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Abstract

We address the fundamental problem of selection under uncertainty by modeling it from the per-
spective of Bayesian persuasion. In our model, a decision maker with imperfect information always
selects the option with the highest expected value. We seek to achieve fairness among the options by
revealing additional information to the decision maker and hence in�uencing its subsequent selection.
To measure fairness, we adopt the notion of majorization, aiming at simultaneously approximately
maximizing all symmetric, monotone, concave functions over the utilities of the options. As our main
result, we design a novel information revelation policy that achieves a logarithmic-approximation to
majorization in polynomial time. On the other hand, no policy, regardless of its running time, can
achieve a constant-approximation to majorization. Our work is the �rst non-trivial majorization result
in the Bayesian persuasion literature with multi-dimensional information sets.
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1 Introduction

Selection problems arise in hiring decisions, college admissions, ad auctions, andmany other scenarios.

Typically, a selection process involves de�ning an explainable selection rule that solves an optimization

problem over the agents (e.g., applicants or advertisers). Perhaps the simplest and most common rule is

to choose the best or most quali�ed agent(s) – for example, many countries use standardized test scores

for college admissions. Under natural simplifying assumptions, such a meritocratic rule will maximize the

utilitarian social welfare, and can be perceived as fair. Nevertheless, its outcomes may not always align

with other fairness considerations. For instance, one can adopt the view of max-min fairness and aim at

helping the worst-o� agent.

The meritocratic rule has a perhaps more subtle issue: when trying to evaluate the agents and de-

�ne the “best” one, the quality measurements may be imperfect. Indeed, the decision maker uses ob-

servable information or features of the agents to reach a decision, but counterfactually, a di�erent de-

cision could have been made in the presence of more certain or complete information. This issue can

have disproportionate negative impacts on certain demographic groups and therefore undermine fair-

ness perceptions towards the rule. To address the issue, there has been a long line of recent research

focusing on modeling this uncertainty and constructing randomized selection policies to achieve fair out-

comes [KR18, CMV20, SKJ21, SWZ+23, DKKS24]. As a practical example, in many hiring situations, the

interviewers are required to interview at least a certain number of candidates from prespeci�ed demo-

graphic groups, as an attempt to mitigate the impact of such uncertainty and to achieve fairness.

Fairness via Information Revelation. We diverge from this line of research and take a view in-

spired by the in�uential Bayesian persuasion literature, starting with the seminal work of Kamenica and

Gentzkow [KG11]. We ask:

Given uncertainty about agent qualities, how much additional information should be gleaned

and revealed to the decision maker (either by the agents themselves or by a central entity), so

that even if the decision maker sticks to “selecting the best”, it still yields a fair outcome to the

agents?

To approach this high-level question, we use the following model. (See Au and Kawai [AK20] for a

relatedmodel.) Each agent has an uncertain scalar quality, and its true quality is known to an entity – either

the agent itself or an intermediary. This entity then signals additional information independently for each

agent to the decision maker to re�ne its uncertainty via Bayes’ rule. Analogous to [AK20], this signaling

process can be done in a distributed fashion by the agents themselves, a property that is often desirable

for the applications we consider in order to preserve privacy of agents’ true quality. Subsequently, it can

happen that several agents have comparable posterior quality in the eyes of the decision maker, and a fair

selection can be made by the decision maker without signi�cantly sacri�cing its own optimality notion of

selecting the posterior best.

As a concrete motivation, consider designing a standardized form for admission or hiring. The form is

the signaling scheme - it is designed centrally by the decision maker, �lled separately by agents, and the

decision maker can break ties based on information revealed in the forms, sometimes in conjunction with

a lottery number assigned to each agent, to ensure fairness in selection. We present the formal model in

Section 2, and an example in Example 2.4.

In order to de�ne fairness, we consider the vector of expected utilities received by the agents, where

each agent receives utility equal to its true value if it is selected. We seek signaling (or information rev-

elation) policies whose utility vector is approximately majorized [HLP34, GMP05, KK06, CS19], meaning
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that all symmetric, monotone, concave functions over the utilities are simultaneously approximately max-

imized by the same policy. Such fairness functions capture, for instance, max-min fairness (maximizing

the minimum utility) and the Nash welfare (maximizing the geometric mean of the utilities).

At one extreme, if the agents do not reveal any additional information, the agent with the highest

expected quality, according to the decision maker’s prior, is selected. As mentioned before, this can be

problematic in terms of fairness to counterfactual information. We show in Example 2.7 that the other

extreme – where each agent reveals its exact quality (Full Revelation) – may be far from fair as well,

even when the qualities only take “high”, “medium”, and “low” values. This example highlights the need

to carefully choose which information to reveal.

We note that such information revelation considerations extend beyond the motivating settings de-

scribed above. As an example, consider a government agency (the decision maker) that has �xed rules for

allocatingmoney designated to a social welfare cause such as refugee resettlement. Local agencies typically

are better informed about welfare needs of the groups they serve, and can selectively reveal information

in order to facilitate fairness for these groups.

Summary of Results. We present a detailed summary of our results in Section 2 after we present our

formalmodel. Informally, ourmain result is a novel set of signaling (or information revelation)mechanisms

that achieve approximate majorization. (See Theorem 2.8.) The key technical hurdle with designing such

policies is the behavior of the decision maker – this decision maker chooses the best (or approximately

best) agent given its information. For any given fairness objective (such as max-min fairness), a general

algorithmic result due to Dughmi and Xu [DX16] yields an FPTAS for any Bayesian persuasion problem

with arbitrary information sets, assuming that the sender can correlate agent signals. However, such a

generic approach does not shed light on the existence of policies that simultaneously approximate any

fairness objective, and this fact requires us to unearth speci�c structure in our problem.

Our main contribution in Section 4 is in unearthing such structure for the selection problem via a novel

class of signaling policies with simple structure, leading to positive existence and computational results for

approximately majorized policies. We term the novel set of policies as Single Mean, and these generate,

in a randomized fashion, information signals where the posterior inferred by the decision maker maps the

agents’ values to a common mean quality. This mapping to the common mean happens with as large a

probability as possible, hence giving the decision maker wide leeway in implementing a fair selection even

when it “goes with the best”. Though this policy sounds intuitive, its analysis is far from obvious as we

discuss below. Informally, the �nal result is a polynomial-time-computable and O(log V )-approximately

majorized policy1, where V is the ratio of the largest to smallest quality value. This means for any fairness

function, the policy yields an O(log V )-approximation in polynomial time.

As a corollary, our work also presents an approximation algorithm for any given fairness function

when agents generate signals independently of other agents. As shown in Section 4.4, our results easily

extend to handle the case where the agents’ utility (on which we seek to be fair) is di�erent from their

quality (whose posterior is used by the social planner to perform allocation). We note that the FPTAS for

general Bayesian persuasion in [DX16] assumes a more powerful intermediary that can send a common

signal using the information of all agents.2 Our work shows that for the weaker and practically motivated

intermediary that generates per-agent signals independently of other agents, there is still a polynomial-

time-computable O(log V )-approximation.

In Section 5, we complement this positive result by showing that a mild dependence on V is unavoid-

able – no signaling scheme can be (log log V )/3-approximately majorized.

1Our results are bicriteria, and assume the societal decision maker is a (1 + ε)-approximate welfare maximizer.
2They also present an independent signaling scheme when the actions have i.i.d. rewards. In our case, the i.i.d. setting is

uninteresting since revealing full information about agent quality is trivially 1-majorized.
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Technical Highlight: Reduction to Majorized Network Flow. At a technical level, our majoriza-

tion results proceed by reducing the problem to network �ow with a source and multiple sinks, for which

a majorized solution has long been known [Vei71, Meg74]. To enable such a reduction, we need linear

programming relaxations from the perspective of the signaling entity. Such a formulation is novel and

non-trivial since a natural mathematical program from the perspective of the signaling entity is non-

convex. This is because any program needs to encode the decision maker’s behavior. Handling this in-

herent non-convexity necessitates new structural insights (Lemma 4.3). Our LP formulation connects the

signaling problem to classic stochastic optimization problems, such as stochastic knapsack [DGV08] and

multi-armed bandits [GMS10]. This is in contrast to the more traditional and generic LP formulation for

Bayesian persuasion [DX16, CDHW20] that directly encodes the optimal behavior of the decision maker,

reducing the problem to multi-dimensional mechanism design [CDW12].

To build up to the general approximate majorization result, we �rst consider the simpler class of Full

Revelation policies alluded to above that reveal all information to the decision maker. Though such

policies cannot be approximately majorized in general (see Example 2.7), we show in Section 3.1 that

when agent information is Bernoulli, such policies are without loss of generality, and are exactly majorized

(hence best possible in terms of fairness). For arbitrary distributions, we show that there is always a 2-
approximately majorized policy within the class of Full Revelation policies (see Section 3.2). These

results showcase the network �ow approach, whichmay be of independent interest in devising fair policies

for other signaling problems.

1.1 Related Work

Bayesian Persuasion. Our selection model is a special case of information design (see [BM19, Dug17]

for surveys) where an information mediator provides information to impact the behavior of one or more

decisionmakers. This has also been termed signaling or persuasion in the literature. In the original model of

Bayesian persuasion by [KG11], there is one agent called the receiver who receives additional information

from a better-informed sender. Given the signal, the receiver computes its posterior over the state of

nature and chooses an action to maximize its own utility. The sender can design the signals so that the

receiver, acting in its own interest, maximizes some utility function the sender cares about. This problem

has been widely studied in various contexts, such as price discrimination [BBM15, BMSW24], security

games [XRDT15], regret minimization [BTXZ21], and other economic settings [CH14].

As mentioned earlier, computational approaches to the general Bayesian persuasion problem have

been proposed, with an FPTAS for any given objective function [DKQ16, DX16]. However, our goal of ma-

jorization requires simultaneous optimization for many objectives, and here, even showing an existence

result requires new ideas. Our techniques, starting with our LP relaxations from the perspective of the

signaling entity, are entirely di�erent. As a consequence, unlike [DX16], our methods work when the sig-

naling scheme is independent across agents, while the computational results in [DX16] require correlation

between the signals.

Majorization. The concept of majorized vectors is a classical one [Kar32, HLP34], and is equivalent to

solutions that simultaneously maximize symmetric concave functions of the coordinates. In the context of

resource allocation and routing problems, an approximate version of this concept was de�ned by [GMP05,

GM06]; see also [KK06, CS19]. It was shown by [GMP05] that the best approximation factor is the solution

of a linear program. However, the approximation factor is problem-dependent and can be linear in the

number of dimensions. One major exception is the single-source multi-sink network �ow problem, for

which the elegant result of Veinott [Vei71] shows exact majorization. Our main contribution is showing

a surprising connection between this work and the selection problem. We show that the approximation
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factor for our problem is only logarithmic in the range of the quality scores, hence achieving stronger

fairness properties than what the generic bounds would indicate.

We note that the work of [BMSW24] presents a constant-approximation to majorization for the spe-

cial case of price discrimination. However, the state of nature in price discrimination is single dimensional

(value of a single buyer), while it is multi-dimensional for our setting (joint quality distribution for n
agents). Indeed, a constant-approximation is provably unachievable in our setting, and we need new tech-

nical ideas to show our approximation results. As far as we are aware, our work gives the �rst majorization

results for persuasion problems with multi-dimensional type spaces.

Fair Selection. The meritocratic policy of selecting the candidate(s) with the highest evaluation scores

is particularly natural and widely used. However, this policy can be at odds with fairness considerations.

For instance, in a college admissions setting, standardized test outcomes can have correlations with de-

mographic factors [DREM13], and these correlations can undesirably and signi�cantly skew demographic

outcomes. To mitigate this, one existing approach is to have a quota system setting aside a number of

spots for candidates from certain demographic groups. A prominent example is the Rooney Rule, which

among other instructions, requires that each National Football League (NFL) team must “employ a female

or minority coach as an o�ensive assistant”.3 Di�erent versions of the Rooney Rule have been seen in the

corporate world, in governments, and in academia – those rules require employers to hire or at least inter-

view candidates from prespeci�ed demographic groups. Researchers have been studying the e�ectiveness

of Rooney Rule variants in fair selection and hiring [KR18, CMV20].

Policies that consider demographic factors can fail when demographic information is unavailable, or

when there is no consensus on which demographic groups should be protected. Interventions that explic-

itly consider demographic factors may also face societal and legal challenges. For instance, some practices

have been deemed unlawful in U.S. Supreme Court decisions, such as racial quotas (Regents of the Uni-

versity of California v. Bakke (1978)) and more recently, race-based a�rmative action (Students for Fair

Admissions v. Harvard (2023)). Additionally, revealing demographic information can have adverse impact

in hiring situations on, for example, women [GR00] and African Americans [BM04].

Departing from the above approaches, recent work explicitly models uncertainty in evaluation mea-

sures [EGGL20,MC21, GB21, SKJ21, SWZ+23, DKKS24] and proposes fair randomized selection rules under

models of fairness and uncertainty over applicant qualities and attributes. Our work falls in this frame-

work, but di�ers in the following way: We incorporate information revelation about applicant qualities, in

order to (Bayesian-)persuade the meritocratic decision maker to act in line with fairness considerations.

Selection via Persuasion. Our model is similar to the selection models in [AK20, DTWZ24]. Unlike

our model, in their model, there is no intermediary, and the agents are free to choose their signaling

schemes. They show that the resulting game over the agents has an equilibrium under fairly general

conditions. In contrast, we consider the setting with an intermediary that seeks fairness across agents;

in other words, we assume agents can coordinate their signaling scheme for mutual bene�t. Further, the

models in [AK20, DTWZ24] assume the agent utilities are di�erent from the social planner’s. In particular,

agent utilities are binary – 1 for being selected and 0 otherwise – while we assume they are the same

as their quality. Our setting models how the intermediary or social planner will perceive utility (as the

quality), while in their setting, the utility is how it would have been perceived by sel�sh agents. We note

however that our results are robust to the choice of utilities, and as we show in Section 4.4, it is easy to

modify our positive results to work as is in their utility model as well.

3h�ps://operations.nfl.com/inside-football-ops/inclusion/inclusive-hiring, accessed June 28, 2024.
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2 Our Model and Results

A social planner wishes to select one agent from a setA of n agents {1, 2, . . . , n}. Each agent i obtains
value vi if selected, where vi is drawn from a distributionDi. We assume that the distributions {Di}

n
i=1 are

mutually independent. In keeping with the Bayesian persuasion literature, we call the social planner the

receiver. The receiver knows the distributions {Di}
n
i=1, but not the values themselves, which are private

information to the agents.

There is an information intermediary who knows the exact values {vi}
n
i=1. Again following the

Bayesian persuasion literature, we call the information intermediary the sender. The sender can reveal

partial information about the values to the receiver via a signaling policy. (We will de�ne signaling poli-

cies and signals in Section 2.1.) The receiver hence receives a signal Ã, and uses Ã to update the prior value

distributions {Di}
n
i=1 to posterior distributions {Di(Ã)}

n
i=1.

2.1 Signaling Model

Independent Signaling Schemes. An independent signaling scheme É works with a set Γ of signals,

and we will often use Ã ∈ Γ to denote a signal. An independent signaling scheme in our model has two

components: the mapping rule and the selection rule.

Themapping rule is a function that maps the values v⃗ = {vi}
n
i=1 to a distribution gv⃗ over the signals Γ.

The function is “independent” for each agent: There is a set Γi of signals for each agent i. The sender, after
observing vi ∼ Di, maps it to a distribution giv over signals in Γi. The sender then generates each signal

Ãi ∼ giv and sends the set of generated signals Ã = {Ãi}
n
i=1 to the receiver. The receiver computes a per-

agent posterior Di(Ãi) (where {Di(Ãi)}
n
i=1 are mutually independent). We can alternatively think that

there is a separate sender for each agent that outputs a signal for that agent independent of the behaviors

of other senders. This policy is known to the receiver.

After receiving the signal Ã ∈ Γ, the receiver uses Bayes’ rule and its knowledge of the mapping

policy to compute the independent posterior distributions {Di(Ã)}
n
i=1 over agent values. In our model,

the receiver is a utilitarian welfare maximizer. Therefore, it will select an agent with the largest posterior

mean – that is, an agent in the set S(Ã) := argmaxi E[Di(Ã)]. In the case of tie-breaking (i.e., when

|S(Ã)| > 1), we assume that the sender can tell the receiver who to select within the set S(Ã) via a

selection rule that picks one agent in the set S(Ã) either deterministically or probabilistically. The receiver

will follow the recommendation of the selection rule.

Signaling Policies. A signaling policy is a distribution Ω over independent signaling schemes. The

receiver draws an independent signaling scheme É ∼ Ω from this distribution and implements it. We use

Ω to denote both the signaling policy and the distribution.4

2.2 Fairness via Approximate Majorization

Given a signaling policy Ω, we use Ui(Ω) to denote the expected utility that agent i receives, where
the expectation is over the randomness in the signaling policy and the value distributions of the agents.

This is formalized in De�nition 2.1.

De�nition 2.1 (expected utility). The expected utility of agent i from Ω is

Ui(Ω) = EÉ∼Ω

[

∑

Ã∈Γ

qÉ(Ã) · wi(Ã) · µi(Ã)

]

.

4One can also de�ne more general versions of signaling policies that create signals with more correlation among the agents,

but our de�nition aligns with our motivating practical applications.
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In this formula, after É ∼ Ω is drawn, qÉ(Ã) denotes the probability (over agent values v⃗ ∼
∏

iDi) that

the receiver observes the joint signal Ã; wi(Ã) denotes the probability that agent i is selected when the

signal is Ã; µi(Ã) = E[Di(Ã)] denotes the posterior mean value of agent i given signal Ã.

The goal of the sender is to design a signaling policyΩ that is fair with respect to the expected utilities

{Ui(Ω)}
n
i=1. This is captured by the notion of³-majorization [GMP05, GM06], an extension to the classical

mathematical notion of majorization [Kar32, HLP34].

De�nition 2.2 (³-majorization). For ³ g 1, a signaling policy Ω is called ³-majorized5 if for any k ∈
{1, 2, . . . , n} and any signaling policy Ω′, the sum of the k smallest utilities in {Ui(Ω)}

n
i=1 is at least 1/³

times the sum of the k smallest utilities in {Ui(Ω
′)}ni=1.

Sometimes, we use the phrase “³-majorization within a class C of signaling policies”. Its de�nition is

to replace “any signaling policy Ω′” to “any signaling policy Ω′ ∈ C” in De�nition 2.2.

Denote U(Ω) as the vector {Ui(Ω)}
n
i=1. The following result shows that approximate majorization is

equivalent to simultaneously approximating all symmetric and concave welfare functions. It also holds

when restricting to any class of signaling policies.

Proposition 2.3 (adapted from [GM06]). The signaling policy Ω is ³-majorized if and only if for every

symmetric and concave function6 f : R
n
g0 → Rg0 (called a welfare function or fairness function) and any

other signaling policy Ω′, it holds that

f (U(Ω)) g
1

³
· f
(

U(Ω′)
)

.

Example 2.4. There are n = 3 agents. The value distributionsD1, D2 of agents 1 and 2 are identical, and
each of them takes value of 1 with probability 0.5 and takes value of 5 with probability 0.5. The value of
agent 3 is deterministically 2. Consider the max-min fairness function: f(U(Ω)) = minni=1 Ui(Ω), so that
the sender aims at maximizing the smallest expected utility among all the agents.

If the sender does not reveal any information about the agents, the receiver will select an agent from

{1, 2} because their expected values are both 3, which is larger than agent 3’s value of 2. Since agent 3 is

never selected, the max-min welfare is 0.
Consider the following signaling policy Ω that implements an independent signaling scheme É. The

signal sets for each agent are: Γ1 = {s1, s
′
1}, Γ2 = {s2, s

′
2}, Γ3 = {s3}. The mapping rule of É is given

by the following probabilities:

Pr[Ã1 = s1 | v1 = 1] = 1; Pr[Ã1 = s1 | v1 = 5] =
1

3
; Pr[Ã1 = s′1 | v1 = 5] =

2

3
;

Pr[Ã2 = s2 | v2 = 1] = 1; Pr[Ã2 = s2 | v2 = 5] =
1

3
; Pr[Ã2 = s′2 | v2 = 5] =

2

3
;

Pr[Ã3 = s3] = 1.

The expected value of agent 1 in the receiver’s posterior upon receiving signal s1 is

E[D1(s1)] = E[v1 | Ã1 = s1]

= 1 · Pr[v1 = 1 | Ã1 = s1] + 5 · Pr[v1 = 5 | Ã1 = s1]

= 1 · Pr[Ã1 = s1 | v1 = 1] ·
Pr[v1 = 1]

Pr[Ã1 = s1]
+ 5 · Pr[Ã1 = s1 | v1 = 5] ·

Pr[v1 = 5]

Pr[Ã1 = s1]

= 1× 0.75 + 5× 0.25 = 2.

5The notion of “1-majorized” is also known as “least weakly supermajorized” in the literature [Tam95].
6Such a function will also be monotonically non-decreasing.
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Note that E[D1(s
′
1)] = 5. Similarly, we have E[D2(s2)] = 2 and E[D2(s

′
2)] = 5. SinceD3 is deterministic,

we have E[D3(s3)] = 2.
The selection rule of É is to always break ties in favor of agent 3 and arbitrarily break ties between

agent 1 and 2. Since agent 3 is selected when s1 and s2 are sent to the receiver, we have

U3(Ω) =

(

1

3
× 0.5 + 1× 0.5

)2

× 2 =
8

9
.

Since agent 1 is selected with value 5 as long as s′1 and s2 are sent, we have

U1(Ω) g

(

0.5×
2

3

)

×

(

1

3
× 0.5 + 1× 0.5

)

× 5 =
10

9
>

8

9
= U3(Ω).

Similarly, we have U2(Ω) > U3(Ω). Therefore, f(U(Ω)) = min{U1(Ω), U2(Ω), U3(Ω)} = 8/9. We note

that Ω is also the optimal signaling policy for the max-min welfare objective.

2.3 Our Results

Full Revelation Policy. If the sender aims at maximizing the utilitarian welfare
∑n

i=1 Ui(Ω) (which
corresponds to the welfare function f(x⃗) =

∑n
i=1 xi), then one optimal mapping rule is to fully reveal

the values {vi}
n
i=1. In this case, the sender’s goal perfectly aligns with the receiver’s selection behavior,

obtaining the best possible utilitarian social welfare of Ev⃗∼
∏

i
Di

[maxni=1 vi]. We term this mapping rule

Full Revelation. It is easy to check that when {Di}
n
i=1 are i.i.d., Full Revelation paired with a sym-

metric selection rule is 1-majorized. Also, we call an independent signaling scheme Full Revelation if

its mapping rule is Full Revelation.

Our �rst result shows that when each Di is Bernoulli(µi) (which takes value 1 with probability

wi and value 0 otherwise), there is a 1-majorized Full Revelation independent signaling scheme – it

simultaneously optimizes all welfare functions, not just the utilitarian welfare. Though this result is for

speci�c value distributions, its main idea of reducing to network �ow will be useful for an approximate

majorization result in Section 4 for more general distributions. The selection policy can be computed in

polynomial time. (Here and later when we mention “polynomial time” results, we assume that the value

distributions are discrete.)

Theorem 2.5 (Proved in Section 3.1). When each Di is Bernoulli(µi), Full Revelation is 1-majorized

when paired with a certain polynomial-time-computable selection policy.

To prove the above theorem, we reduce the problem to network �ow and apply a seminal majoriza-

tion result for �ows from [Meg74] (see Theorem 3.3). A similar technique shows that even for general

distributions, when restricted to the class of Full Revelation policies, there is a 2-majorized policy.

Theorem2.6 (Proved in Section 3.2). For general distributions {Di}
n
i=1, Full Revelation, when paired with

a certain polynomial-time-computable selection policy, is 2-majorized within the space of Full Revelation

policies.

Note that Theorem 2.6 shows majorization within the class of Full Revelation policies. In contrast,

the example below shows that if we consider the space of all signaling schemes, Full Revelation policies

cannot achieve a good approximate majorization. This impossibility result motivates us to study other

classes of signaling policies.

Example 2.7. The distribution D1 is deterministically 2, and each of the distributions D2, . . . , Dn is

1 with probability 1/2 and 3 with probability 1/2. Consider the welfare function of max-min fairness

7



where f(U(Ω)) = mini Ui(Ω). In Full Revelation, U1 = 2/2n−1, and therefore the max-min welfare

for Full Revelation is at most 2/2n−1. (To calculate the expected utilities of other agents, we have

E[maxni=2Di] = 3 · (1− 1/2n−1)+1 · (1/2n−1) ≈ 3 when n is large. Therefore, for a symmetric selection

policy, U2 = · · · = Un ≈ 3/n.) In contrast, if the policy reveals nothing, all agents have posterior mean

2. Assuming the selection policy assigns uniformly at random, U1 = U2 = · · · = Un = 2/n. Therefore,
Full Revelation is no better than a

(

2n−1/n
)

-approximation to the max-min fairness objective.

Approximate Majorization. We now consider the question of majorization among all signaling poli-

cies. For the rest of our results, we assume that each Di is supported on [1, V ]. (This interval is equiv-
alent to any [vmin, vmax] with V = vmax/vmin via scaling.) Our results characterize the approximation

to majorization as functions of V . The main hurdle with formulating a mathematical program for �nding

suchmajorized signaling policies is the non-linear and non-convex interaction between variables encoding

mapping and those encoding selection.

We overcome this challenge in two steps: First, we split the utility of a �xed policy into buckets.

Second, we e�ciently �nd a mapping that ensures a large utility in some bucket by solving a simple LP

with constraints on posterior means, enabling a reduction to the network �ow approach from before. For

the second step, we consider a speci�c type of mapping rules which we call Single Mean. Such a mapping

rule picks a common range [µ, µ̂] for all agents and �nds a mapping for each agent that maximizes the

probability that the mean of the resulting signal lies in the range. We will choose µ̂ = (1 + ε)µ for

some constant ε > 0. The signaling policies we consider randomize over Single Mean mapping rules for

di�erent µ, and we will describe the corresponding selection rules later. Note that the mapping rule for

any agent does not depend on other agents, so that the mapping can be constructed in a distributed way.

We show that this class of policies su�ces to achieve a non-trivial positive approximation result for

majorization. Our result is bicriteria, in the following sense. Let Zk denote the maximum achievable value

of the sum of the smallest k utilities. For given ε > 0, we say that a policyΩ is a bicriteria ³-approximation

if the following hold.

• We allowΩ to use a (1+ε)-approximate welfare maximizer7 – that is, for any signal Ã, the selection
rule can select any agent i with E[Di(Ã)] g maxj E[Dj(Ã)]/(1 + ε).

• For each k, the sum of the smallest k utilities inΩ is at leastZk/³. Note that the quantityZk assumes

the receiver is an exact welfare maximizer.

Theorem 2.8 (Proved in Section 4). For any constant ε > 0, there is a bicriteria O ((log V )/ε)-majorized

polynomial-time-computable signaling policy.

Remark. The generic result of [GM06] can be applied to our setting and give anO
(

min
{

n, log Pmax
n·Pmin

})

-

majorized solution, where Pmin = maxΩmini Ui(Ω) and Pmax = maxΩ
∑

i Ui(Ω). In our setting, the

former quantity could be exponentially (in n) smaller than the latter, leading to the approximation ratio

having linear dependence on n. In contrast, our main result has no dependence on n and only logarithmic

dependence on V , the range of values.

At a technical level, Lemma 4.3 characterizes the structure about the class of Single Mean mappings,

and enables us to pre-compute the mapping variables. We can therefore decouple the mapping variables

from the selection variables, and reduce the non-convexmathematical program to a network �ow problem.

Finally, we use the majorization result in Theorem 3.3 to complete the proof.

As an immediate corollary, this shows a polynomial-timeO((log V )/ε) bicriteria approximation algo-

rithm for any given fairness function f when agents generate mappings in a distributed fashion, which is

7We note that polynomial-time-computability results of [DX16] also assume an approximately optimal receiver.
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desirable for the applications of fair selection. We note that the FPTAS in [DX16] assumes that the sender

can use all agents’ values to generate a common signal.

In Section 4.4, we extend the utility model to be asymmetric between the agents and the receiver,

capturing the setting in [AK20]. In this model, the signals and the receiver’s action depend on the quality

of the agents, while an agent gets utility 1 if selected and 0 otherwise. We show that Theorem 2.8 extends

as is, and shows approximate majorization even in this setting.

We complement the previous theorem with a lower bound showing a dependence on V in the approx-

imation factor is unavoidable, even if the receiver is an approximate welfare maximizer.

Theorem 2.9 (Proved in Section 5). No signaling policy can be (log log V )/3-majorized, even if the selection

rule can arbitrarily select any agent (i.e., without the constraint that the selected agent has near-optimal

expected value.).

3 Warmup: The Full Revelation Signaling Policy

In this section, we consider the Full Revelation signaling policy, in which the sender reveals all the

values v⃗ = {vi}
n
i=1 to the receiver. The sender can still design the selection rule based on the fairness

objective. In this case, the selection rule speci�es which agent – among the ones that have the highest

value – the receiver should select.

We propose a formulation of the problem based on network �ow, and en route develop techniques that

will also be useful in Section 4. In this section, using these techniques, we show that Full Revelation can

be 1-majorized when the value distributions are Bernoulli (but can be heterogeneous). We then show that

for general value distributions, when restricted to the space of Full Revelation signaling policies, there

is a 2-majorized, polynomial-time-computable signaling policy.

3.1 1-Majorization for Bernoulli Distributions: Proof of Theorem 2.5

Consider the Bernoulli setting in which each value distribution Di is Bernoulli(µi) (which takes

value 1 with probability µi and takes value 0 otherwise). We �rst show in Lemma 3.1 that any signaling

policy can be converted to using a Full Revelation signaling policy without decreasing the utility of any

agent. This reduction allows us to only care about Full Revelation policies. We subsequently map each

Full Revelation policy to a network �ow instance, thus enabling us to apply the majorization result for

network �ows [Vei71].

To prove Lemma 3.1, we construct a new Full Revelation signaling policy Ω′ that reveals the full

value vector of all the agents to the receiver. We carefully set the selection policy ofΩ′ so that each agent’s

winning probability conditioned on their value being 1 does not decrease in Ω′ compared to Ω.

Lemma 3.1. When Di = Bernoulli(µi), for any signaling policy Ω, there exists a Full Revelation

signaling policy Ω′ in which the utility of each agent is at least their utility in Ω.

Proof. Given any signaling policy Ω, let Γ be the set of all possible signals that can be sent to the receiver

in Ω. We will construct a Full Revelation signaling policy Ω′ that preserves the utilities of all agents.

For each Ã ∈ Γ, recall thatDi(Ã) is the receiver’s posterior Bernoulli distribution over agent i’s value.
Denote by qi(Ã) the conditional probability that agent i is selected when Ã is sent to the receiver.

In Ω, suppose the sender observes the value vector of agents as v⃗0 and sends signal Ã ∈ Γ. Then, in
Ω′, the sender reveals v⃗0 to the receiver. Suppose that S(v⃗0) is the set of agents with value 1 in v⃗0. In
Ω′, the selection policy of the receiver chooses i ∈ S(v⃗0) with probability qi(Ã). If

∑

i∈S(v⃗0)
qi(Ã) < 1,

the selection probabilities for S(v⃗0) are arbitrarily increased so that they sum to 1. Denote vi0 as the ith
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component of v⃗0. Noting that an agent only gains utility when their value is 1, in the new signaling policy

Ω′, the expected utility of agent i is

Ui(Ω
′) g

∑

v⃗0: vi0=1

Pr[v⃗ = v⃗0] ·

(

∑

Ã∈Γ

Pr[Ã is sent in Ω | v⃗ = v⃗0] · qi(Ã)

)

=
∑

Ã∈Γ





∑

v⃗0: vi0=1

Pr[Ã is sent in Ω, v⃗ = v⃗0] · qi(Ã)





=
∑

Ã∈Γ





∑

v⃗0: vi0=1

Pr[v⃗ = v⃗0 | Ã is sent in Ω]



 · Pr[Ã is sent in Ω] · qi(Ã)

=
∑

Ã∈Γ

Pr[vi = 1 | Ã is sent in Ω] · Pr[Ã is sent in Ω] · qi(Ã).

InΩ, conditioned on Ã being sent, the expected utility of agent i is qi(Ã)·E[Di(Ã)]. SinceDi(Ã) is Bernoulli,
we have E[Di(Ã)] = Pr[vi = 1 | Ã is sent in Ω]. Therefore,

Ui(Ω) =
∑

Ã∈Γ

Pr[vi = 1 | Ã is sent in Ω] · Pr[Ã is sent in Ω] · qi(Ã) f Ui(Ω
′).

This completes the proof.

Reduction to Network Flow. We now construct the network �ow instance from the Full Revelation

policies. We �rst build a bipartite directed �ow graph G as follows:

• There is a single source s. Place a set R of n sinks t1, . . . , tn where ti represents the agent i.

• Place a set L of 2n nodes where each subset T ¦ [n] corresponds to a node sT .

• Add an edge (s, sT ) with capacity µT =
∏

i∈T µi ·
∏

i/∈T (1−µi). For each agent i ∈ T , add an edge

(sT , ti) with capacity +∞.

We illustrate this construction on an example with n = 2 agents in Figure 1. Their value distributions

areD1 = Bernoulli(0.3) andD2 = Bernoulli(0.6). Since there are two agents, we have 4 nodes in L,
denoted by s∅, s{1}, s{2} and s{1,2}. By the construction above, we have the capacities on edges from s to
these four nodes are (1 − 0.3) × (1 − 0.6) = 0.28, 0.3 × (1 − 0.6) = 0.12, (1 − 0.3) × 0.6 = 0.42 and

0.3 · 0.6 = 0.18, respectively.
The intuition for the construction and Lemma 3.2 is the following. Each node in L corresponds to a

possible value vector of all agents, or equivalently, the set of agents whose values are 1. The �ow value

from the source to such node is capped by the probability that this value vector is realized. The �ow value

from a node in L to an agent node equals the probability of the event that the vector corresponding to L
is realized and this agent is selected.

Lemma 3.2. The set of feasible s–t maximum �ows in G corresponds exactly to the set of Full Revelation

signaling policies. For any policy Ω, the utility Ui(Ω) of agent i is equal to the total �ow fi to the sink ti inG
in the corresponding �ow instance.

Proof. We �rst prove that any signaling policyΩ can be converted to a maximum �ow. Fix any set T ¦ [n],
and consider the event in which the agents with value 1 exactly form the set T . Let zT i be the probability
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∞

∞
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∞

Figure 1: The network �ow instance for an example with n = 2 agents, with D1 = Bernoulli(0.3) and
D2 = Bernoulli(0.6). The number in blue next to each directed edge indicates the capacity of the edge.

that conditioned on this event, the agent i ∈ T is selected in Ω. We set �ow fT i on the edge (sT , ti) to
be µT · zT i. Note that Ui(Ω) =

∑

T :i∈T µT · zT i =
∑

T :i∈T fT i = fi. The total �ow is
∑

T ̸=∅ µT , which

means that it is a maximum �ow.

For the other direction, given a maximum �ow, let T denote the set of agents with value 1. Notice
that when T ̸= ∅, the �ow from s to sT must be equal to its capacity. We construct a Full Revelation

signaling policy Ω by requiring that conditioned on T being the set of agents with value 1, the receiver
selects i ∈ T with probability fT i/µT , where fT i is the �ow on the edge (sT , ti). This is clearly a feasible

signaling policy with Ui(Ω) =
∑

T :i∈T µT · (fT i/µT ) = fi.

The following theorem (implicit in [Vei71]) shows the existence of a 1-majorized �ow, and therefore

shows the existence of a 1-majorized Full Revelation signaling policy. We include a short proof for

completeness.

Theorem 3.3 (1-Majorized Flows, Implicit in [Vei71]). Given any capacitated network with a single source

and multiple sinks t1, . . . , tn, let f = {fi}
n
i=1 be the �ows entering the respective sinks in a feasible �ow.

Then there is a �ow f∗ that is 1-majorized among these feasible �ows.

Proof. By [Meg74, Lemma 4.1], the set of feasible {fi}
n
i=1 de�nes a polymatroid – that is, for all T ¦ [n], it

holds that
∑

i∈T fi f g(T ) and {fi}
n
i=1 g 0, where g is a non-negative, monotone, submodular function.

By [Tam95, Theorem 3.2] (see also [DR89]), any polymatroid has a 1-majorized point.

Polynomial-Time Algorithm. Though the graphG constructed above has exponential size, it follows

from [Meg74] that a �ow {fi}
n
i=1 is feasible if and only if it is feasible for the following polymatroid P :

∑

i∈T

fi f
∑

J :J∩T ̸=∅

µJ = 1−
∏

i∈T

(1− µi), ∀T ¦ [n];

fi ∈ [0, 1], ∀i ∈ [n].

Maximizing any strictly concave, symmetric, separable function over this polymatroid now yields the

solution in polynomial time [Tam95, Vei71]. (See [GM06] for an LP based approach.) This can be solved

to an arbitrary approximation in polynomial time.

The �nal solution f∗ forG lies in the convex hull of the vertices ofP . By Carathéodory’s Theorem, this

point can be written as the convex combination of at most n+1 vertices on the convex hull. By applying an
ellipsoid method, we can �nd such a decomposition in polynomial time. Denote the decomposed vertices

and their weights by {(wk, ¸k)}
n+1
k=1 , where

∑n+1
k=1 ¸k = 1.
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By the property of polymatroids, each vertex ut corresponds to a series of “tight subsets” ∅ = T0 ª

T1 ª T2 ª · · · ª Tn = [n], where each adjacent pair of sets (Tk−1, Tk) only di�er by a single agent ik. By
a “tight subset” T we mean that the inequality

∑

i∈T fi f 1−
∏

i∈T (1−µi) is tight at this vertex. Since fi
is the utility of agent i for this vertex solution, as long as at least one agent in Tk has value 1, some agent

in this set must be �nally selected. This yields the following ranking scheme for wt:

1. The sender reveals all indices {ik}
n
k=1.

2. The receiver selects the �rst agent ik in the ranking whose value is 1.

The signaling scheme corresponding to f∗ is a randomization over these ranking schemes: With prob-

ability ¸k, run the ranking mechanism corresponding to the vertex wk. Since the utilities of the agents are

exactly {f∗
i }

n
i=1, this is 1-majorized. This completes the proof of Theorem 2.5.

3.2 Majorization among Full Information Schemes: Proof of Theorem 2.6

We now show that if we restrict to the space of Full Information mapping policies, there is a selec-

tion policy that is 2-majorized and can be computed in polynomial time. Our technique again reduces to

network �ow, albeit for a relaxation of the problem. We will use a similar relaxation in Section 4 for the

general problem.

We assume that there are m possible values in total that support the value distributions {Di}
n
i=1. In

the remainder of this section, we use the notation v1 < v2 < · · · < vm to denote thesem possible values.

Let dij = Pr[Di = vj ]. Let Zj be the event that the largest value is at most vj . We further de�ne

zj := Pr[Zj ] =

n
∏

i=1





∑

j′fj

dij′





and

pij := Pr[Di = vj | Zj ] =
dij

∑

j′fj dij′
.

Network Flow Instance. We will show a network �ow instance so that any Full Revelation policy

Ω can be relaxed into a feasible �ow for this instance. Given Ω, let xij be the probability that agent i has
value vj and is selected conditioned on the event Zj . For the policy Ω, the variables {xij} and expected

utilities {ui}
n
i=1 satisfy the following constraints.

m
∑

j=1

zj · vj · xij = ui, ∀i ∈ [n]; (1)

n
∑

i=1

xij f 1, ∀j ∈ [m]; (2)

0 f xij f pij , ∀i ∈ [n], j ∈ [m]. (3)

Conditioned on the event Zj , Eq. (2) says at most one agent with value vj is selected, and Eq. (3) says the

probability that agent i has value vj and is selected is at most pij , the probability that its value is vj .
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Let yij = zj · vj · xij , and bj = zj · vj . We can rewrite the above program as:

m
∑

j=1

yij = ui, ∀i ∈ [n];

n
∑

i=1

yij f bj , ∀j ∈ [m];

0 f yij f pij · bj , ∀i ∈ [n], j ∈ [m].

Construct a network �ow graphGwith a source s, and one sink ti for each agent i. There arem nodes,

one for each vj . There is a directed edge (s, vj) with capacity bj , and a directed edge (vj , ti) with capacity

pij · bj . The �ow value on the edge (vj , ti) is yij , and sink ti receives �ow ui. This shows the network
�ow instance such that any Ω relaxes to a feasible �ow for this instance, and the structure of the network

is illustrated in Fig. 2.

.

.

.

.

.

.

s

.

.

.

.

.

.

v1

v2

v3

v4

vm

b1

b2

b3

b4

bm

t1

t2

t3

tn

p
21 · b

1

p
3
1 · b

1

p
n
1
· b

1

p11 · b1
y11 ≤

∑ n

i=
1

yi1
≤

y
21 ≤

Figure 2: Illustration of the network �ow instance. The text in blue denotes the capacity of each edge,

while the text in black denotes the feasible �ow value on each edge.

Using Theorem 3.3, there is a 1-majorized �ow inG, which translates to a 1-majorized utility vector u⃗.
Further, this solution can be computed in polynomial time [Tam95, Vei71, GM06]. Denote the majorized

solution (in the original variables) as {xij} and utilities as {ui}.

Signaling Policy. We now convert the 1-majorized solution to the above �ow instance into a simple

2-majorized signaling policy. This is inspired by the algorithm for stochastic knapsack [DGV08].

• The sender sends all realized values to the receiver.

• Suppose that the largest realized value is vj . Let S denote the set of agents i with value vj .

• Sort the agents in S in a uniformly random order, and consider the agents in this order.

• In this order, when we reach each agent i, with probability xij/pij , select i and stop.

• If no agent in S is selected above, then select an arbitrary agent in S.
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Analysis. Consider any agent i. Conditioned on the event Zj (i.e., the largest value being at most vj),
the probability that another agent i′ ∈ S is selected before agent i is reached is at most

1

2
·
xi′j
pi′j

· pi′j =
xi′j
2

,

where the factor of 1/2 comes from the fact that the order is uniformly random. Since
∑

i′ xi′j/2 f 1/2,
the probability that no agent before i is selected is at least 1/2. Now, for agent iwith value vj to be selected,
the following should happen:

• The event Zj , which happens with probability zj ;

• Agent i has value vj conditioned on Zj , which happens with probability pij ;

• No agent before i is selected conditioned on all previous events, which happens with probability at

least 1/2; and

• Agent iwith value vj is selected conditioned on all previous events, which happens with probability

xij/pij .

Therefore, the unconditional probability that agent i with value vj is selected is

Pr[agent i with value vj is selected] g zj ·
1

2
· pij ·

xij
pij

= zj ·
xij
2
.

Therefore, the expected utility of agent i in this scheme is at least:

m
∑

j=1

Pr[agent i with value vj is selected] · vj g
m
∑

j=1

zj ·
xij
2

· vj =
ui
2
. (4)

This shows a 2-majorized signaling scheme running in polynomial time, proving Theorem 2.6.

4 Approximate Majorization: Proof of Theorem 2.8

We now present our main technical result – approximate majorization for general signaling policies.

The key hurdle with using the approach in Sections 3.1 and 3.2 is that unlike the Full Revelation setting

where the mapping rule is �xed, any mathematical program for general policies needs to encode both

mapping and selection variables, and their interaction is non-linear. To deal with the challenge, we will

perform a projection of any signaling policy onto a speci�c class of Single Mean policies, for which the

network �ow majorization approach in the previous sections can be employed.

4.1 Single Mean Projections

Given a small constant ε > 0, let ¸ = 1+ ε. Without loss of generality, assume V is a power of ¸, and
divide the interval [1, V ] into buckets I1 = [1, ¸), I2 = [¸, ¸2), . . . , IK = [V/¸, V ], whereK ≈ (log V )/ε.
For any policy Ω∗, let ui denote agent i’s utility, that is, ui = Ui(Ω

∗). We can express ui as the sum of

contributions from di�erent buckets as ui =
∑K

k=1 cik, where cik is the contribution to the utility ui from
those signals Ã for which the posterior mean satis�es µi(Ã) := E[Di(Ãi)] ∈ Ik.

We now de�ne Single Mean projections that assume that the only contribution to utility for agent i
happens when the signal Ã received has posterior mean µi(Ã) ∈ Ik and agent i is selected.
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De�nition 4.1 (Single Mean projection). Given an interval Ik and signaling policy Ω, let Aik denote the

event where both (I) agent i is selected and (II) E[Di(Ã)] ∈ Ik. The Single Mean projection Ωk of Ω onto

Ik only counts utilities from the event
⋃n

i=1Aik, and sets the remaining utilities to 0. In other words, if

cik(Ω) = Pr[Aik] · E[µi(Ã) | Aik], then Ui(Ωk) = cik for all agents i.

Consider now the policy that picks a number k ∈ {1, 2, . . . ,K} uniformly at random and executes the

SingleMean projectionΩk ofΩ
∗ for this interval. The expected utility of agent i is exactly

∑K
k=1 cik/K =

ui/K . We overload the notation and denote the new utilities as {ui}
n
i=1.

4.2 Structure of Single Mean Projections

We now show that Single Mean projections can be modi�ed to have a surprisingly simple structure

while not decreasing the utilities {cik}. Let the interval under consideration be Ik = [m, ¸ ·m) (or [m, ¸ ·
m] if k = K) and let the Single Mean projection of Ω∗ be Ωk. Losing an additional factor ¸ in the

approximation factor, we can assume that if µi(Ã) ∈ Ik, then the expected utility of agent i is alwaysm if

i is selected.
Note that if µi(Ã) ∈ Ik and agent i is selected, then in this scenario,maxj µj(Ã) ∈ [m, ¸ ·m]. Denote

the interval [m, ¸ · m] as Î , and ¸ · m as m̂. Assume now that when all agents have posterior mean at

most m̂, any agent whose posterior mean is in Î can be selected, and this choice yields utility m to that

agent. Such a policy assumes an ¸-approximate utilitarian-welfare-maximizing receiver, and hence our

�nal result will be bicriteria.

Clearly, wheneverΩk selects an agent with posterior mean in Ik, all agents must have posterior means

at most m̂, so that the new policy can also be made to make the same selection. If we pretend the utility

yielded to the agent ism, this is still within factor ¸ of the actual utility – the modi�ed policy has utilities

ĉik g cik/¸.

Mathematical Program. Focus on some k, and denote the relaxed Single Mean projection of Ω∗ as

Ω∗
k. This policy can be written as a distribution over independent signaling schemes as

Ω∗
k =

∑

ℓg1

Äℓ · Äℓ,

where each independent signaling scheme Äℓ is an independent mapping of the agents to signals, along

with an associated selection rule, and
∑

ℓg1 Äℓ = 1. For any independent signaling scheme Ä in the above

summation, let ui(Ä) denote the utility of agent i in this scheme, so that

Ui(Ω
∗
k) =

∑

ℓ

Äℓ · ui(Äℓ).

Note that given the Single Mean structure, we only count the utility when the posterior mean of the

selected agent lies in Î , in which case the contribution is assumed to bem.

Given signaling scheme Ä , let B(Ä) denote the event that every agent j has µj(Ã) f m̂, where Ã ∼ Ä
is an independent signal. Now de�ne the following four probabilities for the signaling scheme Ä :

Qi(Ä) := Pr
Ã∼Ä

[µi(Ã) f m̂];

Q(Ä) := Pr[B(Ä)] =
n
∏

i=1

Qi(Ä);

pi(Ä) := Pr
Ã∼Ä

[µi(Ã) ∈ Î | B(Ä)];

xi(Ä) := Pr
Ã∼Ä

[agent i is selected and µi(Ã) ∈ Î | B(Ä)].
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Q(Ä) =
∏n

i=1Qi(Ä) comes from the assumption that in the independent signaling scheme Ä , the mapping

rule of each agent is independent of all other agents. The utilities in policy Ä clearly satisfy:

ui(Ä) = m ·Q(Ä) · xi(Ä), ∀i ∈ [n]. (5)

The event µi(Ã) ∈ Î conditioned onB(Ä) follows Bernoulli(1, pi(Ä)), so that analogous to Section 3.1, the

following polymatroid exactly captures the {xi(Ä)}
n
i=1 in any feasible policy.

∑

i∈S

xi(Ä) f 1−
∏

i∈S

(1− pi(Ä)), ∀S ¦ [n]. (6)

Structural Lemma. The issue now is that the quantitiesQ(Ä) and pi(Ä) depend on the policy Ä , so that
we cannot yet reduce it to network �ow in a way analogous to Section 3.1. Our key insight is that this

dependence can be removed. Towards this end, we de�ne a maximal mapping as follows.

De�nition 4.2 (Maximal Mapping). For an interval Î , amaximal mapping is a mapping rule É from agent

values to signals {Ã} such that PrÃ∼É[µi(Ã) ∈ Î] is maximized for each agent i.

We �rst show the following structural lemma, and subsequently show how to compute the maximal

mapping e�ciently.

Lemma 4.3. Given any independent signaling scheme Ä above, there is an independent signaling scheme

Ä ′ that (I) uses a maximal mapping, (II) satis�es Eqs. (5) and (6), and (III) gives each agent i a utility of at

least ui(Ä) from the signals in which their posterior mean is inside Î , where the contribution to the utility is

assumed to bem.

Proof. Consider Ä and the corresponding mapping rule for agent i. Let S1
i be the set of signals Ã with the

posterior meanµi(Ã) < m; S2
i be thosewithµi(Ã) ∈ Î ; andS3

i those withµi(Ã) > m̂. Create three signals

Ã1
i , Ã

2
i , Ã

3
i . These are sent whenever a signal in S1

i , S
2
i , S

3
i is sent, respectively. Note that µi(Ã

1
i ) = m1

i <
m; µi(Ã

2
i ) = m2

i ∈ Î ; and µi(Ã
3
i ) = m3

i > m̂. Further, Qi =
∑

Ã∈S1
i
∪S2

i

Pr[Ã] = Pr[Ã2
i ] + Pr[Ã1

i ] remains

unchanged and similarly pi remains unchanged. This preserves both the constraints and the utilities.

For agent i, let ³i satisfy ³im
1
i + (1−³i)m

3
i = m2

i , and de�ne s
1
i := Pr[Ã1

i ] and s
3
i := Pr[Ã3

i ]. Create
a new signal Ã4

i , and do the following things:

• If ´ =
s1
i
(1−³i)

s3
i
³i

f 1, then whenever signal Ã1
i was sent, Ã4

i is sent instead, and whenever Ã3
i was

sent, Ã4
i is sent instead with probability ´ and Ã3

i is sent with probability 1− ´.

• If ´ > 1, then whenever signal Ã3
i was sent, Ã

4
i is sent instead, and whenever Ã

1
i was sent, Ã

4
i is sent

instead with probability 1/´ and Ã1
i sent with probability 1− 1/´.

In either case, we note that µi(Ã
4
i ) = ³im

1
i + (1− ³i)m

3
i = m2

i ∈ Î . The sender can then send signal Ã2
i

whenever Ã4
i is sent, noting that this preserves the condition that E[µi(Ã

2
i )] ∈ Î .

Note that in either case, Pr[Ã3
i ] does not increase, and hence Qi = Pr[Ã1

i ] + Pr[Ã2
i ] does not decrease.

Since the increase in Pr[Ã2
i ] is exactly the decrease in the sum Pr[Ã1

i ] + Pr[Ã3
i ], we know that pi does not

decrease. Therefore, the solution {xi(Ä)}
n
i=1 remains feasible for Eq. (6) with the variables {pi}

n
i=1 for the

new mapping, and the right-hand side in Eq. (5) does not decrease as well, since Q =
∏n

i=1Qi does not

decrease. Therefore, the utility ui(Ä) does not decrease. Figure 3 illustrates the reduction process for the

two di�erent cases discussed above.

For any agent i, the above process yields two signals Ãa
i , Ã

b
i , where µi(Ã

a
i ) ∈ Î . Recall that µi = E[Di]

is the prior mean, and is a convex combination of µi(Ã
a
i ) and µi(Ã

b
i ). There are three cases now.
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1. If µi ∈ Î , then not revealing anything yields Qi = pi = 1. Keeping xi(Ä) the same, this preserves

feasibility of Eq. (6). Since the right-hand side of Eq. (5) does not decrease, the utility ui(Ä) does not
decrease. This is also the mapping Ãa

i that maximizes Pr[Ãa
i ].

2. If µi < m, then µi(Ã
b
i ) < m, which means Qi = 1, and pi = Pr[Ãa

i ]. If we use the mapping that

maximizes Pr[Ãa
i ] and keeping xi(Ä) the same, then this preserves the feasibility of Eq. (6) and does

not decrease the RHS of Eq. (5), hence showing the utility ui(Ä) does not decrease.

3. If µi > m̂, then µi(Ã
b
i ) > m̂. In this case, pi = 1, and Qi = Pr[Ãa

i ]. Again, using the mapping that

maximizes Pr[Ãa
i ] and keeping xi(Ä) the same, this preserves the feasiblity of Eq. (6) and does not

decrease the RHS of Eq. (5), showing the utility ui(Ä) does not decrease.

Therefore, the resulting solution uses a maximal mapping and preserves Eqs. (5) and (6).

µi(σ) ∈ Îµi(σ) < m µi(σ) > m̂

αi = 1/3

σ1

i
, µi(σ

1

i
) = 2 σ2

i
, µi(σ

2

i
) = 4 σ3

i
, µi(σ

3

i
) = 5

σ4

i
σ4

i
σ1

i
σ2

i

σ1

i
σ2

i

s1
i
= 2/7 s2

i
= 2/7 s3

i
= 3/7

µi(σ) ∈ Îµi(σ) < m µi(σ) > m̂

αi = 1/2

σ1

i
, µi(σ

1

i
) = 2 σ2

i
, µi(σ

2

i
) = 4 σ3

i
, µi(σ

3

i
) = 6

σ3

i
σ4

i
σ2

i

σ2

i

s1
i
= 2/7 s2

i
= 2/7 s3

i
= 3/7

σ4

i

σ3

i

Figure 3: Illustration of the reduction process for two instances. In both instances, we have s1i = 2/7,
s2i = 2/7, s3i = 3/7; with µi(Ã

1
i ) = 2 and µi(Ã

2
i ) = 4. In the blue (left) instance, µi(Ã

3
i ) = 5, so ³i = 1/3.

We absorb all the probability mass from Ã3
i (i.e., 3/7) together with 3/14 probability of Ã1

i into Ã2
i . In the

red (right) instance, µi(Ã
3
i ) = 6 thus ³i = 1/2. We absorb all the probability mass of Ã1

i (i.e., 2/7) with
the same amount of probability mass in Ã3

i into Ã2
i .

4.3 Reduction to Network Flow and Approximate Majorization

For any agent i, the maximal mapping (that maximizes Pr[Ãa
i ]) is the solution to a linear program. Let

yv denote the probability that the value v maps to a signal in Î , and we have the following linear program.

maximize:
∑

v

yv

subject to:
∑

v

v · yv g m ·
∑

v

yv;

∑

v

v · yv f m̂ ·
∑

v

yv;

0 f yv f Pr[v], ∀v.

(7)

Let the optimal objective value of Program (7) be ´i. If µi < m, then we set Qi = 1 and pi = ´i; if
µi > m̂, then we set pi = 1 and Qi = ´i; else we set pi = Qi = 1. Again, let Q =

∏

iQi.

We now rewrite the constraints and objective for the independent signaling scheme Ä as follows. Note

that {pi}
n
i=1 and Q are calculated as above, and do not depend on the policy.
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m ·Q · xi(Ä) = ui(Ä), ∀i ∈ [n];
∑

i∈S

xi(Ä) f 1−
∏

i∈S

(1− pi(Ä)) ∀S ¦ [n]. (8)

Note thatΩ∗
k =

∑

ℓg1 Äℓ·Äℓ, and after our transformation above, each Äℓ now faces the same constraints

in Program (8). Therefore, we can set xi =
∑

ℓg1 Äℓ ·xi(Äℓ), which will be feasible in Program (8). In order

to reduce to network �ow, we will relax the above program to the following:

m ·Q · xi(Ä) = ui(Ä), ∀i ∈ [n];
n
∑

i=1

xi(Ä) f 1;

0 f xi(Ä) f pi, ∀i ∈ [n].

(9)

Recall from Section 4.1 that we randomize over the projections {Ω∗
k}

K
k=1 of the optimal signaling policy

Ω∗, while preserving all utilities to a factor ofK . For every k ∈ {1, 2, . . . ,K}, consider the relaxed Single
Mean policy constructed above. For notational convenience, we denote the pi, Qi in the corresponding

maximal mapping as pki , Q
k
i . Further denote the lower end-point of Ik as mk, and the variable xi by xki .

Putting together Program (9) for di�erent values of k, it holds that the utilities {ui}
n
i=1 of the policy Ω∗,

after losing the factor ofK , satisfy the following constraints.

1

K
·

K
∑

k=1

mk ·Qk · xki = ui, ∀i ∈ [n];

n
∑

i=1

xki f 1, ∀k ∈ [K];

0 f xki f pki , ∀i ∈ [n], k ∈ [K].

(10)

Network Flow and Majorization. De�ne bk := mk ·Qk/K and yki := bk · xik, and we have

K
∑

k=1

yik = ui, ∀i ∈ [n];

n
∑

i=1

yki f bk, ∀k ∈ [K];

0 f yki f pki · b
k, ∀i ∈ [n], k ∈ [K].

(11)

By the same argument as in Section 3.2, the constraints above formulate a network �ow problem. The

agents are the sinks. Each interval Îk is an intermediate node that is connected to the source with edges

of capacity bk. The node Îk is connected to sink ti with an edge of capacity pki · b
k. By Theorem 3.3, this

network �ow problem has a 1-majorized solution (which is computable in polynomial time according to

the discussion in Section 3.1). Consequently, there exist utilities {ûi}
n
i=1 that are 1-majorized.

Final Algorithm. Our �nal algorithm will round the majorized solution analogous to Section 3.2.

• For each k ∈ {1, 2, . . . ,K}, consider the relaxed interval Îk = [mk, ¸ · mk), and compute the

quantities {pki , Q
k
i } using Program (7).
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• Compute the 1-majorized solution x̂ to Program (10).

• Pick a number k ∈ {1, 2, . . . ,K} uniformly at random.

• Given the realized values, compute the corresponding signals via the maximal mapping for Îk and

send the signals to the receiver. The receiver selects an agent as follows:

– If any agent has posterior mean larger than the interval Îk, select the agent with the highest

mean and stop.

– Consider the agents whose posterior mean lies in Îk in a uniformly random order. For each

agent i in this order, if it is reached, select it with probability x̂ki /p
k
i and stop.

– If no agent is selected so far, select the agent with the highest posterior mean.

Analysis. The same analysis as Section 3.2 shows that for each agent i, the utility in the above algorithm
is at least ûi/2, where ûi is the utility in the 1-majorized solution to Program (10). To see this, note that the

probability of selecting the intervalK is 1/K . Conditioned on this event, the probability that no agent has

posterior mean larger than Îk is Qk. Conditioned on these two events, the probability that the posterior

mean of agent i both lies in Îk and is selected is at least x̂ki /2, and in this case, it yields utility at leastmk.

The overall utility bound now follows by linearity of expectation.

Randomizing over Single Mean projections (see Section 4.1) loses a factor of O(K) = O((log V )/ε)
in each utility, and hence our method gives a bicriteria O((log V )/ε)-majorized solution, completing the

proof of Theorem 2.8.

4.4 Extension to Asymmetric Utilities

So far, we have assumed that the receiver’s selection criterion is based on the agents’ signaled values,

and the value of the chosen agent is the welfare the system generates. The work of [AK20, DTWZ24]

considers a slightly di�erent model, where though the agents signal their values and the receiver selects

the agent whose mean posterior signaled value is largest, an individual agent’s utility is 1 if selected and

0 otherwise. This corresponds to the utility perceived by the sel�sh agent, as opposed to the welfare

generated by the system. We observe that the proofs for Theorems 2.6 and 2.8 extends as is to this model,

and sketch the changes needed.

To see that the proof of Theorem 2.8 extend as is, we keep the construction of themathematical program

in Section 4.2 the same, except we modify Eq. (5) to

ui(Ä) = Q(Ä) · xi(Ä), ∀i ∈ [n]. (12)

which captures the utility being the same as the probability of being selected. For this modi�cation, the

proof of Lemma 4.3 remains unchanged. Subsequently, Program (7) remains unchanged, while we change

Program (10) to

1

K
·

K
∑

k=1

Qk · xki = ui, ∀i ∈ [n];

n
∑

i=1

xki f 1, ∀k ∈ [K];

0 f xki f pki , ∀i ∈ [n], k ∈ [K].

(13)

This again reduces to network �ow by de�ning bk := Qk/K and yki := bk · xik, yielding exactly

Program (11). This completes the proof of Theorem 2.8 for this setting.
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Analogously, the proof of Theorem 2.6 extends to this setting by changing the relaxation to replace the

value vj by 1 in the �rst (utility) constraint Eq. (1). It is easy to check that the resulting program this also

reduces to network �ow. The rest of the analysis goes through as is, except for replacing vj by 1 in Eq. (4).

This shows a 2-majorized solution.

5 Lower Bound on Majorization: Proof of Theorem 2.9

We �rst assume that the receiver is maximizing the utilitarian welfare exactly, and it will become clear

that the same lower bound holds if the receiver selects an agent using an arbitrary function of the posterior

means – in particular, if it is a (1 + ε)-approximate utilitarian welfare maximizer.

Let there be n agents. Each agent i has value i+1with probability 1/i and has value 1with probability
1 − 1/i. Note that the expected value of agent i is µi = 2, the same for each i. For any k ∈ [n], denote
∑n

i=k 1/(i+ 1) by H−k. We �rst give a lower bound on the sum of the smallest k agents’ utilities.

Lemma 5.1. For any k ∈ [n], there exists a signaling policy Sk, such that if the utilities of the agents are

arranged in ascending order, the pre�x of the �rst k utilities sums to

1

2
·

k · (k + 3)

k + (k + 1) ·H−(k+1)
.

In order to prove this lemma, we construct the signaling policy Sk as follows. For each agent i with
i ∈ {k+ 1, . . . , n}, if vi = i+ 1, then with probability xi, the sender sends a signal si to the receiver, and
otherwise the sender sends a signal s̄i for this agent. For i f k, the sender reveals the true value of agent
i. Note that this mapping rule is independent for each agent.

Note that conditioned on receiving signal si, we have µi(si) = i+ 1. On the other hand, conditioned

on receiving s̄i, we have

µi(s̄i) =

(

1− 1
i

)

· 1 + 1
i · (1− xi) · (i+ 1)

1− 1
i · xi

=
2− xi −

xi

i

1− xi

i

f 2.

Therefore, if at least one signal si is received, the receiver will select the agent i, i ∈ [k + 1, n] with the

largest index. On the other hand, if no signal si is received, the receiver selects the unique agent i ∈ [k]
with the highest revealed value.

For each i ∈ {k + 1, . . . , n}, we set

xi =
i

i+1
k

k+1 +H−(k+1) −H−(i+1)

.

The intuition behind this formula is to have Ui = Ui+1 for any k f i f n− 1. We obtain the utility of all

agents as follows.

Lemma 5.2. It holds that

Uj(Sk) =







j+1
k+1 · 1

k

k+1
+H

−(k+1)
j f k;

1
k

k+1
+H

−(k+1)
j g k + 1.

Proof. By the construction of Sk, for any k + 1 f j f n, the receiver will receive signal sj and no signal

si for i > j with probability

xj ·
1

j
·

n
∏

i=j+1

(

1−
xi
i

)

.
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Since agent j receives utility j+1 if and only if signal sj is sent and no signal si for i > j is sent, we have

Uj(Sk) = (j + 1) · xj ·
1

j
·

n
∏

i=j+1

(

1−
xi
i

)

=
j + 1

j
· xj ·

n
∏

i=j+1

(

1−
1

i+1
k

k+1 +H−(k+1) −H−(i+1)

)

=
1

k
k+1 +H−(k+1) −H−(j+1)

·
n
∏

i=j+1

(

k
k+1 +H−(k+1) −H−(i+1) −

1
i+1

k
k+1 +H−(k+1) −H−(i+1)

)

=
1

k
k+1 +H−(k+1) −H−(j+1)

·
n
∏

i=j+1

(

k
k+1 +H−(k+1) −H−i

k
k+1 +H−(k+1) −H−(i+1)

)

=
1

k
k+1 +H−(k+1)

.

Next we consider agent j for j f k. By a similar telescoping as above, the probability that no signal si
with i > k is sent (denoted by qR) is

qR =

n
∏

i=k+1

(

1−
1

i+1
k

k+1 +H−(k+1) −H−(i+1)

)

=
k

k+1 +H−(k+1) −H−(k+1)

k
k+1 +H−(k+1)

=
k

k+1
k

k+1 +H−(k+1)

.

For any agent j with j f k, the probability that it has the largest revealed value among agents {1, 2, . . . , k}
is

1

j
·

k
∏

i=j+1

(

1−
1

i

)

=
1

k
.

Therefore, the expected utility of agent j is

Uj(Sk) =
j + 1

k
· qR =

j + 1

k
·

k
k+1

k
k+1 +H−(k+1)

=
j + 1

k + 1
·

1
k

k+1 +H−(k+1)

.

Completing the proof of Lemma 5.1. We apply the signaling scheme Sk de�ned above. By Lemma 5.2, we

have Ui(Sk) f Uj(Sk) for all 1 f i f j f n. Thus the k agents with smallest expected utilities are agents

1, 2, . . . , k. Their utilities sum up to

k
∑

i=1

Ui(Sk) =
1

2
·

k · (k + 3)

k + (k + 1) ·H−(k+1)
,

completing the proof.

Proof of Theorem 2.9. Since k g 1, we have

1

2
·

k · (k + 3)

k + (k + 1) ·H−(k+1)
>

1

2
·

k · (k + 3)

(k + 1) + (k + 1) ·H−(k+1)
g

1

2
·

k + 1

1 +H−(k+1)
=: Rk.

The quantity Rk is a lower bound on the sum of the k smallest utilities in the signaling policy Sk. Fix any

signaling policy S′. Suppose that each agent i is selected with probability wi in S′. If S′ is ³-majorized,

the sum of the utilities of agents in the set {1, 2, . . . , k} must be at least Rk/³. Therefore, we have the
following set of inequalities

k
∑

i=1

(i+ 1) · wi g
1

³
·Rk, ∀k ∈ {1, 2, . . . , n}.
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We nowwant to lower bound
∑n

i=1wi. The optimal way to assign the probabilities {wi}
n
i=1 is to make

all the inequalities satis�ed with equality. Therefore, we have

n
∑

i=1

wi g
1

2³
·R1 +

1

³
·

n
∑

i=2

(

Ri −Ri−1

i+ 1

)

g
1

³
·

n
∑

i=1

Ri

(i+ 1) · (i+ 2)
=

1

2³
·

n
∑

i=1

1

(i+ 2) · (1 +H−(i+1))

g
1

2³
·

n
∑

i=1

1

(i+ 2) · (1 + log(n+ 1)− log(i+ 1))
(Since H−(i+1) f log

(

n+1
i+1

)

)

g
1

2³
·

n
∑

i=1

1

(32 i+
3
2) · (1 + log(n+ 1)− log(i+ 1))

g
1

3³
·

∫ n+1

1

1

x · (1 + log(n+ 1)− log x)
dx

(Since 1
x·(1+log(n+1)−log x) is monotonically decreasing on [1, n+1])

=
1

3³
·

[

− log(1 + log(1 + n)− log x)
∣

∣

∣

n+1

x=1

]

=
1

3³
· log(1 + log(1 + n)).

Combining the inequality above with
∑n

i=1wi f 1, we have

³ g
log (1 + log (1 + n))

3
>

1

3
· log log(n+ 1) =

1

3
· log log V.

Since the second part of our argument only requires the fact that at most one agent is selected and is

independent of the receiver’s selection rule, this lower bound also applies if the receiver can arbitrarily

select the agent, or (in particular) if the receiver is an approximate utilitarian welfare maximizer.

6 Open Directions

Our work points to several interesting future directions. First, we assume independent (or decentral-

ized) mapping of values to signals, motivated hiring and selection applications. Can a similar existence

result as in Section 4 extend to the setting where the sender can correlate signals from di�erent agents?

We note however that the two settings are somewhat incomparable, and it may very well be that the corre-

lated setting is computationally simpler for a given fairness function [DX16], while the independent case

is easier from an approximate majorization perspective.

Secondly, our lower bound in Section 5 holds for distributions with large variance. Is there an O(1)-
majorized policy under a more benign assumption on distributions, such as the monotone hazard rate

(MHR) assumption? Next, we assumed a single agent is �nally selected. What if the receiver selects the

top k agents according to the posterior mean? In this case, it is open if there a polynomial-time algorithm

for a given fairness function, in both the cases where the sender can correlate signals and when it sends

independent signals. Further, it is an open question to extend our majorization result even to the case

when k = 2.
Finally, we assume agents are not strategic in revealing information, and our results can be viewed

as the limits of fairness that is achievable even if agents follow a prescribed policy. It is an interesting

direction to study equilibria and price of anarchy when agents reveal information strategically, building

on [AK20, DTWZ24].
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