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Abstract

It has been almost a century since biologically active gibberellin (GA) was isolated. Here, we give a historical overview of the
early efforts in establishing the GA biosynthesis and catabolism pathway, characterizing the enzymes for GA metabolism, and
elucidating their corresponding genes. We then highlight more recent studies that have identified the GA receptors and early
GA signaling components (DELLA repressors and F-box activators), determined the molecular mechanism of DELLA-mediated
transcription reprograming, and revealed how DELLAs integrate multiple signaling pathways to regulate plant vegetative and
reproductive development in response to internal and external cues. Finally, we discuss the GA transporters and their roles in

GA-mediated plant development.

Introduction

The gibberellins (GAs) were named for the phytopatho-
genic fungus Gibberella fujikuroi, whose secretions caused
abnormal growth and sterility in infected rice (Oryza sativa)
plants (Kurosawa 1926). The biologically active factor was
isolated in impure form from fungal cultures in the 1930s
in Japan and named gibberellin A (Yabuta and Sumiki
1938), but this research was not widely known outside of
Japan until the late 1940s. The main active component
was identified in the 1950s in the UK, USA, and Japan, where
it was named gibberellic acid, gibberellin-X, and gibberellin
A; (GA3), respectively (Curtis and Cross 1954; Stodola et al.
1955; Takahashi et al. 1955). The structure of gibberellic
acid, the name agreed upon by the UK and US groups, or
GA;, was proposed in the late 1950s by chemists working
at the ICl Ackers Laboratory, Welwyn, UK (reviewed by
Grove 1961). The remarkable effect of this substance on
plants stimulated interest in fungal gibberellins (GAs).
GAs promote plant growth, particularly to rescue the

growth of dwarf mutants of pea (Pisum sativum) and maize
(Zea mays) (Brian et al. 1954; Phinney 1956) and to induce
bolting in long-day (LD) rosette species (Lang 1956; Wittwer
et al. 1957), prompting the suggestion that they may be en-
dogenous plant hormones (Stowe and Yamaki 1957). Plant
extracts promoted the growth of mutants in a similar man-
ner to GA; reinforcing this hypothesis, which was con-
firmed by the isolation of 2 mg of GA; from 87.3 kg of
immature seeds of runner bean (Phaseolus coccineus)
(Macmillan and Suter 1958). The identity of the isolated
bioactive compound was determined by comparing its
infra-red spectrum with that of authentic GA; from G. fuji-
kuroi. Thus, GA was established as the second endogenous
growth regulator (plant hormone) after auxin. The role of
GA in plant growth regulation is illustrated in Fig. 1, which
compares wild-type and mutant wheat (Triticum aestivum)
plants with compromised GA-biosynthesis (GA-responsive)
or signaling (GA-unresponsive) without or with treatment
with GA;. While GA; was the first GA to be discovered, it
is a minor form in plants, whereas the major bioactive forms
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ADVANCES

® The use of biosensors, gene reporters, single-cell
RNA-sequencing, and tissue-specific manipula-
tion of GA metabolism is revealing the cellular
distribution of GA biosynthesis and accumula-
tion, and its relevance in plant development.

® The GA signaling repressors DELLAs function as
master growth regulators by interacting with
regulators in many cellular pathways in response
to internal and external cues.

® Besides GA-GID1-induced degradation, DELLA
activity is regulated by interacting transcription
factors, GA-GID1-independent polyubiquitina-
tion and degradation, and other PTMs (glycosy-
lation, SUMOQylation, and phosphorylation).

® The movement of GA precursors provides an
additional layer of regulation for bioactive GA
contents at responding tissues, which is particu-
larly crucial for long-distance communication in
coordinating plant growth and development.

are GA; or GA, (see Fig. 2). GA; differs from GA; by the
presence of a double bond that prevents inactivation by
2B-hydroxylation.

The identification of GA; and other GAs in bean seeds was
followed by the isolation of other GAs from many plant
species. Their structures were determined by conversion to
compounds of known structure and/or nuclear magnetic
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resonance spectroscopy profiles. Later, the development of
combined gas chromatography-mass spectrometry for GA
analysis allowed them to be identified in plant tissues with-
out the need to obtain pure compounds (Binks et al.
1969). This technique, and later liquid chromatography-
mass spectrometry (LC—MS), has enabled GA identification
and quantitation to become routine and not just the purview
of chemists. The high sensitivity and resolution of ultra high
performance LC-MS-MS now allow GAs to be measured in
low (mg) amounts of plant tissues.

Following their discovery, there was initially steady but
slow progress in elucidating the biosynthetic pathways for
GA:s in G. fujikuroi (the rice pathogen is now reclassified as
Fusarium fujikuroi) and in plants. In addition, although there
was considerable information on the physiological action of
GAs on plants, advances in understanding their molecular
modes of action were sluggish. By contrast, the application
of GAs in agriculture and horticulture developed rapidly
with their availability from fungal cultures, with major uses
in the production of seedless grapes, to improve skin finish
in apples, and many other applications (Rademacher 2015).
Furthermore, inhibitors of GA biosynthesis found important
applications as plant growth retardants (Rademacher 2000),
while semidwarf varieties of major crop species that were key
contributors to the Green Revolution were later shown to
be defective in GA biosynthesis or action (Phillips 2016).
In the last 30 years, with the use of mutants and develop-
ments in molecular genetics and genomics, progress in
our understanding of both GA metabolism and signaling
has accelerated, with details emerging on the biosynthetic
reactions, enzymes, genes, and their regulation as well as
GA perception and signal transduction. The movement of
GAs between cells or over longer distances between organs

Figure 1. GA regulates plant growth and development. Shown are 12-wk-old GA-unresponsive vs -responsive mutants in wheat. All the mutant lines
are in cv. Cadenza background. The gain-of-function Rht-D1b and Rht-B1c (DELLA) alleles were introduced into Cadenza from cvs Avalon and
Merecia, respectively (Van De Velde et al. 2021). The hypomorphic gid1 and loss-of-function ga3ox2 and rht-1 plants were produced by TILLING after
EMS-induced mutagenesis (A.L. Phillips and S.G. Thomas, unpublished data). All plants were untreated (-) or treated (+) twice-weekly with 10 yM
GAs. Rht and gid1 mutants are unresponsive to GA treatment, whereas GA completely rescued the GA-biosynthesis mutant ga3ox2. Scale

bar = 40 cm.
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Figure 2. GA metabolism, transport, perception, and signaling in plant cells. GA biosynthesis takes place in three cellular compartments:
ent-Kaurene is synthesized from GGPP by CPS and KS in the plastid; ent-Kaurene is converted to ent-kaurenoic acid by KO on the outer plastid
membrane, which is connected to the ER; ent-Kaurenoic acid is converted to GA;, by KAO and GA;, to GAs; by GA130x in the ER; GA;, and
GAGs; are converted to bioactive GA, and GA,, respectively, by GA20ox and GA3ox in the cytoplasm. GA, and GA, as well as their immediate pre-
cursors GAg and GA,, respectively, are oxidized on C-2 by C;o-GA20x, resulting in inactivation, while C,,-GA2ox acts on earlier C,o-GA precursors.
In addition to de novo biosynthesis, GA can be imported into the cell by GA transporters nitrate and peptide transporter families (NPFs) and
SWEETSs or transported into the vacuole as labeled. GA perception and signaling occur in the nucleus where GA binding to its receptor GID1
(+GA) promotes DELLA degradation via Skp, Cullin, F-box (SCF)*"Y"/“'"2mediated polyubiquitination and subsequent proteolysis by the 265 pro-
teasome. When GA levels are low (— GA), DELLAs accumulate to high levels. Three distinct modes of DELLA action are shown: (i) DELLA represses
transcription by blocking DNA binding and sequestering transcription factors (TF in blue) from target promoters; (ii) DELLA induces transcription
by recruiting TFs (in pink); and (iii) DELLA induces transcription by sequestering transcription repressors (TR in green) from target promoters. GGPP,
trans-geranylgeranyl diphosphate; CPP, ent-copalyl diphosphate; CPS, ent-copalyl diphosphate synthase; KS, ent-kaurene synthase; KO, ent-kaurene
oxidase; KAO, ent-kaurenoic acid oxidase; GA130x, GA 13-oxidase; GA200x, GA 20-oxidase; GA30x, GA 3-oxidase; GA20x, GA 2-oxidase. GA bio-
synthesis enzymes are labeled in blue, and the deactivation enzymes are labeled in red. GA, gibberellin; TF, transcription factor; TR, transcription
repressors; ER, endoplasmic reticulum.

is an important factor in their function, and recent progress
in understanding their transport and transporters is a major
development. This review highlights the advances that have
contributed to our current understanding of GA metabol-
ism, signaling, and transport and their role in plant
development.

GA metabolism

Establishing the GA-biosynthetic pathways

The diterpenoid nature of GAs was demonstrated in the fun-
gus F. fujikuroi by the incorporation of '“C-labeled mevalonic
acid (MVA) into GA; (Birch et al. 1958). Subsequently, the
GA-biosynthetic and catabolic pathways were established in
plants, primarily using cell-free systems from developing seeds
(Graebe et al. 1965; Dennis and West 1967; Graebe et al. 1972,

1974a, b; Kamiya and Graebe 1983) and in the fungus using li-
quid cultures (Cross et al. 1964; Bearder et al. 1975; Evans and
Hanson 1975). The GA metabolism pathway in plants is sum-
marized in Fig. 2, and details can be found in a recent review
(Hedden 2020). The diterpene precursor trans-geranylgeranyl
diphosphate (GGPP), which is formed from MVA in the fun-
gus and mainly via the methylerythritol phosphate (MEP)
pathway in plants, is converted in two steps to the tetracyclic
diterpene ent-kaurene via ent-copalyl diphosphate (CPP).
ent-Kaurene is oxidized to ent-kaurenoic acid and then to
GA; via several intermediates by two multifunctional cyto-
chrome P450 (CYP450) monooxygenases, ent-kaurene oxidase
(KO) and ent-kaurenoic acid oxidase (KAO), respectively. A
third CYP450 converts GA;, to GAs3 by hydroxylation on
C-13. These C,, intermediates are converted in parallel path-
ways by soluble dioxygenases to the C;9-GAs GAg and GA,,
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respectively, and then to the bioactive phytohormones GA,
and GA,. The loss of a C atom (C-20) in the formation of
C,9-GAs occurs from an aldehyde intermediate (Kamiya and
Graebe 1983). In contrast to plants, in which 13-hydroxylation
(in GAs; formation) occurs early in the pathway and
3B-hydroxylation is the final step, in F fujikuroi,
3[B-hydroxylation occurs earlier, while 13-hydroxylation is the
last step in the formation of GA; (Bearder et al. 1975; Evans
and Hanson 1975).

Further metabolism of inactive products is critical to the
regulation of GA concentration. The most important inacti-
vation process is 2-oxidation, which can occur on the bio-
active GAs and their immediate C;o precursors, as well as
on earlier C,, intermediates. Oxidation of C;o-GAs to
2B-hydroxy products is especially strong in late-developing
legume seeds, including pea seeds, in which further oxidation
on C-2 to GA-catabolites was noted (Sponsel 1983).

GA-biosynthesis mutants

GA-responsive dwarf mutants with lesions in the GA-
biosynthetic pathway (Fig. 1) proved extremely useful in
understanding GA physiology, identifying the underlying en-
zymes, and isolating the corresponding genes. Collections of
single gene mutants of maize and peas were assembled by
Phinney at University of California, Los Angeles (UCLA)
and Murfet at Hobart, Tasmania, respectively, and the appli-
cation of precursors revealed the positions of the lesions in
the pathway. Such experiments established that GA,, but
not its biosynthetic precursors, had biological activity in
maize (Phinney and Spray 1982) and that DWARF-1 in maize
and LE in pea encode 3B-hydroxylases that convert GA,, to
GA; (Ingram et al. 1984; Spray et al. 1984). The le mutation
corresponded to one of the traits, the difference in stem
length, used in Mendel's classical experiments. Once the
gene was identified, the mutation was shown to cause an
amino acid substitution close to the Fe binding site that re-
duced enzyme activity (Lester et al. 1997; Martin et al. 1997).
The dwarf-5 mutation alters the activity of ent-kaurene syn-
thase (KS) to produce mainly ent-isokaurene, as shown in a
cell-free system from maize seedlings (Hedden and Phinney
1979). The slender (sIn) pea mutant illustrates the import-
ance of GA inactivation in regulating GA concentration.
The mutation is associated with excessive seedling growth,
which decreases later in development (Reid et al. 1992;
Ross et al. 1995). The gene, which encodes a GA 2-oxidase,
is highly expressed in developing seeds, particularly in the tes-
tae (Lester et al. 1999; Martin et al. 1999). Mature pea seeds
contain high levels of inactivation products oxidized on C-2
(Sponsel 1983), but sin seeds accumulate the precursor GA,,,
which upon germination is converted to GA;, causing the
overgrowth symptoms (Reid et al. 1992).

In addition, Koornneef and van der Veen (1980) produced
56 independent GA-sensitive Arabidopsis (Arabidopsis thali-
ana) mutants, representing 5 loci, through irradiation- or
EMS-induced mutagenesis. Mutations at three loci, named
gal, ga2, and ga3, prevented germination and caused severe
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dwarfism. By contrast, the other 2 mutations, ga4 and gas5, al-
lowed germination without GA treatment and produced
only mild dwarfism. It was later shown that GA1, GA2, and
GA3, which encode CPP synthase (CPS), KS, and KO, respect-
ively, are single-copy genes, while the mild phenotypes of ga4
and ga5, with impaired GA 3-oxidation and GA 20-oxidation,
respectively, are due to gene redundancy (see below).

Characterizing the enzymes of GA metabolism

Work in Charles West's laboratory at UCLA with cell-free pre-
parations from Marah macrocarpus endosperm and F. fuji-
kuroi mycelia led to the characterization of the enzymes
involved in the conversion of GGPP to ent-kaurene. Using
the F. fujikuroi system, Shechter and West (1969) showed
that the conversion occurred in two steps, with CPP as an
intermediate. The 2 activities, named activity A for conver-
sion of GGPP to CPP and activity B for conversion of CPP
to ent-kaurene, were found (after purification) to be present
in a single polypeptide (Fall and West 1971). However, they
are separate enzymes in M. macrocarpus but probably func-
tion in association (Duncan and West 1981). Activity A was
renamed as the type |l terpene cyclase CPS, while activity B,
a type | cyclase, was renamed KS (MacMillan 1997). Early in-
dications that these activities were present in plastids
(Simcox et al. 1975) were later confirmed (Aach et al.
1995) and further substantiated by the presence of plastid-
targeting leader sequences in CPS and KS (Sun and Kamiya
1994; Yamaguchi et al. 1996) and by the plastid localization
of enzyme fusions with green fluorescent protein (GFP)
(Helliwell et al. 2001b).

The enzyme activities responsible for the middle section of
GA biosynthesis, from ent-kaurene to GA;, and GAs; in plants
and to GA;, (3p-hydroxy GA;,) in F. fujikuroi, were present in
microsomes from cell-free systems from M. macrocarpus,
pumpkin (Cucurbita maxima) endosperm, developing pea co-
tyledons, and the fungal mycelia and required NADPH (West
1973; Hasson and West 1976; Ropers et al. 1978; Graebe et al.
1980). These enzymes have the properties of CYP450s, which
was confirmed when cDNAs encoding the enzymes were iso-
lated (see below). By contrast, the final reactions in the path-
way are catalyzed by soluble oxidases requiring Fe** and are
therefore different from the monooxygenases responsible for
earlier steps. The pumpkin enzymes were shown to require a
small molecule whose identification as 2-oxoglutarate estab-
lished the enzymes catalyzing GA;,-aldehyde 7-oxidation,
GA 20-oxidation, 3fB-hydroxylation, and 23-hydroxylation as
2-oxoglutarate-dependent dioxygenases (2-ODDs) (Hedden
and Graebe 1982). The soluble 7-oxidase has restricted distri-
bution between plant families, with most plants employing
only a monooxygenase for this reaction, while in pumpkin
endosperm, this reaction is catalyzed by both monooxygenase
and dioxygenase enzymes.

Although work with cell-free homogenates demonstrated
the efficient conversion of MVA into GAs, the application of
3C-labeled substrates to Arabidopsis seedlings indicated
that ent-kaurene and GA;, were synthesized mainly from
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the MEP pathway with a small contribution from the MVA
pathway (Kasahara et al. 2002). The extent of cross-over
between these pathways, which is dependent on the move-
ment of isoprenoid intermediates into and out of the plastid,
may vary among tissues and developmental stages.

Identification of genes encoding GA-metabolic
enzymes

The isolation of transcripts and genes encoding the
GA-biosynthetic enzymes were major developments that ad-
vanced our understanding of the regulation of GA metabol-
ism. Sun et al. (1992) took advantage of the large deletion in
the ga1-3 Arabidopsis mutant to isolate the GA1 gene by gen-
omic subtraction. Expression of its cDNA in Escherichia coli
demonstrated that it encodes CPS (Sun and Kamiya 1994).
The maize gene ANTHER EAR1T (ANT1), which also encodes
CPS, was isolated by tagging with the Mutator transposon
shortly thereafter (Bensen et al. 1995). After purifying a GA
20-oxidase from pumpkin endosperm and partial amino
acid sequencing (Lange 1994), the use of antibodies raised
against synthetic peptides led to the isolation of its cDNA
from an expression library (Lange et al. 1994). Expression in
E. coli confirmed its enzymatic activity as oxidizing C-20
mainly to the carboxylic acid. Based on the nucleotide se-
quence of the pumpkin transcript, three GA20ox cDNAs
were isolated from Arabidopsis and shown (by expression
in E. coli) to encode enzymes that convert GA;, to the
Ci9-GA, GAy (Phillips et al. 1995). The tissue-specific expres-
sion patterns of the genes differed, but these genes showed
partial redundancy, explaining the mild phenotype of the
ga5 mutant (Rieu et al. 2008b). Their expression was down-
regulated by GA, confirming feedback regulation, which
had been proposed earlier (Hedden and Croker 1992). A simi-
lar approach was used to clone one of these genes,
AtGA200x1, which corresponds to GA5 (Xu et al. 1995).
Arabidopsis contains five GA20ox genes, but only three of
these, AtGA200x1,2, and 3, play major roles in plant develop-
ment (Plackett et al. 2012).

The cloning of other GA-biosynthetic genes quickly fol-
lowed. The Arabidopsis GA4 gene was cloned by T-DNA tag-
ging (Chiang et al. 1995) and confirmed (by heterologous
expression) to encode a GA3ox (Williams et al. 1998). Of
the four Arabidopsis GA3ox genes, two genes, AtGA3ox1
and AtGA3ox2, regulate vegetative growth (Mitchum et al.
2006). Like AtGA200x1,2, and 3, AtGA3ox1 is down-regulated
by GA signaling as part of GA homeostasis (Cowling et al.
1998). KS was cloned from pumpkin following the purifica-
tion of KS protein from cotyledons (Yamaguchi et al.
1996). This led to the isolation of KS cDNA from
Arabidopsis and the finding (by mutant complementation)
that it corresponded to GA2 (Yamaguchi et al. 1998).
Helliwell et al. (1998) demonstrated that GA3 encodes KO
based on the accumulation of ent-kaurene in the ga3-1 mu-
tant and its inability to respond to ent-kaurene application.
The authors used map-based cloning and random sequen-
cing to isolate GA3, which encodes a CYP450, and confirmed
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its identity by mutant complementation and by demonstrat-
ing KO activity after expression in yeast. KAO was cloned
from barley (Hordeum vulgare) in which it corresponds to
GA-RESPONSIVE DWARF5 (GRD5), whose mutants accumu-
late ent-kaurenoic acid (Helliwell et al. 2001a). GRD5 and 2
Arabidopsis homologs encode CYP88A family members,
which, after expression in yeast, were shown to catalyze the
3-step conversion of ent-kaurenoic acid to GA;, via
ent-70-hydroxykaurenoic acid and GA,-aldehyde (Helliwell
et al. 2001a). The equivalent enzyme in F. fujikuroi
(CYP68A) also has 3B-hydroxylase activity and produces
GA;; (Rojas et al. 2001). The two AtKAO genes share fully re-
dundant functions, with the double mutant being severely
dwarfed (Regnault et al. 2014). Thus, two enzymes, KO and
KAO, are required to convert ent-kaurene to GA; in plants,
with a third CYP enzyme catalyzes the 13-hydroxylation of
GA,, to GAs; (see below). Fusions of AtKO and AtKAO
with GFP localized to the outer chloroplast envelope and
endoplasmic reticulum (ER), respectively, provide a mechan-
ism for the transit of ent-kaurene from plastids to the ER
(Helliwell et al. 2001b).

The first cloning of a GA20x cDNA took advantage of the
very high GA2ox activity in late-developing P. coccineus seeds
by functional screening of a cDNA expression library for re-
lease of *H from [2B, 3B->°H,]GA, (Thomas et al. 1999). The
functions of the P. coccineus cDNA and three homologous
Arabidopsis cDNAs identified in genomic databases were de-
termined by expression in E. coli. The enzymes converted
C19-GAs to their 2B-hydroxy analogs and, depending on
the substrate and paralog, catalyzed further oxidation to
GA-catabolites. GA promoted the expression of two of the
Arabidopsis GA2ox genes, whereas it had the opposite effect
on GA20ox and GA3ox gene expression. Like GA20ox and
GA3ox, the C;9-GA20xs form a gene family with five function-
al members in Arabidopsis (Rieu et al. 2008a). Soon after,
similar approaches were used to clone GA2ox cDNAs from
developing pea seeds, one of which, PsGA20x1, corresponds
to SLN (Lester et al. 1999; Martin et al. 1999). A second clade
of GA2ox genes with 2 members was identified from
Arabidopsis by activation tagging, encoding enzymes that
act on Cy;-GAs (Schomburg et al. 2003). Two additional
members of this clade were identified in Arabidopsis recently
(Lange et al. 2020). Apart from the GA7ox genes with re-
stricted distribution, angiosperms contain four families of
2-ODDs, GA200x, GA30x, C;5-GA20x, and C,,-GA20x, while
this last clade is absent from gymnosperms (Yoshida et al.
2020). The C;9-GA20x gene family is the largest in most spe-
cies, with some tissue-specific expression but considerable
redundancy.

GA 13-hydroxylase genes were first identified in rice. The
encoded monooxygenases CYP714B1 and CYP714B2 con-
verted GA;, to GAs; following expression in yeast
(Magome et al. 2013). Overexpression of these genes in
Arabidopsis caused a slight reduction in height, suggesting
that 13-hydroxylation is a mild inactivation reaction. Other
members of the CYP714 family oxidize 13-deoxy GAs and/or
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ent-kaurenoic acid on C-13 or adjacent C atoms and are also
inactivating. Mutation of the rice enzyme CYP714D1, known
as ELONGATED UPPERMOST INTERNODE (EUI), which oxi-
dizes the 16,17-double bond to the epoxide, is utilized in hy-
brid rice production to promote panicle emergence in
male-sterile cultivars (Zhu et al. 2006). Arabidopsis, which pro-
duces low amounts of 13-hydroxy GAs, except in the seed,
contains two CYP714 genes, CYP714A1 and CYP714A2.
Overexpression of CYP714A1, which converts GA;, to
16a-carboxy-17-norGA,,, causes extreme dwarfism, while
CYP714A2 functions mainly as a 12a-hydroxylase, with only
low 13-hydroxylase activity, and causes mild dwarfism when
overexpressed (Nomura et al. 2013). Notably, AtCYP72A9
was found to 13-hydroxylate GA;,, GAy, and GA, (following
expression in yeast) and may be the main source of 13-hydroxy
GAs in Arabidopsis seeds (He et al. 2019). Its overexpression
resulted in dwarfism.

Regulation of GA metabolism

GA biosynthesis and inactivation are tightly regulated by devel-
opmental and environmental cues (Yamaguchi and Kamiya
2000; Sun 2008; Yamaguchi 2008; Hedden and Thomas 2012;
Hedden 2020; Bouré and Arnaud 2023). Following the identifi-
cation of genes encoding the metabolic enzymes, there have
been numerous reports of their transcriptional regulation, par-
ticularly for the 2-ODDs, which limit the production of bioactive
GA:s. As discussed under GA perception and signaling, their ex-
pression is modified by other hormones as well as by numerous
environmental factors, including stress (Fig. 3). While there is
some evidence for post-transcriptional regulation (Lee and
Zeevaart 2007), this process has been little studied for practical
reasons. Reports of altered GA levels in GA-response mutants
were early indications that GA-metabolism was regulated via
GA signaling (reviewed in Hedden and Sponsel 2015). These ob-
servations highlighted 20-oxidation as a potential site of regula-
tion by GA action, which was confirmed by experiment
(Hedden and Croker 1992). Subsequently, as noted above, ex-
pression of some GA200x and GA3ox genes was found to be re-
pressed by GA, while GA2ox expression was upregulated
(Thomas et al. 1999). Furthermore, down-regulation of GA
INSENSITIVE DWARF1 (GID1) receptor genes by GA extended
homeostasis to GA signaling (Griffiths et al. 2006). The involve-
ment of the DELLA GA-signaling component in this process is
discussed below. A nontranscriptional homeostatic mechanism
was revealed from the X-ray crystal structure of OsGA20x3
(Takehara et al. 2020). In the presence of its substrate GA,,
the enzyme forms a tetramer, thereby increasing its catalytic
efficiency.

GA biosynthesis in nonseed plants, fungi, and bacteria
In the evolution of land plants, DELLA-mediated signaling
predates its regulation by GA-GID1 (Hernandez-Garcia
et al. 2021). The evolution of GA biosynthesis was discussed
in detail recently (Yoshida et al. 2020). The bryophyte
Physcomitrium patens produces ent-kaurenoic acid deriva-
tives but not GAs (Miyazaki et al. 2018), whereas the
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lycophyte Selaginella moellendorffii and the fern Lycodium ja-
ponicum produce GA, using 2-ODDs for 200x and 30x activ-
ities and possess the GA-GID1-DELLA signaling system
(Hernandez-Garcia et al. 2019; Yoshida et al. 2020).
Notably, while P. patens and L. japonicum have bifunctional
CPS/KS enzymes, S. moellendorffi has separate CPS and KS en-
zymes for ent-kaurene synthesis, as in seed plants.
GA-inactivation by 2-oxidation is not present in nonseed
plants and was acquired just before the establishment of
gymnosperms (Yoshida et al. 2020). GA 2B-hydroxylation is
also absent from GA-producing fungi and bacteria, whose
genes for GA-biosynthesis are clustered in operons and
were acquired independently of plants and each other
(Hedden et al. 2001; Nett et al. 2017b). The members of
both kingdoms employ CYP450s rather than 2-ODDs for 3-
and 20-oxidation, while F. fujikuroi uses a 2-ODD to convert
GA, to GA; in GA; biosynthesis (Bhattacharya et al. 2012).
Bacteria have separate CPS and KS enzymes, whereas fungi
contain a bifunctional CPS/KS (Morrone et al. 2009). The
capacity to produce bioactive GAs appears to be related to
pathogenicity. Most symbiotic N-fixing bacteria produce
GA,, allowing the plant to regulate GA, production, while
the phytopathogenic species Xanthomonas oryzae contains
an extra gene encoding a 3-hydroxylase (CYP115) and pro-
duces GA, (Nagel and Peters 2017; Nett et al. 2017a).

GA perception and signaling

Dwarf and slender mutants with reduced or elevated
GA responses

Genetic analyses of mutants displaying altered GA responses
and molecular cloning of their corresponding genes have
been instrumental in unveiling the long-sought GA receptor
(GID1) and its immediate downstream repressors (DELLASs)
and activators (F-box proteins GID2/SLEEPY1 [SLY1]).
GA-unresponsive recessive mutants exhibit a dark-green, dwarf
phenotype that mimics GA biosynthesis mutants, but their
growth cannot be restored by GA treatment (Fig. 1). Plants
with defects in genes encoding the GA receptor GID1 or the
F-box protein GID2/SLY1 belong to this mutant class
(McGinnis et al. 2003; Sasaki et al. 2003; Ueguchi-Tanaka
et al. 2005). Gain-of-function DELLA mutants are dominant
GA-unresponsive dwarves, eg. GA insensitive (gai) in
Arabidopsis (Koornneef et al. 1985) and Reduced height (Rht)
varieties in wheat (Fig. 1), which were major contributors to
the “Green Revolution” by increasing grain yield in the 1960s
to 1970s (Borner et al. 1996; Peng et al. 1999). Conversely, “slen-
der” mutants with elevated GA responses (e.g. la cry in pea and
slender (sIn) in barley) are recessive and display a tall and thin
stem phenotype, which resembles wild-type plants that have
been overdosed with GA (Brian 1957; Foster 1977).

Besides genetic analysis, cereal aleurone was also used ex-
tensively to study GA signaling (Lovegrove and Hooley
2000; Sun and Gubler 2004). During seed germination, aleur-
one cells produce hydrolytic enzymes in response to GA (dif-
fused from the embryo) to degrade the starchy endosperm.
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Figure 3. Interaction network between the GA-GID1-DELLA signaling module and various internal and external cues. Signals that increase bioactive
GA levels are labeled in blue, while signals that decrease GA levels are shown in red. GA-GID1 triggers DELLA degradation via SCF*"Y"/“'*2.mediated
polyubiquitination. GA-GID1 also induces OsNGR5 degradation in a SCF®'°*-dependent manner to inhibit nitrogen-induced shoot branching in
rice. DELLAs interact antagonistically or additively with a myriad of transcription factors (TFs), transcription regulators (TRs), CRC, and
PREFOLDINs (PFDs) to modulate specific developmental processes. Most of the DELLA interactors are Arabidopsis proteins, except those that
are labeled (Os, Oryza sativa; Mt, Medicago truncatula; Lj, Lotus japonicus). See Boxes 1 and 2 for details. PD, protein degradation; PP, protein—pro-
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Using this aleurone system, pharmacological assays have
identified GA-induced genes and GAMYB, the transcription
factor responsible for this transcriptional induction.

GA-GID1 induces SCF°""/“'"2.mediated DELLA
degradation

With the development of Arabidopsis as a model system for
plant research in the 1980s, the gai-1 mutant and repressor of
gal-3 (rga) mutants in Arabidopsis were isolated by

screening for GA-unresponsive dwarves (Koornneef et al.
1985) or suppressors of the dwarf phenotype of gai-3
(Silverstone et al. 1997b), respectively. Intragenic suppressors
of the semidominant gai-1 mutant were generated by Ds
transposon insertion mutagenesis (Peng and Harberd
1993), which guided the cloning of GAI (Peng et al. 1997).
Suppressor mutants of ga1-3 generated by fast-neutron mu-
tagenesis contained large deletions in the RGA locus, which
facilitated the cloning of RGA by genomic subtraction
(Silverstone et al. 1998). The Arabidopsis genome contains
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five DELLA genes, RGA, GAIl, RGA-LIKET (RGL1), RGL2, and
RGL3, which belong to a subfamily of GRAS (for GAI, RGA
and SCARECROW) transcription regulators. The N-terminal
DELLA domain is unique to the DELLA subfamily, whereas
the C-terminal GRAS domain is shared among all GRAS fam-
ily members (Pysh et al. 1999; Sun and Gubler 2004). Further
characterization of orthologs in other species showed that
DELLA genes are conserved in plants, including Rht in wheat
(Peng et al. 1999), SLENDER RICET (SLR1) in rice (lkeda et al.
2001), SLNT in barley (Chandler et al. 2002), D§ and D9 in
maize (Peng et al. 1999; Lawit et al. 2010), PROCERA in to-
mato (Solanum lycopersicum) (Jasinski et al. 2008), and LA
and CRY in pea (Weston et al. 2008).

How are DELLA proteins regulated by the GA signal? The la
cry slender mutant phenotype resembles the effects of GA
overdose, leading to the idea that LA and CRY control the
production of inhibitors (for GA-induced growth) and sug-
gesting that GAs may function as “inhibitors of inhibitors”
to promote growth (Brian 1957). Importantly, an examin-
ation of RGA protein levels by immunoblot analysis and con-
focal microscopy revealed that RGA protein levels in planta
rapidly decreased in response to GA treatment (Silverstone
et al. 2001). Furthermore, the gai-1 Arabidopsis mutant en-
codes a mutant protein with a 17-amino acid deletion within
the DELLA motif, suggesting that this mutation turns the GAI
protein into a constitutive repressor of GA signaling (Peng
et al. 1997). Indeed, deletion of the identical DELLA motif
in RGA (rga-A17) abolished GA-induced degradation and
conferred a GA-unresponsive dwarf phenotype, indicating
that the DELLA motif is required for its proteolysis in re-
sponse to GA (Dill et al. 2001). Notably, the semidwarf var-
ieties of wheat and maize were found to be caused by
deletion mutations in the DELLA domain of Rht and D8, re-
spectively (Peng et al. 1999). Further studies of the recessive
GA-unresponsive dwarf mutants Arabidopsis sly7 and rice
gid2 led to the identification of F-box proteins and associated
Skp, Cullin, F-box (SCF) ubiquitin E3 ligase complexes
(SCF-Y/C1P2 that are responsible for polyubiquitination of
DELLA and degradation by the 26S proteasome (Steber
et al. 1998; McGinnis et al. 2003; Sasaki et al. 2003).

Although Arabidopsis research led to the breakthrough
discoveries of the DELLA repressors and SLY1 (F-box) acti-
vators of GA signaling, the GA receptor remained elusive
despite the efforts of multiple mutant screens. Eventually,
aided by the completion of the rice genome sequence
(Goff et al. 2002; Yu et al. 2002), the GA receptor was un-
veiled by positional cloning of GA-insensitive dwarf1 (gid1)
mutants in rice (Ueguchi-Tanaka et al. 2005). Notably, the
smaller genome of Arabidopsis contains three GID1 ortho-
logs (GID1A, GID1B, and GID1C), whose functional redun-
dancy explains why genetic screens failed to identify GA
receptors in Arabidopsis (Griffiths et al. 2006; Nakajima
et al. 2006). GID1 is localized to both the cytoplasm and nu-
cleus and belongs to the hormone-sensitive lipase (HSL)
family, although it lacks one of three key catalytic residues
for lipase activity. Yeast two-hybrid (Y2H) and in vitro pull-
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down assays show that GA binding to GID1 promotes
GID1-DELLA interactions (Ueguchi-Tanaka et al. 2005)
and that the DELLA domain (including DELLA, LEXLE and
VHYNP motifs) is essential for its interaction with GID1
(Griffiths et al. 2006; Willige et al. 2007). Molecular details
of the GA-AtGID1A-DELLA domain (GAI) complex and
GA-OsGID1 determined by X-ray crystallography revealed
that bioactive GA is an allosteric inducer of its receptor
GID1 (Murase et al. 2008; Shimada et al. 2008). The carboxy-
terminal core domain of GID1 forms a GA-binding pocket,
and the amino-terminal extension (N-Ex) domain acts as a
lid. GA binding induces a conformational switch of its N-Ex
to close the GA-binding pocket and creates hydrophobic
surfaces for DELLA binding (Fig. 2).

How does GA-GID1-DELLA promote SLY1/GID2 recogni-
tion? Mutant and Y2H analyses indicated that SLY1/GID2
interacts with the GRAS domain of the DELLA protein
(Dill et al. 2004; Hirano et al. 2010). Yeast 3-hybrid assays
further demonstrated that GA-bound GID1 enhances the
RGA-SLY1 interaction, suggesting that the GA/GID1-
DELLA domain interaction triggers conformational changes
in the GRAS domain for SLY1 recognition (Griffiths et al.
2006). Moreover, the GRAS domain of SLR1 was shown to
interact with GID1 after the binding of the DELLA domain
to further stabilize the GID1-SLR1 complex, which allows ef-
ficient recognition by the F-box protein GID2 (Hirano et al.
2010).

Mechanism of DELLA action: transcriptional
reprograming via protein—protein interactions

with hundreds of transcription factors

DELLAs are nucleus-localized transcription regulators.
Transcriptome studies on early GA- and DELLA-responsive
genes showed that DELLAs can activate or repress transcrip-
tion, depending on the target genes (Zentella et al. 2007; Hou
et al. 2008). DELLAs do not contain any canonical DNA bind-
ing motifs and have not been shown to bind DNA directly.
Importantly, chromatin immunoprecipitation (ChIP)-qPCR
analysis demonstrated an association of RGA with its target
chromatin (Zentella et al. 2007). ChIP-sequencing (seq) ana-
lysis identified genome-wide RGA binding sites: 421 asso-
ciated genes in Arabidopsis seedlings and 2,327 associated
genes in the inflorescence meristem (Marin-de la Rosa
et al. 2015; Serrano-Mislata et al. 2017). Abundant evidence
indicates that DELLAs regulate transcription via antagonistic
or additive interactions with a myriad of transcription fac-
tors/regulators (Figs. 2 and 3 and Boxes 1 and 2) (Sun
2011; Daviere and Achard 2016; Van De Velde et al. 2017).
PHYTOCHROME INTERACTING FACTORS (PIFs), PIF3, and
PIF4 were the first reported DELLA-interacting transcription
factors (TFs) (de Lucas et al. 2008; Feng et al. 2008). PIF3 and
PIF4 are light-responsive bHLH TFs that promote hypocotyl
elongation. Genetic analysis and ChIP-qPCR showed that
the DELLA-PIF3/4 interaction sequesters PIFs from binding
to the promoters of growth-related genes, revealing
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BOX 1. DELLA INTERACTORS: TRANSCRIPTION FACTORS/REGULATORS

(1) DELLA-repressed transcription activators include several TFs that promote hypocotyl elongation: PIF3/4 (light sig-
naling regulators), BRASSINAZOLE-RESISTANT1 (BZR1, a brassinosteroid signaling activator) (Bai et al. 2012;
Gallego-Bartolome et al. 2012), AUXIN RESPONSE FACTORs (ARFs, auxin signaling activators) (Oh et al. 2014),
and BBX24 (B-box zinc finger protein) (Crocco et al. 2015). DELLAs also inhibit the activities of ETHYLENE
INSENSITIVE3 (EIN3, an ethylene signaling activator) in apical hook formation (An et al. 2012); NUCLEAR FACTOR
Ys (NF-Ys) in seed germination and flowering (Hou et al. 2014); ALCATRAZ (ALC, bHLH) in fruit valve margin devel-
opment (Arnaud et al. 2010); Type | TCPs (TEOSINTE BRANCHED 1 [TB1], CYCLOIDEA [CYC], and PROLIFERATING
CELL FACTOR [PCF]) in cell division in shoot and root apical meristems (Daviere et al. 2014; Resentini et al. 2015);
GLABRA1 (GL1, MYB23) and GL3 (bHLH) in trichome initiation (Qi et al. 2014); SQUAMOSA PROMOTER
BINDING PROTEIN LIKEs (SPLs) and CONSTANS (CO) in floral induction (Yu et al. 2012; Hyun et al. 2016; Xu
et al. 2016); LEAFY COTYLEDONT1 (LEC1=NF-YB9) in late embryogenesis (Hu et al. 2018); FIT (bHLH) and
bHLH38/39 for iron uptake in the root (Wild et al. 2016); and the GROWTH REGULATING FACTOR4 (OsGRF4)/
GRF-Interacting Factor1 (OsGIF1) complex in nitrogen and carbon metabolism and nitrogen uptake (Li et al. 2018).
(2) DELLA-activated transcription factors/regulators include ABSCISIC ACID INSENSITIVE 3 (ABI3) and ABI5 (a bZIP
TF), which mediate ABA-inhibited seed germination (Lim et al. 2013); BOTRYTIS SUSCEPTIBLE1 INTERACTORs (BOls,
RING domain protein), which inhibit seed germination, the juvenile-to-adult transition, and floral induction (Park
et al. 2013); type-B ARRs, which function in cytokinin-induced de-etiolation and root meristem cell division
(Marin-de la Rosa et al. 2015); the INDETERMINATE DOMAIN (IDD) subfamily of C2H2 zinc finger TFs, which regulate
root development, inhibit floral induction, and regulate GA homeostasis (Fukazawa et al. 2014; Yoshida et al. 2014);
SPL9, which promotes flower formation; ABERRANT TESTA SHAPE (ATS = KANADI4, KAN4), which promotes ovule
integument development (Gomez et al. 2016); NODULATION SIGNALING PATHWAY2 (MtNSP2, a GRAS protein)
and MtNF-YA1 in Medicago truncatula, which promote rhizobial nodulation (Fonouni-Farde et al. 2016; Jin et al.
2016); and LjCYCLOPS in Lotus japonicus, which functions in arbuscule formation (Pimprikar et al. 2016).

BOX 2. DELLA INTERACTORS: TRANSCRIPTION REPRESSORS AND OTHERS

(1) DELLA-repressed transcription repressors include the jasmonate (JA) signaling repressors JAZs, which promote
JA-induced defense responses against herbivory and necrotrophs (Hou et al. 2010). Moreover, the JAZ-DELLA inter-
action inhibits DELLA-PIF3 to promote plant growth, revealing the role of JAZ/DELLA/PIF in balancing plant defense
and growth (Yang et al. 2012). DELLAs also inhibit SCL3 (a GRAS protein) activity by interacting and competing with
SCL3 for binding to IDDs (Zhang et al. 2011; Yoshida et al. 2014). SCL3 is an activator of GA signaling whose transcrip-
tion is induced by DELLA but repressed by itself. In addition, DELLAs inhibit the activity of GRFs in promoting the
expression of cold-induced genes (Lantzouni et al. 2020).

(2) DELLAs interact with CRC, including SWI3C (Sarnowska et al. 2013) and PICKLE (PKL) (Zhang et al. 2014). SWI3C is
a core subunit of the Switch (SWI)/Sucrose Nonfermenting (SNF)-type CRC. Transcript analysis suggested that SWI3C
promotes the expression of DELLA-induced genes (e.g. GIDTA and SCL3), although the mechanism is unclear
(Sarnowska et al. 2013). An antagonistic interaction between DELLA and PKL regulates GA-induced skotomorphogen-
esis, vegetative growth, and the phase transition (Zhang et al. 2014; Park et al. 2017).

(3) DELLASs sequester the cochaperones PREFOLDINSs (PFDs) to the nucleus, which disrupts microtubule organization
in the cytoplasm (Locascio et al. 2013).

molecular crosstalk between light and GA signaling.  transcription by blocking DNA binding and sequestering

Extensive studies in the last 15 years have identified 370 po-
tential DELLA-interacting proteins in Arabidopsis by Y2H
screens, and over 40 of them have been verified by co-IP
and/or genetic analyses (Marin-de la Rosa et al. 2014; Van
De Velde et al. 2017; Lantzouni et al. 2020).

DELLAs appear to function as transcription co-activators
or corepressors, depending on which transcription factors/
regulators they interact with. Three distinct modes of
DELLA action have been reported: (i) DELLA represses

transcriptional activators (e.g. PIFs) from their target promo-
ters; (ii) DELLA activates transcription by recruiting tran-
scription factors (e.g. ABSCISIC ACID INSENSITIVE 3 [ABI3]
and ABI5, ARABIDOPSIS RESPONSE REGULATORs (ARRs),
and IDDs); and (iii) DELLA activates transcription by seques-
tering transcription repressors (e.g. JASMONATE ZIM
DOMAINs [JAZs], SCARECROW-LIKE3 [SCL3]) from their
target promoters (Figs. 2 and 3) (Daviere and Achard 2016;
Thomas et al. 2016; Van De Velde et al. 2017). ChIP-seq
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analyses showed that RGA binding peaks are enriched near
cis-elements for several DELLA-interacting TFs (Marin-de la
Rosa et al. 2015; Serrano-Mislata et al. 2017), supporting
the notion that DELLAs are recruited to target promoters
by their interacting TFs.

Multiple signaling pathways regulate
DELLA-mediated plant responses to internal

and environmental cues

DELLAs were initially identified as GA signaling repressors, and
GA promotes rapid DELLA proteolysis mediated by GID1 and
SCF-"/%'P2 (Sun and Gubler 2004). Notably, DELLAs also play
a key role in feedback regulation to help maintain GA homeo-
stasis by inducing the transcription of genes encoding GA bio-
synthetic enzymes and GID1s (Fig. 3) (Zentella et al. 2007).
However, extensive studies of DELLA interactors and
DELLA-regulated processes in the last 15 years have unveiled
a much broader function of DELLAs as master growth regula-
tors that integrate the activities of many signaling pathways in
response to developmental and external cues, including biotic
and abiotic stress (Thomas et al. 2016; Van De Velde et al.
2017). Boxes 1 and 2, and Fig. 3 highlight the diverse processes
regulated by DELLAs and their interactors. Importantly, DELLA
activity can be regulated by several mechanisms: (i) altered
DELLA stability (GA-GID1 dependent) by modulating GA me-
tabolism; (ii) altered DELLA activity by interacting with TFs/
TRs/chromatin-remodeling complexes (CRC); (iii) GA-GID1-
independent polyubiquitination and degradation; (iv) other
post-translational modifications (PTMs); and (v) transcrip-
tional induction of RGL3 by JA signaling.

(1) Altered DELLA stability (GA-GID1 dependent) by
modulating GA metabolism

Factors that decrease bioactive GA levels to increase
DELLA accumulation include other phytohormones (ABA,
cytokinin, and ethylene), external cues (e.g. light, abiotic
stresses [cold, salt, and drought], and biotic stress [biotrophic
pathogens]) (Fig. 3). Conversely, factors that increase bio-
active GA levels to decrease DELLA accumulation include
auxin, and external cues (e.g. nitrogen, light, abiotic stresses
[warmth, shade, submergence], and biotic stress [necro-
trophic pathogens]). Most of these findings have been dis-
cussed in previous reviews (Sun 2011; Colebrook et al.
2014), except for two recent studies showing that drought in-
hibits GA biosynthesis in the leaf base of wheat seedlings
(Ptoskova et al. 2022) and that nitrate (a major nitrogen
sources) induces root growth by increasing GA biosynthesis,
resulting in reduced DELLA protein accumulation in
Arabidopsis and wheat (Camut et al. 2021). Recent studies
on the semidwarf Green Revolution varieties (GRVs) of
wheat (Rht alleles encoding dominant DELLAs) and rice
(semi-dwarf1 [sd1], defective in GA200x2) demonstrated
that nitrogen use efficiency (NUE) is regulated by the GA sig-
naling pathway (Wang et al. 2021; Liu et al. 2022). The GRVs
dramatically increase crop yields, although they exhibit low
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NUE because SLR1 inhibits nitrogen and carbon metabolism,
nitrogen uptake, and assimilation by disrupting the inter-
action between the key TF OsGRF4 and its coactivator
OsGIF1 (Li et al. 2018) (Fig. 3). Notably, elevated DELLA ac-
tivities in GRVs promote nitrogen-induced tillering (shoot
branching). It turns out that GID1 and DELLA can interact
with NITROGEN MEDIATED TILLER GROWTH RESPONSE 5
(NGRS5), a transcription factor that represses the expression
of genes that inhibit tillering (Wu et al. 2020). GA-GID1 pro-
motes NGRS degradation by the SCF'®*-mediated ubiqui-
tin-proteasome pathway (Fig. 3), while DELLA competes
with GID1-NGRS5 interaction to stabilize NGR5.

(2) Altered DELLA activity by antagonistic or additive in-
teractions with TFs/TRs

(Boxes 1 and 2, and Fig. 3).
(3) GA/GID1-independent DELLA degradation

Besides GA/GID1/SCF-Y"“'P2dependent proteolysis, DELLA
protein stability can be regulated by 3 other pathways (Fig. 4).

CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) med-
iates DELLA degradation in response to warm temperatures
and shade:

Shade- or warm temperature-induced hypocotyl elong-
ation correlates with elevated bioactive GA levels and a re-
duction in DELLA protein levels (Djakovic-Petrovic et al.
2007; Stavang et al. 2009; Arana et al. 2011). Surprisingly,
the abundance of the GA-resistant rga-A17 protein is
also reduced by these environmental cues, suggesting the
presence of a GA/GID1-independent mechanism for DELLA
degradation (Blanco-Tourinan et al. 2020a). Biochemical and
genetic analyses showed that the E3 ubiquitin ligase COP1
and its interacting protein SUPPRESSOR OF phyA-105 proteins
(SPAs) play a direct role in the rapid proteolysis of DELLA prior
to changes in GA content in the shade or under warm con-
ditions. As the liverwort (Marchantia polymorpha) gen-
ome contains putative orthologs of COPT and DELLA
genes, COP1-mediated DELLA degradation may serve to
regulate DELLA activity prior to the GA/GID1-mediated
mechanism, which appears later in lycophytes.

FLAVIN-BINDING KELCH REPEAT F-BOX 1 (FKF1) med-
iates DELLA degradation to promote flowering in LD
conditions:

FKF1 promotes flowering under long-day (LD) conditions.
The fkf1 mutant is late flowering and has elevated RGA pro-
tein levels even in the GA-deficient background (Yan et al.
2020). co-IP assays in Nicotiana benthamiana and in vitro as-
says showed that FKF1 directly binds to DELLAs and pro-
motes their ubiquitination and degradation. It was
proposed that FKF1 regulates the cyclical degradation of
DELLA in LDs, but this remains to be verified.

Strigolactone (SL)-D14 mediates DELLA degradation in re-
sponse to low nitrogen conditions:

As described above, GA reduces NUE by promoting NGR5
degradation. Conversely, SL increases NUE. D53 is a repressor
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Figure 4. GA/GID1-dependent versus GA/GID1-independent DELLA degradation. GA/GID1-dependent proteolysis of DELLA is mediated by
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complex mediates LD-induced DELLA proteolysis in Arabidopsis. Low nitrogen conditions induce the biosynthesis of SL in rice, which binds to its
receptor D14 and promotes the D14-DELLA interaction and DELLA degradation mediated by SCFP3. GA, gibberellin; Ub, ubiquitin.

of SL signaling that inhibits the expression of GRF4-induced
genes for N metabolism. Low nitrogen conditions induce
the biosynthesis of SL, which binds to its receptor D14 and
promotes the D14-D53 interaction and subsequent
SCFP*-mediated ubiquitination and degradation of D53.
Notably, SL also promotes the interaction of D14 with
SLR1 (rice DELLA) (Nakamura et al. 2013), which leads to
SLR1 degradation mediated by SCFP? (Sun et al. 2023). D53
competes with SLR1 for binding to D14, adding another layer
of regulation for DELLA degradation.

(4) Regulation of DELLA Function by PTM:s:

In addition to polyubiquitination, which promotes DELLA
proteolysis, DELLA activity is also modulated by other PTMs,
including Small Ubiquitin-like Modifier (SUMO)-conjugation
(SUMOylation), phosphorylation, and O-glycosylation
(O-linked N-acetylglucosamine [O-GlcNAc] and O-fucose

modifications) (Blanco-Tourinan et al. 2020b; Sun 2021).
Under salt-stress conditions, DELLA SUMOylation is induced
due to increased degradation of the SUMO proteases
OVERLY TOLERANT TO SALT 1 and 2 (OTS1 OTS2)
(Conti et al. 2014). SUMOylated DELLA binds to and seques-
ters GID1 independently of GA, thereby promoting the accu-
mulation of non-SUMO-DELLA and restricting plant growth.
Under nonstress conditions, OTS-mediated de-SUMOylation
of DELLA promotes the growth of stamen filaments
(Campanaro et al. 2016). The role of phosphorylation in
DELLA function is not well understood. An early study re-
ported that GA-induced SLR1 degradation in rice occurs in-
dependently of phosphorylation (Itoh et al. 2005). However,
another study suggested that the phosphorylation of SLR1 by
the casein kinase | EARLIER FLOWERING1 (EL1) increases its
stability (Dai and Xue 2010). The el7 mutant displays elevated
GA response and early flowering phenotypes, and the

G20z 1y g UO Jasn a)nysu| Yoieasay [eIulD axna AQ 88¥E6SL/L L L/L/G6 L/aIoe/sAydid/woo dno olwspese)/:sdny wolj papeojumoq



122 | PLANT PHYSIOLOGY 2024: 195; 111-134

SLR1-YFP (yellow fluorescent protein) protein in 35S:
SLR1-YFP el1 transgenic rice was degraded more rapidly after
GA treatment than in the wild-type background. These find-
ings suggest that EL1 may inhibit GA signaling by enhancing
DELLA stability, although SLR1 phosphorylation by EL1 was
only shown in vitro.

The discovery of the role of O-glycosylation in regulating
DELLA activity came from the characterization of the
Arabidopsis spindly (spy) mutants, which partially rescue
the GA-deficient dwarf phenotype caused by a GA biosyn-
thesis inhibitor (paclobutrazol) or a mutation (ga7), indicat-
ing that SPY is a repressor of GA signaling (Jacobsen and
Olszewski 1993; Jacobsen et al. 1996; Silverstone et al.
1997b, 2007). Both SPY and its paralog SECRET AGENT
(SEC) in Arabidopsis were predicted to be O-GlcNAc trans-
ferases (OGTs) based on sequence analysis (Olszewski et al.
2010). Both SPY and SEC contain a tetratricopeptide-repeat
(TPR) domain and a putative OGT catalytic domain.
Surprisingly, electron transfer dissociation (ETD)-MS/MS
and in vitro enzyme assays showed that SPY O-fucosylates
DELLAs and that SEC O-GlcNAcylates DELLAs (Zentella
et al. 2016, 2017). Genetic analysis and pulldown assays fur-
ther showed that O-fucosylation of DELLA by SPY enhances
DELLA binding to TFs (eg. BZR1 and PIFs), while
O-GlcNAcylation of DELLA by SEC reduces DELLA activity.
As OGT serves as a nutrient sensor in metazoans (Hart
2019), it was proposed that O-Fuc and O-GIcNAc modifica-
tions might modulate DELLA activity and plant growth in re-
sponse to nutrient availability.

(5) Transcriptional induction of RGL3 by JA signaling

RGL3 transcription is rapidly induced by MYC2, which is a
JA signaling activator (Wild et al. 2012). As RGL3 binds to and
sequesters the JA signaling repressors JAZs, elevated expres-
sion of RGL3 in response to the JA signal enhances MYC2 ac-
tivity to promote JA-mediated resistance to necrotrophic
pathogens.

DELLA-independent GA responses

Although DELLAs control almost all GA-regulated processes,
a few DELLA-independent GA responses have been reported.
SPATULA (SPT), a bHLH TF that is unrelated to DELLAs, also
inhibits GA-induced cotyledon expansion and fruit growth
(Josse et al. 2011; Fuentes et al. 2012). The SPT-repressed
cotyledon expansion is independent of light conditions,
which is in contrast to DELLA, whose stability is reduced
by red light-induced GA biosynthesis. Notably, DELLAs nega-
tively regulate SPT transcript accumulation, which provides a
balance between the two classes of repressors (Josse et al.
2011). Another DELLA-independent GA response is GA-
induced increases in cytosolic Ca®* levels, although it remains
to be determined whether this GA response is mediated by
GID1 in the cytoplasm (Okada et al. 2017).
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GA transport mechanism

Long-distance GA transport

Nearly half a century ago, initial findings were reported on
the movement of GA in plants (Zweig et al. 1961; Chin and
Lockhart 1965; Hoad and Bowen 1968). These studies con-
firmed the presence of GA in the phloem sap and its ability
to travel through this medium. Since then, ongoing efforts
have been made to understand and measure the movement
of GA in plants (Hedden and Sponsel 2015; Binenbaum et al.
2018). GA moves within the plant in both upward (acrop-
etal) and downward (basipetal) directions (Proebsting et al.
1992; Bjorklund et al. 2007; Regnault et al. 2015; Lacombe
and Achard 2016). The movement of GA is crucial for various
developmental processes in plants (Anfang and Shani 2021;
Zhang et al. 2023).

Several studies have attempted to identify the mobile form
of GA by perturbing GA biosynthesis at different stages of the
pathway. In peas, grafting mutant plants deficient in GA bio-
synthetic enzymes onto wild-type plants led to an increase in
GA content in the shoots compared to non-grafted mutant
plants. GA analysis revealed that GA,, was the major mobile
form in pea plants (Proebsting et al. 1992). Similarly, in
Arabidopsis, grafting experiments with mutant plants at dif-
ferent stages of GA biosynthesis identified GA;, as the major
form transported over long distances through the vascula-
ture (Regnault et al. 2015) (Fig. 5). GA;, moves through
the xylem from roots to shoots and through the phloem
from shoots to roots to regulate plant growth (Regnault
et al. 2015). The transport activity is most evident in plants
that fail to synthesize GA locally. It was furthermore demon-
strated that GA, derived in the roots plays a role in regulat-
ing the growth of shoots in response to temperature changes
in Arabidopsis (Camut et al. 2019). Most recently, it was re-
ported that two GA and ABA transporters (NPF2.12 and
NPF2.13) are required for shoot-to-root GA;, translocation
to regulate endodermal root suberization (summarized be-
low) (Binenbaum et al. 2023).

GA movement and localization

The synthesis of active GA is a complex and multistep pro-
cess involving various intermediate compounds (Fig. 2).
This complexity makes it challenging to identify the specific
tissues or organs where GAs are produced and localized.
Analysis of GA biosynthesis reporter lines indicated that
while some tissues show colocalization of GA biosynthesis
genes and GA perception genes, there are cases where these
two groups of genes do not overlap. For example, GA biosyn-
thesis genes are not expressed in the aleurone cells of the rice
endosperm, but GA signaling genes are (Kaneko et al. 2003).
This spatial separation suggests the need for GA movement
within the plant. In addition, the expression levels of genes
involved in the GA biosynthesis pathway itself do not always
align. For instance, the expression of the late-stage GA bio-
synthesis genes AtGA30x1 and AtGA30x2 in germinating em-
bryos differs spatially from that of the early GA biosynthesis
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Figure 5. Model of the role of NPF2s activity in regulating shoot-to-root translocation of GA, to promote endodermal suberin deposition. NPF2.12
and NPF2.13 are found in the phloem of the shoot and play vital roles in transporting GA;, over long distances from shoot to root. NPF2.12 is active
in the membranes of root pericycle cells and facilitates the movement of ABA and GA from the vasculature to the pericycle region. Once inside the
pericycle's cytoplasm, NPF2.14 transports these hormones into the vacuole, where they are possibly stored as a reserve for future use. As the root
elongates over time and these cells mature, the stored hormones are released from the pericycle vacuole and taken up by the endodermis through
the action of NPF3.1. This uptake triggers suberization, a process that forms a protective barrier in the endodermis. In addition, GA, derived in the
root, plays a role in regulating the shoot growth in response to ambient temperatures (28°C) in Arabidopsis. PCC, phloem companion cell; PS,
phloem sieve; Pe, pericycle; End, endodermis; Vac, vacuole; GA, gibberellin; ABA, abscisic acid.
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gene AtCPS (Silverstone et al. 1997a; Yamaguchi et al. 2001).
Similar patterns are found in different root cell types (Barker
et al. 2021). Such differences indicate that the location and
movement of GA precursors could play a vital role in regulat-
ing GA responses. An interesting example of GA precursor
translocation was found in the fern L. japonicum, where
GA movement is involved in the sex-determining mechan-
ism. The study proposed a model in which different stages
of prothalli in a colony express different GA-biosynthetic
genes, producing specific forms of GA that regulate the for-
mation of reproductive structures (Tanaka et al. 2014). In the
future, there is a need to measure GA contents (including
bioactive GAs and precursors) in different tissues and cell
types at the single-cell level to shed light on the GA map
with respect to its dynamic movement.

Long and short-distance movement of different GA
forms are crucial for plant development (Rizza and Jones
2019; Wexler et al. 2019; Anfang and Shani 2021). For ex-
ample, one of the functions of GA is to induce xylem dif-
ferentiation in the hypocotyl following the floral
transition in Arabidopsis. GA30oxT mRNA levels increase
in the shoot but not the hypocotyl after flowering, sug-
gesting GA movement. Mutant plants lacking GA biosyn-
thesis, such as the gal-3 mutant, exhibit reduced
hypocotyl xylem expansion after the flowering stage
(Ragni et al. 2011). However, xylem expansion was restored
when the mutant plants were grafted onto wild-type root-
stocks. This suggests that GA acts as a mobile signal de-
rived from the shoot that triggers xylem expansion in
the hypocotyl (Ragni et al. 2011). Similar effects were ob-
served in tobacco (Nicotiana tabacum) plants when defoli-
ation occurred, resulting in reduced GA content and
growth abnormalities in the stem (Dayan et al. 2012).

Additional reports have described the dependency of cer-
tain organs on external sources of GA. For example, GA
movement from the embryo scutellum to the aleurone in
cereal grains plays a pivotal role in regulating seed germin-
ation (Paleg 1960). Upon imbibition, during germination,
the scutellum synthesizes GAs, which move to the aleurone
layer (Hayashi 1940). In the aleurone, GA triggers the activa-
tion of hydrolytic enzymes that break down the stored starch
and proteins in the endosperm into simpler forms, providing
essential nutrients for the developing embryo (Lovegrove
and Hooley 2000; Sun and Gubler 2004). This coordinated
GA-mediated movement and response from scutellum to
aleurone are fundamental for successful germination and
early seedling growth in cereal grains.

In addition, petals rely on anthers as a source of GA for
their growth and development (Hu et al. 2008). Studies in
Arabidopsis, petunia (Petunia hybrida), tobacco, and rice de-
monstrated that GA produced in the anthers is crucial for pe-
tal development (Weiss and Halevy 1989; Itoh et al. 1999,
2007; Hu et al. 2008). These pieces of evidence support the
idea that GA acts as a mobile plant hormone and that its
movement is necessary for various processes involved in
plant growth and development.
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In cucumber flowers, specific forms of GA were found to be
localized to different floral parts, suggesting their involve-
ment in localized growth regulation. Experiments using deut-
erated GA provided quantitative support for the production
and movement of GA from ovaries to sepals and petals,
where it is converted to a bioactive form to regulate organ
growth (Lange and Lange 2016). A study characterizing GA
biosynthesis sites in roots at the cellular level, coupled with
cell-type-specific GA synthesis rescue experiments, indicated
GA movement between root cell-files (Barker et al. 2021).
Analysis of photocaged bioactive GA, released endogenously
in Arabidopsis roots allowed the kinetic parameters of its
flow to be measured, such as decay length and velocity
(Wexler et al. 2019). More comprehensive studies are needed
to explore additional developmental stages where GA move-
ment plays a fundamental role by correlating the expression
patterns of GA biosynthetic genes with direct measurements
of GA levels.

GA transporters

The first evidence of bioactive and regulated GA transport
came with the identification of GA transporters from the
NPF (Chiba et al. 2015; Saito et al. 2015; David et al. 2016;
Tal et al. 2016; Anfang and Shani 2021; Kanstrup and
Nour-Eldin 2022). Several NPF transporter proteins, including
NPF2.3, NPF2.4, NPF2.5, NPF2.7, NPF2.10, and NPF3.1 have
been identified as potential GA transporters using yeast-
modified 2-hybrid systems and further confirmed in
Xenopus oocytes (Chiba et al. 2015; Saito et al. 2015; Wulff
et al. 2019). However, the physiological importance of most
of these transporters in plants remains to be fully under-
stood. The main challenge in characterizing GA transporters
and their physiological function is the lack of apparent
GA-mediated phenotypes in the respective mutants.
Genetic redundancy plays a substantial role in this shortcom-
ing, as most, if not all, transporter proteins belong to large
and robust gene families. Thus, the knockout of one putative
GA transporter is compensated for by another family mem-
ber (Zhang et al. 2023).

Recent research has revealed that a subset of NPF proteins
is required for the mechanisms behind long-distance GA
transport from shoot to root and its developmental import-
ance (Binenbaum et al. 2023). GA transport plays a critical
role in suberin formation in the root. NPF2.12 and NPF2.13
(2 recently identified GA and ABA importers), along with
NPF2.14 (a tonoplast importer), coordinate the regulation
of suberin formation (Binenbaum et al. 2023). NPF2.12 and
NPF2.13 are membrane-localized proteins expressed in leaf
phloem companion cells that facilitate the transport of
GA;, from shoot to root (Fig. 5). Once reaching the root,
GA,, is converted to GA, by the enzymes GA20ox and
GA3ox. It is speculated that the bioactive GA and ABA exit
the phloem at the phloem unloading zone (Robe and
Barberon 2023) located around the root elongation zone
(Binenbaum et al. 2023). NPF2.12 is then able to import
GA,4 and ABA into the pericycle, and subsequently, the
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pericycle-specific transporter NPF2.14 transports these phy-
tohormones into the vacuole (Fig. 5) GA and ABA accumu-
late in the vacuole within the phloem unloading zone located
around the root elongation zone, where they are stored dur-
ing root maturation and differentiation. Only later in devel-
opment are these plant hormones released from the vacuole
by an unknown mechanism and are able to be taken into the
endodermis by NPF3 to promote suberization. NPF3 is loca-
lized to the plasma membrane and imports GAs in a
pH-dependent manner (David et al. 2016; Tal et al. 2016)
(Fig. 5). These findings indicate that GA and ABA can work
in a nonantagonistic manner to regulate plant development.
This mechanism highlights the importance of long-distance
shoot-to-root movement of GA;, and the accumulation of
bioactive GA, and ABA in the endodermis for regulating
endodermal suberization (Binenbaum et al. 2023; Zhang
et al. 2023).

In Arabidopsis, the Sugars Will Eventually Be Exported
Transporters (SWEET) family members SWEET13 and
SWEET14 have been identified as GA transporters (Kanno
et al. 2016; Morii et al. 2020). These transporters import
GAs, as demonstrated in yeast and oocyte transport assays
(Kanno et al. 2016). SWEET13 and SWEET14 function redun-
dantly to regulate anther development, and the application
of exogenous GAs to the sweet13 sweet14 double mutant res-
cues the anther's dehiscence defect (Kanno et al. 2016). In
rice, OsSWEET3a acts as both a sugar transporter and a GA
transporter, playing roles in seed germination and early shoot
development (Morii et al. 2020).

GA biosensors and markers

Studies utilizing GA biosensors have provided insights into
the transport and localization of GAs, indicating that GAs
are highly mobile (Rizza and Jones 2019). Specifically, analysis
using the GA perception biosensor GA Perception Sensor 1
(GPS1) revealed that, in the root, the concentration of bio-
active GA is highest in the root elongation zone (Rizza
et al. 2017). GPS1 represents a pioneering biosensor that uti-
lizes Forster resonance energy transfer (FRET) to detect and
track cellular GA levels in planta. This biosensor contains
AtGID1C and the N-terminal domain of AtGAl, which are
linked to two fluorescent proteins that produce FRET
when GA binding to GID1C triggers an intramolecular con-
formational change. The assessment of a fluorescence emis-
sion ratio of nuclear localized-GPS1 (nlsGPS1) enables the
precise mapping of endogenous and externally administered
GA gradients within various tissue structures at the cellular
level. The use of nlsGPS1 live imaging, combined with com-
prehensive modeling, revealed that a disparity in GA biosyn-
thesis along the roots is accountable for shaping the
distribution of GA (Rizza et al. 2021). Another biosensor
based on the DELLA protein RGA, named gmRGA
(pRPS5a:RGAmMPFYR-VENUS), provided in planta informa-
tion on changes in GA responses at the cellular level in the
shoot apical meristem, with GA signaling found primarily
in cells located between organ primordia (Shi et al. 2021).
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Furthermore, experiments involving fluorescently labeled
bioactive GAs demonstrated the exclusive accumulation of
GAs in the root elongation zone (Shani et al. 2013) and in
leaf mesophyll cells (Matias-Hernandez et al. 2016), suggest-
ing that GAs move from one tissue to another. The latter
process is regulated by two transcription factors,
TEMPRANILLO1 (TEM1) and TEM2, which negatively regu-
late the expression of genes encoding specific GA transpor-
ters (GLUCOSINOLATE TRANSPORTER1 (GTR1), NPF3,
and NPF2.3) belonging to the NPF family, leading to variable
GA accumulation and distribution in mesophyll cells that
regulate trichome initiation in the epidermis (Matias-
Hernandez et al. 2016).

While the GPS1 FRET biosensor (Rizza et al. 2021) and
the gmRGA ratiometric GA signaling biosensor (Shi et al.
2021) report on GA localization based on perception me-
chanisms, limited progress has been made in generating
GA biosensors that are based on transcriptional reporters.
Such transcriptional reporters have been widely used in
other phytohormone research based on promoters of en-
dogenous phytohormone-induced genes or synthetic
transcriptional reporters (Ulmasov et al. 1997; Muller
and Sheen 2008; Kim et al. 2011; Okamoto et al. 2013;
Liao et al. 2015; Wu et al. 2018). Dayan et al. generated sev-
eral B-glucuronidase reporters based on the GA-induced
promoters of EXP1, MYB34, and GA20X2 and a synthetic
GA-responsive promoter (FK) containing known
GA-response cis-elements found in promoters of
a-amylase genes from cereal crops (Dayan et al. 2012).
However, constructing a universal GA reporter that re-
flects the broad range of transcriptional regulation
(Fig. 3), remains challenging. Such a reporter would need
to respond specifically to endogenous GA levels in all tis-
sues and cell types, with an appropriate reporter turnover
rate. It may be difficult to design GA reporters that re-
spond to both DELLA-dependent and -independent
pathways.

Despite the progress made, several open questions remain
regarding GA transport (see Outstanding questions). One
unanswered question is whether there are GA exporters cap-
able of transporting GAs from the cytosol to the apoplast.
Currently, no proteins with this function have been identi-
fied, but it is believed that such proteins must exist to over-
come the GA ion-trapping mechanism. In addition,
considering the recent findings regarding GA accumulation
in the pericycle vacuole, one could speculate that GA is ac-
tively transported out of the vacuole and pericycle cells to
reach the endodermis. However, the specific transporters re-
sponsible for this process have not yet been identified.
Furthermore, the relevance of movement of GA through
plasmodesmata and the apoplast remains unclear. A recent
discovery demonstrated that the plant hormone ABA travels
radially through the plasmodesmata in the root to regulate
lateral root branching in response to water stress (air gaps
in the soil) (Mehra et al. 2022). Investigating whether a simi-
lar mechanism applies to GA in various developmental and
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OUTSTANDING QUESTIONS

® How are GA metabolism, transport, and signaling
activities regulated in different cell/tissue types
to coordinate plant growth and development?

® What is the role of post-transcriptional regula-
tion of GA-metabolic enzymes in determining
GA concentration?

® How do DELLAs interact with a myriad of distinct
classes of TFs/transcriptional regulators (TRs),
and does the tissue/cell-type specific expression
of DELLAs and their interacting TFs/TRs deter-
mine the selective regulation of a subset of target
genes?

® Do GA exporters exist and, if so, what are their
developmental roles and specificity?

environmental responses would be intriguing. Further re-
search is required to fully understand the transport and local-
ization of GAs in plants.

Concluding remarks

In the last three decades, substantial progress has been made
in elucidating the regulation of GA metabolism and the mo-
lecular mechanism of GA perception and early GA signaling.
The central role of DELLAs as integrators of multiple signaling
pathways has clearly been demonstrated, although the speci-
ficity of these key growth regulators in distinct tissue/cell-
type requires further investigation (see Outstanding
Questions). Recently identified GA transporters and the de-
velopment of GA biosensors are important advances toward
understanding how GA regulates plant growth and develop-
ment in response to internal and external cues (see
Outstanding Questions). The development of methods for
analyzing GA content at the single-cell level in combination
with existing molecular/genomics/proteomics tools will al-
low us to achieve this goal in the future.
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