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Abstract 37 

Models have long been used for understanding changing diversification patterns over time. The 38 

rediscovery that models with very different rates through time can fit a phylogeny equally well 39 

has led to great concern about the use of these models. We share and add to these concerns: even 40 

with time heterogeneous models without these issues, the distribution of the data means that 41 

estimates will be very uncertain. However, we argue that congruence issues such as this also 42 

occur in models as basic as Brownian motion and coin flipping. Taxon-heterogeneous models 43 

such as many SSE models appear not to have this particular issue. 44 
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 59 

Introduction 60 

For decades, molecular phylogenies have served as vital sources of historical information 61 

for deciphering the birth and the death dynamics of lineages. Thousands of studies of molecular 62 

phylogenies have been dedicated to investigating diversification. In theory, estimating constant 63 

birth and death rates separately is possible because each has distinguishable effects on the tree 64 

shape and branch length distributions (Nee et al. 1994). There are several extensions that expand 65 

this simple model for characterizing diversification as a function of time or diversity (e.g., Nee et 66 

al. 1992; Rabosky 2006, 2009; Bokma 2008; Rabosky and Lovette 2008; Morlon et al. 2011; 67 

Etienne et al. 2012), which are used to reconstruct lines showing speciation and extinction rates 68 

scrolling into the past, like the pen of a seismometer tracking vibrations through time. A sudden 69 

sweep up of the extinction rate arm could mean a mass extinction. A slow, downward trajectory 70 

of the speciation rate arm as time approaches the present could mean available niches have 71 

become filled up, limiting the possibilities of adding new species. And, as with constant rate 72 

birth-death models, we have been working under the assumption that even tiny changes in 73 

speciation and/or extinction through time should leave distinct signatures on the tree shape and 74 

branching structure in a molecular phylogeny. 75 

In a recent paper by Louca and Pennell (2020), the entire enterprise of estimating 76 

diversification rates, at least from molecular phylogenies alone, has been called into question. As 77 

it turns out, for any given phylogeny there are an infinite array of congruent models each having 78 

unique functions of speciation and/or extinction rates smoothly varying through time. This is 79 

based on the property of both constant rate birth-death and time-varying models in which every 80 

lineage at any given time-point experiences the same rates, and so sampling times for either a 81 



speciation or extinction event are drawn from the same distribution (also known as a coalescent 82 

point process or CPP; see Lambert and Stadler, 2013). Under such conditions, the likelihood of a 83 

tree under a given birth-death model can be inferred simply in terms of the lineage-through-time 84 

(LTT) curve, which is a retrospective counting of the number of lineages that led to a set of 85 

species observed today, and there are always multiple qualitatively different models that can 86 

produce the same curves with the same probability. For example, one model may infer the 87 

observed diversity of Cetaceans (i.e., whales, dolphins, and relatives) is a product of dramatic 88 

changes in the rate of speciation and extinction rates over time, whereas another, equally likely 89 

model, may infer modern whale diversity is the product of no extinction and ever so slight 90 

changes to the speciation rate. In other words, two diametrically opposed models, particularly 91 

with regards to the role of extinction, provide equally valid explanations for the mode and tempo 92 

of Cetacean diversification. In some cases, such as our example above, these models will have 93 

the same number of parameters, rendering them truly indistinguishable. 94 

It should come as no surprise, then, that one popular interpretation of these findings is 95 

that any attempt to learn anything about diversification rates from molecular phylogenies is a 96 

completely futile enterprise. A different response, which we also have seen, is the continued and 97 

uncritical use of these suspect methods sanitized with a “but see Louca and Pennell (2020)” 98 

citation. It is also worth noting that the findings of Louca and Pennell (2020) are substantially 99 

similar, though much more detailed, to the ones presented by Kubo and Iwasa (1995) a quarter 100 

century ago. These authors also described an infinite array of birth and death models fitting the 101 

data equally well, which has been effectively ignored by most later workers.  102 

The issues raised by Louca and Pennell (2020) and Kubo and Iwasa (1995) do represent 103 

substantial methodological problems for comparative biology. However, this does not signal the 104 



end of studying diversification rates on molecular phylogenies, as some have claimed, as these 105 

problems do not extend to all models of diversification. Instead, they are limited to situations 106 

where the goal is to interpret diversification rates through time using what we refer to as, “time-107 

varying, lineage homogeneous” models — again, models in which all lineages experience the 108 

same variable rates at any given point in time. These would be analogous to a non-heritable trait-109 

dependent process (Lambert and Stadler, 2013), where changes in a trait occur the same in all 110 

species independently (e.g., global CO2, sea-level changes, global temperature patterns). We 111 

argue that what we refer to as “lineage-specific heterogeneous” models, in which rates vary 112 

among lineages across time points, perhaps due to the inheritance of a trait (e.g., state-speciation 113 

and extinction, or SSE models; Maddison et al. 2007), should be immune to the issues of 114 

identifiability raised above. This comes with the substantial caveat that this is true if, and 115 

probably only if, the heritable rate changes are modeled as containing a single speciation and 116 

extinction rate that do not vary through time. Essentially, we will show that these models do 117 

“work” if we limit the model space to those with single rates at any time point.  118 

We also address some of the other procedures proposed, explicitly or implicitly, by 119 

Louca and Pennell (2020): continuing with pulled diversification rate reconstruction, focusing on 120 

a point estimate only, no longer penalizing for model complexity, and how information is 121 

distributed on trees. 122 

Overall, we make four points: 123 

1. Model congruence can occur in areas as different as coin flipping and Brownian 124 

motion: it does not mean these models must be given up, only that certain 125 

questions are infeasible. 126 



2. Time-varying, lineage homogeneous models that use just the information from a 127 

lineage through time curve to estimate changing speciation, extinction, 128 

diversification, turnover, or extinction fraction should be avoided due to 129 

congruence issues. 130 

3. Pulled speciation and pulled diversification rate analyses (Louca and Pennell 131 

2020) are identifiable, but they fail to incorporate the substantial uncertainty in 132 

reconstructions that come as a result of typically exponentially decreasing number 133 

of data points (lineages) as one approaches the root of a tree (this also plagues the 134 

methods in point 2) 135 

4. Some SSE methods, and likely other methods that investigate heterogeneity 136 

across taxa, use information beyond that in a lineage through time curve and their 137 

utility remains intact in the face of Louca and Pennell (2020) and Kubo and Iwasa 138 

(1995).  139 

 140 

Model congruence is common 141 

It may come as a surprise that this issue of two models fitting data equally well is not new 142 

to comparative methods. Take, for instance, the inference of evolutionary trends, which, broadly 143 

defined, are identifiable patterns of trait evolution in a given direction through time. Using only 144 

extant species, can we detect horses getting bigger and with fewer digits, or increases in the 145 

mean seed size in flowering plants since the Cretaceous (e.g., Tifney 1984; Eriksson et al. 2000), 146 

or, more generally, uncover an evolutionary arms race between predator and prey (e.g., Dawkins 147 

and Krebs 1979; Abrams 1986)? It is trivial to extend a simple Brownian motion model to 148 

include a parameter that allows for the focal trait to evolve along a trend, and this is available in 149 



popular software like the R package geiger (Pennell et al. 2014). The likelihood for these models 150 

given the data is finite, and the simple no trend model is even nested within the trend model, so 151 

comparisons between the two are straightforward. However, as Felsenstein (1988) and Hansen 152 

and Martins (1996) have pointed out, even though trait values move in a given direction under a 153 

Brownian motion with a trend model, this does not affect the expected covariances among 154 

species trait values. That is, the expected trait differences among species is still linearly 155 

dependent on time, meaning closely related species are still expected to be more phenotypically 156 

similar than more distantly related species, which is an identical assumption under a standard 157 

Brownian motion model. Consequently, the two models have identical likelihoods when fitted to 158 

extant species only, making them indistinguishable based on their probability alone.  159 

One might argue that in cases of clear non-identifiability any careful scientist would 160 

avoid fitting a degenerate model such as Brownian motion with a trend with just coeval 161 

terminals. However, the problem of identifiability between Brownian motion models with and 162 

without a trend is further compounded when considering the potential for dramatic effects on 163 

ancestral state reconstructions. For example, the ancestor of a clade of taxa with body sizes 164 

ranging from 10-12 kg might have a reconstructed state near 11 kg under a no trend model but 165 

could have a reconstructed state of 50 kg under a model with a trend of an incremental trait 166 

decrease through time. Such ancestral state reconstruction remains widely popular. Nevertheless, 167 

it is still a rather large leap to assert that, because these models are unidentifiable, models using 168 

Brownian motion are generally invalid for use on trees containing only modern taxa. We can still 169 

compare Brownian motion models with more complex models, such as Ornstein-Uhlenbeck 170 

models (e.g., Butler and King 2004; Beaulieu et al. 2012), Brownian models with more than one 171 

rate (e.g., O'Meara et al. 2006; Thomas et al. 2006), or models where the Brownian motion rate 172 



itself changes over time (e.g., Revell, 2021). In other words, while Brownian motion with a trend 173 

model is unidentifiable with modern taxa only, we would not, for instance, say that any model  174 

 

Figure 1: Probability of heads per flip on different models of coin flipping. Each of these models 175 
can fit the same dataset of two heads, eight tails with equal likelihood but make very different 176 
predictions about the next flip. 177 
 178 

that attempts to estimate rates of evolution on such trees is uninterpretable. Some models in this 179 

space give the same likelihoods and cannot be distinguished, but many others can, which calls 180 

for care and analysis, not panic. 181 
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We also point out that model congruence occurs in other statistically based disciplines. 182 

Consider the classic coin-flipping example. Suppose we toss a coin 10 times, and 2 of those 183 

tosses come up heads. The most straightforward fitted binomial model indicates that the 184 

probability of observing 2 heads in 10 flips is 0.3 for a biased coin with each flip having a 20% 185 

chance of landing on heads. Now suppose that every time we touch the coin, it gets slightly 186 

dented, or a bit of metal is worn away, and it becomes less and less likely to land on one side 187 

than the other. We can devise several models that have different slopes to alter the probability of 188 

heads after a set of coin flips (Figure 1). For instance, the probability of heads can linearly 189 

increase with each flip, such that by the end the probability of heads is 10% higher than when we 190 

started flipping, and a model where the probability of heads decreases with each flip so that by 191 

the end it is 5% lower than when it started (Figure 1). Interestingly, the probability of observing 192 

2 heads in 10 flips of the coin in each of these models is the same as the simple binomial model, 193 

though the linear change models infer different initial probability of heads before any flips are 194 

made as well as what the probability of the next flip being heads is. If we pre-set the 5% lower or 195 

20% higher parameters ahead of time rather than fitting them, these have the same number of 196 

free parameters as the homogeneous binomial model. 197 

 198 

Avoid inference of congruent diversification models 199 

While millions of students struggling with their statistics homework might cheer the 200 

destruction of the concept of estimating the probability of heads from a set of coin flips, it is 201 

important to emphasize that even though these models are functionally congruent, each provides 202 

different predictions after a new set of coin flips are made (e.g., what is the likeliest outcome of 203 

the eleventh flip?). That is, even though they are indistinguishable from a probabilistic point of 204 



view, we can still distinguish them when new data becomes available. Of course, with 205 

comparative methods we cannot simply “flip” evolution more times to distinguish among a set of 206 

congruent models. The emphasis, then, as Morlon et al. (2020) recently pointed out, becomes 207 

what we are trying to learn about the world, given what we know about how it works. It is 208 

generally true that with coins, we have a good idea that the probability of heads does not change 209 

meaningfully over flips, so we may be willing to assume a standard binomial model and then 210 

question the fairness of a coin, perhaps as a way of extrapolating to other coins (i.e., if this Euro 211 

coin has a probability of heads of 0.502, is that true for other Euro coins?). In other words, the 212 

parameter can be of interest because the model is not really in question.  213 

With many diversification models, the central question is about which model fits best, 214 

which is at odds with a general lack of knowledge about any system to clearly know which kind 215 

of model is appropriate ahead of time. Even with diversification models that explicitly link rates 216 

to abiotic variables such as temperature or sea level changes (e.g., Condamine et al. 2013; 2019) 217 

the goal seems more focused on which model fits best. In our view, we are not yet at the stage 218 

where we can confidently rule out a congruent model where extinction rates are driven by the 219 

position of a hypothetical dwarf star outside our solar system, which triggers periods of increased 220 

comet activity on Earth (e.g., Raup and Sepkowski 1984), over a more “sensible” model of, say, 221 

temperature clearly affecting speciation but not extinction rates. In such cases, asking questions 222 

about which of several indistinguishable models fit does not seem to us a good use of our time.  223 

It is also important to emphasize that our argument here is not that the issues Louca and 224 

Pennell (2020) point out are trivial. In fact, there are many papers, and even entire research 225 

programs, dedicated to the development of time-varying, lineage homogeneous models of 226 

diversification, and trying to draw conclusions based on which models fit best. But, as with coin 227 



flipping or Brownian motion, knowing what conclusions can be made given the models and data 228 

and limiting our work to those areas can be important. Moreover, if even coin flipping has 229 

congruent models, there is no guarantee that even models that currently seem to avoid the 230 

congruence issue, such as pulled diversification rates recommended by Louca and Pennell 231 

(2020), do not have other congruent models with different parameters, such as models that 232 

change rates by taxa rather than solely by time.  233 

 234 

Avoid ancestral rate reconstruction 235 

 Ancestral state reconstruction of characters remains one of the most popular and widely 236 

used approaches in phylogenetic comparative methods, despite the occasional discussion to 237 

dampen enthusiasm in them (e.g., Cunningham et al. 1998; Omland 1999; Oakley and 238 

Cunningham, 2000). Ancestral state reconstruction is useful for formulating testable hypotheses, 239 

such as the synthesis and performance evaluation of putative ancestral proteins (e.g., Thornton et 240 

al. 2003; Pillai et al. 2020), biogeographic history and movements of clades through time (e.g., 241 

Ree and Smith, 2008; Landis et al. 2020), and the order and timing of character state changes 242 

(e.g., Schluter et al. 1997; Ackerly et al. 2006). Reconstructing diversification rates through time 243 

has a similar appeal, in that they too can point to testable hypotheses about the intrinsic and 244 

extrinsic factors that drive species diversity among groups. Armed with only a phylogeny of 245 

modern taxa, we can reconstruct the seismograph tracing of how speciation rate, extinction rate, 246 

net diversification rate, or the new pulled diversification or pulled speciation rates, have changed 247 

through time. With the reconstruction of discrete or continuous characters, state information at 248 

the extant tips is generally less and less informative about states at nodes as one traverses deeper 249 



in the tree towards the root. For diversification rate models, the data are not arrayed along the 250 

tips of a tree, but rather, come from the distribution of branching events across the phylogeny.  251 

 252 

 

Figure 2. Million taxon tree from Louca and Pennell (2020). The purple lines separate the 253 
regimes used to estimate rates. The thin vertical lines in a rainbow distinguish regimes with 100 254 
events within them representing equal-sized slices of data. Half the regimes are on each side of 255 
the green band, showing how much of the data are near the tips. The brackets show how many 256 
events occur in each regime. Ignoring uncertainty in branch lengths or topology, this makes a 10 257 
Myr long edge equally informative regardless of whether it ended 3 million years ago or 300 258 
million years ago.  259 

 260 

As Maddison and FitzJohn (2015) noted, our field does not yet think in terms of the 261 

curvature of biodiversity-time, and so our expectations about the distribution of these branching 262 

events are often wrong. The number of edges on trees, under most models, increases 263 

approximately exponentially with time, although extinction complicates this, as would models 264 

with carrying capacity (e.g., Rabosky and Lovette 2008), age-dependent extinction (Alexander et 265 

al 2016), and other variations of the birth-death model. Nevertheless, lineage through time plots 266 
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are commonly shown on a log scale for the number of lineages due to this nearly exponential 267 

growth. Visualizing the raw number of lineages would make the dynamics in the early parts of 268 

the plot virtually invisible due to the massive growth of the line near the present. Importantly, the 269 

midpoint of the data is the point at which half the number of lineages has accumulated, which is 270 

not the halfway point along the time axis.  271 

Consider a tree split into equal-sized chunks according to some time interval, as Louca 272 

and Pennell (2020) and others have. The number of edges within a given bin naturally decreases 273 

as one moves towards the root. Now, take the extreme example from Louca and Pennell (2020) 274 

where they analyzed a tree with a million taxa (Figure 2). Even though the tree is far larger than 275 

any published study of diversification, they only estimate rates along 10-time intervals and for 276 

many of these bins there is only a trivial amount of data. For example, at the start of the 100 Myr 277 

to 90 Myr interval, there are just seven lineages, and by the end of that interval, there are only 278 

ten. The lineage through time plot, which is the data that goes into these methods, thus jumps just 279 

three times over that ten million years. This is clearly not a lot of data points for estimating 280 

speciation or extinction rates, or even a single pulled diversification rate. Each of the next several 281 

intervals have a single jump. That is, it goes from 10 to 11 lineages from 90 to 80 Myr, and from 282 

just 11 to 12 from 80 Myr to 90 Myr. It is no wonder that these methods perform poorly; a single 283 

event on a 12-taxon tree does not contain much information about rates, whether pulled or not. 284 

Put another way, these methods are starving for data across large portions of the tree.   285 

A natural corollary, then, is that seismographic reconstructions of rates will contain 286 

increasing levels of uncertainty as one moves deeper in time. Nee et al. (1994) showed clearly 287 

that even rates from a constant birth-death model can carry substantial uncertainty. Yet most 288 

analyses doing the sort of work Louca and Pennell (2020) criticize, and even their examples, 289 



return a single point estimate for each parameter at a given time period. In a few cases, point 290 

estimates are summarized together across a set of trees, which is better, but still likely reflects 291 

substantially less uncertainty than what is truly present in any single estimate.  292 
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Figure 3: Comparison of net diversification, speciation, and extinction rate of conifers using as a 293 
predictor the best model from Condamine et al. (2020) in blue where only extinction rate varies 294 
with angiosperm diversity, a slightly worse model from that paper (green) where speciation rate 295 
varies with angiosperm diversity, a model (yellow) that fits the data best (at least in terms of 296 
likelihood — the number of free parameters of the spline is hard to compare), and using scaled 297 
IMDB ratings of the television program the Simpsons (red) as a predictor for speciation rate 298 
(which did a better job predicting conifer diversification than angiosperm diversity did). Not 299 
shown are numerous other attempts for other predictors using other splines, linear change 300 
models, and ratings of many other television programs. Some of these also outperformed 301 
angiosperms, but many did not. 302 

 303 

Besides unexamined uncertainty in point estimates, there is substantial uncertainty in 304 

which model fits best, even if one ignores the congruence issue. For example, Condamine et al. 305 

(2020) compared various models correlating various rates with angiosperm diversity using just a 306 

phylogenetic tree; their best model showed an exponential dependence of conifer extinction rate 307 

with the number of angiosperms. However, models nearly as good (∆AICc < 2; see their Table 308 

S5) include an effect on speciation or both speciation and extinction (only 41% of the model 309 

weight is on variable extinction only models; 39% is on variable speciation only, and 21% on 310 

both varying). One can construct other patterns of diversification rates with very different 311 

conclusions that are better predictors. For example, in Figure 3, the yellow diversification curves 312 

predict the conifer data even better but tell a very different story of constant speciation with 313 

decreases of extinction in the Cretaceous and Neogene rather than the recovered pattern of a 314 

gradual rise of extinction in the Cretaceous onward. Even using ratings of a television show (the 315 

Simpsons, the red line) scaled for the appropriate time period predicts conifer diversification 316 

better than the postulated angiosperm mechanism. Similarly, Morlon et al. (2011) looking at a 317 

paraphyletic set of 16 cetaceans found a constant speciation but variable extinction model fit 318 

best, but there were two other models with a ∆AICc of less than 1 (including one where 319 

extinction does not vary) — this makes it hard to draw any firm conclusions from modern data 320 



alone. Careful biologists, as shown in the studies above, will limit themselves to only feasible 321 

mechanisms, but as we know from other diversification models (Rabosky and Goldberg 2015; 322 

Beaulieu and O’Meara, 2016), if presented with a very simple model and more complex 323 

alternatives only, methods using our messy, complex empirical data will leap to use the more 324 

complex predictors. That is, if the only way to incorporate the very real heterogeneity of a 325 

process is to ascribe it to some varying predictor, methods will choose that. Whether it is 16 326 

modern taxa or a million, it is unclear what we learn from such exercises. Our energies might be 327 

better directed elsewhere.  328 

 329 

The state of SSE models and other approaches 330 

Louca and Pennell (2020) speculate that state-speciation and extinction models (SSE) 331 

may have similar identifiability issues. This is not an unreasonable concern. Beaulieu and 332 

O’Meara (2016) demonstrated that if a trait has no effect on speciation and/or extinction rates, 333 

the likelihood of any SSE model becomes the product of the likelihoods of the Nee et al. (1994) 334 

tree likelihood and the character model likelihood (or the sum of the log-likelihoods in log 335 

space), so the models are clearly related. One could certainly alter the SSE model to include 336 

realistic factors like mass extinctions and secular changes in rates through time, and any one of 337 

these features will undoubtedly lead to a set of models with identical likelihoods. However, in 338 

other ways, strict SSE models can be immune, because they do not split the tree into time bins. 339 

Instead, they approximately treat a tree as a series of discrete chunks — that is, a chunk in one 340 

part of the tree is in state 0, and so is impacted by the instantaneous speciation rate, !0, and 341 

extinction rate, "0, while another chunk in another part of the tree is in state 1 and so is impacted 342 

by speciation rate, !1, and extinction rate, "1 (in reality, they average over these paintings based  343 



 

Figure 4: (A) Depicts the identical lineage through time (LTT) plots for three trees that differ in 344 
terms of tree balance. The procedure takes a simulated tree, then makes swaps across branches to 345 
either increase balance or decrease it but maintain the same lineage through time curve. (B) 346 
Depicts the log-likelihood score among the three trees under a two-rate MiSSE model. These 347 
trees produce identical log-likelihoods under taxon-homogeneous, time-heterogeneous models 348 
that use LTT data. However, this is not the case here because allowing rates to vary among 349 
clades, as our MiSSE models do, avoids the trap of having an infinite array of congruent models. 350 
Helmstetter et al. (2021) reach similarly positive conclusions about the possibility of learning 351 
about diversification from SSE models. 352 
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on their probabilities). Within each of these chunks the speciation and extinction rates are 354 

invariant, and as Nee et al. (1994) showed, constrained in this way there is a single maximum 355 

likelihood estimate of each rate. If one limits the model space to where rates are dependent on 356 

states (observed or hidden or some combination of both), then SSE models should be 357 

identifiable, though not immune to all the practical difficulties of estimating rates in the presence 358 

of extinction, finite data, errors in branch lengths and topology, and more.  359 

We can at least empirically demonstrate that SSE models are immune to the issues of 360 

model congruence based on information in the lineage through time plot: SSE models use more 361 

information than this. In Figure 4, there are three trees with identical lineage through time 362 

curves, but different arrangements of topology. Under a constant rate Yule or birth-death model 363 

the likelihoods of these three trees are identical, as one would expect given the findings of Louca 364 

and Pennell (2020). However, if we allow for multiple rates to be inferred across the tree by 365 

fitting a hidden states only model (which we call MiSSE; see Vasconcelos et al. 2021) the three 366 

trees have different likelihood. This is because the MiSSE model uses information not accessible 367 

to LTT methods, namely, the tree topology. Other methods that fit rate heterogeneity across taxa, 368 

such as MSBD (Barido-Sottani et al. 2018) and ClaDS (Maliet et al. 2019), may also not be 369 

bound by the issues that make different LTT models congruent. Even an approach as simple as 370 

sister group comparisons (e.g., Slowinski and Guyer 1993) can detect differences in net 371 

diversification rate across pairs of clades in a way that depends on topology alone: identical 372 

lineage through time plots would have no effect on this. Taken together, this does not mean that 373 

clade-specific models of diversification could not have their own issues (even coin flipping 374 

models can have congruence, as shown above), just that the identifiability issue identified by 375 

Kubo and Iwasa (1995) and Louca and Pennell (2020) does not apply to them. 376 



What are we really learning anyway? 377 

Null hypothesis testing is intended to show whether an effect is significantly different 378 

from chance alone. At some point, though, comparing against chance becomes an uninteresting 379 

and dull exercise as the end point of a study. After several decades of studying diversification on 380 

molecular phylogenies and continually finding variation in rates across taxa and across time, 381 

favoring a complex model over a “dull” null hypothesis of simple constant birth-death is no 382 

longer surprising. No reasonable scientist will argue that diversification processes have remained 383 

perfectly constant through time, with no changes in extinction rates, no factors changing 384 

speciation rates, and more. We know the data comes from a heterogeneous, complex process and 385 

so any even somewhat reasonable more complex model will fit better than a simple model. As 386 

we have noted elsewhere (see Beaulieu and O’Meara 2016; Caetano et al. 2018), rejecting the 387 

“null” does not imply that the slightly more complex alternative is the true model. Like a hot gas 388 

moved from a simple bottle to a more complex bottle with greater volume, our complex data will 389 

happily expand to take the shape of the biggest container offered to it. Model rejection, model 390 

weighting, posterior probability of models are all ways of saying, “my cloud of data is more 391 

comfortable in this larger bottle than in this smaller bottle. Since the extra bulge on the larger 392 

bottle is called factor X, this clearly shows that factor X is important.” However, a different bottle 393 

with the same volume but with a bulge for factor Y might fit as well. Good science will involve 394 

comparing different reasonable models to the data, not just comparing our slightly more complex 395 

model of interest with slightly simpler models. Much of our work on hidden rate models (e.g., 396 

Beaulieu et al. 2013; Beaulieu and O’Meara 2016; Caetano et al. 2018; Boyko and Beaulieu 397 

2021) is motivated by this desire to give our preferred models an actual chance to lose against 398 

other models in the hope that we learn from this. 399 



In our view, an important aspect of the work of Louca and Pennell (2020) was showing 400 

that even this limited, careful approach might not work for time-heterogeneous diversification 401 

rates: there are multiple diversification bottle shapes that fit the cloud of branching times from a 402 

tree equally well. Furthermore, approaches that seek to track the wiggles of the diversification 403 

seismograph through time tell us very little, if anything, about the past. However, we would add 404 

that instead of tracing the wiggles of a single pulled diversification rate pen on a diversification 405 

seismograph, or even take the extreme step of stopping analyses of diversification using modern 406 

phylogenies altogether, we should use the valid methods we do have to answer biological 407 

questions, in the same way we can use Brownian motion even though different parameterizations 408 

can give identical likelihoods. Focus on analyses that lead to discoveries or confirmations of 409 

biological processes that are possible given available data.  410 

On the whole, it is important to recognize that our methods are better suited for using the 411 

past to learn about the present survivors, not using the present survivors to learn about the past. 412 

Phylogenies of extant taxa convey an enormous amount of information about species and their 413 

direct ancestors, but they also necessarily miss much of the history of a particular clade. 414 

Therefore, there will never be a clever analysis of a phylogeny of extant archosaurs (crocodilians 415 

and birds) that will result in an inference of the dynamics of the rise and fall of sauropod 416 

dinosaurs, even though they are firmly nested in that clade and must have had a huge effect on 417 

the lineages that survived while all were interacting. Yet this is exactly what we are asking of our 418 

diversification seismograph analyses of modern taxa — that is, we think we are understanding 419 

something about diversification dynamics of archosaurs in the Cretaceous from a study of their 420 

weird, few surviving lineages. However, phylogenies of extant taxa can give us information 421 

about what led to present diversity, what traits are associated with modern diversity patterns, 422 



and, perhaps, even when certain modern lineages took off. We can understand something about 423 

diversification patterns of extant birds, for example, including what traits are associated with 424 

faster diversification or turnover rates. 425 

Perhaps the best example of procedures that illustrate where we think the field needs to 426 

reconsider are classic sister group comparisons (Mitter et al., 1988). These explicitly are about 427 

comparing modern clades and so are by their nature lineage-heterogeneous and limited to 428 

examining factors leading to modern diversity. They do not claim to allow inference about rate 429 

shifts in the past, since they attempt to control for the effect of time. There can be important 430 

corrections for even these methods (Käfer and Mousset, 2014) but they prevent scientists from 431 

spinning tales from limited information about the past. They should also be far more robust to 432 

the concerns raised by Maddison and FitzJohn (2015) than even hidden rate models. Of course, 433 

they are not without their own limitations: it can be hard to find enough comparisons; they only 434 

allow comparison of the direction of net diversification differences due to some pre-specified 435 

factor, while many of our hypotheses might relate to speciation rate, extinction rate, or, as we 436 

have advocated turnover rate (Beaulieu and O’Meara, 2016; Vasconcelos et al. 2021); they 437 

typically require only discrete characters (though see Harvey et al. 2020 and the bomeara/sisters 438 

package on github); and they require ancestral state reconstruction to find sister pairs differing by 439 

a character state. There are also questions completely inaccessible to these methods; however, 440 

accepting these limitations at the outset may have prevented years of work that relied on methods 441 

that felt scientific but gave ultimately meaningless results given the issues now understood about 442 

time-heterogeneous diversification models.  443 

 444 

 445 



Conclusions 446 

The reconstruction of diversification rates through time, whether of pulled or classic 447 

rates, is appealing but flawed in the same way that inference of ancestral states is appealing but 448 

also flawed. Multiple indistinguishable models give very different estimates about the past, and 449 

even for large trees, what matters is the branches and branching events at the times of interest, 450 

often when the mighty tree was a mere sapling. Moreover, this only looks at branches with 451 

modern descendants. What information it does provide is about what those lineages may have 452 

been doing, not what the clade as a whole may have been doing. Thus, approaches that seek to 453 

paint pictures about potential past diversification regimes at very incremental time periods are 454 

certainly suspect, with Louca and Pennell (2020) pointing to additional congruence issues that 455 

can affect diversification models.  456 

Some feel that, even in the face of these congruence issues, understanding 457 

macroevolution remains an exciting and promising endeavor (Helmstetter et al. 2021). We are 458 

not nearly as optimistic. We can certainly learn about diversification processes from trees, but we 459 

need to recognize that what we can understand largely relates only to the surviving tips. Current 460 

SSE models and other models that infer rate heterogeneity across taxa, rather than across time, 461 

may provide additional information that lets them fit different parameters and likelihood for trees 462 

with identical lineage through time curves, avoiding the particular issue raised by Kubo and 463 

Iwasa (1995) and Louca and Pennell (2020). However, as with Brownian motion and coin 464 

flipping, congruent models can likely be found for these as well. Sister group analyses may grow 465 

in importance in future studies of diversification. 466 

 467 

 468 
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Figure Legends 605 

Figure 1: Probability of heads per flip on different models of coin flipping. Each of these models 606 

can fit the same dataset of two heads, eight tails with equal likelihood but make very different 607 

predictions about the next flip. 608 

 609 

Figure 2: Million taxon tree from Louca and Pennell (2020). The purple lines separate the 610 

regimes used to estimate rates. The thin vertical lines in a rainbow distinguish regimes with 100 611 

events within them representing equal-sized slices of data. Half the regimes are on each side of 612 

the green band, showing how much of the data are near the tips. The brackets show how many 613 

events occur in each regime.  614 

 615 

Figure 3: Comparison of net diversification, speciation, and extinction rate of conifers using as a 616 

predictor the best model from Condamine et al. (2020) in blue where only extinction rate varies 617 

with angiosperm diversity, a slightly worse model from that paper (green) where speciation rate 618 

varies with angiosperm diversity, a model (yellow) that fits the data best (at least in terms of 619 

likelihood — the number of free parameters of the spline is hard to compare), and using scaled 620 

IMDB ratings of the television program the Simpsons (red) as a predictor for speciation rate 621 

(which did a better job predicting conifer diversification than angiosperm diversity did). Not 622 

shown are numerous other attempts for other predictors using other splines, linear change 623 

models, and ratings of many other television programs. Some of these also outperformed 624 

angiosperms, but many did not. 625 

 626 



Figure 4: (A) Depicts the identical lineage through time (LTT) plots for three trees that differ in 627 

terms of tree balance. The procedure takes a simulated tree, then makes swaps across branches to 628 

either increase balance or decrease it but maintain the same lineage through time curve. (B) 629 

Depicts the log-likelihood score among the three trees under a two-rate MiSSE model. These 630 

trees produce identical log-likelihoods under taxon-homogeneous, time-heterogeneous models 631 

that use LTT data. However, this is not the case here because allowing rates to vary among 632 

clades, as our MiSSE models do, avoids the trap of having an infinite array of congruent models. 633 

Helmstetter et al. (2021) reach similarly positive conclusions about the possibility of learning 634 

about diversification from SSE models.  635 


