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Abstract—Functional magnetic resonance imaging (fMRI) al-
lows the construction of functional brain networks, offering a
tool to probe the organization of neural activity. Null models
have been proposed in this framework to evaluate the accuracy
of new proposed approaches to discriminate network features
coming from the data themselves in comparison to randomize
procedure. Several models have been recently proposed and it
is still complicated to choose one. We propose in this paper to
compare null models and real datasets using Persistent homology
(PH). PH is part of topological data analysis (TDA), and offers a
framework for building multiscale summaries of networks. PH is
first applied to a density-based filtration. We propose a procedure
to extract label information from persistent homology summaries
of labeled graphs. We then investigate its ability to discriminate
between real data and surrogate data generated from null models.
Interestingly, our new proposed label-informed approach is able
to discriminate very accurately real datasets and classical null
models opening the way to the design of new null models.

Index Terms—Toppological data analysis, graph distances,
persistent homology, null models, function brain connectivity.

I. INTRODUCTION

Analyses of real data is a complex task, where no ground
truth is available. Many sources of noise, disturbances, pre-
processing can affect the results, with few tools able to quan-
tify them. Lots of efforts are now built to make research repro-
ducible, repeatable, generalisable, reliable . . . (see for exemple
The Turing Way1). In brain analyses, these challenges are
present in all the research conducted nowadays. Statisticians
have developed a whole framework to validate and promote
responsible research [1]–[3]. This includes quantification of
uncertainties, statistical tests for fMRI data, machine learning
dealing with the high-dimensional and low sample size nature
of the datasets. Among all this, we are interested in the genera-
tion of null datasets to be able to validate the statistical results.
As very nicely described in [3], this is a difficult task because
of the complex nature of brain fMRI data. A widely used
approach to study the functioning of the brain is to construct
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brain connectivity matrices. After thresholding, purely graph-
based methods are used. They are often limited to global or
local statistics, only presenting information at the scale of the
whole graph or of a single node neighborhood [4]. Persistent
homology is a topological data analysis (TDA) approach that
produces multiscale summaries from a point cloud or a dis-
tance matrix. Persistent homology tracks homological features,
in short, the number of connected components and the number
of topological cavities (equivalent to a circle or a hollow sphere
in dimensions 1 and 2, or to higher dimensional cavities), by
building simplices. This is a way to look at structures in the
graph that are orders higher than the dyadic relationships the
edges of the graph represent [5]. However, inherent to the
use of new methods, we need to ask whether this method
is robust, reliable, generalisable . . . .To that end, we consider
null models that generate surrogate connectivity matrices as
benchmarks of real data. This permits the identification of
relevant features captured by a persistent homology approach
in brain connectivity. Null models are ubiquitous in network
neuroscience [3]. For instance, they allow one to test the
statistical significance of graph features of empirical networks
against a null hypothesis. Furthermore, null models which
can be tuned to reproduce a specific graph layout offer a
tool for comparing graph distances and understanding which
properties they capture. This paper introduces a novel label-
informed distance on persistence diagrams, useful in non-
permutation invariant settings. Then a validation is proposed
with application to null-models and fMRI brain connectivity
datasets. This allows us to gain insights on the construction
of null models from real brain data.

II. STATE OF THE ART

The interest in higher-order interactions, with persistent
homology for example, has taken off in recent years, whether
in the broader context of complex systems modeling [6]
or in structural [7] or functional brain networks [8], with
notable findings in aging and neurodegenerative disorders.
It is easily applicable to biological data, which is often
highly dimensional and lacks a natural concept of distance
[9]. For instance, in neuroscience network data, it has been
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applied to differentiate healthy subjects and subjects with
neural disorders [10], [11], study the influence of psychotropic
substances and sedatives [12] or to analyze neuronal net-
work simulations [13]. Null models for network neuroscience
have been reviewed recently in [3]. Different strategies are
proposed, either randomising the weights of the connectivity
matrices [14], generating graphs with same degree or any other
characteristics [15], and other possibilities as detailed in [3].
It is now well admitted in the community that validation of
results should include a comparison with null models [16].
In this paper, we propose for the first time to compare the
classically used null models proposed in the literature through
the lens of TDA.

III. DATA

A. Real Data

We consider a set of resting-state functional networks from
the Human Connectome Project (HCP). The measurements
were parcellated into N = 90 regions using the Automated
Anatomical labeling (AAL). For each region, the time series
were estimated by averaging over all voxels, weighted by the
proportion of gray matter in each voxel (estimated through
structural MRI) and corrected for head motion. Correlations
were estimated between Daubechie’s wavelets coefficient be-
tween all pairs of time series. Analysis was restrained to
the frequency interval 0.04-0.08 Hz. See [17] for additional
details. A graph G = (V,E) is a collection of nodes or vertices
V and edges linking those vertices, i.e., each element in E is
an element of V × V . There is a range of ways to represent
a graph, here it will be represented by its adjacency matrix,
usually denoted A. An adjacency matrix is a symmetric matrix
where each off-diagonal element aij is a weight, representing
a chosen attribute of the relation between nodes i and j.

Using the correlation matrix between the regional wavelet
coefficients C, we construct the graph adjacency matrix A =
1− |C|.

B. Null models for functional connectivity

Null models are an ubiquitous tool in network neuroscience
[3]. By offering a way to generate networks according to a
simplified model, they allow benchmarking of the properties
of empirical networks against the null hypothesis provided by
a given model.

Comparing null models and empirical functional connec-
tivity allows for the appreciation of null model properties
and improved understanding of the information captured by
various distances. Here, four null models for correlation net-
works are presented, each conserving some features from an
initial functional connectivity matrix [3]. First, we consider
the Zalesky matching algorithm, which generates correlation
matrices with a given average correlation and variance be-
tween correlations [18]. This is achieved through generating
an N + 1 normally distributed random vectors of length T
xi, y ∼ N (0, I) (i ∈ {1, . . . N}), with I the T -dimensional
identity matrix. Then, the values of xi are repeatedly adjusted
as xi ← xi+ay until the desired average correlation between

the vectors is obtained. The process is repeated with a different
number of time points T until the correlation variances also
match.

As a second model, we consider a spatiotemporal one which
generates time series imitating spatial and temporal autocor-
relation from the regional time series of a given examination
of a subject [19]. Here, the model is applied to the regional
wavelet coefficients.

The last two null models are a phase randomization model,
generating new time series where each regional time series has
the same power spectrum, and an Erdős-Rényi model, where
each correlation value is randomly distributed.

IV. PERSISTENT HOMOLOGY

Persistent homology is a mathematical formalism from
the larger field of topological data analysis, that allows the
production of multiscale summaries of point cloud or graph
distance matrices [20], such as Betti numbers and persistent
diagrams.

Starting from a distance matrix, simplicial complexes are
built, using a filtration, tracking topological features at every
scale. These features correspond to the dimension of kth

homology group [21], with k a non-negative integer. Essen-
tially, the number of 0-dimensional features is the number of
connected components, and higher dimensional ones represent
topological cavities: 1-dimensional features are circle-like,
2-dimensional features are (hollow) sphere-like, and so on.
In short, this means that the Betti number βk counts the
number of k + 1-dimensional volumes that are enclosed by,
at least, a k-dimensional cycle that does not correspond to
the boundary of a simplex of the given simplicial complex,
with β0 counting the number of connected components of
the simplicial complex. We are, in this paper, interested in
plotting the death values of features against their birth values.
This yields a persistence diagram in the plane delimited by the
b = d and d = 0 lines. Here, the filtration is done on a density-
weighted graph. This preserves the topological features, as it
is a (non-linear) monotone transformation, and only re-scale
their birth and death values.

A. Comparing persistence diagrams

We first recall various distances between persistence dia-
grams.

The p-Wasserstein distance between measures µ, ν, with
support in X p ∈ [1,∞[ is

Wp(µ, ν) =

(∫
X×X

c(x, y)p dπ(x, y)

)1/p

(1)

where π(x, y) is the optimal coupling between µ and ν
under cost c(·, ·)p. In these works, the focus is mainly on the
1-Wasserstein distance.

Another common option is the bottleneck distance, which
is the p→∞ limit of the p-Wasserstein distance:

Bo(µ, ν) = lim
p→+∞

Wp(µ, ν). (2)
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For a, b two discrete distributions, the optimal transport
distance can be expressed as

dOT(a, b) = γ∗
ab = argmin

γ∈Rm×n

∑
i,j

γijMij (3)

such that γI = a, γT I = b, γ ≥ 0 and with M the cost
matrix defining the cost of moving the histogram bin ai to
bin bj , I the identity matrix of the relevant dimension.

We now introduce a label-informed distance on persistence
diagrams, by designing a novel cost matrix. First, we list edges
{{ek[i]}i∈{1,...,nk}} which correspond to the birth or death of
the kth homological feature in the persistence diagrams, where
nk is the number features. Next we choose a simple binary
cost matrix defined as follows:

M∗
ij =

{
0 if e[i] = e[j]

1 otherwise
(4)

We define the edge comparison optimal transport distance
as the optimal transport distance dOT where M = M∗:

de,k···(a, b) = argmin
γ∈Rm×n

∑
i,j

γijM
∗
ij , (5)

where k · · · denotes the included homological features. This
approach is similar to the fused Gromov-Wasserstein distance
[22], applied to a labeled persistence diagram instead of a
labeled graph. Fused Gromov-Wasserstein takes into account
both labels and graph structure by taking a weighted sum
of two terms representing each aspect. The label term is
equivalent to the distance introduced here for a general cost
matrix M .

In the following, the persistence diagrams and the
Wasserstein distances between them are computed using
giotto-tda, with an error tolerance of 0.01 [23]. The op-
timal transport distance dOT between the persistence diagram
is computed with the POT package [24].

B. Comparing edges of labeled graphs

In the context of thresholded graphs, node labels can be used
to compare graphs. For A,B two sets, the overlap similarity
is

Overlap(A,B) = |A ∩ B|
min(|A|, |B|)

(6)

and the overlap distance

dO(A,B) = 1− Overlap(A,B). (7)

In our setting, A,B correspond to two sets of node label pairs,
associated to edges in the thresholded graph.

V. BETTI CURVES OF DIFFERENT DATASETS

Fig. 1 presents the Betti curves of the different rs-fMRI
(resting state-fMRI) correlation matrices and their null models
using the density-based filtration, which does not require any
thresholding step. The latter are presented in the first two rows.

Both Erdős-Rényi and phase randomization models exhibit
fast percolation, reaching a single connected component at
low density (Fig. 1a). The β1 and β2 curves also have similar
behavior, with a localized peak where the maximal value is
slightly lower for the phase randomization model (Fig. 1b
and Fig. 1c). The Zalesky and spatiotemporal models exhibit
slightly different behavior, with a slower decrease in the β0

curve (Fig. 1d), particularly in the case of the spatiotemporal
model. The β1 and β2 features are on average more present
in the Zalesky graphs than in the spatiotemporal graphs, and
tend to appear at lower densities in the former than in the
latter (Fig. 1e and Fig. 1f).

Betti numbers hence seem to capture some characteristics
that are specific to each null model.

The last line of Fig. 1 presents results on real data by
varying the preprocessing. The first (HCP) corresponds to
only taking the wavelet correlation between time series, while
the other ones include a regression on white matter and
cerebrospinal fluid (WM & CSF), with the last adding global
signal regression (GSR), which are common preprocessing
step. For β0, additional signal regressions make the curve fall
faster, meaning that fewer regions are poorly connected to the
main connected component (Fig. 1g). For β1, β2, the curves
follow each other at low and high densities but reach higher
maxima (Fig. 1h and i). However, variability is large and future
work is needed.

VI. DISTANCES TO DISCRIMINATE BETWEEN GENERATIVE
MODELS AND REAL DATA

For the null models, the Wasserstein distance clearly dis-
criminate between three groups: phase randomization, Erdős-
Rényi and a third group including healthy subjects, spa-
tiotemporal, and Zalesky models. The bottleneck distance only
separates the latter from a single group containing both phase
randomization and Erdős-Rényi models (Fig. 2a).

A qualitative visual inspection of the results on the con-
sidered distances (Fig. 2) shows that the Zalesky and the
spatiotemporal model can roughly reproduce the persistent ho-
mology of empirical functional brain networks. Interestingly,
when considering the W1 distance the real data are grouped
together with the Zalesky and spatiotemporal model. This
means that real data birth and death feature distribution can
be approximated by considering a dominant Gaussian signal
and adjusting the noise of individual regions in order to match
the correlation distribution or by capturing limited spatial and
temporal auto-correlations from the fMRI data. Meanwhile,
the amplitude of the persistence diagrams appears to vary
across real data and these two models. This leads to high bot-
tleneck distances and prevents grouping them all together. The
opposite is observed for phase randomization and Erdős-Rényi
models: they are grouped together by bottleneck distance and
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Fig. 1. From left to right: Betti curves for β0, β1 and β2. (a) (b) (c) Null model Betti curves: phase randomization and Erdős-Rényi (d) (e) (f) Null model
Betti curves: spatiotemporal and Zalesky (g) (h) (i) Empirical functional connectivity in HCP subjects with different preprocessings. Shaded areas give a 95%
confidence interval around the mean βi value at the given density.

not by W1. Moreover, they are also gathered by the edge
comparison optimal transport, suggesting they might produce
similar label feature distribution. Both considered label-based
distances differentiate the spatiotemporal and Zalesky null
models from empirical data, but not from each other (Fig.
2b). This might be expected for the latter, since it does not
take into account any label information to generate surrogate
matrices, but is more surprising for the former. Hence, these
label-dependent distances demonstrate that even null models
that input some kind of spatial information do not reproduce
label-dependent behavior.

None of the null models we consider manage to reproduce
the real data label organization.

VII. LIMITATIONS AND PERSPECTIVES

For somewhat large networks, persistent homology stays
limited to the lower dimensions, as the computational cost
for computing higher-order features increases exponentially
as it requires finding an arrangement of cliques. Although
in this case, as the dependencies seem strong, finding high-
order features would be surprising, it cannot yet be ruled out.
Furthermore, in functional brain networks, first and second-
order homology features seem to be short-lived, limiting the

interest in persistent homology, where longer-lived features are
the signature of particular topological invariants and are the
main attribute that is targeted by persistent homology. In short,
persistent homology appears to capture some of the texture of
functional brain networks but does not uncover larger-scale
organization.

VIII. CONCLUSION

To the best of our knowledge, this is the first attempt to
use density levels filtration on fMRI networks. Moreover, we
propose to include label information when comparing non-
permutation invariant applications. Particularly, this is required
in functional brain networks where nodes are associated with
brain regions and are not perfectly exchangeable. We evaluate
our approach on both real data and null models. These label-
dependent distances show that node information included in
some null models does not constrain the model enough to be
close to the real data. This suggests new objectives in the
design of null models for brain connectivity.
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Fig. 2. 10 healthy subjects with 10 realizations of each of the four null models (phase randomization, Erdős-Rényi, spatiotemporal, Zalesky). (a) Upper
triangle: Bottleneck distance. Lower triangle: 1-Wasserstein distance. (b) Upper triangle: overlap distances between edges at density 0.05 Lower triangle:
edge comparison optimal transport distance de,012 between edges of the persistence diagrams (with β0, β1, β2 features)
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