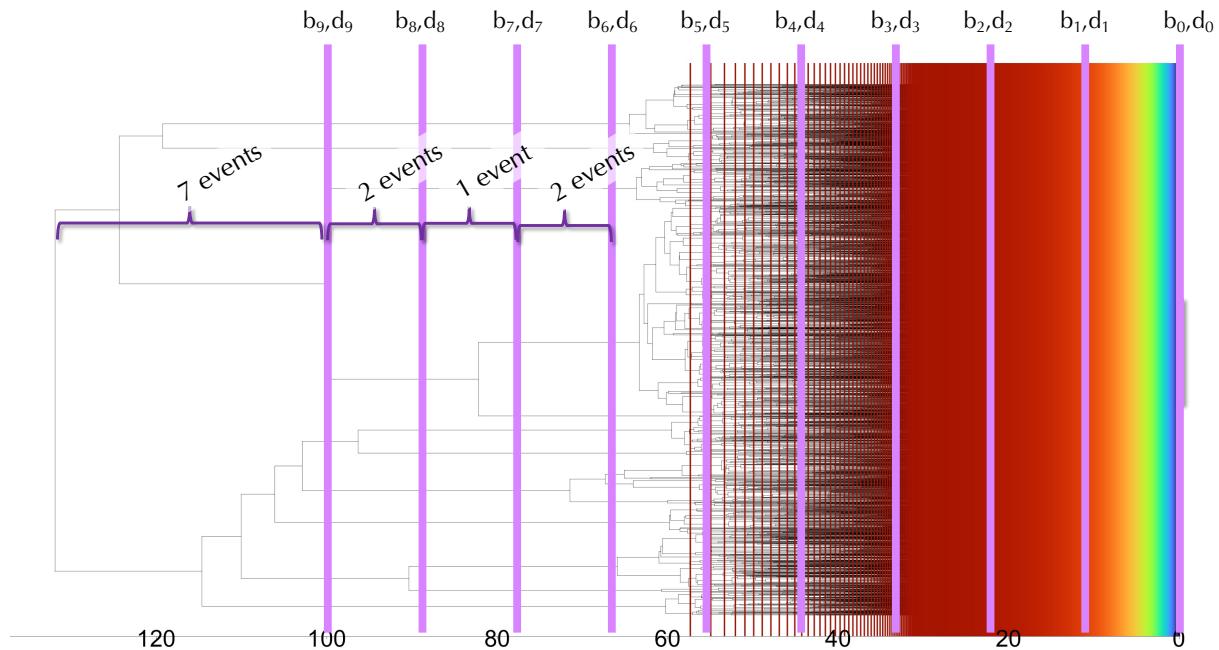
234

235 **Avoid ancestral rate reconstruction**

236 Ancestral state reconstruction of characters remains one of the most popular and widely
237 used approaches in phylogenetic comparative methods, despite the occasional discussion to
238 dampen enthusiasm in them (e.g., Cunningham et al. 1998; Omland 1999; Oakley and
239 Cunningham, 2000). Ancestral state reconstruction is useful for formulating testable hypotheses,
240 such as the synthesis and performance evaluation of putative ancestral proteins (e.g., Thornton et
241 al. 2003; Pillai et al. 2020), biogeographic history and movements of clades through time (e.g.,
242 Ree and Smith, 2008; Landis et al. 2020), and the order and timing of character state changes
243 (e.g., Schlüter et al. 1997; Ackerly et al. 2006). Reconstructing diversification rates through time
244 has a similar appeal, in that they too can point to testable hypotheses about the intrinsic and
245 extrinsic factors that drive species diversity among groups. Armed with only a phylogeny of
246 modern taxa, we can reconstruct the seismograph tracing of how speciation rate, extinction rate,
247 net diversification rate, or the new pulled diversification or pulled speciation rates, have changed
248 through time. With the reconstruction of discrete or continuous characters, state information at
249 the extant tips is generally less and less informative about states at nodes as one traverses deeper

250 in the tree towards the root. For diversification rate models, the data are not arrayed along the
251 tips of a tree, but rather, come from the distribution of branching events across the phylogeny.

252



253 **Figure 2.** Million taxon tree from Louca and Pennell (2020). The purple lines separate the
254 regimes used to estimate rates. The thin vertical lines in a rainbow distinguish regimes with 100
255 events within them representing equal-sized slices of data. Half the regimes are on each side of
256 the green band, showing how much of the data are near the tips. The brackets show how many
257 events occur in each regime. Ignoring uncertainty in branch lengths or topology, this makes a 10
258 Myr long edge equally informative regardless of whether it ended 3 million years ago or 300
259 million years ago.

260

261 As Maddison and FitzJohn (2015) noted, our field does not yet think in terms of the
262 curvature of biodiversity-time, and so our expectations about the distribution of these branching
263 events are often wrong. The number of edges on trees, under most models, increases
264 approximately exponentially with time, although extinction complicates this, as would models
265 with carrying capacity (e.g., Rabosky and Lovette 2008), age-dependent extinction (Alexander et
266 al 2016), and other variations of the birth-death model. Nevertheless, lineage through time plots

267 are commonly shown on a log scale for the number of lineages due to this nearly exponential
268 growth. Visualizing the raw number of lineages would make the dynamics in the early parts of
269 the plot virtually invisible due to the massive growth of the line near the present. Importantly, the
270 midpoint of the data is the point at which half the number of lineages has accumulated, which is
271 *not* the halfway point along the time axis.

272 Consider a tree split into equal-sized chunks according to some time interval, as Louca
273 and Pennell (2020) and others have. The number of edges within a given bin naturally decreases
274 as one moves towards the root. Now, take the extreme example from Louca and Pennell (2020)
275 where they analyzed a tree with a million taxa (Figure 2). Even though the tree is far larger than
276 any published study of diversification, they only estimate rates along 10-time intervals and for
277 many of these bins there is only a trivial amount of data. For example, at the start of the 100 Myr
278 to 90 Myr interval, there are just seven lineages, and by the end of that interval, there are only
279 ten. The lineage through time plot, which is the data that goes into these methods, thus jumps just
280 three times over that ten million years. This is clearly not a lot of data points for estimating
281 speciation or extinction rates, or even a single pulled diversification rate. Each of the next several
282 intervals have a *single* jump. That is, it goes from 10 to 11 lineages from 90 to 80 Myr, and from
283 just 11 to 12 from 80 Myr to 90 Myr. It is no wonder that these methods perform poorly; a single
284 event on a 12-taxon tree does not contain much information about rates, whether pulled or not.
285 Put another way, these methods are starving for data across large portions of the tree.

286 A natural corollary, then, is that seismographic reconstructions of rates will contain
287 increasing levels of uncertainty as one moves deeper in time. Nee et al. (1994) showed clearly
288 that even rates from a constant birth-death model can carry substantial uncertainty. Yet most
289 analyses doing the sort of work Louca and Pennell (2020) criticize, and even their examples,

290 return a single point estimate for each parameter at a given time period. In a few cases, point
291 estimates are summarized together across a set of trees, which is better, but still likely reflects
292 substantially less uncertainty than what is truly present in any single estimate.

Conifer diversification with various predictors

293 **Figure 3:** Comparison of net diversification, speciation, and extinction rate of conifers using as a
294 predictor the best model from Condamine et al. (2020) in blue where only extinction rate varies
295 with angiosperm diversity, a slightly worse model from that paper (green) where speciation rate
296 varies with angiosperm diversity, a model (yellow) that fits the data best (at least in terms of
297 likelihood — the number of free parameters of the spline is hard to compare), and using scaled
298 IMDB ratings of the television program the Simpsons (red) as a predictor for speciation rate
299 (which did a better job predicting conifer diversification than angiosperm diversity did). Not
300 shown are numerous other attempts for other predictors using other splines, linear change
301 models, and ratings of many other television programs. Some of these also outperformed
302 angiosperms, but many did not.
303

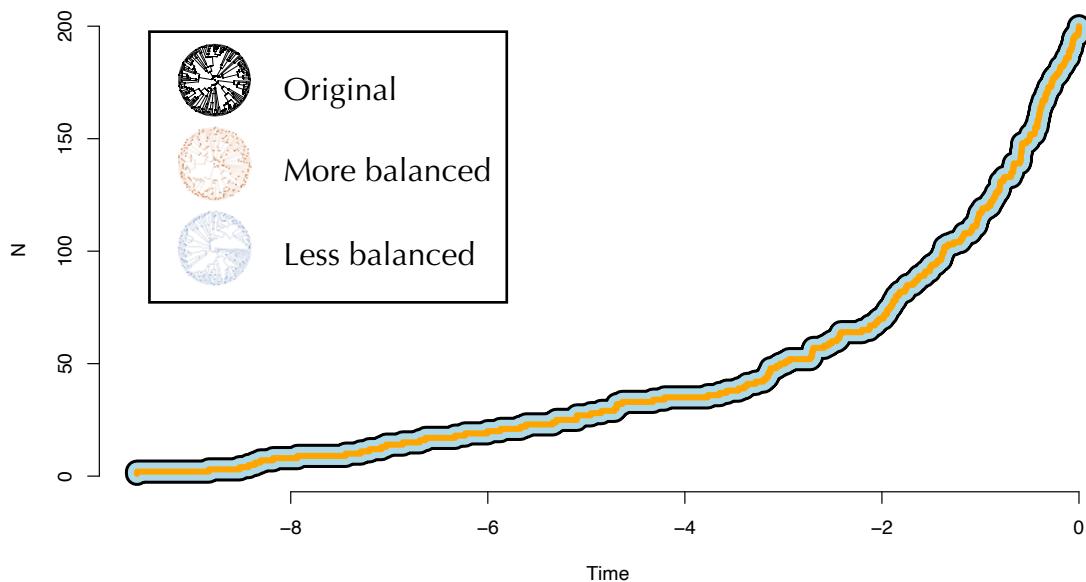
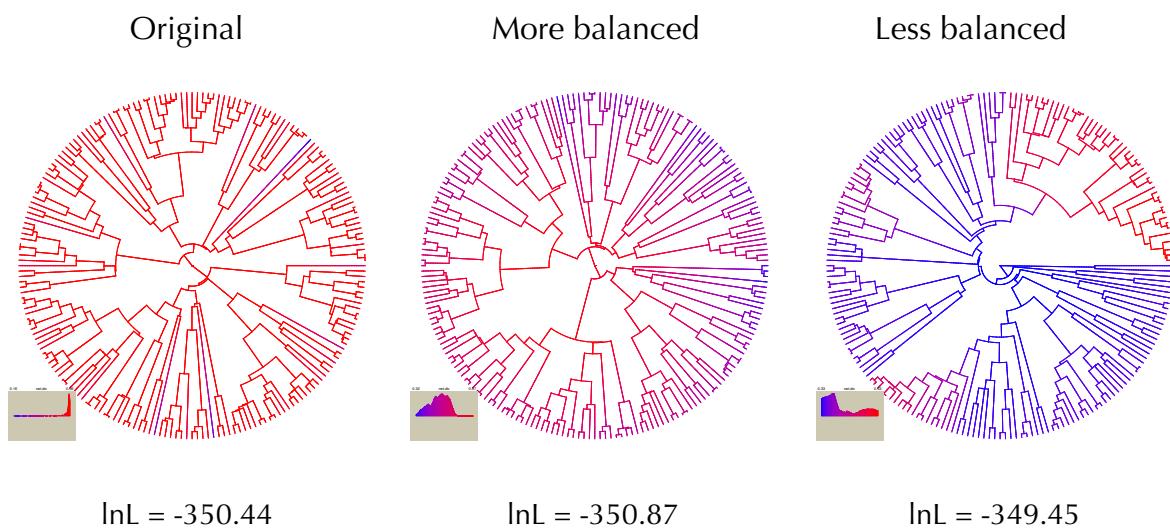
304 Besides unexamined uncertainty in point estimates, there is substantial uncertainty in
305 which model fits best, even if one ignores the congruence issue. For example, Condamine et al.
306 (2020) compared various models correlating various rates with angiosperm diversity using just a
307 phylogenetic tree; their best model showed an exponential dependence of conifer extinction rate
308 with the number of angiosperms. However, models nearly as good ($\Delta\text{AICc} < 2$; see their Table
309 S5) include an effect on speciation or both speciation and extinction (only 41% of the model
310 weight is on variable extinction only models; 39% is on variable speciation only, and 21% on
311 both varying). One can construct other patterns of diversification rates with very different
312 conclusions that are better predictors. For example, in Figure 3, the yellow diversification curves
313 predict the conifer data even better but tell a very different story of constant speciation with
314 decreases of extinction in the Cretaceous and Neogene rather than the recovered pattern of a
315 gradual rise of extinction in the Cretaceous onward. Even using ratings of a television show (the
316 Simpsons, the red line) scaled for the appropriate time period predicts conifer diversification
317 better than the postulated angiosperm mechanism. Similarly, Morlon et al. (2011) looking at a
318 paraphyletic set of 16 cetaceans found a constant speciation but variable extinction model fit
319 best, but there were two other models with a ΔAICc of less than 1 (including one where
320 extinction does not vary) — this makes it hard to draw any firm conclusions from modern data

321 alone. Careful biologists, as shown in the studies above, will limit themselves to only feasible
322 mechanisms, but as we know from other diversification models (Rabosky and Goldberg 2015;
323 Beaulieu and O'Meara, 2016), if presented with a very simple model and more complex
324 alternatives only, methods using our messy, complex empirical data will leap to use the more
325 complex predictors. That is, if the only way to incorporate the very real heterogeneity of a
326 process is to ascribe it to some varying predictor, methods will choose that. Whether it is 16
327 modern taxa or a million, it is unclear what we learn from such exercises. Our energies might be
328 better directed elsewhere.

329

330 **The state of SSE models and other approaches**

331 Louca and Pennell (2020) speculate that state-speciation and extinction models (SSE)
332 may have similar identifiability issues. This is not an unreasonable concern. Beaulieu and
333 O'Meara (2016) demonstrated that if a trait has no effect on speciation and/or extinction rates,
334 the likelihood of any SSE model becomes the product of the likelihoods of the Nee et al. (1994)
335 tree likelihood and the character model likelihood (or the sum of the log-likelihoods in log
336 space), so the models are clearly related. One could certainly alter the SSE model to include
337 realistic factors like mass extinctions and secular changes in rates through time, and any one of
338 these features will undoubtedly lead to a set of models with identical likelihoods. However, in
339 other ways, strict SSE models can be immune, because they do not split the tree into time bins.
340 Instead, they approximately treat a tree as a series of discrete chunks — that is, a chunk in one
341 part of the tree is in state 0, and so is impacted by the instantaneous speciation rate, λ_0 , and
342 extinction rate, μ_0 , while another chunk in another part of the tree is in state 1 and so is impacted
343 by speciation rate, λ_1 , and extinction rate, μ_1 (in reality, they average over these paintings based



344 **Figure 4:** (A) Depicts the identical lineage through time (LTT) plots for three trees that differ in
 345 terms of tree balance. The procedure takes a simulated tree, then makes swaps across branches to
 346 either increase balance or decrease it but maintain the same lineage through time curve. (B)
 347 Depicts the log-likelihood score among the three trees under a two-rate MiSSE model. These
 348 trees produce identical log-likelihoods under taxon-homogeneous, time-heterogeneous models
 349 that use LTT data. However, this is not the case here because allowing rates to vary among
 350 clades, as our MiSSE models do, avoids the trap of having an infinite array of congruent models.
 351 Helmstetter et al. (2021) reach similarly positive conclusions about the possibility of learning
 352 about diversification from SSE models.
 353

354 on their probabilities). Within each of these chunks the speciation and extinction rates are
355 invariant, and as Nee et al. (1994) showed, constrained in this way there is a single maximum
356 likelihood estimate of each rate. If one limits the model space to where rates are dependent on
357 states (observed or hidden or some combination of both), then SSE models should be
358 identifiable, though not immune to all the practical difficulties of estimating rates in the presence
359 of extinction, finite data, errors in branch lengths and topology, and more.

360 We can at least empirically demonstrate that SSE models are immune to the issues of
361 model congruence based on information in the lineage through time plot: SSE models use more
362 information than this. In Figure 4, there are three trees with identical lineage through time
363 curves, but different arrangements of topology. Under a constant rate Yule or birth-death model
364 the likelihoods of these three trees are identical, as one would expect given the findings of Louca
365 and Pennell (2020). However, if we allow for multiple rates to be inferred across the tree by
366 fitting a hidden states only model (which we call MiSSE; see Vasconcelos et al. 2021) the three
367 trees have different likelihood. This is because the MiSSE model uses information not accessible
368 to LTT methods, namely, the tree topology. Other methods that fit rate heterogeneity across taxa,
369 such as MSBD (Barido-Sottani et al. 2018) and ClaDS (Maliet et al. 2019), may also not be
370 bound by the issues that make different LTT models congruent. Even an approach as simple as
371 sister group comparisons (e.g., Slowinski and Guyer 1993) can detect differences in net
372 diversification rate across pairs of clades in a way that depends on topology alone: identical
373 lineage through time plots would have no effect on this. Taken together, this does not mean that
374 clade-specific models of diversification could not have their own issues (even coin flipping
375 models can have congruence, as shown above), just that the identifiability issue identified by
376 Kubo and Iwasa (1995) and Louca and Pennell (2020) does not apply to them.

377 **What are we really learning anyway?**

378 Null hypothesis testing is intended to show whether an effect is significantly different
379 from chance alone. At some point, though, comparing against chance becomes an uninteresting
380 and dull exercise as the end point of a study. After several decades of studying diversification on
381 molecular phylogenies and continually finding variation in rates across taxa and across time,
382 favoring a complex model over a “dull” null hypothesis of simple constant birth-death is no
383 longer surprising. No reasonable scientist will argue that diversification processes have remained
384 perfectly constant through time, with no changes in extinction rates, no factors changing
385 speciation rates, and more. We know the data comes from a heterogeneous, complex process and
386 so any even somewhat reasonable more complex model will fit better than a simple model. As
387 we have noted elsewhere (see Beaulieu and O’Meara 2016; Caetano et al. 2018), rejecting the
388 “null” does not imply that the slightly more complex alternative is the true model. Like a hot gas
389 moved from a simple bottle to a more complex bottle with greater volume, our complex data will
390 happily expand to take the shape of the biggest container offered to it. Model rejection, model
391 weighting, posterior probability of models are all ways of saying, “my cloud of data is more
392 comfortable in this larger bottle than in this smaller bottle. Since the extra bulge on the larger
393 bottle is called factor X , this clearly shows that factor X is important.” However, a different bottle
394 with the same volume but with a bulge for factor Y might fit as well. Good science will involve
395 comparing different reasonable models to the data, not just comparing our slightly more complex
396 model of interest with slightly simpler models. Much of our work on hidden rate models (e.g.,
397 Beaulieu et al. 2013; Beaulieu and O’Meara 2016; Caetano et al. 2018; Boyko and Beaulieu
398 2021) is motivated by this desire to give our preferred models an actual chance to lose against
399 other models in the hope that we learn from this.

400 In our view, an important aspect of the work of Louca and Pennell (2020) was showing
401 that even this limited, careful approach might not work for time-heterogeneous diversification
402 rates: there are multiple diversification bottle shapes that fit the cloud of branching times from a
403 tree equally well. Furthermore, approaches that seek to track the wiggles of the diversification
404 seismograph through time tell us very little, if anything, about the past. However, we would add
405 that instead of tracing the wiggles of a single pulled diversification rate pen on a diversification
406 seismograph, or even take the extreme step of stopping analyses of diversification using modern
407 phylogenies altogether, we should use the valid methods we do have to answer biological
408 questions, in the same way we can use Brownian motion even though different parameterizations
409 can give identical likelihoods. Focus on analyses that lead to discoveries or confirmations of
410 biological processes that are possible given available data.

411 On the whole, it is important to recognize that *our methods are better suited for using the*
412 *past to learn about the present survivors, not using the present survivors to learn about the past.*
413 Phylogenies of extant taxa convey an enormous amount of information about species and their
414 direct ancestors, but they also necessarily miss much of the history of a particular clade.
415 Therefore, there will never be a clever analysis of a phylogeny of extant archosaurs (crocodilians
416 and birds) that will result in an inference of the dynamics of the rise and fall of sauropod
417 dinosaurs, even though they are firmly nested in that clade and must have had a huge effect on
418 the lineages that survived while all were interacting. Yet this is exactly what we are asking of our
419 diversification seismograph analyses of modern taxa — that is, we think we are understanding
420 something about diversification dynamics of archosaurs in the Cretaceous from a study of their
421 weird, few surviving lineages. However, phylogenies of extant taxa can give us information
422 about what led to present diversity, what traits are associated with modern diversity patterns,

423 and, perhaps, even when certain modern lineages took off. We can understand something about
424 diversification patterns of extant birds, for example, including what traits are associated with
425 faster diversification or turnover rates.

426 Perhaps the best example of procedures that illustrate where we think the field needs to
427 reconsider are classic sister group comparisons (Mitter et al., 1988). These explicitly are about
428 comparing modern clades and so are by their nature lineage-heterogeneous and limited to
429 examining factors leading to modern diversity. They do not claim to allow inference about rate
430 shifts in the past, since they attempt to control for the effect of time. There can be important
431 corrections for even these methods (Käfer and Mousset, 2014) but they prevent scientists from
432 spinning tales from limited information about the past. They should also be far more robust to
433 the concerns raised by Maddison and FitzJohn (2015) than even hidden rate models. Of course,
434 they are not without their own limitations: it can be hard to find enough comparisons; they only
435 allow comparison of the direction of net diversification differences due to some pre-specified
436 factor, while many of our hypotheses might relate to speciation rate, extinction rate, or, as we
437 have advocated turnover rate (Beaulieu and O'Meara, 2016; Vasconcelos et al. 2021); they
438 typically require only discrete characters (though see Harvey et al. 2020 and the *bomeara*/sisters
439 package on github); and they require ancestral state reconstruction to find sister pairs differing by
440 a character state. There are also questions completely inaccessible to these methods; however,
441 accepting these limitations at the outset may have prevented years of work that relied on methods
442 that felt scientific but gave ultimately meaningless results given the issues now understood about
443 time-heterogeneous diversification models.

444

445

446 **Conclusions**

447 The reconstruction of diversification rates through time, whether of pulled or classic
448 rates, is appealing but flawed in the same way that inference of ancestral states is appealing but
449 also flawed. Multiple indistinguishable models give very different estimates about the past, and
450 even for large trees, what matters is the branches and branching events at the times of interest,
451 often when the mighty tree was a mere sapling. Moreover, this only looks at branches with
452 modern descendants. What information it does provide is about what those lineages may have
453 been doing, not what the clade as a whole may have been doing. Thus, approaches that seek to
454 paint pictures about potential past diversification regimes at very incremental time periods are
455 certainly suspect, with Louca and Pennell (2020) pointing to additional congruence issues that
456 can affect diversification models.

457 Some feel that, even in the face of these congruence issues, understanding
458 macroevolution remains an exciting and promising endeavor (Helmstetter et al. 2021). We are
459 not nearly as optimistic. We can certainly learn about diversification processes from trees, but we
460 need to recognize that what we can understand largely relates *only* to the surviving tips. Current
461 SSE models and other models that infer rate heterogeneity across taxa, rather than across time,
462 may provide additional information that lets them fit different parameters and likelihood for trees
463 with identical lineage through time curves, avoiding the particular issue raised by Kubo and
464 Iwasa (1995) and Louca and Pennell (2020). However, as with Brownian motion and coin
465 flipping, congruent models can likely be found for these as well. Sister group analyses may grow
466 in importance in future studies of diversification.

467

468

469 **Literature Cited**

470 Abrams, P.A. 1986. Is predator-prey coevolution an arms race? *Trends in Ecology and Evolution*
471 1:108-110.

472 Ackerly, D.D., D.W. Schwilke, and C.O. Webb. 2006. Niche evolution and adaptive radiation:
473 testing the order of trait divergence. *Ecology* 87:S50-S61.

474 Alexander, H.K., A. Lambert, and T. Stadler. 2016. Quantifying age-dependent extinction from
475 species phylogenies. *Systematic Biology* 65:35-50.

476 Barido-Sottani, J., T.G. Vaughan, and T. Stadler. 2018. Detection of HIV transmission clusters
477 from phylogenetic trees using a multi-state birth-death model. *Journal of the Royal
478 Society Interface* 15:<https://doi.org/10.1098/rsif.2018.0512>

479 Beaulieu, J.M., D.-C. Jhwueng, C. Boettiger, and B.C. O'Meara. 2012. Modeling stabilizing
480 selection: expanding the Ornstein-Uhlenbeck model of adaptive evolution. *Evolution* 66:
481 2369-2383.

482 Beaulieu, J.M., B.C. O'Meara, M.J. Donoghue. 2013. Identifying hidden rate changes in the
483 evolution of a binary morphological character: the evolution of plant habit in campanulid
484 angiosperms. *Systematic Biology* 62: 725:737.

485 Beaulieu, J.M., and B.C. O'Meara. 2016. Detecting hidden diversification shifts in models of
486 trait-dependent speciation and extinction. *Systematic Biology* 65:583-601.

487 Boyko, J.D., and J.M. Beaulieu. 2021. Generalized hidden Markov models for phylogenetic
488 comparative methods. *Methods in Ecology and Evolution* 12: 468:478.

489 Butler, M.A., and A.A. King. 2004. Phylogenetic comparative analysis: a modeling approach for
490 adaptive evolution. *The American Naturalist* 164:683-695.

491 Bokma, F. 2008. Bayesian estimation of speciation and extinction probabilities from
492 (in)complete phylogenies. *Evolution* 62:2441–2445.

493 Caetano, D.S., B.C. O'Meara, and J.M. Beaulieu. 2018. Hidden state models improve state-
494 dependent diversification approaches, including biogeographic models. *Evolution*
495 72:2308-2324.

496 Condamine, F.L., D. Silvestro, E.B. Koppelhus, and A. Antonelli. 2020. The rise of angiosperms
497 pushed conifers to decline during global cooling. *Proceedings of the National Academy*
498 of Sciences, USA 117:28867-28875.

499 Condamine, F.L., J. Rolland, and H. Morlon. 2019. Assessing the causes of diversification
500 slowdowns: temperature-dependent diversity-dependent models receive equivalent
501 support. *Ecology Letters* 22:1900-1912.

502 Condamine, F.L., J. Rolland, and H. Morlon. 2013. Macroevolutionary perspectives to
503 environmental change. *Ecology Letters* 16:72-85.

504 Cunningham, C.W., K.E. Omland, and T.H. Oakley. 1998. Reconstructing ancestral character
505 states: a critical reappraisal. *Trends in Ecology and Evolution* 13:361-366.

506 Dawkins R., and J.R. Krebs. 1979. Arms races between and within species. *Proceedings of the*
507 *Royal Society, B* 205:489-511.

508 Eriksson, O. E.M. Friis, and P. Lofgren. 2000. Seed size, fruit size, and dispersal systems in
509 angiosperms from the Early Cretaceous to the Late Tertiary. *The American Naturalist*
510 156:47-58.

511 Etienne, R.S., B. Haegeman, T. Stadler, T. Aze, P. Pearson, A. Purvis, and A. Phillimore. 2012.
512 Diversity-dependence brings molecular phylogenies closer to agreement with the fossil
513 record. *Proceedings of the Royal Society, B* 279:1300–1309.

514 Felsenstein J. 1988. Phylogenies and quantitative characters. *Annual Review of Ecology and*
515 *Systematics* 19:445-471.

516 Hansen, T.F., and E.P. Martins. 1996. Translating between microevolutionary process and
517 macroevolutionary patterns: the correlation structure of interspecific data. *Evolution*
518 50:1404-1417.

519 Helmstetter, A.J., S. Glemin, J. Käfer, R. Zenil-Ferguson, H. Sauquet, H. de Boer, L-P. M.J.
520 Dagallier, N. Mazet, E.L. Reboud, T.L.P. Couvreur, F.L. Condamine. 2021. Pulled
521 diversification rates, lineages-through-time plots and modern macroevolutionary
522 modeling. *Systematic Biology* in press.

523 Käfer, J., and S. Mousset. 2014. Standard sister clade comparison fails when testing derived
524 character states. *Systematic Biology* 63:601-609.

525 Kubo, T., and Y. Iwasa. 1995. Inferring the rates of branching and extinction from molecular
526 phylogenies. *Evolution* 49:694-704.

527 Lambert, A., and T. Stadler. 2013. Birth-death models and coalescent point processes.
528 *Theoretical Population Biology* 90:113-128.

529 Landis M.J., D.A.R Eaton, W.L. Clement, B. Park, E.L. Spriggs, P.W. Sweeney, E.J. Edwards,
530 and M.J. Donoghue. 2020. Joint phylogenetic estimation of geographic movements and
531 biome shifts during the global diversification of Viburnum. *Systematic Biology* 70:76–
532 94.

533 Louca, S., and M.W. Pennell. 2020. Extant timetrees are consistent with a myriad of
534 diversification histories. *Nature* 580:502-506.

535 Maddison, W.P., and R.G. FitzJohn. 2015. The unsolved challenge to phylogenetic correlation
536 tests for categorical characters. *Systematic Biology* 64: 127-136.

537 Maddison, W.P., P.E. Midford, and S.P. Otto. 2007. Estimating a binary character's effect on
538 speciation and extinction. *Systematic Biology* 56:701–710.

539 Maliet, O., F. Hartig, and H. Morlon. 2019. A model with many small shifts for estimating
540 species-specific diversification rates. *Nature Ecology and Evolution* 3:1086-1092.

541 Mitter, C. B. Farrell, B. Wiegmann. 1988. The phylogenetic study of adaptive zones: has
542 phytophagy promoted insect diversification? *American Naturalist* 132: 107-128.

543 Morlon, H., T.L. Parsons, and J.B. Plotkin. 2011. Reconciling molecular phylogenies with the
544 fossil record. *Proceedings of the National Academy of Sciences, USA* 108:16327–16332.

545 Morlon, H., F. Hartig, and S. Robin. 2020. Prior hypotheses or regularization allow inference of
546 diversification histories from extant timetrees. *bioRxiv* doi:
547 <https://doi.org/10.1101/2020.07.03.185074>

548 Nee, S., E. C. Holmes, R. M. May, and P. H. Harvey. 1994. Extinction rates can be estimated
549 from molecular phylogenies. *Philosophical Transactions of the Royal Society B*344:77–
550 82.

551 Nee, S., A.Ø. Mooers, and P.H. Harvey. 1992. The tempo and mode of evolution revealed from
552 molecular phylogenies. *Proceedings of the National Academy of Sciences, USA*
553 89:8322–8326.

554 Oakley T.H., and C.W. Cunningham. 2000. Independent contrasts succeed where ancestor
555 reconstruction fails in a known bacteriophage phylogeny. *Evolution* 54:397-405.

556 O'Meara, B.C., C. Ané, M.J. Sanderson, and P.C. Wainwright. 2006. Testing for different rates
557 of continuous trait evolution using likelihood. *Evolution* 60:922-933.

558 Omland, K.E. 1999. The assumptions and challenges of ancestral state reconstructions.
559 *Systematic Biology* 48:604-611.

560 Pennell M.W., J.M. Eastman, G.J. Slater, J.W. Brown, J.C. Uyeda, R.G. FitzJohn, M.E. Alfaro,
561 and L.J. Harmon. 2014. geiger v2.0: an expanded suite of methods for fitting
562 macroevolutionary models to phylogenetic trees. *Bioinformatics* 30:2216-2218.

563 Pillai, A.S., S.A. Chandler, Y. Liu, A.V. Signore, C.R. Cortez-Romero, J.L.P. Benesch, A.
564 Laganowsky, J.F. Storz, G.K.A. Hochberg, and J.W. Thornton. 2020. Origin of
565 complexity in haemoglobin evolution. *Nature* 581:480-485.

566 Rabosky, D. L. 2006. Likelihood methods for detecting temporal shifts in diversification rates.
567 *Evolution* 60:1152–1164.

568 Rabosky, D. L. 2009. Heritability of extinction rates links diversification patterns in molecular
569 phylogenies and fossils. *Systematic Biology* 58:629–640.

570 Rabosky, D.L., and E.E. Goldberg. 2015. Model inadequacy and mistaken inferences of
571 trait-dependent speciation. *Systematic Biology* 64:340–355.

572 Rabosky, D. L., and I. J. Lovette. 2008. Density-dependent diversification in North American
573 wood warblers. *Proceedings of the Royal Society, B* 275:2363–2371.

574 Raup, D.M., and J.J. Sepkowski, Jr. 1984. Periodicity of extinction in the geological past.
575 *Proceedings of the National Academy of Sciences, USA* 81:801-805.

576 Ree, R.H., and S.A. Smith. 2008. Maximum likelihood inference of geographic range evolution
577 by dispersal, local evolution, and cladogenesis. *Systematic Biology* 57:4-14.

578 Revell, L.J. 2021. A variable-rate quantitative trait evolution model using penalized likelihood.
579 *bioRxiv* doi: <https://doi.org/10.1101/2021.04.17.440282>.

580 Schluter D., T. Price, A.Ø. Mooers, and D. Ludwig. 1997. Likelihood of ancestor states in
581 adaptive radiation. *Evolution* 51:1699-1711.

582 Slowinski, J.B., C. Guyer. 1993. Testing whether certain traits have caused amplified
583 diversification: an improved method based on a model of random speciation and
584 extinction. *The American Naturalist* 142:1019-1024.

585 Thomas, G.H., R.P. Freckleton, and T. Szekely. 2006. Comparative analyses of the influence of
586 developmental mode on phenotypic diversification rates in shorebirds. *Proceedings of the
587 Royal Society, B* 273:1619-1624.

588 Thornton, J.W., E. Need, and D. Crews. 2003. Resurrecting the ancestral steroid receptor:
589 ancient origin of estrogen signaling. *Science* 301:1714-1717.

590 Tifney, B.H. 1984. Seed size, dispersal syndromes, and the rise of angiosperms: evidence and
591 hypothesis. *Annals of the Missouri Botanical Garden* 71:551-576.

592 Vasconcelos, T., B.C. O'Meara, and J.M. Beaulieu. 2021. Hidden state-only speciation
593 and extinction models provide accurate tip-estimates of diversification rates. Submitted.

594 Vasconcelos, T. B.C. O'Meara, and J.M. Beaulieu. 2021. Retiring “cradles” and
595 “museums” of biodiversity. *American Naturalist* in press. <https://doi.org/10.1086/717412>

596

597

598

599

600

601

602

603

604

605 **Figure Legends**

606 **Figure 1:** Probability of heads per flip on different models of coin flipping. Each of these models
607 can fit the same dataset of two heads, eight tails with equal likelihood but make very different
608 predictions about the next flip.

609

610 **Figure 2:** Million taxon tree from Louca and Pennell (2020). The purple lines separate the
611 regimes used to estimate rates. The thin vertical lines in a rainbow distinguish regimes with 100
612 events within them representing equal-sized slices of data. Half the regimes are on each side of
613 the green band, showing how much of the data are near the tips. The brackets show how many
614 events occur in each regime.

615

616 **Figure 3:** Comparison of net diversification, speciation, and extinction rate of conifers using as a
617 predictor the best model from Condamine et al. (2020) in blue where only extinction rate varies
618 with angiosperm diversity, a slightly worse model from that paper (green) where speciation rate
619 varies with angiosperm diversity, a model (yellow) that fits the data best (at least in terms of
620 likelihood — the number of free parameters of the spline is hard to compare), and using scaled
621 IMDB ratings of the television program the Simpsons (red) as a predictor for speciation rate
622 (which did a better job predicting conifer diversification than angiosperm diversity did). Not
623 shown are numerous other attempts for other predictors using other splines, linear change
624 models, and ratings of many other television programs. Some of these also outperformed
625 angiosperms, but many did not.

626

627 **Figure 4:** (A) Depicts the identical lineage through time (LTT) plots for three trees that differ in
628 terms of tree balance. The procedure takes a simulated tree, then makes swaps across branches to
629 either increase balance or decrease it but maintain the same lineage through time curve. (B)
630 Depicts the log-likelihood score among the three trees under a two-rate MiSSE model. These
631 trees produce identical log-likelihoods under taxon-homogeneous, time-heterogeneous models
632 that use LTT data. However, this is not the case here because allowing rates to vary among
633 clades, as our MiSSE models do, avoids the trap of having an infinite array of congruent models.
634 Helmstetter et al. (2021) reach similarly positive conclusions about the possibility of learning
635 about diversification from SSE models.