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30 Abstract

Land cover governs the biogeophysical and biogeochemical feedbacks between the land surface and

32  atmosphere. Holocene vegetation-atmosphere interactions are of particular interest, both to understand the
climate effects of intensifying human land use and as a possible explanation for the Holocene

34  Conundrum, a widely studied mismatch between simulated and reconstructed temperatures. Progress has
been limited by a lack of data-constrained, quantified, and consistently produced reconstructions of

36  Holocene land cover change. As a contribution to the Past Global Changes (PAGES) LandCover6k
Working Group, we present a new suite of land cover reconstructions with uncertainty for North America,

38  based on a network of 1445 sedimentary pollen records and the REVEALS pollen-vegetation model
coupled with a Bayesian spatial model. These spatially comprehensive land cover maps are then used to

40  determine the pattern and magnitude of North American land cover changes at continental to regional
scales. Early Holocene afforestation in North America was driven by rising temperatures and

42  deglaciation, and this afforestation likely amplified early Holocene warming via the albedo effect. A
continental-scale mid-Holocene peak in summergreen trees and shrubs (8.5 to 4 ka) is hypothesized to

44 represent a positive and understudied feedback loop among insolation, temperature, and phenology
seasonality. A last-millennium decrease in summergreen trees and shrubs with corresponding increases in

46  open land likely was driven by a spatially varying combination of intensifying land use and neoglacial
cooling. Land cover trends vary within and across regions, due to individualistic taxon-level responses to

48  environmental change. Major species-level events, such as the mid-Holocene decline of eastern hemlock,
may have altered regional climates. The substantial land-cover changes reconstructed here support the

50 importance of biogeophysical vegetation feedbacks to Holocene climate dynamics. However, recent
model experiments that invoke vegetation feedbacks to explain the Holocene Conundrum may have

52  overestimated the land cover forcing by replacing Northern Hemisphere grasslands >30°N with forests;
an ecosystem state that is not supported by these land cover reconstructions. These Holocene

54  reconstructions for North America, along with similar LandCover6k products now available for other
continents, serve the Earth system modeling community by providing better-constrained land cover

56  scenarios and benchmarks for model evaluation, ultimately making it possible to better understand the

regional- to global-scale processes driving Holocene land cover dynamics.
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1. Introduction

Vegetation is the great mediator of biogeophysical and biogeochemical interactions between the land
surface and the atmosphere (Bonan and Doney, 2018; Harrison et al., 2020; Pongratz et al., 2010; Gaillard
et al., 2010). Enhanced carbon uptake and sequestration by terrestrial ecosystems is an essential
component to contemporary negative-net CO; emission scenarios needed to stabilize the climate system
and mitigate the dangerous impacts already emerging (Rogelj et al., 2018; van Vuuren et al., 2017).
During the Holocene, as cryosphere-ocean-atmosphere feedbacks waned and anthropogenic land use
intensified (Ruddiman, 2013; Stephens et al., 2019), vegetation-atmosphere feedbacks and forcings
increased in importance, particularly in regions where climate variability interacted with major changes in
vegetation structure. Examples include soil and vegetation feedbacks that amplified precessional-driven
variations in monsoonal rainfall intensity in North Africa and Asia (Chen et al., 2021; Chandan and
Peltier, 2020), and increases in high-latitude tree cover, which decreased wintertime albedo and increased
temperatures (Williams et al., 2011; TEMPO (Testing Earth System Models with Paleo-Observations),
1996; Foley et al., 1994). Intensified human land use and resulting greenhouse gas emissions may have
delayed Northern Hemisphere late-Holocene cooling and glaciation (Ruddiman, 2003). However, initial
models of global anthropogenic land cover change (ALCC) (Kaplan et al., 2009; Klein Goldewijk et al.,
2011, 2010) over the Holocene were largely unconstrained by paleoecological and archacological
observations and so differed widely in their estimated size and scope of the anthropogenic footprint. More
recently, Holocene increases in vegetation cover have been invoked to explain the Holocene Temperature
Conundrum, a discrepancy between proxy and model-estimated temperature during the early- to mid-
Holocene (Thompson et al., 2022; Kaufman and Broadman, 2023), but global simulations of vegetation-
climate feedbacks during the Holocene are not constrained by observational data. At subcontinental
scales, data-constrained studies of Holocene climate-vegetation feedbacks in Europe indicate that mid-
Holocene vegetation changes relative to pre-Industrial baselines could have warmed winters in some
areas by 4-6°C in northeastern Europe (Strandberg et al., 2022a, 2014).

Hence, there is an on-going need for comprehensive and accurate proxy-based reconstructions of
past land cover at regional to global extents (Gaillard and Group, 2015; Gaillard et al., 2018, 2010). These
reconstructions can then be used with Earth system models (ESMs) to test hypotheses about the physical,
biological, and anthropogenic processes that drove Holocene climate variability (Harrison et al., 2020).
Fossil pollen records offer the primary observational constraint on past vegetation composition and
structure, with thousands of records now available globally. Efforts to systematically map late-Quaternary
land cover using fossil pollen data and well-defined rulesets began in the late 1990s with the Biome6000

project (Prentice et al., 2000, 2011). Since then, the continental-scale pollen databases launched in the
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92  1980s and 1990s (Grimm et al., 2013) have coalesced along with other paleoecological data into the
Neotoma Paleoecology Database (Neotoma), an international, multi-proxy, curated data resource that
94  helps tame issues of data heterogeneity through community curation by experts (Williams et al., 2018).
Neotoma thus enables global-scale analyses of past vegetation and climate change (e.g. Mottl et al., 2021;
96  Herzschuh et al., 2023).
Multiple pollen-vegetation models (PVMs) have been developed to make quantitative inferences
98  about past vegetation. Some PVMs involve relatively simple but effective transfer functions, such as the
modern analogue technique (Williams et al., 2011) or rule-based systems for classifying land cover
100  (Prentice et al., 2000; Cruz-Silva et al., 2022; Fyfe et al., 2010). Others are process-based proxy system
models (Evans et al., 2013) that attempt to represent the processes governing the atmospheric transport
102  and deposition of pollen, such as the REVEALS and LOVE (Sugita, 2007a, ¢) or STEPPS (Dawson et al.,
2019a). Efforts continue to test and refine the parameterizations of these models through paired analyses
104  of pollen assemblages and forest composition at local to landscape scales (Liu et al., 2022).
In response to these scientific needs and opportunities, the Past Global Changes (PAGES)
106  LandCover6k working group was launched as an international effort (Gaillard and Group, 2015) to
reconstruct vegetation globally for the Holocene. LandCover6k, led by experts typically working at
108  continental scales, has had the explicit aim of creating vegetation reconstructions that can better constrain
past histories of anthropogenic land use in ESMs and is mostly based on networks of fossil pollen
110  records. To facilitate the use of these vegetation reconstructions in ESMs, the REVEALS PVM has been
used for all LandCover6k reconstructions, with standard model parameterizations and standard protocols
112 for pollen data handling. LandCover6k gridded REVEALS reconstructions at the continental scale have
been published so far for Europe (Githumbi et al., 2022a, b; Trondman et al., 2015; Serge et al., 2023) and
114 China (Li et al., 2023b). However, no comparable REVEALS-based land cover reconstructions are
available for North America, despite a comparable density of fossil pollen records to these other regions
116  (Stegner and Spanbauer, 2023) and prior regional-scale applications of REVEALS in North America
(Sugita et al., 2010; Chaput and Gajewski, 2018).
118 REVEALS uses pollen counts, pollen productivity estimates, pollen fall speeds, atmospheric
conditions, and sedimentary basin type and size to estimate vegetation composition for a given time
120  period. REVEALS accounts for the processes of differential pollen production (determined by pollen
productivity estimates) and dispersal-deposition (determined by the pollen fall speeds, atmospheric
122 conditions, and sedimentary basin type and size).
While REVEALS reconstructions usually combine information from multiple pollen records, REVEALS
124 s not explicitly spatial, and so does not support the interpolation of inferences to places with no pollen

records. To address this issue, other researchers have developed a statistical approach to spatially
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interpolate REVEALS-based land cover estimates from individual grid cells to all cells within the grid,
including estimates of uncertainty (Pirzamanbein et al., 2014, 2018a). The approach uses a Bayesian
hierarchical model with spatial dependence specified according to a Gaussian Markov Random Field
(GMREF; (Lindgren et al., 2011); we refer to the two-step process of REVEALS-based estimation
followed by this spatial interpolation as the REVEALS-GMRF approach. REVEALS-GMREF has been
used to develop spatially continuous gridded vegetation reconstructions in Europe to assess vegetation-
climate feedbacks resulting from natural and anthropogenic land cover change (Strandberg et al., 2022b)
and to evaluate ALCC models (Kaplan et al., 2017) and dynamic vegetation models (Pirzamanbein et al.,
2020; Dallmeyer et al., 2023; Zapolska et al., 2023).

Here we adopt the REVEALS-GMREF approach to reconstruct land cover changes in North
America during the Holocene. This work relies on 1445 Holocene pollen records drawn from Neotoma
and its constituent database, the North American Pollen Database (NAPD), with a targeted data-
mobilization campaign employed to add more records to the NAPD for western North America. Using
these data, we reconstruct the fractional cover of 32 plant taxa and three land cover types (LCTs):
evergreen trees and shrubs (ETS), summergreen trees and shrubs (STS), and open vegetation/land (OVL,
including grasses, herbs, and low shrubs) from 12,000 years ago (12 ka) to present. We present the
Holocene vegetation reconstructions by working across scales, first describing continental-scale trends in
land cover, then shifting to several regional-scale case studies to show how the continental-scale trends
emerge from taxon-level dynamics that vary within and among regions, with respect to key taxa, drivers,
and resultant land-cover changes. We then zoom out to discuss the continental-scale drivers of Holocene
land cover change in North America and possible biophysical implications of these changes for Holocene
vegetation-atmosphere interactions and the Holocene Conundrum. Lastly, we discuss the potential
limitations of the REVEALS-GMREF approach and the opportunities now available for well-constrained

hemispheric- to global-scale studies of vegetation-atmosphere interactions.

2. Data and methods

2.1 Pollen data and data mobilization for western North America

Western North America has traditionally been underrepresented in the NAPD and Neotoma, but the
density of fossil pollen records in western North America has steadily increased in recent decades, as
multiple teams have worked to collect new records, often focusing on interactions among past vegetation,
fire, climate, and human dynamics (Anderson et al., 2008; Gavin and Brubaker, 2014; Marlon et al.,

2012; Iglesias et al., 2018; Alt et al., 2018). Many of these datasets were contributed to Neotoma
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(Williams et al., 2018) when originally published, while others were contributed to Neotoma for an open-

158  data mobilization campaign conducted for this paper and PAGES LandCover6k (Gaillard et al., 2018).

After this effort, 1582 North American Holocene pollen records were downloaded from Neotoma
160  (Supp. Table 1). Each record included pollen count data at a series of depths. For methodological

consistency (Flantua et al., 2023), we refit all age-depth models using a custom-built workflow

162  (https://github.com/andydawson/bulk-bchron that assessed chronological constraints and then used these
chronological constraints and IntCal20NH (Reimer et al., 2020) to fit the Bchron age-depth model

164  (Parnell et al., 2008). This resulted in 1445 records with age-depth models. Ages of the youngest and
oldest chronological constraints were used to determine the reliable age range for each record; we limited

166  extrapolation of pollen sample ages beyond the youngest or oldest constraints to 1000 years. Pollen types
were aggregated to taxa using the taxa list in the North American Modern Pollen Database (Whitmore et

168  al., 2005). We used a subset of 32 taxa for this analysis, choosing the most abundant taxa, several open-
land indicators, and taxa with available estimates of relative pollen productivity (Tables 2, 5).

170
2.2 REVEALS (regional reconstructions)

172 Pollen-based land cover reconstructions were performed using the REVEALS pollen-vegetation model
(Sugita, 2007b), and based on the standard protocol for PAGES LandCover6k (Trondman et al., 2015;

174  Githumbi et al., 2022a). This model estimates the relative abundance of plant taxa, along with the
standard error of these estimates, given pollen counts and input parameters that represent sedimentary

176  basin size and type, pollen productivity estimates (PPEs), pollen fall speeds, and atmospheric conditions.
REVEALS was developed to operate at the regional scale (Sugita, 2007a; Hellman et al., 2008a, b);

178  inferences of plant relative abundance represent the background vegetation over large areas (suggested as
100 km x 100 km in (Hellman et al., 2008b), but this scale is variable). REVEALS traditionally has been

180  wused to infer plant relative abundance from records from large lakes (>50 ha), but has been tested and
applied to regions with records from a number of smaller lakes. The REVEALS model accounts for both

182  differential productivity and dispersal among taxa. Differential productivity is determined by taxon-
specific PPEs, while dispersal is modeled according to a Gaussian plume (Sutton, 1953) or Lagrangian

184  dispersal-deposition model (Kuparinen et al., 2007), both of which require the specification of
atmospheric conditions including wind speed. REVEALS accounts for differential dispersibility among

186  taxa using pollen fall speeds. See (Sugita, 2007b; Githumbi et al., 2022a) for a more detailed and
theoretical description of REVEALS. We implement REVEALS using the REVEALSInR R package

188  (Theuerkaufet al., 2016). REVEALS estimates for other regions included in the LandCover6k effort (Li

et al., 2023a; Githumbi et al., 2022a) were developed using more traditional implementations of this
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190  model (LRA.REVEALS.v6.2.4.exe (Sugita, unpublished) and LRA R package (Abraham et al., 2014)),
which differ slightly in their calculation of the standard errors of relative abundances.

192 Pollen source areas and the relative representation of plant taxa in the REVEALS dispersal-
deposition model are affected by sedimentary basin type (e.g. lake, mire) and area (Sugita, 2007a;

194  Trondman et al., 2016). Basin type is typically included in Neotoma metadata for pollen datasets, but not
all datasets include metadata on basin area. To determine basin area for these datasets, we developed a

196  standard workflow (Goring, 2021); https://github.com/NeotomaDB/neotoma_lakes). First, we used
hydrological databases (National Hydrography Dataset (United States Geological Survey, 2022), National

198  Hydro Network (Natural Resources Canada, 2022)) to assign basin areas to datasets whose coordinates
fell within a water-body polygon. Second, for dataset coordinates that landed outside a water-body

200  polygon, we used Google Earth Engine to identify the basin. These basins were traced using the polygon
tool in Google Earth Engine, and basin area was calculated from polygon area. Not all basins could be

202  identified, however, particularly for pre-GPS sites in Neotoma with imprecise coordinates. Third, for sites
still without basin area, we assigned a size of 50 ha. In the context of the REVEALS model, this

204  represents a medium-sized lake. This decision avoids the potential biases from assigning large or small
lake areas, although site-level reconstructions may over- or under-represent taxa if basin area (and hence

206  pollen source area) is inaccurate (Jackson, 1990; Davis, 2000; Liu et al., 2022). All basin areas recovered
in the first and second steps were added as site-level metadata to Neotoma, along with dataset notes.

208 We used PPE and fall speed datasets from Wieczorek and Herzschuh (2020) for the Northern
Hemisphere extra-tropics. Specifically, we used the North America continental-scale datasets, which

210  include PPE (with grass as the reference taxon) and fall speed values for 30 of the 32 taxa we consider in
this work. For Ambrosia (ragweed) and Tsuga (hemlock), which were not included in Wieczorek and

212 Herzschuh (2020), we use PPE and fall speed values from a previously compiled North America dataset
(Dawson et al., 2016; Trachsel et al., 2020). Additionally, for the Larix (larch) fall speed, we used the

214 value for Larix laricina from (Niklas, 1984), which is the dominant species in eastern and northern North
America. This estimate is an order of magnitude smaller than the Larix taxon-level fall-speed estimate

216  included in (Wieczorek and Herzschuh, 2020),which originates from (Bodmer, 1922)). We experimented
with fall-speed datasets that included these larger Larix fall-speed estimates; these vegetation

218  reconstructions indisputably overrepresented larch.

We used the Gaussian plume dispersal model with a wind speed of 3 m/s and neutral atmospheric

220  conditions (vertical diffusion coefficient cz=0.12; turbulence parameter n=0.25; wind speed u=3 m/s; see
(Jackson and Lyford, 1999a)), to be consistent with the dispersal model specified in the LandCover6k

222 protocol for Northern Hemisphere reconstructions (Dawson et al., 2018; Githumbi et al., 2022a). We set
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the region cutoff to the REVEALSInR function default of 100 km; this specifies the maximum distance
that most pollen will originate from (Sugita, 2007a; Theuerkauf et al., 2016).

We reconstructed land cover for 25 time intervals that cover the Holocene. These time intervals
were defined according to the LandCover6k working group protocol (Trondman et al., 2015) (SI Table
4). Time intervals are specified in kiloyears before present (ka), where present is defined as 1950 CE, but
for time intervals <lka we also note the Common Era (CE) timescale. Intervals in the period from 11.7 to
0.7 ka have a 500-year temporal grain (11.7 to 11.2 ka; 11.2 to 10.7 ka; etc.), while the three most recent
intervals have a finer temporal grain (0.7-0.35 ka [1250-1600 CE]: 350 years; 0.35-0.1 ka [1600-1850
CE]: 250 years; 0.1-(-0.074) ka: 174 years [1850-2024 CE]) in order to better capture the changes
associated with intensifying anthropogenic land use over the last five centuries. Pollen samples were
assigned to a time interval based on their mean calibrated radiocarbon age. If multiple samples for a
record fell within the same interval, pollen counts were summed by taxon, so that each record would have
at most one set of pollen counts per time interval. We used a grid resolution of 1°x1°, also as specified by
the LandCover6k protocol. Within a grid cell, REVEALS reconstructions for multiple sites were
averaged, as is standard practice (Sugita, 2007a). Taxon-level reconstructions were aggregated to three
land cover categories (SI Table 5): summergreen trees and shrubs (STS), evergreen trees and shrubs
(ETS), and open vegetation/land (OVL), which includes grasses, herbs, and low-stature shrubs. All trees
and shrubs (ATS) is calculated as the sum of STS and ETS.

2.3 REVEALS-GMRF (spatial modeling and interpolation with uncertainty)

Here, we use the REVEALS-GMREF Bayesian hierarchical model (Pirzamanbein et al., 2018b) to spatially
interpolate the REVEALS-based land cover reconstructions. REVEALS-GMREF exploits the spatial
dependence in land cover using a Gaussian Markov Random Field, and permits the characterization of
uncertainty given the empirical land cover product. As in Pirzamanbein et al. (2018), we use elevation as
a covariate. Although including simulations of land cover as an additional covariate can further improve
the reliability of resulting land cover maps (Pirzamanbein et al., 2020), the intent of our work is to
develop a spatial land cover product suitable for validation of and assimilation with dynamic vegetation,
land use, and Earth System models. Hence, to maintain independence, we refrain from using simulated
land cover as a covariate. To quantify overall uncertainty of a grid cell for a specified time period, we
computed the area of confidence regions (CR; (Pirzamanbein et al., 2018a)). Smaller CR values indicate
higher confidence, while larger CR values indicate more uncertainty. As in Pirzamanbein et al. (2018), a
CR threshold is determined using the complete set of CR values. Accordingly, any grid cells with a CR

greater than a threshold of 9 were omitted from spatial reconstructions (Githumbi et al., 2022c). The
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256  result of this spatial interpolation is a set of empirically-based land cover maps for North America and the
LandCover6k time intervals, with uncertainty.

258
2.4 Calculation of proportional changes and mapped anomalies

260  To summarize continental-scale land-cover dynamics through time, we built time series of both mean
relative cover and area-weighted relative cover. We used recently updated ice sheet maps (Dalton et al.,

262  2020) to identify glaciated and unglaciated grid cells for each time period, then calculated the fraction of
unglaciated land cover for each time period. We then calculated the mean relative cover of each land

264  cover type for each time period, across all unglaciated grid cells at that time period. Mean relative cover
usefully summarizes land cover change within ice-free regions, but does not track the overall increases in

266  vegetated land area in North America during the last deglaciation. To calculate area-weighted relative
cover, for each time period, we multiplied the relative cover of each grid cell by the cell area, and then

268  summed the relative cover of each land cover type across space for unglaciated land grid cells. We then
divided these summed area-weighted cover values for each time period by the sum of total unglaciated

270  land area at 0.25 ka. Because the number of unglaciated land grid cells changes through time, while the
denominator is constant, this area-weighted metric of relative cover is affected by both available land and

272  changes in land cover proportion, resulting in a proportional metric that is sensitive to continental-scale
increases in vegetation cover.

274 For each pair of time intervals, we calculated land cover change as grid-cell scale differences for
each of the three land cover classes. After visually identifying areas of large land cover changes (Supp.

276  Fig. 3), we identified several regions for further investigation: the northeastern US and southeastern
Canada (NEUS/SEC), eastern Canada (ECAN), western Canada and Alaska (WCAN/AK), and the

278  Pacific Coast, Cascades, and Sierra Nevada (PCCS) based on areas of greatest change and pollen-site
density. We then assessed vegetation change for each region at both the taxon and land cover scales,

280  using the REVEALS grid-cell estimates of taxon mean abundances and the REVEALS-GMRF

interpolated estimates of mean cover for the land cover types.

282 3. Results

3.1 Data coverage
284  The assembled dataset of 1445 fossil pollen records has good coverage across the continental US and
Canada (Fig. 1a). Areas of relatively high site density include the Great Lakes region of the US and
286  Canada, the northeastern US, the Rocky Mountains, the Pacific Coast, and central Alaska. Given good

data-mobilization efforts for the US and Canada, this distribution reasonably approximates the true
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288  distribution of fossil pollen records, so spatial gaps usually represent lack of available sites (e.g. few lakes
or wetlands in arid regions) or inaccessibility (e.g. high Arctic). Conversely, a lower site density in

290  Mexico and Central America is partially due to less extensive open-data mobilization efforts in these
regions. Temporally, the distribution of oldest samples (an indicator of record length) is smooth (Fig.

292  1b), with rapid accumulation of sites between 11.7 and 11 ka (33% of sites have an oldest sample in this

interval) and between 0.5 and -0.074 ka (74% of sites have a youngest sample in this interval).
294

10
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296  Figure 1: The spatiotemporal distribution of fossil pollen data used here. A) Map indicating the spatial
distribution of sites recovered from the Neotoma Paleoecology Database, as well as the case study regions
298 (WCAN/AK: Western Canada and Alaska; PCCS: Pacific Coast, Cascades, and Sierra Nevada; ECAN:
Eastern Canada; and NEUS/SEC: North-Eastern US and South-Eastern Canada). B) Temporal extent of
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310  maps at bottom. The spatial domain for interpolation includes all unglaciated locations in North America

between 17 and 79°N.
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Figure 3: (a) Holocene trends in area-weighted cover of all trees and shrubs (ATS) in North America
316  (pink curve with 95% uncertainty envelope), expressed relative to present unglaciated land area (see

Methods), and the fraction of unglaciated land relative to continental land area (black). Total cover is the
318  sum of the evergreen and summergreen trees and shrubs. (b) Trends in the area-weighted cover of

evergreen (ETS), summergreen (STS) and open vegetation/land (OVL) for North America. For both plots,

320  land cover estimates are based on the interpolated data for the spatial domain shown in Fig. 2.

322

3.2 Continental-scale trends in Holocene land cover
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324  Ata continental scale, the spatial configuration of land cover in North America has been broadly stable
during the Holocene (Fig. 2). Persistent features include belts of high evergreen tree cover in the

326  mountainous West and Canada, high summergreen tree cover in the eastern US, moderate to high cover of
summergreen trees and shrubs in Alaska and northern Canada, and high proportions of open vegetation in

328  the Great Plains, western Alaska, and Arctic Canada (Fig. 2).

However, despite this broadly stable spatial configuration, there were large continental-scale

330 changes in the area-weighted fractional cover of land cover types in North America during the Holocene,
particularly during the early Holocene (Fig. 3a, Supp. Fig. S3). From 11.7 to 7 ka, the area-weighted

332 fraction of forested land cover increased from about 56 to 91%. This increase closely tracked the
increase in available land surface area, as the Laurentide Ice Sheet retreated (Fig. 3a) (Dalton et al., 2020).

334  During the early Holocene, the largest gains in forest cover were across deglaciated western Canada and
ice-marginal areas in eastern Canada (Fig. 2, Supp. Fig. S3). Forest cover continued to expand between

336 7.5 and 4.5 ka (Fig. 3a), even though the Laurentide Ice Sheet had disappeared by ~6 ka, with the largest
afforestation in the northern Great Plains of central Canada and in recently deglaciated regions of eastern

338  Canada (Fig. 2, Supp. Fig. S3). Continental-scale forest cover remained stable from 4.5 to 1.5 ka, then
declined after 1.5 ka (Fig. 3a). The late-Holocene decline in forest cover was most pronounced in the

340  eastern US and in Arctic and boreal Canada where open vegetation began increasing after 4 ka (Fig. 2,
Supp. Fig. S3, S4).

342 Within these Holocene trends, the three land cover types followed differing trajectories (Fig. 3b).
All three show a strong increase between 11.7 and 7.5 ka in their area-weighted relative cover, again

344  tracking ice retreat. After 7.5 ka, however, the three trajectories diverged. Evergreen trees and shrubs
continued to rise slowly but steadily from 7.5 to 2 ka, then declined slightly (Fig. 3b). Summergreen trees

346  and shrubs reached peak area-weighted cover at 4.5 ka, then declined, with an accelerated decline after
1.5 ka. The proportion of open lands remained largely stable from 7.5 to 4.5 ka, then increased, with an

348  accelerating increase after 2 ka. A close examination of the continental-scale anomaly maps (Supp. Figs.
S3, S4) suggests a fairly complex spatial mosaic for each land cover type, with the continental-scale

350 trends emerging from a welter of regional-scale phenomena. For example, widespread gains in evergreen
trees and shrubs across much of Canada and Alaska between 6 and 4 ka were partially offset by large

352  losses in the eastern US and southeastern Canada over the same period (Supp Fig. S3). Because different
plant species predominate in different regions of North America, these continental-scale trends in land

354  cover were the emergent outcomes of individualistic species-level responses to changing climates and, in
some places, intensifying land use (Williams et al., 2004).

356
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3.3 Regional case studies
3.3.1 Northeastern US & Southeastern Canada (NEUS/SEC)
For the mostly forested NEUS/SEC, after initial afforestation and loss of open lands during the early

Holocene (10 to 8 ka), the central dynamic has been shifts in the relative cover of evergreen and
summergreen trees and shrubs (Fig. 4a, Supp. Fig. S5). The fractional cover of evergreen trees and shrubs
declined throughout the early to middle Holocene (10 to 4 ka) in the southern part of the domain, which
intensified to widespread loss across the NEUS/SEC (6 to 4 ka), but then reversed after 4 ka, with
recovery and regrowth of evergreen trees and shrubs (Fig. 4a). The western increase in open lands
between 8 and 4 ka is caused by the eastward expansion of prairie due to drier conditions (Williams et al.,
2009b), while the decrease in open lands from 4 to 0.5 ka is due to increased moisture availability that
resulted in a westward shift of the prairie-forest border and increase in summergreen forest taxa in the
eastern Midwest (Umbanhowar et al., 2006). Overall, the low proportions of open vegetation in the
NEUS/SEC from 9 ka until European settlement (Fig. 4B) likely represents these western prairies and
local wetlands, which expanded in the late Holocene in parts of the NEUS/SEC (Brugam and Swain,
2000; Ireland and Booth, 2010), rather than grasslands or other open lands in eastern deciduous forests
(Faison et al., 2006).

At a taxon level, most changes in evergreen cover can be attributed to regional declines of cold-
tolerant conifers such as Picea glauca, P. mariana, and P. rubens (white, black, and red spruce); Pinus
banksiana, P. resinosa, and P. strobus (jack, red, and white pine), and Abies balsamea (balsam fir)
between 10 and 6 ka (Fig. 4c, Supp. Fig. S6) (Spear et al., 1994; Jackson and Whitehead, 1991; Jackson
et al., 1997). These changes, combined with the zonal pattern of evergreen expansion in the northern
NEUS/SEC and declines in the southern part, suggest that much of the evergreen tree and shrub cover
changes during the early to middle Holocene can be attributed to postglacial northward shifts in tree
distributions in response to rising temperatures and deglaciation.

A second major feature is the well-known and dramatic expansion, collapse, and re-expansion of
Tsuga canadensis (eastern hemlock), a cool-temperate conifer that typically occupies warmer climates
than Abies balsamea (Thompson et al., 1999). Investigations continue into understanding the abrupt and
widespread collapse in Tsuga canadensis, which differed from the overall evergreen trend. The collapse
occurred in less than 10 years at some sites (Allison et al., 1986) and is linked to regional shifts in water
availability and temperature gradients (Booth et al., 2012; Foster et al., 2006; Haas and McAndrews,
1999; Shuman et al., 2023). Initial hypotheses that a pest or pathogen such as hemlock looper (Bhiry and
Filion, 1996; Davis, 1981; Anderson et al., 1986) caused the hemlock decline have not been supported by
recent investigations (Oswald et al., 2017), although insect remains are scarce in lacustrine archives.

Understanding the causes of the hemlock collapse is outside the scope of this paper; however, this paper
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392  shows its importance, in that a single-species collapse fundamentally altered the functional composition,
ecosystem phenology, and land cover of the NEUS/SEC for thousands of years.

394 Among summergreen taxa, these REVEALS reconstructions indicate a strong growth in Acer
(maple) cover in the NEUS/SEC until 4 ka and declines thereafter. Acer saccharum (sugar maple) is

396  probably the dominant taxon driving this curve, with A. rubrum (red maple) increasing in the late
Holocene (Finkelstein et al., 2006). Quercus (oak) abundances were high between 9 and 4.5 ka, then

398  steadily declined, while Betula (birch) abundances remained relatively stable. Fagus grandifolia
(American beech) abundances continued to steadily increase throughout this period until 3 ka, then began

400  declining after 1.5 ka, along with Tsuga canadensis, while Abies balsamea abundances increased.
Disturbance-related taxa and indicators of open vegetation such as Ambrosia (ragweed) and Rumex

402  (sorrel, not shown) begin increasing at ca. 0.35 ka (1600 CE). These late-Holocene changes in forest
composition can be plausibly attributed to regional cooling (explaining the increase in Abies balsamea)

404  and perhaps also intensified human land use and disturbance, with the relative importance of these drivers
varying at subregional scales and among taxa (Oswald et al., 2020; Mottl et al., 2021).

406 An intriguing feature of these REVEALS reconstructions is the inference of Abies balsamea and
Acer spp. as the most common evergreen and summergreen tree taxa in the NEUS/SEC, given that Picea,

408  Pinus, and Quercus are more abundant in pollen and macrofossil records and prior site-level and regional
syntheses of Holocene pollen records have emphasized their dynamics (Jackson et al., 1997; Jackson and

410  Whitehead, 1991; Payette et al., 2022; Spear et al., 1994). Witness-tree data in the NEUS also indicate
that Fagus and Quercus were the most abundant broadleaved taxa at time of European settlement

412  (Thompson et al., 2013). One possible reason for the higher levels of Abies and Acer reported here is
that our NEUS/SEC domain extends a bit farther north than prior reconstructions that have focused more

414  on central and southern New England. A second possibility is that the parameterizations for Abies and

Acer are incorrect, causing the coverages of these taxa to be overestimated (see Discussion).

416
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Figure 4: (a) Land cover anomaly maps for the northeastern US and southeastern Canada

(NEUS/SEC) case-study region. Maps show the anomalies in fractional cover for each land

cover class for pairs of indicated time intervals. Spatial resolution is 1°x1° and time units are ka.

(b) Holocene trends in the mean relative cover of the three land cover types (ETS, STS, OVL)
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and the ATS sum for the uninterpolated REVEALS grid cell estimates across the NEUS/SEC
region. (c) Holocene trends for the REVEALS abundance estimates for the six most commonly
occurring taxa in the region. Line color indicates assignment of individual taxa to land cover

types. For taxon-level maps, see Supp. Fig. 6.

3.3.2 Eastern Canada (ECAN)
In Eastern Canada (ECAN), immediately north of the NEUS/SEC, evergreen trees and shrubs expanded

across the entire region until 4 ka, with slower and more spatially heterogeneous expansion of evergreen
cover between 4 and 2 ka (Fig. 5a, Supp. Fig. S7). After 4 ka, open vegetation expanded (Fig. 5a, 5b).
This expansion of evergreen trees and shrubs can be traced to separate phases of expansion for Abies
balsamea and Picea, with A. balsamea expansion mostly between 11.5 and 7.5 ka (in the southern
portion) and Picea expansion mostly between 7.5 and 3 ka, across the area and especially in the central
portion (Fig. Sc, Supp. Fig. S8). Increasing Cyperaceae abundance after 3.5 ka signal the expansion of
forest-tundra. Major hardwood summergreen taxa include Betula and Alnus. Alnus abundances expanded
until 6 ka, then slowly declined, while birch abundances expanded between 8.5 and 6 ka, then also
declined. These declines in Alnus and Betula after 6 ka co-occurred with expansions of Picea and
Cyperaceae, suggesting that the regional vegetation shifted from more of a mixed forest or woodland in
the early Holocene, to evergreen coniferous forest, forest-tundra, or tundra in the middle to late
Holocene. Note that Populus is not included in these REVEALS reconstructions, but it is an important
taxon in ECAN (Peros et al., 2008), and its omission may cause an underestimate of summergreen cover.
These vegetation changes in ECAN can be attributed to a combination of deglaciation, changing
temperatures, and fire history. The Laurentide Ice Sheet collapsed at 8.4 ka and the last remnants of the
Labrador Dome disappeared from northern Quebec by 5.7 ka (Dalton et al., 2020). The replacement of
open land by forest cover during the early Holocene was driven primarily by increases in evergreen trees
and shrubs. The open forests at this time lack modern analogues and varied spatially in taxonomic
composition, with more fir and birch to the east and spruce toward the west (Richard et al., 2020). By 7.5
ka, closed forests developed in response to warmer temperatures. This was followed by a decrease in
summergreen taxa in the southern portion of the boreal forest as well as a decline in fir in the lichen
woodland and feathermoss forest toward the west (Fréchette et al., 2021; Richard et al., 2020). In the
lichen woodlands of the north, shrub birch and paper birch decreased after 6ka, although remaining high
in the southwest (Fréchette et al., 2018). Near treeline, spruce forests were more open between 7 and 4 ka,
with Alnus and shrub Betula more abundant (Fréchette et al., 2018; Gajewski, 2019). In ECAN, spruce
abundances reached a maximum between 4 and 2 ka (Fréchette et al., 2018), with the southern portion of

the forest tundra becoming lichen woodland at this time. After 2 ka, Picea abundances at northern sites
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456  declined and open lands increased in response to cooling, but the timing and rate of Picea losses varied

among sites and is governed in part by fire history (Gajewski et al., 2021; Gajewski, 2019).
458
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Figure 5: (a) Land cover difference maps for ETS, STS, and OVL for the eastern Canada (ECAN) case
study. (b) Holocene trends in the mean relative cover of the three land cover types (ETS, STS, OVL) and
the ATS sum for the uninterpolated REVEALS grid cell estimates across the ECAN region. (¢) Holocene
trends for the REVEALS abundance estimates for the six most commonly occurring taxa in the region.

For both panels, figure conventions follow Figure 4. For taxon-level maps, see Supp. Fig. 8.

3.3.3 Western Canada and Alaska (WCAN/AK)

In western Canada and Alaska (WCAN/AK), evergreen trees and shrubs rapidly expanded between 11
and 8 ka, while the coverage of summergreen trees and shrubs and open lands decreased (Fig. 6a, 6b,
Supp. Fig. S9). Most of Alaska was not glaciated during the Last Glacial Maximum; however, much of
western Canada, the Brooks Range in Alaska, and south-coastal Alaska were covered by ice (Dalton et
al., 2020). Evergreen tree species such as Picea glauca (white spruce) persisted in this region in local
microrefugia (Anderson et al., 2006), then expanded their ranges during end-Pleistocene warming and
deglaciation. Other evergreen taxa such as Pinus contorta expanded northward with deglaciation
(MacDonald and Cwynar, 1991). Trends in taxon abundances differ substantially between the western
and eastern subregions (Fig. 6¢, Supp. Fig. S10). In the eastern subregion, changes in taxon abundances
were muted, with a modest expansion in Picea and Tsuga between 11.5 and 7.5 ka, and a slow decline in
Betula between 10 and 6 ka. Tsuga (mostly Tsuga heterophylla; western hemlock) occurs primarily along
the coast, was abundant along the south coastal areas by 11 ka (Lacourse et al., 2012; Lacourse and
Adeleye, 2022), arrived by 9.5 ka into southeast Alaska (Hansen and Engstrom, 1996; George et al.,
2023), increased in abundance along the south-coastal areas by 8 ka, and then expanded during the mid-
to late Holocene into south-central Alaska (Anderson et al., 2017) and the inland mesic forests of British
Columbia (Rosenberg et al., 2003; Gavin et al., 2021). In the western part of this domain (mainly
Alaska), changes in summergreen hardwood (mostly shrub) taxa predominate, with a major expansion of
Alnus between 11.5 and 6.5 ka (Anderson and Brubaker, 1994; Cwynar and Spear, 1995), and a modest
expansion of Betula between 11.5 and 9 ka. These expansions were accompanied by declines in Poaceae
and Cyperaceae, with continued decline in Cyperaceae until 6 ka. Picea abundances steadily increased
until 4 ka. The net effect was a decline in open vegetation and expansion of evergreen and summergreen
trees and shrubs during the early to middle Holocene, with apparent region-wide stability after 4 ka

(Anderson et al., 2019).
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Figure 6: (a) Land cover difference maps for the western Canada / Alaska (WCAN/AK) case study
region. (b) Holocene trends in the mean relative cover of the three land cover types (ETS, STS, OVL) and
the ATS sum for the uninterpolated REVEALS grid cell estimates across the WCAN/AK region, with
grid cells averaged separately for eastern and western subregions (dividing line shown in (a) as vertical
dashed line). (c) Holocene trends for the REVEALS abundance estimates for the six most commonly
occurring taxa in the region, with grid cells averaged separately for eastern and western subregions. For

both panels, figure conventions follow Figure 4. For taxon-level maps, see Supp. Fig. 10.

3.3.4 Pacific Coast, Cascade, and Sierra Nevada Ranges (PCCS)

In contrast to the other regions, evergreen trees have dominated much of the land cover in the PCCS
region since 12 ka (Fig. 7a, 7b, Supp. Fig. S11). In the northern subregion (often referred to as the Pacific
Northwest), the proportions of cover types were fairly constant until 9 ka, after which summergreen and
open land declined until 6 ka (Fig 7a, 7b). However, taxon-level changes were very dynamic. From 11.7
to 10.5 ka, the REVEALS-estimated abundance of Pseudotsuga menziesii (Douglas-fir) more than
doubled, reflecting its arrival, expansion, and northward migration (Gugger and Sugita, 2010), and
replacing true firs (4bies) and Picea (Fig 7c, Supp. Fig. S12). In the coastal ranges, frequent forest fires

in the early Holocene contributed to a Pseudotsuga-Alnus rubra association in the mountains (Gavin et
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510 al, 2013; Long et al., 1998, 2007) and an oak savanna (not shown) that was common in the lowlands
(Walsh et al., 2008, 2010; Giuliano and Lacourse, 2023). Summergreen taxa (mostly Alnus rubra) and
512  open-land pollen indicators declined from 8 to 6 ka (Fig 7b), replaced by shade-tolerant Abies, Tsuga, and
Cupressaceae, which is mostly western redcedar in this region (Fig. 7b) (Lacourse, 2009; Gavin et al.,
514  2013; Worona and Whitlock, 1995). After 6 ka, the overall abundance of conifer taxa remained constant
(Fig 7a, 7b), although the proportion of hemlock and cedar increased steadily through the late Holocene
516  while Pseudotsuga declined, consistent with less fire and the persistence of old-growth forest (Whitlock,
1992; Lacourse and Adeleye, 2022), until the logging of the last century, which manifested as a decline in
518  conifer and increase in summergreen and open land in the coastal forests (Fig. 7a) (Davis, 1973; Whitlock
etal., 2018).
520 The most common taxon in these REVEALS reconstructions, 4bies, varied little over the last 9
ka, but this genus represents several shade-tolerant species (4. lasiocarpa [subalpine fir], 4. grandis
522  [grand fir], 4. amabilis [Pacific silver fir], A. procera [noble fir]) that collectively are common throughout
the region. As noted for the NEUS/SEC, the reconstructed values of Abies are likely too high, because
524  REVEALS estimate of fall speed is overestimated. Pinus also represents several species and was most
abundant in the dry eastern areas where it was consistently abundant during the Holocene (Minckley et
526  al., 2007). Pseudotsuga and Larix have indistinguishable pollen morphologies and are therefore grouped
in the reconstructions; however, Larix is limited to the eastern edge of this region.
528 The southern subregion (the Sierra Nevada, Klamath Mountains and California Coast ranges and
interior Great Basin) supported roughly equal amounts of conifer forest and open land that overall had
530  minor relative changes over the Holocene (Fig. 7a). Summergreen trees and shrubs have been infrequent
contributors to land cover in this subregion. At the taxon-level, 4bies is again the most common
532  component of reconstructed evergreen land cover across the region, although its abundance may be
overrepresented in this parameterization of REVEALS (Fig. 7b). Pinus and Quercus were most abundant
534  in the early Holocene, forming open forests and woodlands, especially in the Klamath Mountains and
Sierra Nevada (Anderson, 1996; Briles et al., 2008) fire-prone forests east of the Cascade Range (Walsh
536  etal. 2015);. Most of the eastern portion of this subregion is the Great Basin shrub steppe, where the few
pollen records that exist are from high-elevation sites and low-elevation wetlands that are sensitive to
538  fluctuating water tables, recorded as large fluctuations in Cyperaceae pollen. Increases in open-land cover
taxa (Cyperaceae, Poaceae, Asteraceae) between 10-7.5 ka and after 3 ka in this region may reflect either
540  local expansion of alpine meadows and wetlands or expansion of steppe more broadly (Mensing et al.,
2008; Brugger and Rhode, 2020; Minckley et al., 2007; Thompson, 1992). Note, however, that desert,
542  steppe, and other open-land arid ecosystems are likely to be underrepresented in these reconstructions,

due to a scarcity of dryland sites.
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546  Figure 7: (a) Land cover difference maps for the Pacific Coast, Cascade and Sierra Nevada (PCCS) case

study region. (b) Holocene trends in the mean relative cover of the three land cover types (ETS, STS,

548  OVL) and the ATS sum for the uninterpolated REVEALS grid cell estimates across the PCCS region,

with grid cells averaged separately for northern and southern subregions (dividing line shown in (a) as

550  vertical dashed line). (¢) Holocene trends for the REVEALS abundance estimates for the six most

commonly occurring taxa in the region, with grid cells averaged separately for northern and southern

552  subregions. For both panels, figure conventions follow Figure 4. For taxon-level maps, see Supp. Fig.

12.
554

4. Discussion

556 4.1 Drivers of Holocene land cover change in North America: scaling from taxon-level regional

dynamics to continental-scale trends
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558  These continental-scale Holocene changes in land cover (Figs. 2-3) are an emergent outcome of the
individualistic plant responses to deglaciation and multiple environmental changes, including seasonal

560  temperatures, effective moisture, atmospheric carbon dioxide, soil development, fire and other
disturbance regimes, and, at some locations during the late Holocene, human land use. As shown here

562  (Figs. 4-7), this interplay differed spatially across North America, often with opposing trends (e.g.
simultaneous increases in evergreen cover in some regions and decreases elsewhere) that partially offset

564  at the continental scale.

The first-order continental-scale drivers of Holocene land cover change in North America were

566  changing climates and the retreat and disappearance of the Laurentide Ice Sheet, particularly during the
early Holocene (11.7 to 7.5 ka) and lasting until 5.7 ka, with the disappearance of remnant ice in the

568  Labrador Dome in northern Quebec (Dalton et al., 2020). Deglaciation and an overall increase in land
availability explains why all land cover types show an increase in area-weighted cover during the early

570  Holocene, with evergreen taxa showing the greatest gain (Fig. 3). Continental temperatures also closely
tracked the decline in ice area (Marsicek et al., 2018), and vegetation responded to both factors.

572  Superimposed upon the early-Holocene increase in area-weighted cover for all PFTs are gains and losses
for each PFT at subregional scales (Figs. 4-7), which can be linked to climate-driven changes in plant

574  abundances at local to landscape scales that scaled upwards to continental-scale shifts in plant
distributions, with both within-range shifts in dominance and leading-edge and trailing-edge range

576  dynamics for individual plant taxa (Payette et al., 2022; Williams et al., 2004; George et al., 2023;
Dallmeyer et al., 2022; Anderson et al., 2017).

578 Leading-edge dynamics and range expansion of tree taxa appear to have been primarily
controlled by the increasing availability of deglaciated land area, end-Pleistocene warming, the declining

580 influence of ice sheet on regional climates and moisture availability (Alder and Hostetler, 2015; Bartlein
et al., 2014), and on-going expansion of plant taxa into areas of increased climate suitability (Payette et

582  al., 2022; Williams et al., 2004; George et al., 2023; Dallmeyer et al., 2022). Declining ice extent favored
moisture advection into eastern areas where most of the increase in summergreen tree taxa took place and

584  reduced it in midcontinental North America, where most of the open vegetation increase developed
(Shuman and Marsicek, 2016; Shuman et al., 2002; Liefert and Shuman, 2020). These changes in the

586  patterns of moisture availability simultaneously favored the large increase from 10 to 6 ka in
summergreen trees and shrubs in eastern North America south of the former Laurentide Ice Sheet and the

588 increase in open land in the mid-continent (Supplementary Fig. 2-3).

Declines in abundance and trailing-edge dynamics of tree taxa were likely governed by a
590 combination of declining climate suitability and, in some places, fire regimes, in which many local

populations failed to re-establish after one or more fire events. For example, in the high northern latitudes
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592  of Quebec and Labrador, the expansion of open lands over the last three thousand years can be attributed
first to declining summer insolation and temperatures, caused by precessional changes in the Earth’s orbit

594  (Payette, 2021), but at local to landscape and centennial scales, loss of forest cover was asynchronous and
caused by individual fire events (Payette et al., 2008; Gajewski et al., 2021). Similarly, in the southern

596  Great Lakes region and NEUS, the late-Pleistocene to early Holocene transition from conifer-dominated
forests and parklands to summergreen forests was driven by rising temperatures and changes in effective

598  moisture (Shuman et al., 2002; 2019), but accelerated locally by intensified fire regimes, with the timing
and rate of conversion varying among sites (Jensen et al., 2021; Clark et al., 1996). The expansion and

600  then retreat of the Great Plains prairies (Fig. 4) was driven by early Holocene aridification and middle- to
late-Holocene increases in moisture availability, while fire may have facilitated prairie expansion, but

602 delayed its retreat (Williams et al., 2009; Nelson et al., 2006; Umbanhower et al., 2006). Of course,
throughout North America, forests and fire dynamically co-existed and interacted during the Holocene

604  (Iglesias and Whitlock, 2020; Kelly et al., 2013), so whether fire causes transformative shifts in
ecosystem type depends on its synergistic interactions with directional changes in climate and other

606  factors (Napier and Chipman, 2021). Regardless of the role of fire or other disturbances, regional shifts in
temperature and moisture availability are usually the first-order predictors of Holocene changes in

608  vegetation composition (Dean et al., 1984; MacDonald, 1989; Calder and Shuman, 2017; Shuman et al.,
2004; Nelson et al., 2006).

610 The relative proportion of evergreen and summergreen cover types may have been affected by
changes in the length and intensity of the growing season during the Holocene, which is regulated by

612  precessional variations in insolation. In particular, the broad peak in summergreen tree cover between 8.5
and 3.5 ka (Fig. 3) is consistent with the hypothesis that summergreen tree and shrub abundances in North

614  America are partially regulated by summer insolation and temperatures (Delcourt and Delcourt, 1994,
Williams et al., 2001). Summer insolation reached higher peak intensity but has a shorter seasonal

616  duration in the early Holocene than during the late Holocene (Huybers, 2006; Jackson et al., 2009), which
may have favored plants with summer deciduous phenology that could more effectively exploit available

618  energy during a briefer but more intense growing season (Delcourt and Delcourt, 1994; Williams and
Jackson, 2007; Edwards et al., 2005). Indeed, pollen-reconstructed and CCSM3-simulated changes in

620  growing-degree days also peaked during the mid-Holocene when forest cover was greatest, and several
millennia after peak summer temperatures, likely because of differential responses of maximum summer

622  temperatures and total growing season warmth to orbital and other forcings (Marsicek et al., 2018). This
may in turn suggest a seasonal-scale feedback loop between summer insolation, deciduous phenology,

624  and total summer warmth (see Section 4.2).
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During the late Holocene, human land use in the Americas intensified, with increasing effects

626  upon land cover and understanding the interactions among past climate change, fire regime, and human
land use is a highly active area of research. Rates of vegetation change worldwide began to increase

628  between 4.6 and 2.9 ka (Mottl et al., 2021), consistent with growing intensification and extent of land use
(Stephens et al., 2019). The 7 to 10 ppm decrease in global CO- between 1570 and 1620 CE has been

630 attributed to the land abandonment and reforestation due to mass mortality of Indigenous populations in
the Americas, caused by the spread of multiple pathogens (Lewis and Maslin, 2015). The best evidence

632  for dense human populations and extensive land clearance in the Americas comes from Central and
tropical South America (Islebe et al., 1996; McMichael, 2020).

634 In North America, the effects of human land use prior to EuroAmerican settlement are detectable
at some sites, but are not easily detected at the regional to continental scales addressed here. In North

636  America, the distribution of radiocarbon dates from archaeological contexts suggest that population levels
remained relatively low and increasing slowly until ~7 ka, with further increases between 7 and 2 ka, and

638  then rapidly increased after 2 ka (Peros et al., 2010). Indigenous cultures in North America clearly
engaged in activities that, in some areas, modified the composition and structures of forested and

640  unforested landscapes for millennia (Ellis, 2021; Delcourt et al., 1986; Leopold and Boyd, 1999; Munoz
et al., 2014). In densely populated regions, such as lands of the Iroquois Confederacy, southern Ontario,

642 or the Cherokee Nation, Cahokia and the American Riverbottom, land use altered vegetation structure and
composition at local to landscape scales, through management of fire regimes (Roos et al., 2018;

644  Anderson and Carpenter, 1991), land clearance for agricultural crops (McAndrews and Turton, 2007), and
silviculture, e.g. favoring the spread of nut-bearing trees (Munoz et al., 2014; Black et al., 2006). In

646  western North America, the effects of anthropogenic activity on vegetation and fire is an active area of
research, with several paleoecological studies indicating changes consistent with human influences on

648  forest composition (Walsh et al., 2015; Knight et al., 2022; Lacourse et al., 2007). Because the scale of
human action was strongest at local to landscape scales and varied in intensity within and among regions,

650 its detection often requires highly-focused, local- to regional-scale studies (Oswald et al., 2020; Roos,
2020; Lacourse et al., 2007; Knight et al., 2022; Munoz and Gajewski, 2010). These studies clearly

652  indicate a high intersite variance in the level and detectability of human impact. At the continental scale,
Gajewski et al. (2019) did not find clear correlations between human population abundance and pollen

654 abundance, including taxa of economic use or disturbance taxa, and concluded impacts were at local to
regional scales. Thus, at the regional to continental scales considered here, it is an open question whether

656  the rich relationships and diverse activities engaged by communities within their homelands led to

detectable changes in land cover types. We expect that pollen-based land cover reconstructions will
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continue to contribute to interdisciplinary approaches to address anthropogenic fire and land cover change
during the Holocene (Snitker et al., 2022).

In contrast, after EuroAmerican arrival and expansion from 1492 onwards, North American
ecosystems were massively transformed (Stegner and Spanbauer, 2023) by multiple anthropogenic
processes. These include widespread forest conversion to agricultural and pastoral lands, intensive forest
harvesting, massive hydrological change through dam construction and wetland drainage, introduction of
exotic species and pests, and both greatly increased fire activity and fire suppression (Klein Goldewijk et

al., 2011; Foster and Aber, 2004).

4.2 Biophysical vegetation-atmosphere feedbacks to Holocene climates

4.1.1 Holocene vegetation-atmosphere feedbacks: prior work and need for data constraints

This paper and the other REVEALS-based reconstructions for the Northern Hemisphere (Githumbi et al.,
2022c¢; Li et al., 2020) are now laying the foundation for a next generation of Holocene vegetation-
atmosphere research with well-constrained land surface data. Many studies have explored the potential
impacts of vegetation-atmosphere feedbacks on Holocene climate dynamics at hemispheric to global
scales, but these studies have generally not employed well-constrained land cover reconstructions.
Treeline shifts have been recognized as an important regulator of Holocene vegetation-atmosphere
feedbacks in the high northern latitudes (TEMPO (Testing Earth System Models with Paleo-
Observations), 1996). Earth system model experiments with prescribed vegetation scenarios have shown
that, in the northern latitudes (45-90N), changes in forest cover are the largest contributor to changes in
net land surface radiation through snow masking and effects on surface albedo (Bathiany et al., 2010). In
mid-Holocene atmosphere-vegetation model simulations, strong snow masking resulted in warming three
times higher than those with weak snow masking (Otto et al., 2011). Additionally, empirical estimates of
surface-albedo feedbacks in high latitudes are stronger than predicted by climate models (Hogg, 2022).
More recent work has highlighted the importance of the type and density of forest cover in determining
the albedo feedback and magnitude of snow masking (Loranty et al., 2014; Alessandri et al., 2021).
Hence, because snow masking and surface albedo is an important regulator of surface-atmosphere
feedbacks in climate models, it is also an important source of uncertainty in Holocene climate
simulations, because of the limited availability of well-constrained reconstructions of past changes in
vegetation type, structure, and density. Vegetation structure and topographic complexity also jointly
govern surface roughness, which affects lower atmosphere temperature, humidity, wind speed, and soil
moisture (Bonan, 2015) and is the dominant land-cover influence on micrometeorological processes

(Chen and Dirmeyer, 2016). This new generation of LandCover6k vegetation reconstructions thus
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promise to sharpen our understanding of the role played by surface-atmosphere feedbacks in Holocene

climate dynamics, with first results from Europe already underway (Strandberg et al., 2022b).

4.1.2 Assessing recent modeling studies of the Holocene conundrum

The Holocene Conundrum has been a major focus of paleoclimatic research over the last decade
(Kaufman and Broadman, 2023; Liu et al., 2014), and recent research has invoked vegetation-atmosphere
feedbacks to resolve this conundrum (Thompson et al., 2022). The Holocene Conundrum involves a
discrepancy between proxy-based reconstructions of global temperature changes, mostly based on marine
records, which indicate a mid-Holocene maximum and mid- to late-Holocene cooling (Marcott et al.,
2013), while transient model simulations show small but steady warming throughout the Holocene (Liu et
al., 2014). Many explanations for this discrepancy have since been proposed (Kaufman and Broadman,
2023). Recent prescribed-vegetation experiments in climate models produce an early Holocene warming
to a Holocene Thermal Maximum, followed by cooling towards the pre-industrial Holocene (Thompson
et al., 2022), consistent with paleoclimatic proxies. Conversely, experiments that include drivers such as
dust, ice cover, orbital forcing, and greenhouse gasses without accounting for Northern Hemisphere
vegetation changes do not result in a mid-Holocene thermal maximum (Thompson et al., 2022).

Our reconstructions suggest, however, that for North America, the prescribed vegetation maps
used by Thompson et al (2022) overstate the magnitude of Holocene vegetation change. These
prescribed-vegetation experiments for 9 and 6 ka fully replace all Cs grasses with boreal forest for all
locations north of 50N (Thompson et al., 2022, Supp. Fig. 7B). This pattern is qualitatively consistent
with the early Holocene afforestation reported here (Fig. 2) but is inconsistent with the demonstrated
persistence of tundra throughout the early and middle Holocene, particularly in WCAN/AK (Figs. 2, 6)
and Canadian High Arctic (Fig. 2). Similarly, the prescribed full replacement of C3 grasslands with
temperate deciduous forest for the 9 and 6 ka experiments (Thompson et al., 2022, Supp. Fig. 7B) is
inconsistent with clear palynological evidence of the establishment of the Great Plain grassland by the
early Holocene and prairie expansion during the early to middle Holocene (Fig. 2, Supp. Fig. 1) (Williams
et al., 2009a). Hence, the Thompson et al (2022) simulations should be viewed as useful experiments that
show the potential sensitivity of Holocene climates to large vegetation changes, but these experiments

likely overestimate the contribution of vegetation feedbacks to resolving the Holocene Conundrum.

4.1.3 Understudied Holocene vegetation-atmosphere feedbacks in North America

Our reconstructions also highlight several major features of North American vegetation dynamics
that may have underappreciated effects on Holocene vegetation-atmosphere feedbacks and climate

dynamics at regional to continental scales. First, the mid-Holocene decline and recovery of Tsuga
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canadensis (eastern hemlock) in the northeastern United States is an example of how single-species

726  dynamics can drive fundamental changes in vegetational structure. Although the patterns and drivers of
the T. canadensis decline have been extensively studied (Oswald and Foster, 2012; Oswald et al., 2017,

728  Booth et al., 2012; Foster et al., 2006), the effects of the T. canadensis decline on Holocene climates are
unknown. As the dominant evergreen conifer of cool-temperate eastern North America, the decline of 7.

730  canadensis at ca. 5 ka is the primary driver of the loss of ETS between 6 and 4 ka, while the gradual
recovery of T. canadensis after 5 ka drives the corresponding increase of ETS (Fig. 4). This shift in

732  dominance between summergreen and evergreen trees and shrubs, in turn, regulates the overall albedo of
the land surface and particularly its seasonal range. During times of foliage, summergreen forests can

734  have more than twice the albedo of evergreen forests (Hollinger et al., 2010). Summergreen forests also
exhibit much greater seasonal variability in albedo, with maximum values in full foliage being 20-50%

736  larger than annual lows.

Second, the peak in summergreen tree cover between ca. 8.5 and 4.5 ka (Fig. 2) may indicate a

738  seasonal-scale positive feedback loop between summer insolation, summergreen phenology, and summer
temperatures. Studies have suggested that the late-Pleistocene to early-Holocene peak in summer

740  insolation favored summergreen phenology and carbon acquisition strategies over evergreen strategies
(Delcourt and Delcourt, 1994; Williams and Jackson, 2007). Studies from the Pacific Northwest and

742  Alaska also show a peak in A/nus and other summergreen tree and shrub taxa during the early Holocene
(Fig. 7¢), coincident with the summer insolation maximum and local maxima in temperature (Gavin et al.,

744 2013; Edwards et al., 2005; Whitlock, 1992). This climate-driven response, in turn, may have increased
the seasonal range of albedo and surface temperatures, thereby further favoring summergreen strategies.

746  This summergreen feedback might have also contributed to some summer cooling, due to the higher
summer albedo of summergreen trees (Hollinger et al., 2010). As an alternative hypothesis, Herzschuh,

748  (2020) suggested that the Eurasian distribution of evergreen spruce-dominated and deciduous larch-
dominated evergreen forests was due to historical contingencies and alternate stable states. Although

750  many studies have explored the effect of early to middle Holocene afforestation on vegetation feedbacks
in the northern latitudes (Brovkin et al., 2009; TEMPO (Testing Earth System Models with Paleo-

752 Observations), 1996), to our knowledge no paper has yet focused specifically on the seasonal feedback
effects associated with shifting proportions of summergreen and evergreen trees and shrubs.

754
4.3 Uncertainties and limitations in pollen-vegetation model reconstructions

756  Land cover reconstructions from pollen rely upon a variety of pollen-vegetation models (PVMs), some of
which have well-understood limitations and uncertainties, and some of which are newer and are still being

758  studied. The REVEALS PVM used here is has been widely adopted (e.g. Li et al., 2020; Githumbi et al.,
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2022c¢; Serge et al., 2023; Azuara et al., 2019; Hoevers et al., 2022) because it represents some of the
taxon-level processes governing pollen production, transport, and representation (Sugita, 2007a; Prentice,
1985). However, processes such as atmospheric transport are simplified (Jackson and Lyford, 1999a) and
key parameters such as pollen productivity estimates (PPEs) carry uncertainties (Wieczorek and
Herzschuh, 2020; Brostrom et al., 2008; Hayashi et al., 2022) that translate to uncertainties in fractional-
weighted land cover area. Most PPE estimates are generated from models fitted to spatial networks of
vegetation surveys and surface pollen samples, and these PPE estimates depend strongly on models of
pollen dispersal (Theuerkauf et al., 2012).

Such issues may explain some of the surprising aspects of the reconstructions presented here. For
example, reconstructed Acer cover in the NEUS/SEC (Fig. 4c) is high compared to settlement-era
estimates from witness trees and land surveys (Thompson et al., 2013; Paciorek et al., 2016). Similarly,
reconstructed cover of Abies in both the NEUS/SEC and PCCS is higher than expected (Figs. 4c, 7c).
Abies and Acer are notoriously underrepresented in fossil pollen assemblages (Bradshaw and Webb,
1985), relative to independent surveys of tree abundance in the surrounding ecosystems, due to the low
pollen productivity of maple trees relative to other taxa (Finkelstein et al., 2006; Liu et al., 2022) and high
fall speeds of Abies (Jackson and Lyford, 1999b). Hence, a key value of process-based PVMs, such as
REVEALS, is the ability to correct for these known biases. However, REVEALS estimates are sensitive
to parameter choices and it is possible that the estimates of 4bies and Acer are too high. There are few
estimates of Abies fall speeds compared to other taxa, and the fall speeds used here from Wieczorek and
Herzschuh (2020) are similar to the values for Larix that initial testing indicated led to Larix
overrepresentation.

REVEALS is not spatial or temporal in nature, so there is no representation of spatiotemporal
dependencies among site-level reconstructions. REVEALS estimates of uncertainty are based on the total
number of pollen grains counted in a sample and the error associated with the PPEs, but do not include
process uncertainty or uncertainty in other model inputs. The GMRF serves as a post-hoc interpolator to
generate spatio-temporally complete vegetation reconstructions, but this approach does not
mechanistically represent the underlying processes that link pollen to vegetation.

To address these limitations with the REVEALS workflow (spatio-temporal incompleteness,
input parameter uncertainty, and uncertainty quantification), other forms of PVMs have been developed.
ROPES uses pollen accumulation rates and REVEALS to estimate pollen productivity (Theuerkauf and
Couwenberg, 2018). However, the dependence of ROPES on pollen accumulation rates may limit its
widespread utility. At many sites, pollen accumulation rates have high uncertainties due to variations in
sedimentation rate, few radiometric dates and poor chronological controls, and spike counting

uncertainties (Perrotti et al., 2022). STEPPS is a Bayesian spatio-temporal PVM (Dawson et al., 2016,
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2019b). While theoretically sound, STEPPS is computationally intensive and its estimates are dependent
794  upon the density and quality of spatial forest compositional calibration datasets, limiting its applicability
to regional-scale domains. Other spatial Bayesian models developed for high-resolution networks of
796  pollen and vegetation data suggest that if the spatial site density is too low, STEPPS and similarly
structured PVMs can over-estimate pollen dispersal distance (Liu et al., 2022).
798
4.4 Future work
800  With North American REVEALS-based reconstructions now in place, all middle- and high-latitudes in
the Northern Hemisphere have quantitative reconstructions of Holocene land cover that are well
802  constrained by dense networks of fossil pollen records (Githumbi et al., 2022a; Li et al., 2020). The
reconstructions for North America and Europe also have estimates of uncertainty from the spatiotemporal
804  GMRF model (Pirzamanbein et al., 2018a). This hemispheric coverage now enables the creation of a
next generation of modeling scenarios, well-constrained by data, to explore land cover feedbacks in the
806  Holocene climate system (Harrison et al., 2020). These land cover reconstructions also help identify
places where new local-scale, site-based research are needed to better understand human impacts, better
808  constrain land cover changes in areas of sparse data and high uncertainty, and better understand how local
and taxon-level dynamics scale up to affect regional- to continental-scale vegetation and climate
810  dynamics.
This work also underscores the critical need for more work to better constrain PPEs and fall
812  speeds, particularly for North American plant taxa. The REVEALS estimates in this analysis appear to be
particularly sensitive to the parameterizations for underrepresented taxa such as Abies and Acer.
814 Lastly, given the maturation of pollen-vegetation modeling as a field of study and the emergence
of multiple PVMs, there is now the opportunity for intercomparison studies among PVMs and, perhaps,
816  the development of ensemble-based inferences of past vegetation cover. There is a long history of
methodological comparisons in pollen-based paleoclimatic inferences and paleoclimatology more broadly
818  (Chevalier et al., 2020). Few systematic intercomparisons of PVMs yet exist (Roberts et al., 2018),
although individual papers have discussed strengths and weaknesses of different modeling approaches
820 (Liuetal., 2022; Theuerkauf et al., 2012). Initial efforts are underway to compare land cover
reconstructions from REVEALS-GMREF to those from the Bayesian spatio-temporal model STEPPS.
822  Moreover, given that ensemble-based approaches have been shown to have higher predictive ability in
fields such as climate modeling and species distribution modeling (Deser et al., 2020; Bothe et al., 2013;
824  Rangel et al., 2009; Thuiller et al., 2009), there is value in developing approaches for ensemble-based

PVMs for past land cover inference.
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5. Conclusions

Continental-scale changes in land cover in North America during the Holocene are the outcome of
multiple interacting drivers operating over a range of temporal and spatial scales. For much of the
Holocene (ca. 8 to 1.5 ka), the spatial configurations of continental-scale fractional forest cover were
broadly stable. Major continental-scale trends included early Holocene afforestation, a middle-Holocene
peak in the areal proportion of summergreen trees and shrubs, and a last-millennium increase in open
land. These trends were powered by taxon-level dynamics that varied within and among regions. The
regional dynamics can be attributed to individualistic postglacial shifts in the range and abundance of
plant taxa driven by changing climates and increased land area after deglaciation; abrupt and large
species-level events, such as the mid-Holocene collapse of eastern hemlock; and a shift from localized
land use during the late Holocene to massive ecosystem transformation following EuroAmerican
settlement. This work rejects the ideas of both pre-industrial forest stability and widespread major
conversions in land cover type.

This work contributes to the LandCover6k initiative to produce continental- to global-scale
reconstructions of Holocene land cover dynamics that are well-constrained by proxy data and are
quantified using consistent methods. These REVEALS-GMREF reconstructions can help refine Holocene
models of land use and land cover change, provide a foundation for comparisons among PVMs, indicate
priority areas for future new site-level research, and establish realistic benchmark scenarios constraining
and assimilating with Earth system model simulations of the interactions among Holocene climate, land
cover, and anthropogenic change. Scaling up from these continental to hemispheric and global products
will enable further testing of hypotheses about the drivers and feedbacks of Holocene land cover change.
These reconstructions also highlight several potentially important but unstudied vegetation-atmosphere
feedbacks, including the collapse of eastern hemlock at ca. 5 ka and a positive feedback loop between
mid-Holocene peaks in seasonality of insolation, temperature, and vegetation phenology.

Comparison of the REVEALS-GMRF land cover reconstructions with those inferred from
alternate PVMs is a research priority. REVEALS-GMREF depends on a suite of input variables that are
both uncertain and exhibit spatial and temporal variation not accounted for in the model. Also, the use of
a post-hoc Bayesian GMRF interpolation step means that uncertainty of reconstructions associated with
these assumptions is not fully characterized.

Finally, this work emphasizes the importance of quantifying ecosystem processes and feedbacks
between the land surface and climate system. Holocene land cover changes in North America are non-
negligible and there is a pressing need to refine ecosystem models, in particular when those models are

coupled within an Earth System model. The availability of well-constrained data products has been a
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major barrier to this effort. Paleoecology and palynology are reaching a new level of maturity with
respect to advances in data discovery and accessibility, as well as development of consistent analytical
methods that permit interpretability of large-scale spatio-temporal change. Data assimilation experiments
that integrate these reconstructions into Earth System models have the potential to resolve major
questions in the field, such as the Holocene Conundrum and disentangling the effects of climate-

vegetation-human interactions upon Holocene vegetation and climate dynamics.

6. Code and data availability

Code and data used in this workflow are publicly available at https://github.com/andydawson/reveals-na.

The REVEALS-GMREF reconstructions are available at

https://github.com/BehnazP/SpatioCompo_entireHolocene_NA. The description and implementation of the

digitization of lake area is available at https://github.com/NeotomaDB/neotoma_lakes.
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