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MANY CLIQUES IN BOUNDED-DEGREE HYPERGRAPHS*

RACHEL KIRSCH\dagger AND JAMIE RADCLIFFE\ddagger 

Abstract. Recently Chase determined the maximum possible number of cliques of size t in a
graph on n vertices with given maximum degree. Soon afterward, Chakraborti and Chen answered
the version of this question in which we ask that the graph have m edges and fixed maximum degree
(without imposing any constraint on the number of vertices). In this paper we address these problems
on hypergraphs. For s-graphs with s \geq 3 a number of issues arise that do not appear in the graph
case. For instance, for general s-graphs we can assign degrees to any i-subset of the vertex set with
1\leq i\leq s - 1. We establish bounds on the number of t-cliques in an s-graph \scrH with i-degree bounded
by \Delta in three contexts: \scrH has n vertices; \scrH has m (hyper)edges; and (generalizing the previous
case) \scrH has a fixed number p of u-cliques for some u with s\leq u\leq t. When \Delta is of a special form we
characterize the extremal s-graphs and prove that the bounds are tight. These extremal examples
are the shadows of either Steiner systems or partial Steiner systems. On the way to proving our
uniqueness results, we extend results of F\"uredi and Griggs on uniqueness in Kruskal--Katona from
the shadow case to the clique case.

Key words. cliques, enumeration, hypergraph, extremal, degree

MSC codes. 05C30, 05C35, 05C65, 05D05

DOI. 10.1137/22M1507565

1. Introduction. There has been recent interest in generalized Tur\'an problems:
determining the maximum (or minimum) number of copies of a fixed graph T that a
graph G can contain, subject to a variety of constraints. The roots of this problem
go back to Tur\'an's theorem [23] and its extension by Zykov [25], which determine,
respectively, the maximum number of copies of K2 and Kt in a graph on n vertices
containing no Kr+1. The paper of Alon and Shikhelman [1] proved many foundational
results and introduced the general problem to a wider audience.

1.1. Many cliques in bounded-degree graphs. We will focus on hypergraph
versions of three generalized Tur\'an problems: determining the maximum number of
cliques in graphs of bounded degree, using either vertices, edges, or cliques as a
``resource."" We discuss the graph problems below; for a more complete history see
[2, 4, 5, 6, 12, 17, 18]. The first phase of progress in these problems consisted of
``signpost"" results: estimates that are best possible infinitely often, but not for all
values of the parameters.

We write kt(G) for the number of cliques of size t (and always insist that t\geq 1).
Similarly k\geq t(G) is the number of cliques of size at least t in G. The next two theorems
are versions of results due to Wood, phrased to match the hypergraph results we prove
later.
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MANY CLIQUES IN BOUNDED-DEGREE HYPERGRAPHS 1437

Theorem 1 (Wood [24]). If G is a graph on n vertices with \Delta (G)\leq r - 1, then

kt(G)\leq n

r

\biggl( 
r

t

\biggr) 
and k\geq 1(G)\leq n

r
(2r  - 1)

with equality when G= aKr.

Theorem 2 (Wood [24]). If G is a graph having m edges with \Delta (G) \leq r  - 1,
then

kt(G)\leq m\bigl( 
r
2

\bigr) \biggl( r
t

\biggr) 
and k\geq 2(G)\leq m\bigl( 

r
2

\bigr) (2r  - r - 1)

with equality when G= aKr.

Quite recently, results in this direction were proved that are best possible for all
values of the parameters. The vertex problem was solved by Chase [4]. He proved a
conjecture of Gan, Loh, and Sudakov [12] using their reduction of the problem to the
case t= 3. Later Chao and Dong [3] gave a new proof of Theorem 3 that proves the
result for all t simultaneously.

Theorem 3 (Chase [4], Chao and Dong [3]). Let G be a graph with \Delta (G)\leq r - 1
on n vertices. Let a and b satisfy n= ar+ b with 0\leq b < r. Then

kt(G)\leq a

\biggl( 
r

t

\biggr) 
+

\biggl( 
b

t

\biggr) 
with equality for the graph G = aKr \cup Kb, the disjoint union of a copies of Kr and
one copy of Kb.

Using Theorem 3, Chakraborti and Chen [2] solved the edge problem.

Theorem 4 (Chakraborti and Chen [2]). Let G be a graph with \Delta (G) \leq r  - 1
having m edges. Let a and b satisfy m= a

\bigl( 
r
2

\bigr) 
+ b with 0\leq b <

\bigl( 
r
2

\bigr) 
. Then

kt(G)\leq a

\biggl( 
r

t

\biggr) 
+ kt(\scrC 2(b))

with equality for the graph G = aKr \cup \scrC 2(b). Here, \scrC 2(b) is the colex graph having b
edges: the graph on vertex set N whose edges are the first b pairs in colexicographic
order.

In this paper we are concerned with hypergraph versions of these problems. To
state the questions we need to introduce our notation for hypergraphs and discuss the
issue of degrees in hypergraphs. This we do next.

In section 2 we discuss various versions of the Kruskal--Katona theorem, which is
central in this area. In section 3 we prove general results for arbitrary degree bounds.
In section 4 we introduce constructions which, in some cases, give optimal exam-
ples, and prove some results about optimality and asymptotic optimality. Finally, in
section 5 we mention some open problems.

1.2. Hypergraph definitions and questions. Our notation is mostly
standard.

Definition 5. An s-graph \scrH is a pair (V,\scrE ) consisting of a set of vertices V
together with a subset \scrE \subseteq 

\bigl( 
V
s

\bigr) 
. Frequently we'll suppress mention of the vertex set

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1438 RACHEL KIRSCH AND JAMIE RADCLIFFE

and simply use \scrH to refer to the edge set. If I \subseteq V has size i, then we define the
neighborhood \scrH (I) of I to be the (s - i)-graph with edge set

\scrE (\scrH (I)) = \{ E \setminus I : I \subseteq E \in \scrE (\scrH )\} .

The degree of I in \scrH is the number of these edges, i.e.,

d\scrH (I) = | \{ E \in \scrE (\scrH ) : I \subseteq E\} | .

We let the vertex set of \scrH (I) be the union of all the edges in \scrE (\scrH (I)), i.e., we omit
all vertices not contained in an edge of \scrH (I). The maximum i-degree of \scrH is simply

\Delta i(\scrH ) =max

\biggl\{ 
d\scrH (I) : I \in 

\biggl( 
V

i

\biggr) \biggr\} 
.

We now define shadows and cliques in hypergraphs.

Definition 6. Suppose that \scrA is an s-graph. The shadow of \scrA on level q (where
q < s) is given by

\partial d(\scrA ) = \{ B : | B| = q and \exists A\in \scrA s.t.B \subseteq A\} =
\bigcup 
A\in \scrA 

\biggl( 
A

q

\biggr) 
.

The set of cliques on level t (where t > s) is

Kt(\scrA ) =

\biggl\{ 
C : | C| = t and

\biggl( 
C

s

\biggr) 
\subseteq \scrA 

\biggr\} 
.

We let kt(\scrA ) = | Kt(\scrA )| .
We can now state the questions we address in this paper.

Question 1. Suppose that an s-graph \scrH has n vertices and that for some 1 \leq 
i\leq s - 1 and D> 0 we have \Delta i(\scrH )\leq D. Given t\geq s, what is the maximum possible
value of kt(\scrH )? In other words we aim to determine

max\{ kt(\scrH ) :\scrH an s-graph with n vertices and \Delta i(\scrH )\leq D\} .

Question 2. Suppose that an s-graph \scrH has m edges and that for some 1\leq i\leq 
s  - 1 and D > 0 we have \Delta i(\scrH ) \leq D. Given t \geq s, what is the maximum possible
value of kt(\scrH )? In other words, what is

max\{ kt(\scrH ) :\scrH an s-graph with m edges and \Delta i(\scrH )\leq D\} ?

Question 3. Suppose that an s-graph \scrH has ku(\scrH ) = p for some u\geq s and that
for some 1 \leq i \leq s  - 1 and D > 0 we have \Delta i(\scrH ) \leq D. Given t \geq u, what is the
maximum possible value of kt(\scrH )? That is, determine

max\{ kt(\scrH ) :\scrH an s-graph with ku(\scrH ) = p and \Delta i(\scrH )\leq D\} .

1.3. Related extremal problems. The area of extremal problems for hyper-
graphs is rich and deep. The Kruskal--Katona theorem, which we discuss in section 2,
is an upper bound on the number of t-cliques in an s-graph with a given number of
edges. Moreover, it implies a bound on the number of t-cliques in an s-graph having a
given number of u-cliques for some s < u\leq t. In [9], Frohmader improved this bound
in the case s= 2.

The Kruskal--Katona theorem puts few restrictions on the s-graphs involved. A
substantial amount of work has been done when we forbid large cliques in our s-
graphs. The earliest such result is by Zykov [25]. He proved the following result for
graphs.
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MANY CLIQUES IN BOUNDED-DEGREE HYPERGRAPHS 1439

Theorem 7 (Zykov [25]). If \scrH is a graph on n vertices containing no (r + 1)-
clique, then kt(\scrH )\leq kt(Tr(n)). Here Tr(n) is the Tur\'an graph, that is to say, it is the
complete r-partite graph on n vertices whose parts are of sizes as equal as possible.

The analogous result where we constrain G to have m edges is much more recent.
The following result is due to Frohmader [8]. To describe the result we need to define
the r-partite colex Tur\'an graph. Let r be a positive integer. The r-partite colex order
is the restriction of the colex order on

\bigl( N
2

\bigr) 
to \{ ij : i \not \equiv j (mod r)\} . The r-partite colex

Tur\'an graph with m edges, CTr(m), is the graph on vertex set N whose edge set
consists of the first m edges in r-partite colex order. (Note that if m = tr(n), then
the unique nontrivial component of CTr(m) is isomorphic to Tr(n).)

Theorem 8 (Frohmader [8]). If G is a Kr+1-free graph with m edges and 2 \leq 
t\leq r, then kt(G)\leq kt

\bigl( 
CTr(m)

\bigr) 
.

In stark contrast to these positive results about graphs, even the Tur\'an problem
for s-graphs with s > 2 is apparently intractable. For no r > s \geq 3 is the problem of
determining

max\{ | \scrH | :\scrH is an s-graph on vertex set [n] not containing an (r+ 1)-clique\} 

solved for all n, even asymptotically. (See Keevash's survey [15] for extensive discus-
sion of this problem.) The hypergraph analogue of Theorem 8 seems no easier.

In a recent paper, Liu andWang [20] determined the maximum number of t-cliques
in an s-graph on n vertices containing at most k disjoint edges (for n sufficiently large).

In the context of hypergraphs with bounded degree, Jung [13] considered the
question of minimizing the ratio | \partial s - 1(\scrH )| /| \scrH | for s-graphs \scrH having bounded 1-
degree. Jung's results have a spirit similar to ours, but are not directly comparable. In
an opposite direction F\"uredi and Zhao [11] considered 3-graphs \scrH with large minimum
degree and gave asymptotically best possible lower bounds on the size of \partial 2(\scrH ).

2. The Kruskal--Katona theorem. The fundamental theorem given in The-
orem 10 below was proved independently by Kruskal [19] and Katona [14]. It shows
that for a given number of edges m, the s-graph with the most t-cliques and the
smallest q-shadow is the colex hypergraph, denoted \scrC (m), whose edges form an ini-
tial segment in the colexicographic (or colex ) order. Colex order is defined on finite
subsets of N by A < B if and only if max(A \bigtriangleup B) \in B. The original version of
the Kruskal--Katona theorem discussed only shadows, but the version below describes
also a closely related version, giving bounds on the number of cliques in s-graphs. For
completeness we prove these versions (and slightly more) in Appendix A.

Definition 9. We define the following functions mapping a number of edges m
to the size of the q-shadow and the number of t-cliques of \scrC (m):

\partial s
q (m) = | \partial q(\scrC (m))| and kts(m) = kt(\scrC (m)).

Theorem 10 (the Kruskal--Katona theorem [14, 19]). For all 0\leq q < s < t\leq n,
if \scrA is an s-graph on vertex set V with | V | = n, then we have

| \partial q(\scrA )| \geq \partial s
q (m) and kt(\scrA )\leq kts(m),

where m= | \scrA | . In other words, the colex s-graph \scrC (m) has the smallest q-shadow and
the largest number of t-cliques among all s-graphs of size m.

We also record here the following relationship between the functions kts and \partial n - s
n - t .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1440 RACHEL KIRSCH AND JAMIE RADCLIFFE

Lemma 11. For all 0\leq s\leq t\leq n and 0\leq m\leq 
\bigl( 
n
s

\bigr) 
,

kts(m) =

\biggl( 
n

t

\biggr) 
 - \partial n - s

n - t

\biggl( \biggl( 
n

s

\biggr) 
 - m

\biggr) 
.

2.1. Cascade notation. The standard way of describing initial segments of the
colex order is cascade notation, introduced by Kruskal in [19]. A good reference for
the material in this subsection is Chapter 6 of the book [7] by Frankl and Tokushige.

Definition 12. We will say that an integer sequence (ns, ns - 1, . . . , ns - \ell +1) is a
cascade if it is strictly decreasing. We will define, for s \geq 1 and arbitrary cascades
(ns, ns - 1, . . . , ns - \ell +1) of length \ell \geq 0,

[ns, ns - 1, . . . , ns - \ell +1]s =
\ell  - 1\sum 
k=0

\biggl( 
ns - k

s - k

\biggr) 
.

We say that a cascade is a strict s-cascade if ns - k \geq s - k for all 0\leq k \leq \ell  - 1, and
also \ell \leq s. In that case every term in (the sum defining) [ns, ns - 1, . . . , ns - \ell +1]s is
positive.

Remark 13. In checking that a cascade (ns, ns - 1, . . . , ns - \ell +1) is strict it is suffi-
cient to check that ns - k \geq s - k for k = \ell  - 1, because if so, then for every k < \ell  - 1
we have

ns - k \geq ns - \ell +1 + (\ell  - 1 - k)\geq s - \ell + 1+ (\ell  - 1 - k) = s - k.

Definition 14. If \scrB is a family of sets, each disjoint from a fixed set A, we write
A+\scrB for the family

A+\scrB = \{ A\cup B :B \in \scrB \} .

Lemma 15. For all m\geq 0 and all s\geq 1 there exists a unique strict s-cascade such
that m = [ns, ns - 1, . . . , ns - \ell +1]s. Indeed (ns, ns - 1, . . . , ns - \ell +1) is the unique strictly
decreasing sequence of length \ell \geq 0 satisfying\biggl( 

ns

s

\biggr) 
<m<

\biggl( 
ns + 1

s

\biggr) 
,\biggl( 

ns

s

\biggr) 
+

\biggl( 
ns - 1

s - 1

\biggr) 
<m<

\biggl( 
ns

s

\biggr) 
+

\biggl( 
ns - 1 + 1

s - 1

\biggr) 
,

...\biggl( 
ns

s

\biggr) 
+

\biggl( 
ns - 1

s - 1

\biggr) 
+ \cdot \cdot \cdot +

\biggl( 
ns - \ell +2

s - \ell + 2

\biggr) 
<m<

\biggl( 
ns

s

\biggr) 
+

\biggl( 
ns - 1

s - 1

\biggr) 
+ \cdot \cdot \cdot +

\biggl( 
ns - \ell +2 + 1

s - \ell + 2

\biggr) 
,\biggl( 

ns

s

\biggr) 
+

\biggl( 
ns - 1

s - 1

\biggr) 
+ \cdot \cdot \cdot +

\biggl( 
ns - \ell +1

s - \ell + 1

\biggr) 
=m.

If (ns, ns - 1, . . . , ns - \ell +1) has length 1, then the first of these inequalities is satisfied
with equality on the left. If m= 0, then we get the unique sequence of length 0 for all
s\geq 1. Moreover, for all m\geq 0 and s\geq 1 the colex initial segment of

\bigl( N
s

\bigr) 
of length m

is

\scrC (m) =
\ell  - 1\bigcup 
k=0

\Biggl( 
\{ ns - j + 1 : 0\leq j < k\} +

\biggl( 
[ns - k]

s - k

\biggr) \Biggr) 
,

where (ns, ns - 1, . . . , ns - \ell +1) is the unique s-cascade such that m = [ns, ns - 1, . . . ,
ns - \ell +1]s.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

04
/1

8/
25

 to
 1

29
.1

86
.1

92
.1

19
 . 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



MANY CLIQUES IN BOUNDED-DEGREE HYPERGRAPHS 1441

Definition 16. For all m \geq 0 and all s \geq 1, we denote by is(m) the unique
s-cascade such that m= [ns, ns - 1, . . . , ns - \ell +1]s, guaranteed by Lemma 15.

Using cascade notation, we can exhibit lovely expressions for the number of cliques
and the size of the shadow of a colex initial segment.

Lemma 17. If (ns, ns - 1, . . . , ns - \ell +1) is a strict s-cascade and m= [ns, ns - 1, . . . ,
ns - \ell +1]s, then

kts(m) = kt(\scrC (m)) = [ns, ns - 1, . . . , ns - \ell +1]t, and

\partial s
q (m) = | \partial q(\scrC (m))| = [ns, ns - 1, . . . , ns - \ell +1]q.

Proof. The proof is straightforward. See [7] for a proof of the shadow case when
q = s - 1. The general shadow result and the proof for cliques are similar. Note that
neither the t-cascade nor the q-cascade needs to be strict.

2.2. Lov\'asz Kruskal--Katona. Cascades have the merit of giving the precise
values of \partial s

q (m) and kts(m), but are somewhat unwieldy to work with. There is
a simpler form of the Kruskal--Katona theorem, due to Lov\'asz [21], that is often
strong enough. We work with the natural polynomial generalization of the binomial
coefficient

\bigl( 
n
k

\bigr) 
to real values of n.

Definition 18. For a real number x and natural number k, the generalized bi-
nomial coefficient is defined as

\bigl( 
x
k

\bigr) 
= (x)(x  - 1) \cdot \cdot \cdot (x  - k + 1)/k!. Note that

\bigl( 
x
k

\bigr) 
is

strictly increasing for x\geq k  - 1 and all y \geq 0 can be represented in the form y =
\bigl( 
x
k

\bigr) 
for some x\geq k - 1.

Lemma 19 (Lov\'asz [21]). Let \scrH be an r-graph. If | \scrH | =
\bigl( 
u
r

\bigr) 
, where u\geq r is real,

then | \partial k(\scrH )| \geq 
\bigl( 
u
k

\bigr) 
for all k \in [r].

The clique version of this result is a straightforward consequence.

Theorem 20. Let s, t\in N with t\geq s. Let \scrH be an s-graph with | \scrH | =
\bigl( 
x
s

\bigr) 
, where

x\geq s - 1 is real. Then if x< t we have kt(\scrH ) = 0 and otherwise kt(\scrH )\leq 
\bigl( 
x
t

\bigr) 
.

Proof. If x < t, then | \scrH | <
\bigl( 
t
s

\bigr) 
and in particular \scrH does not have enough edges

to contain a t-clique, i.e., kt(\scrH ) = 0. If x \geq t, then let \scrT = Kt(\scrH ), so \scrT is a t-
graph. We define u \geq t by | \scrT | =

\bigl( 
u
t

\bigr) 
. By Lemma 19, the number of s-sets (edges

of \scrH ) contained in edges of \scrT (t-cliques of \scrH ) is at least
\bigl( 
u
s

\bigr) 
. The number of edges

of \scrH contained in t-cliques of \scrH is at most the number of edges of \scrH , so we have\bigl( 
x
s

\bigr) 
= | \scrH | \geq 

\bigl( 
u
s

\bigr) 
. Since

\bigl( 
x
s

\bigr) 
is strictly increasing in x for x \geq s  - 1 we must have

x\geq u\geq t, so kt(\scrH ) = | \scrT | =
\bigl( 
u
t

\bigr) 
\leq 
\bigl( 
x
t

\bigr) 
.

3. Signpost results for hypergraphs. In this section we prove ``signpost""
versions of Theorems 3 and 4 for hypergraphs. We solve three related problems,
fixing the numbers of vertices, edges, and cliques. For each problem we prove an
upper bound on the number of t-cliques.

3.1. Hypergraphs with a fixed number of vertices. We start with a bound
on the number of t-cliques in an s-graph on n vertices with maximum degree at most
\Delta . The argument bounds the number of cliques that can contain a fixed i-set I and
deduces a bound on the total number of t-cliques.

Theorem 21. Let 1\leq i < s and suppose that \scrH is an s-graph on n vertices such
that \Delta i(\scrH )\leq \Delta . Then

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1442 RACHEL KIRSCH AND JAMIE RADCLIFFE

kt(\scrH )\leq 
\biggl( 
n

i

\biggr) 
kt - i
s - i(\Delta )\bigl( 

t
i

\bigr) .

If equality holds, then for each I \in 
\bigl( 
[n]
i

\bigr) 
the neighborhood \scrH (I) contains kt - i

s - i(\Delta )
(t - i)-cliques.

Proof. We count pairs (I,K) where I \in 
\bigl( 
[n]
i

\bigr) 
, K \in Kt(\scrH ), and I \subseteq K. Counting

by t-cliques in \scrH we have a total of
\bigl( 
t
i

\bigr) 
kt(\scrH ). On the other hand consider I \in 

\bigl( 
[n]
i

\bigr) 
.

For cliques K that contain I, all s-sets E such that I \subseteq E \subseteq K must be in \scrH . Thus
| \{ K : I \subseteq K \in Kt(\scrH )\} | \leq kt - i

\bigl( 
\scrH (I)

\bigr) 
. Since by hypothesis | \scrH (I)| = d\scrH (I) \leq \Delta we

have

| \{ K : I \subseteq K \in Kt(\scrH )\} | \leq kt - i
\bigl( 
\scrH (I)

\bigr) 
\leq kt - i

s - i(\Delta )

by Theorem 10. Thus, summarizing, we have\biggl( 
t

i

\biggr) 
kt(\scrH )\leq 

\biggl( 
n

i

\biggr) 
kt - i
s - i(\Delta ),

kt(\scrH )\leq 
\biggl( 
n

i

\biggr) 
kt - i
s - i(\Delta )\bigl( 

t
i

\bigr) .

If we have equality, then kt - i
\bigl( 
\scrH (I)

\bigr) 
= kt - i

s - i(\Delta ) for every I \in 
\bigl( 
[n]
i

\bigr) 
.

From this result the following corollary is immediate from our known bounds on
kt - i
s - i.

Corollary 22. Let 1 \leq i < s and suppose that \scrH is an s-graph on n vertices
such that \Delta i(\scrH )\leq \Delta .

(a) If the cascade representation of \Delta is given by [ns - i, ns - i - 1, . . . , ns - i - \ell +1]s - i,
then

kt(\scrH )\leq 
\biggl( 
n

i

\biggr) 
[ns - i, ns - i - 1, . . . , ns - i - \ell +1]t - i\bigl( 

t
i

\bigr) .

(b) If \Delta =
\bigl( 
x - i
s - i

\bigr) 
for some (not necessarily integral) x\geq s, then we have

kt(\scrH )\leq 
\biggl( 
n

i

\biggr) \bigl( x - i
t - i

\bigr) \bigl( 
t
i

\bigr) =

\biggl( 
n

i

\biggr) \bigl( x
t

\bigr) \bigl( 
x
i

\bigr) 
if x\geq t and kt(\scrH ) = 0 for s\leq x< t.

Proof. The two parts follow from Theorem 21 together with Lemma 17 and The-
orem 20, respectively.

3.2. Hypergraphs with a fixed number of edges. We switch now to con-
sidering hypergraphs with a fixed number of edges.

We write Kt
\scrH (E) for the set of t-cliques in \scrH containing the edge E and kt\scrH (E)

for | Kt
\scrH (E)| .

Lemma 23. For any s-graph \scrH and t\geq s,

kt(\scrH )

\biggl( 
t

s

\biggr) 
=
\sum 
E\in \scrH 

kt\scrH (E).
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MANY CLIQUES IN BOUNDED-DEGREE HYPERGRAPHS 1443

Proof. Count the pairs (E,K), where E \subseteq K \in KT (\scrH ), in two ways.

Lemma 24. Let \scrH be an s-graph containing an edge E \in \scrH , and let I ( E with
| I| = i. Let K be a t-clique of \scrH containing E. Then K \setminus I is a (t - i)-clique in \scrH (I),
and kt\scrH (E)\leq kt - i

\scrH (I)(E \setminus I).

Proof. We'll show that K \mapsto \rightarrow K \setminus I is map from Kt
\scrH (E) to Kt - i

\scrH (I)(E \setminus I), from
which it is clear that the map is an injection. We have | K \setminus I| = t - i since I (E \subseteq K.
Consider then an (s  - i)-subset F \subseteq K \setminus I. We have F \cup I \in 

\bigl( 
K
s

\bigr) 
\subseteq \scrH , hence

F = (F \cup I) \setminus I \in \scrH (I). Therefore K \setminus I \in Kt - i(\scrH (I)) and K \setminus I \in Kt - i
\scrH (I)(E \setminus I).

Lemma 25. Let 1 \leq i < s < t and suppose that \scrH is an s-graph such that
\Delta i(\scrH ) \leq 

\bigl( 
x - i
s - i

\bigr) 
for some (not necessarily integral) x \geq t  - 1. If I ( E \in \scrH and

\scrJ =\scrH (I), then

kt - i(\scrJ )

| \scrJ | 
\leq 

(x - s)(t - s)

(t - i)(t - s)
,

where kt - i(\scrJ ) is the number of (t - i)-cliques in the (s - i)-graph \scrJ . If equality is
achieved, then | \scrJ | =

\bigl( 
x - i
s - i

\bigr) 
and kt - i(\scrJ ) =

\bigl( 
x - i
t - i

\bigr) 
.

Proof. The number of edges in the neighborhood is | \scrJ | = d\scrH (I)\leq \Delta i(\scrH )\leq 
\bigl( 
x - i
s - i

\bigr) 
,

so | \scrJ | =
\bigl( 

y
s - i

\bigr) 
for some s - i - 1 \leq y \leq x - i. If y < t - i, then kt - i(\scrJ ) = 0, so the

lemma holds. Otherwise, y\geq t - i. By Theorem 20, kt - i(\scrJ )\leq 
\bigl( 

y
t - i

\bigr) 
, so

kt - i(\scrJ )

| \scrJ | 
\leq 
\bigl( 

y
t - i

\bigr) \bigl( 
y

s - i

\bigr) (1)

=
y(y - 1) \cdot \cdot \cdot (y - s+ i+ 1)(y  - s+ i) \cdot \cdot \cdot (y - t+ i+ 1)

y(y - 1) \cdot \cdot \cdot (y - s+ i+ 1)

(s - i)!

(t - i)!

=
(y - s+ i)(t - s)

(t - i)(t - s)
using s < t

\leq 
(x - s)(t - s)

(t - i)(t - s)
,(2)

since (x  - s)(t - s) is a strictly increasing function of x for x \geq t  - 1, and we have

y + i > t  - 1. If kt - i(\scrJ )
| \scrJ | =

(x - s)(t - s)

(t - i)(t - s)
, then equality holds in (2), so y + i = x, and

| \scrJ | =
\bigl( 
x - i
s - i

\bigr) 
. Then equality in (1) implies that kt - i(\scrJ ) =

\bigl( 
x - i
t - i

\bigr) 
.

Remark 26. The expression kt - i
s - i(m)/m is not an increasing function ofm, whereas

(x - s)(t - s)

(t - i)(t - s)
is an increasing function of x. For values of m where

kt - i
s - i(m)

m
= max

m\prime \leq m

kt - i
s - i(m

\prime )

m\prime (3)

we can improve Lemma 25 to say that if \Delta i(\scrH )\leq m, then

kt - i(\scrJ )

| \scrJ | 
\leq 

kt - i
s - i(m)

m
.

For m =
\bigl( 
x - i
s - i

\bigr) 
where x is an integer, it is easy to check that (3) holds. It is an

interesting question to determine which values of m satisfy (3).
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1444 RACHEL KIRSCH AND JAMIE RADCLIFFE

Theorem 27. Let 1 \leq i < s and suppose that \scrH is an s-graph having m edges
such that \Delta i(\scrH ) \leq 

\bigl( 
x - i
s - i

\bigr) 
for some (not necessarily integral) x \geq s. Then, for all

t\geq s+ 1,

kt(\scrH )\leq m

\bigl( 
x
t

\bigr) \bigl( 
x
s

\bigr) .
If equality holds, then for each I \in \partial i(\scrH ) we have kt - i(\scrH (I)) =

\bigl( 
x - i
t - i

\bigr) 
.

Proof. If t > x, then kt(\scrH ) = 0 because any i-set I contained in a t-clique would
have d\scrH (I)\geq 

\bigl( 
t - i
s - i

\bigr) 
>
\bigl( 
x - i
s - i

\bigr) 
. Therefore we may assume t\leq x. We will count

S = \{ (I,E,K) : I (E \subseteq K \in Kt(\scrH ), | I| = i, | E| = s\} 

in two ways. Counting by K, then E, then I, we obtain

| S| = kt(\scrH )

\biggl( 
t

s

\biggr) \biggl( 
s

i

\biggr) 
.

Counting by I, then E, then K, and letting \scrJ =\scrH (I), we obtain

| S| =
\sum 

I\in \partial i(\scrH )

\sum 
E\supseteq I

kt\scrH (E)

\leq 
\sum 

I\in \partial i(\scrH )

\sum 
E\supseteq I

kt - i
\scrJ (E \setminus I) by Lemma 24

=
\sum 

I\in \partial i(\scrH )

kt - i(\scrJ )

\biggl( 
t - i

s - i

\biggr) 
by Lemma 23

\leq 
\biggl( 
t - i

s - i

\biggr) \sum 
I\in \partial i(\scrH )

(x - s)(t - s)

(t - i)(t - s)
| \scrJ | by Lemma 25

=

\biggl( 
t - i

s - i

\biggr) 
(x - s)(t - s)

(t - i)(t - s)

\sum 
I\in \partial i(\scrH )

d\scrH (I)

=

\biggl( 
t - i

t - s

\biggr) \bigl( x - s
t - s

\bigr) \bigl( 
t - i
t - s

\bigr) \sum 
I\in \partial i(\scrH )

d\scrH (I)

=

\biggl( 
x - s

t - s

\biggr) \biggl( 
s

i

\biggr) 
m.

Therefore, kt(\scrH )
\bigl( 
t
s

\bigr) \bigl( 
s
i

\bigr) 
= | S| \leq 

\bigl( 
x - s
t - s

\bigr) \bigl( 
s
i

\bigr) 
m, and

kt(\scrH )\leq 
\bigl( 
x - s
t - s

\bigr) \bigl( 
t
s

\bigr) m=

\bigl( 
x
t

\bigr) \bigl( 
x
s

\bigr) m.

The last equation follows from the fact that
\bigl( 
x
t

\bigr) \bigl( 
t
s

\bigr) 
= (x)(x - 1)\cdot \cdot \cdot (x - t+1)

s!(t - s)! =
\bigl( 
x
s

\bigr) \bigl( 
x - s
t - s

\bigr) 
.

If kt(\scrH ) =m
(xt)
(xs)

, then we have equality in the above application of Lemma 25 for

every I \in \partial i(\scrH ). By Lemma 25, kt - i(\scrH (I)) =
\bigl( 
x - i
t - i

\bigr) 
for every I \in \partial i(\scrH ).

3.3. Hypergraphs with a fixed number of cliques. In this section we con-
sider s-graphs that have a fixed number of u-cliques, for some u> s. The numbers of
vertices and edges are not specified. We will use the following lemma to connect this
problem to our previous results.
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MANY CLIQUES IN BOUNDED-DEGREE HYPERGRAPHS 1445

Lemma 28. Let 1 \leq i < s \leq u and suppose that \scrH is an s-graph such that
\Delta i(\scrH ) \leq 

\bigl( 
x - i
s - i

\bigr) 
for some (not necessarily integral) x \geq s. If x < u, then \scrH has no

u-cliques, and otherwise the u-graph \scrU :=Ku(\scrH ) satisfies \Delta i(\scrU )\leq 
\bigl( 
x - i
u - i

\bigr) 
.

Proof. For any i-set I of vertices of \scrH , let \scrK = \scrU (I) and let \scrF =\scrH (I). We prove
first that \scrK \subseteq Ku - i(\scrF ). Consider an arbitrary (u - i)-edge EI of \scrK . By definition it
satisfies EI \cup I \in Ku(\scrH ), so every s-set in EI \cup I is an edge of \scrH , and every (s - i)-set
in EI is an edge of \scrH (I). Therefore EI is a (u - i)-clique in \scrH (I) =\scrF , as required.

We are given that | \scrF | = d\scrH (I)\leq 
\bigl( 
x - i
s - i

\bigr) 
, so we have | \scrF | =

\bigl( 
y

s - i

\bigr) 
for some s - i - 1\leq 

y \leq x  - i. By Theorem 20, if y < u  - i, then ku - i(\scrF ) = 0, i.e., \scrK is empty, and
otherwise ku - i(\scrF ) \leq 

\bigl( 
y

u - i

\bigr) 
\leq 
\bigl( 
x - i
u - i

\bigr) 
. If x < u, then we are always in the first case.

Otherwise we have d\scrU (I) = | \scrK | \leq ku - i(\scrF )\leq 
\bigl( 
x - i
u - i

\bigr) 
.

We generalize Theorem 27 as follows. The s= u case is exactly Theorem 27.

Theorem 29. Let 1 \leq i < s \leq u and suppose that \scrH is an s-graph such that
ku(\scrH ) = p and \Delta i(\scrH )\leq 

\bigl( 
x - i
s - i

\bigr) 
for some (not necessarily integral) x\geq s. Then, for all

t\geq u,

kt(\scrH )\leq p

\bigl( 
x
t

\bigr) \bigl( 
x
u

\bigr) .
If equality holds, then for each I \in \partial i(\scrU ) we have kt - i(\scrU ) =

\bigl( 
x - i
t - i

\bigr) 
, where \scrU =Ku(\scrH ).

Proof. By Lemma 28, we can apply Theorem 27 to the u-graph \scrU := Ku(\scrH ).
Since \scrU is a u-graph with p edges and \Delta i(\scrU ) \leq 

\bigl( 
x - i
u - i

\bigr) 
, Theorem 27 implies that for

all t \geq u we have kt(\scrU ) \leq p
(xt)
(xu)

, with equality only if for each I \in \partial i(\scrU ) we have

kt - i(\scrU (I)) =
\bigl( 
x - i
t - i

\bigr) 
. Recall s \leq u \leq t. Given a t-clique T in the s-graph \scrH , every

u-set in T is a u-clique of \scrH , so T is also a t-clique in the u-graph \scrU . Therefore

kt(\scrH )\leq kt(\scrU )\leq p
(xt)
(xu)

.

4. Extremal hypergraphs and asymptotic tightness. In this section we
discuss the extent to which the signpost results from the previous section are tight.
We begin in subsection 4.1 by discussing cases where colex hypergraphs are the unique
examples achieving the bounds in Theorem 10. In subsection 4.2 we then introduce
some constructions that we use to produce cases of equality in our theorems. In
the later subsections we discuss the three signpost results in relation to asymptotic
tightness and uniqueness of examples.

4.1. Uniqueness in Kruskal--Katona. We introduce two definitions from [10]
by F\"uredi and Griggs.

Definition 30. Given 1 \leq q < s \leq n we say that m is a jumping number (or
(s, q)-jumping number if we want to be more explicit) if \partial s

q (m+ 1)> \partial s
q (m). We say

that m is a colex-unique number if all s-graphs with m edges satisfying | \partial q(\scrH )| =
\partial s
q (m) are isomorphic to \scrC s(m).

The following two theorems are proved in [10].

Theorem 31 (F\"uredi and Griggs [10]). Suppose that 1 \leq q < s \leq n and that
0 \leq m \leq 

\bigl( 
n
s

\bigr) 
is represented by the strict s-cascade m = [ns, ns - 1, . . . , ns - \ell +1]s. Then

m is an (s, q)-jumping number if and only if \ell \leq q.

Theorem 32 (F\"uredi and Griggs [10]). Suppose that 1 \leq q < s \leq n and that
0 \leq m \leq 

\bigl( 
n
s

\bigr) 
is represented by the strict s-cascade m = [ns, ns - 1, . . . , ns - \ell +1]s. Then
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1446 RACHEL KIRSCH AND JAMIE RADCLIFFE

m is a colex-unique number for all m\leq s+ 1. If m> s+ 1, then m is a colex-unique
number if and only if one of the following is true:

(a) m is a jumping number, i.e., \ell \leq q, or

(b) there exists n\prime \leq n such that m=
\bigl( 
n\prime 

s

\bigr) 
 - 1.

For m> s+ 1 conditions (a) and (b) are mutually exclusive.

The next lemma and the subsequent corollary will help us in the process of tracing
the criterion for uniqueness through the steps of the proof of Theorem 10.

Lemma 33. Suppose that u, v\geq 1 and the cascade representations

N = [nu, nu - 1, . . . , nu - k+1]u and M = [mv,mv - 1, . . . ,mv - \ell +1]v

satisfy nu - k+1 =mv - \ell +1. Let b= nu - k+1 =mv - \ell +1. Suppose moreover that

\{ b,nu - k+2, . . . , nu - 1, nu\} \cup \{ b,mv - \ell +2, . . . ,mv - 1,mv\} = \{ b, b+ 1, . . . , u+ v - 1\} 

and

\{ b,nu - k+2, . . . , nu - 1, nu\} \cap \{ b,mv - \ell +2, . . . ,mv - 1,mv\} = \{ b\} .

Then N +M =
\bigl( 
u+v
u

\bigr) 
=
\bigl( 
u+v
v

\bigr) 
.

Proof. Consider first the case that min(u, v) = 1. Without loss of generality we
suppose that u= 1. Then u+ v - 1 = v so for some 1\leq b\leq v we have

N +M = [b]1 + [v, v  - 1, v - 2, . . . , b+ 1, b]v

= b+
v\sum 

i=b

\biggl( 
i

i

\biggr) 
= b+ (v - b+ 1) = v+ 1=

\biggl( 
u+ v

u

\biggr) 
.

Now suppose that u, v > 1. By symmetry we may suppose that nu = u+ v - 1. If
k > 1, then we let

N \prime = [nu - 1, nu - 2, . . . , b].

Note that the representations of N \prime and M satisfy the hypotheses of the lemma, with
u\prime = u - 1 and k\prime = k - 1. By induction we get

N +M =

\biggl( 
u+ v - 1

u

\biggr) 
+N \prime +M =

\biggl( 
u+ v - 1

u

\biggr) 
+

\biggl( 
u+ v - 1

u - 1

\biggr) 
=

\biggl( 
u+ v

u

\biggr) 
.

On the other hand if k = 1, then we're forced to have N = [u + v  - 1]u and M =
[u+ v - 1]v, so

N +M =

\biggl( 
u+ v - 1

u

\biggr) 
+

\biggl( 
u+ v - 1

v

\biggr) 
=

\biggl( 
u+ v - 1

u

\biggr) 
+

\biggl( 
u+ v - 1

u - 1

\biggr) 
=

\biggl( 
u+ v

u

\biggr) 
.

Corollary 34. Suppose that 1\leq s < n and that 0<m<
\bigl( 
n
s

\bigr) 
. Let

m= [ns, ns - 1, . . . , ns - \ell +1]s

be the s-cascade representation of m. Then the (n  - s)-cascade representation of
m\prime =

\bigl( 
n
s

\bigr) 
 - m is

m\prime = [n\prime 
n - s, n

\prime 
n - s - 1, . . . , n

\prime 
n - s - k+1]n - s,
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MANY CLIQUES IN BOUNDED-DEGREE HYPERGRAPHS 1447

where ns - \ell +1 = n\prime 
n - s - k+1 and, writing b for this value,

\{ b,ns - \ell +2, . . . , ns - 1, ns\} \cup \{ b,n\prime 
n - s - k+2, . . . , n

\prime 
n - s - 1, n

\prime 
n - s\} = \{ b, b+ 1, . . . , n - 1\} ,

\{ b,ns - \ell +2, . . . , ns - 1, ns\} \cap \{ b,n\prime 
n - s - k+2, . . . , n

\prime 
n - s - 1, n

\prime 
n - s\} = \{ b\} .

(\dagger )

In particular k+ \ell  - 1 = n - b, so k= n - \ell  - b+ 1.

Proof. With n\prime 
n - s, n

\prime 
n - s - 1, . . . , b defined to satisfy (\dagger ) it is easy to check that

n\prime 
n - s - k+1 = b \geq n  - s  - k + 1 and k \leq n  - s. Using Remark 13 we deduce that

(n\prime 
n - s, n

\prime 
n - s - 1, . . . , b) is a strict (n - s)-cascade. Then, by Lemma 33,

[ns, ns - 1, . . . , ns - \ell +1]s + [n\prime 
n - s, n

\prime 
n - s - 1, . . . , n

\prime 
n - s - k+1]n - s =

\biggl( 
s+ (n - s)

s

\biggr) 
=

\biggl( 
n

s

\biggr) 
.

Thus [n\prime 
n - s, n

\prime 
n - s - 1, . . . , n

\prime 
n - s - k+1]n - s is the (n  - s)-cascade representation of\bigl( 

n
s

\bigr) 
 - m.

Theorem 35. Suppose that 1\leq s < t\leq n and that 0<m<
\bigl( 
n
s

\bigr) 
. Let

m+ 1= [ns, ns - 1, . . . , ns - \ell +1]s

be the s-cascade representation of m+ 1, having length \ell . Then m has kts(m+ 1) >
kts(m) if and only if t\leq \ell + ns - \ell +1  - 1. In this case we say that m is an (s, t)-clique-
jumping number.

Proof. From Lemma 11 we have

kt(\scrC (m)) =

\biggl( 
n

t

\biggr) 
 - \partial n - s

n - t

\biggl( \biggl( 
n

s

\biggr) 
 - m

\biggr) 
.

Thus kt(m+ 1)>kt(m) exactly if we have

\partial n - s
n - t (

\biggl( 
n

s

\biggr) 
 - m)>\partial n - s

n - t (

\biggl( 
n

s

\biggr) 
 - m - 1),

i.e.,
\bigl( 
n
s

\bigr) 
 - m - 1 is an (n - s,n - t)-jumping number. By Corollary 34, the length of

the (n  - s)-cascade representation of
\bigl( 
n
s

\bigr) 
 - m  - 1 is k = n  - \ell  - ns - \ell +1 + 1, so by

Theorem 31 we need n - \ell  - ns - \ell +1 + 1\leq n - t, i.e., t\leq \ell + ns - \ell +1  - 1.

Theorem 36. Suppose that 1\leq s < t\leq n and that 0<m<
\bigl( 
n
s

\bigr) 
. Let

m= [ns, ns - 1, . . . , ns - \ell +1]s

be the s-cascade representation of m, having length \ell . Then the colex s-graph \scrH =
\scrC (m) is unique up to isomorphism satisfying | \scrH | = m and kt(\scrH ) = kts(m) if either
m\geq 

\bigl( 
n
s

\bigr) 
 - n+s - 1 holds or m<

\bigl( 
n
s

\bigr) 
 - n+s - 1 and one of the following two (mutually

exclusive) conditions holds:
(a) t\leq \ell +ns - \ell +1  - 1 (equivalently m - 1 is an (s, t)-clique-jumping number), or

(b) for some n - s+ 2\leq n\prime \leq n we have m=
\bigl( 
n
s

\bigr) 
 - 
\bigl( 

n\prime 

n - s

\bigr) 
+ 1.

Proof. By Lemma 11, the colex s-graph \scrH = \scrC (m) is unique up to isomorphism
satisfying | \scrH | =m and kt(\scrH ) = kts(m) if and only if all (n - s)-graphs with

\bigl( 
n
s

\bigr) 
 - m

edges satisfying | \partial n - t(\scrH )| = \partial n - s
n - t (

\bigl( 
n
s

\bigr) 
 - m) are isomorphic to \scrC n - s(

\bigl( 
n
s

\bigr) 
 - m). Applying

Theorem 32, and using Corollary 34 and Theorem 35 for condition (a), yields the

result. In condition (b), note that n\prime \leq n - s+1 and m=
\bigl( 
n
s

\bigr) 
 - 
\bigl( 

n\prime 

n - s

\bigr) 
+1 imply m\geq 

\bigl( 
n
s

\bigr) 
 - n+ s - 1.
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1448 RACHEL KIRSCH AND JAMIE RADCLIFFE

Corollary 37. If m=
\bigl( 
n\prime 

s

\bigr) 
with n\prime \geq t, then \scrC (m) is the unique s-graph \scrH , up

to isomorphism, with m edges achieving kt(\scrH ) = kts(m).

Proof. By Theorem 36, it suffices to show that either
\bigl( 
n\prime 

s

\bigr) 
\geq 
\bigl( 
n
s

\bigr) 
 - n + s  - 1 or

condition (a) is satisfied. For that condition note that m = [ns, ns - 1, . . . , ns - \ell +1]s =
[n\prime ]s has length \ell = 1 and final entry ns - \ell +1 = n\prime , and we have t \leq 1 + n\prime  - 1 by
hypothesis.

4.2. Steiner shadows and packing shadows. Here we define and discuss
some important hypergraphs that turn out to be optimal examples in some cases of
our problem.

Definition 38. A Steiner system with parameters i, r,n (abbreviated as S(i, r,n))
is a collection of r-sets of some n-set V that covers each i-set of V exactly once. That
is to say, it is an r-graph \scrA on vertex set V such that for all I \in 

\bigl( 
V
i

\bigr) 
there exists a

unique A\in \scrA such that I \subseteq A.

It has been known for a long time (by straightforward counting arguments) that
in order for a Steiner system with parameters i, r,n to exist it must be the case that
certain divisibility conditions are satisfied. In groundbreaking work Peter Keevash
[16] showed (among other things) that for sufficiently large n these conditions are also
sufficient.

Theorem 39 (Keevash [16]). For fixed i \leq r and for n sufficiently large, an
S(i, r,n) exists if and only if for all 0 \leq j < i we have that (r  - j)(i - j) divides
(n - j)(i - j).

Corollary 40. For fixed i \leq r, the set of n for which an S(i, r,n) exists has
positive lower density.

Proof. The divisibility conditions are certainly satisfied if n - i+1 is divisible by
r(i), so the lower density of \{ n : an S(i, r,n) exists\} is at least 1/r(i).

We can weaken the definition of a Steiner system to require only that each i-set
is covered at most once (rather than exactly once), giving the following definition.

Definition 41. An i-packing of r-sets (abbreviated as a P (i, r)), also called a
partial Steiner system, is a collection of r-sets of some set V that covers each i-set
of V at most once. That is to say, it is an r-graph \scrA on vertex set V such that for
all I \in 

\bigl( 
V
i

\bigr) 
there exists at most one A\in \scrA such that I \subseteq A. Equivalently, any distinct

r-sets A,B \in \scrA have | A\cap B| < i.

Existence of P (i, r)'s is guaranteed for all values of the parameters. For instance,
a disjoint collection of r-sets is a P (i, r) for all i\geq 1.

The hypergraphs that will be useful to us are not only Steiner systems and pack-
ings themselves, but their shadows on layers intermediate between i and r.

Definition 42. A Steiner shadow with parameters i, r,n, s, abbreviated \partial sS(i,
r,n), is the s-shadow of an S(i, r,n). A packing shadow with parameters i, r, s, ab-
breviated \partial sP (i, r), is the s-shadow of an i-packing of r-sets.

We will show later that Steiner shadows and packing shadows provide examples
showing that the signpost results we prove are best possible (at least for some values
of the parameters). The following lemma computes relevant parameters of these
hypergraphs.

Lemma 43. If 1\leq i < s < r and \scrA is a P (i, r), then, if we write \scrH for the s-graph
\partial s(\scrA ), the following hold.
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MANY CLIQUES IN BOUNDED-DEGREE HYPERGRAPHS 1449

(a) For all i\leq j \leq r we have | \partial j(\scrA )| =
\bigl( 
r
j

\bigr) 
| \scrA | . In particular, \scrH has

\bigl( 
r
s

\bigr) 
| \scrA | edges,

and for all s\leq t\leq r we have kt(\scrH ) = | \partial t(\scrA )| =
\bigl( 
r
t

\bigr) 
| \scrA | .

(b) If I \in \partial i(\scrH ), then \scrH (I) \sim = K
(s - i)
r - i , which implies that d\scrH (I) =

\bigl( 
r - i
s - i

\bigr) 
and

kt - i(\scrH (I)) =
\bigl( 
r - i
t - i

\bigr) 
. In particular \Delta i(\scrH ) =

\bigl( 
r - i
s - i

\bigr) 
.

In particular if \scrH is a Steiner shadow \partial sS(i, r,n), then parts (a) and (b) hold with
| \scrA | =

\bigl( 
n
i

\bigr) 
/
\bigl( 
r
i

\bigr) 
, and \partial i(\scrH ) =

\bigl( 
[n]
i

\bigr) 
.

Proof. The proof is straightforward.

We use the following lemma to prove the two corollaries following it: that two
conditions on clique counts in neighborhoods force a hypergraph to be a packing
shadow or a Steiner shadow, respectively.

Lemma 44. Suppose that i \geq 1, that i+ 2 \leq s \leq t \leq r, and that \scrH is an s-graph
with \Delta i(\scrH )\leq 

\bigl( 
r - i
s - i

\bigr) 
. If \scrH (I)\sim =K

(s - i)
r - i for all I \in \partial i(\scrH ), then \scrH is a packing shadow

\partial sP (i, r).

Proof. For all sets I \in \partial i(\scrH ) we write AI for the vertex set of \scrH (I). Then
RI = AI \cup I has the property that for all s-sets S \supseteq I we have S \in \scrH if and only
if S \subseteq RI . We let \scrR = \{ RI : I \in \partial i(\scrH )\} . We'll show that \scrR is a P (i, r) and that
\scrH = \partial s(\scrR ).

First let's show that if I \in \partial i(\scrH ) and J \in 
\bigl( 
RI

i

\bigr) 
, then also J \in \partial i(\scrH ) and RJ =RI .

We'll first prove the special case where | J \cap I| = i - 1. If RI \not =RJ , then we can choose
an s-set S in RI containing I \cup J and an element of RI \setminus RJ , since s\geq i+2. We have
I \subseteq S \subseteq RI , so S \in \scrH . Since J \subseteq S we have J \in \partial i(\scrH ). Finally we have J \subseteq S \not \subseteq RJ ,
so S /\in \scrH . This contradiction implies that RI = RJ . For any J \in 

\bigl( 
RI

i

\bigr) 
there exists a

sequence I = J0, J1, . . . , Jk = J of i-sets of RI such that | J\ell \cap J\ell +1| = i - 1, and by the
argument above we get that RJ\ell 

=RI for all \ell .
From this we can show that if I \in \partial i(\scrH ), then

\bigl( 
RI

s

\bigr) 
\subseteq \scrH . To see this, consider

S \in 
\bigl( 
RI

s

\bigr) 
and pick J \in 

\bigl( 
S
i

\bigr) 
. Since J \subseteq S \subseteq RI =RJ we have S \in \scrH .

Finally, set \scrR = \{ RI : I \in \partial i(\scrH )\} as above. To show that \scrR is a P (i, r), suppose
RI and RI\prime are both in \scrR , and J \subseteq RI \cap RI\prime is an i-set. Then by the result in the
second paragraph RI =RJ =RI\prime . The last thing we need to show is that \scrH = \partial s(\scrR ).
If S \in \scrH , then for any i-set of S we have I \subseteq S \subseteq RI , so S \in \partial s(\scrR ). On the other
hand if S \in \partial s(\scrR ), then there exists I \in \partial i(\scrH ) with S \subseteq RI and hence S \in \scrH by the
result in the third paragraph.

Corollary 45. Suppose that i \geq 1, that i + 2 \leq s \leq t \leq r, and that \scrH is an
s-graph with \Delta i(\scrH )\leq 

\bigl( 
r - i
s - i

\bigr) 
. If we have kt - i(\scrH (I)) =

\bigl( 
r - i
t - i

\bigr) 
for every i-set I contained

in an edge of \scrH , then \scrH is a packing shadow \partial sP (i, r).

Proof. Corollary 37 implies that for all I \in \partial i(\scrH ) we have \scrH (I) \sim = K
(s - i)
r - i .

Lemma 44 completes the proof.

The corresponding result for Steiner shadows also follows.

Corollary 46. Suppose that i \geq 1, that i + 2 \leq s \leq t \leq r, and that \scrH is an
s-graph with \Delta i(\scrH )\leq 

\bigl( 
r - i
s - i

\bigr) 
. If we have kt - i(\scrH (I)) =

\bigl( 
r - i
t - i

\bigr) 
for every i-set I of vertices

of \scrH , then \scrH is a Steiner shadow \partial sS(i, r,n).

Proof. Let V be the vertex set of \scrH . Given I \in 
\bigl( 
V
i

\bigr) 
we have kt - i(\scrH (I)) =\bigl( 

r - i
t - i

\bigr) 
and t \leq r, so kt - i(\scrH (I)) \geq 1. Thus \partial i(\scrH ) =

\bigl( 
V
i

\bigr) 
. By Corollary 45, \scrH is a

packing shadow \partial sP (i, r) with \partial i(\scrH ) =
\bigl( 
V
i

\bigr) 
, i.e., a Steiner shadow \partial sS(i, r,n), where

n= | V | .
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1450 RACHEL KIRSCH AND JAMIE RADCLIFFE

4.3. Equality cases for the three problems. Here we characterize the ex-
tremal hypergraphs for some cases of each of the three problems from section 3. All
the cases we discuss are ones where \scrH is an s-graph and \Delta i(\scrH ) \leq 

\bigl( 
r - i
s - i

\bigr) 
for some

r\geq s and i < s. We also show, for all three problems, that for these particular degree
bounds our results are asymptotically tight.

4.3.1. Hypergraphs with a fixed number of vertices. For degree bounds
of the form

\bigl( 
r - i
s - i

\bigr) 
, with r an integer, we show that Steiner shadows achieve the bound

from Theorem 21, and that they are the only s-graphs that do when i\leq s - 2. We do
not know whether other s-graphs achieve the bound when i= s - 1.

Theorem 47. Let 1\leq i < s\leq t\leq r, where r is an integer, and suppose that \scrH is
an s-graph on n vertices.

(a) If \scrH is a Steiner shadow \partial sS(i, r,n), then \Delta i(\scrH ) =
\bigl( 
r - i
s - i

\bigr) 
and kt(\scrH ) =

(ni)
(ri)

\bigl( 
r
t

\bigr) 
.

That is, \scrH achieves the upper bound in Theorem 21.
(b) If we further assume that s \not = i+ 1, then \scrH satisfies both \Delta i(\scrH )\leq 

\bigl( 
r - i
s - i

\bigr) 
and

kt(\scrH ) =
(ni)
(ri)

\bigl( 
r
t

\bigr) 
if and only if \scrH is a Steiner shadow \partial sS(i, r,n).

Note that by Theorem 39 the set of n for which Steiner shadows \partial sS(i, r,n) exist
has positive lower density.

Proof. For both parts, note that kt - i
s - i(

\bigl( 
r - i
s - i

\bigr) 
) =

\bigl( 
r - i
t - i

\bigr) 
and

\bigl( 
r - i
t - i

\bigr) \bigl( 
r
i

\bigr) 
=
\bigl( 
r
t

\bigr) \bigl( 
t
i

\bigr) 
(as in

Corollary 22), so
(ni)
(ri)

\bigl( 
r
t

\bigr) 
=
\bigl( 
n
i

\bigr) kt - i
s - i(\Delta )

(ti)
.

First, suppose \scrH = \partial s(\scrA ), where \scrA is an S(i, r,n). By Lemma 43, \scrH has \Delta i(\scrH ) =\bigl( 
r - i
s - i

\bigr) 
and kt(\scrH ) =

(ni)
(ri)

\bigl( 
r
t

\bigr) 
.

Now, suppose s \not = i+ 1 (so 3\leq i+ 2\leq s) and \scrH is an s-graph on n vertices such

that \Delta i(\scrH )\leq 
\bigl( 
r - i
s - i

\bigr) 
and kt(\scrH ) =

(ni)
(ri)

\bigl( 
r
t

\bigr) 
. By the condition for equality in Theorem 21,

for each I \in 
\bigl( 
[n]
i

\bigr) 
the neighborhood \scrH (I) contains

\bigl( 
r - i
t - i

\bigr) 
(t  - i)-cliques, and so by

Corollary 46, \scrH is a Steiner shadow \partial sS(i, r,n).

Now we show that the upper bounds given by Theorem 21 and Corollary 22 are
asymptotically tight. We make use of the famous result where R\"odl's nibble was first
introduced.

Theorem 48 (R\"odl [22]). The maximum number of edges in an i-packing of

r-sets in [n] is (1 - on(1))
(ni)
(ri)

.

Theorem 49. For 1 \leq i < s \leq t \leq r \leq n, let N be the maximum value of kt(\scrH )
over all s-graphs \scrH on n vertices with \Delta i(\scrH )\leq 

\bigl( 
r - i
s - i

\bigr) 
. Then

N = (1 - on(1))

\bigl( 
n
i

\bigr) \bigl( 
r
i

\bigr) \biggl( r
t

\biggr) 
.

Proof. Let \scrA be an i-packing of r-sets in V with | \scrA | = (1 - on(1))
(ni)
(ri)

, as guar-

anteed by Theorem 48. Then \scrH = \partial s(\scrA ) has kt(\scrH ) = | \scrA | 
\bigl( 
r
t

\bigr) 
= (1 - on(1))

(ni)
(ri)

\bigl( 
r
t

\bigr) 
by

Lemma 43. For every I \in 
\bigl( 
V
i

\bigr) 
, we have

d\scrH (I) =

\Biggl\{ \bigl( 
r - i
s - i

\bigr) 
if I \in \partial i(\scrA ),

0 otherwise,
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MANY CLIQUES IN BOUNDED-DEGREE HYPERGRAPHS 1451

so \Delta i(\scrH ) \leq 
\bigl( 
r - i
s - i

\bigr) 
. Together with Theorem 21 this implies that N =

(1 - on(1))
(ni)
(ri)

\bigl( 
r
t

\bigr) 
.

In the proof of Theorem 49, \scrA covers (1 - on(1))
\bigl( 
n
i

\bigr) 
of the i-sets in V , i.e., almost

all of them, so there exists \scrH that is almost a Steiner shadow and almost attains
the upper bound. In particular it seems highly plausible that a stability version of
Theorem 47 holds.

Remark 50. Theorem 39 gives an alternative proof of Theorem 49.

4.3.2. Hypergraphs with a fixed number of edges. For degree bounds of
the form

\bigl( 
r - i
s - i

\bigr) 
, with r an integer, we show that packing shadows achieve the upper

bound in Theorem 27, and that for i\leq s - 2, they are the only s-graphs that achieve
this bound. Again, we do not know whether only packing shadows achieve the bound
when i= s - 1.

Theorem 51. Let 1\leq i < s\leq t\leq r, where r is an integer, and suppose that \scrH is
an s-graph having m edges.

(a) If \scrH is a packing shadow \partial sP (i, r), then \Delta i(\scrH ) =
\bigl( 
r - i
s - i

\bigr) 
and kt(\scrH ) = m

(rt)
(rs)

.

That is, \scrH achieves the upper bound in Theorem 27. In particular, if
\bigl( 
r
s

\bigr) \bigm| \bigm| m,

then \scrH = m

(rs)
K

(s)
r achieves equality.

(b) If we further assume that s \not = i+ 1, then \scrH satisfies both \Delta i(\scrH )\leq 
\bigl( 
r - i
s - i

\bigr) 
and

kt(\scrH ) =m
(rt)
(rs)

if and only if \scrH is a packing shadow \partial sP (i, r).

Proof. First, suppose \scrH = \partial s(\scrA ), where \scrA is a P (i, r). By Lemma 43, \Delta i(\scrH ) =\bigl( 
r - i
s - i

\bigr) 
, and we have m= | \scrA | 

\bigl( 
r
s

\bigr) 
and kt(\scrH ) = | \scrA | 

\bigl( 
r
t

\bigr) 
, so kt(H) =m

(rt)
(rs)

.

If
\bigl( 
r
s

\bigr) \bigm| \bigm| m, then m

(rs)
K

(r)
r is a P (i, r), and its s-shadow is m

(rs)
K

(s)
r . Note that

kt

\Biggl( 
m\bigl( 
r
s

\bigr) K(s)
r

\Biggr) 
=

m\bigl( 
r
s

\bigr) kt \Bigl( K(s)
r

\Bigr) 
=

m\bigl( 
r
s

\bigr) \biggl( r
t

\biggr) 
and \Delta i

\bigl( 
m

(rs)
K

(s)
r

\bigr) 
=
\bigl( 
r - i
s - i

\bigr) 
.

Now, suppose s \not = i+1 (so 3\leq i+2\leq s) and \scrH is an s-graph having m edges with

\Delta i(\scrH )\leq 
\bigl( 
r - i
s - i

\bigr) 
and kt(\scrH ) =m

(rt)
(rs)

. We have equality in the statement of Theorem 27.

The last sentence of Theorem 27 shows that kt - i(\scrH (I)) =
\bigl( 
r - i
t - i

\bigr) 
for every I \in \partial i(\scrH ).

By Corollary 45, \scrH is a packing shadow \partial sP (i, r).

The bound given by Theorem 27 is asymptotically tight.

Theorem 52. For 1\leq i < s\leq t\leq r and m\geq 1, let M be the maximum value of
kt(\scrH ) over all s-graphs \scrH having m edges with \Delta i(\scrH )\leq 

\bigl( 
r - i
s - i

\bigr) 
. Then

M = (1 - om(1))m

\bigl( 
r
t

\bigr) \bigl( 
r
s

\bigr) .
Proof. Given i, s, t, r,m, let m= a

\bigl( 
r
s

\bigr) 
+ b for 0\leq b <

\bigl( 
r
s

\bigr) 
. Then M \geq kt(aK

(s)
t ) =

a
\bigl( 
r
t

\bigr) 
= (1  - b

m )m
(rt)
(rs)

. Since 0 \leq b <
\bigl( 
r
s

\bigr) 
, limm\rightarrow \infty 

b
m = 0, so M \geq (1  - om(1))m

(rt)
(rs)

.

Theorem 27 implies M \leq m
(rt)
(rs)

, completing the proof.
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1452 RACHEL KIRSCH AND JAMIE RADCLIFFE

4.3.3. Hypergraphs with a fixed number of cliques. When the degree
bound is of the form

\bigl( 
r - i
s - i

\bigr) 
, with r an integer, we show that the upper bound given

by Theorem 29 is achieved by any s-graph \scrH for which the edges that contribute to
the u-clique count of \scrH form a packing shadow. By excluding the case s= u, which is
addressed in Theorem 51, we find that these are the only s-graphs that achieve this
bound. The case s = i+ 1 is included here. In particular, when s = i+ 1, all degree
bounds \Delta \geq t - i are of the form

\bigl( 
r - i
s - i

\bigr) 
for some r\geq t, so are covered by Theorem 53.

Theorem 53. Let 1\leq i < s < u\leq t\leq r, where r is an integer, and suppose that

\scrH is an s-graph with \Delta i(\scrH )\leq 
\bigl( 
r - i
s - i

\bigr) 
. Let p= ku(\scrH ). Then kt(\scrH ) = p

(rt)
(ru)

if and only

if the set of edges of \scrH that are contained in a u-clique of \scrH is a packing shadow
\partial sP (i, r). In particular, if

\bigl( 
r
u

\bigr) \bigm| \bigm| p, then \scrH = p

(ru)
K

(s)
r achieves equality.

Proof. First, let \scrE = \{ E \in \scrH : E \subset U for some U \in Ku(\scrH )\} , and suppose \scrE =
\partial s(\scrA ), where \scrA is a P (i, r). Note ku(\scrE ) = ku(\scrH ). Any edges in \scrH \setminus \scrE are not contained
in u-cliques of \scrH so cannot be contained in t-cliques of \scrH . Therefore kt(\scrE ) = kt(\scrH ).

By Lemma 43, we have p= ku(\scrH ) = | \scrA | 
\bigl( 
r
u

\bigr) 
, and kt(\scrH ) = | \scrA | 

\bigl( 
r
t

\bigr) 
, so kt(\scrH ) = p

(rt)
(ru)

.

If
\bigl( 
r
u

\bigr) \bigm| \bigm| p, then p

(ru)
K

(r)
r is a P (i, r), and its s-shadow is p

(ru)
K

(s)
r . Note that

kt

\Biggl( 
p\bigl( 
r
u

\bigr) K(s)
r

\Biggr) 
=

p\bigl( 
r
u

\bigr) kt \Bigl( K(s)
r

\Bigr) 
=

p\bigl( 
r
u

\bigr) \biggl( r
t

\biggr) 

and \Delta i

\bigl( 
p

(ru)
K

(s)
r

\bigr) 
=
\bigl( 
r - i
s - i

\bigr) 
.

Now, suppose kt(\scrH ) = p
(rt)
(ru)

. By Lemma 28, the u-graph \scrU := Ku(\scrH ) satisfies

\Delta i(\scrU ) \leq 
\bigl( 
r - i
u - i

\bigr) 
. The last sentence of Theorem 29 states that for each I \in \partial i(\scrU ) we

have kt - i(\scrU ) =
\bigl( 
r - i
t - i

\bigr) 
. By Corollary 45, \scrU is a packing shadow \partial uP (i, r). Let \scrA be a

P (i, r) such that \scrU = \partial u(\scrA ). Since Ku(\scrH ) = \scrU , every edge S of \scrH that is contained
in a u-clique U of \scrH is in \partial s(\scrA ), because there is some r-set R \in \scrA such that S \subseteq 
U \subseteq R.

Theorem 29 is asymptotically tight, by a proof very similar to that of Theorem 52.

Theorem 54. For 1\leq i < s\leq u\leq t\leq r and p\geq 1, let P be the maximum value
of kt(\scrH ) over all s-graphs \scrH having ku(H) = p with \Delta i(\scrH )\leq 

\bigl( 
r - i
s - i

\bigr) 
. Then

P = (1 - op(1))p

\bigl( 
r
t

\bigr) \bigl( 
r
u

\bigr) .
4.3.4. A theorem on 2-graphs. We also obtain the following corollary giving

the maximum number of t-cliques among 2-graphs with a fixed number of u-cliques
and an arbitrary constant upper bound on the maximum degree.

Theorem 55. Suppose 3\leq u\leq t\leq r and G is a graph such that ku(G) = p and
\Delta (G)\leq r - 1. Then

(a) kt(G)\leq p
\bigl( 
r
t

\bigr) 
/
\bigl( 
r
u

\bigr) 
;

(b) the maximum value of kt(G) over all such graphs is (1 - op(1))p
\bigl( 
r
t

\bigr) 
/
\bigl( 
r
u

\bigr) 
;

(c) we have kt(G) = p
\bigl( 
r
t

\bigr) 
/
\bigl( 
r
u

\bigr) 
if and only if G (after removing any edge not

contained in a u-clique) is a (p/
\bigl( 
r
u

\bigr) 
)Kr (possibly together with some isolated

vertices). In particular, we have equality if and only if
\bigl( 
r
u

\bigr) \bigm| \bigm| p.
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MANY CLIQUES IN BOUNDED-DEGREE HYPERGRAPHS 1453

Proof. Apply Theorems 29, 53, and 54 with s= 2 and i= 1. Note that a packing
P (1, r) is a set of disjoint r-sets, so its 2-shadow forms a set of disjoint r-cliques.

Theorem 55 is a signpost answer to a question in the concluding remarks of [2].

5. Open problems. Many interesting problems still remain. We list some of
them here.

Problem 1. If \Delta i(\scrH ) \leq 
\bigl( 
r - i
s - i

\bigr) 
, where r is an integer, Theorems 47, 51, and 53

completely characterize the s-graphs that achieve the upper bounds given by Theorems
21 and 27 for i\leq s - 2 and Theorem 29 for u \not = s. In particular, these upper bounds
cannot be achieved for some values of the problem parameters.

(a) For values of i, r, and n for which Steiner systems S(i, r,n) do not exist
(either because they do not satisfy the necessary divisibility conditions or be-
cause n is too small---see Theorem 39), Theorem 47 shows that all s-graphs
\scrH on n vertices having \Delta i(\scrH ) \leq 

\bigl( 
r - i
s - i

\bigr) 
have kt(\scrH ) <

\bigl( 
n
i

\bigr) \bigl( 
r
t

\bigr) 
/
\bigl( 
r
i

\bigr) 
, although

by Theorem 49, max\{ kt(\scrH )\} = (1  - on(1))
\bigl( 
n
i

\bigr) \bigl( 
r
t

\bigr) 
/
\bigl( 
r
i

\bigr) 
. Which such s-graphs

have the maximum number of t-cliques?
(b) By Lemma 43, if \scrH = \partial s(\scrA ), with \scrA a P (i, r), then | \scrH | = ks(\scrH ) =

\bigl( 
r
s

\bigr) 
| \scrA | .

Therefore, by Theorem 51, when m -
\bigl( 
r
s

\bigr) 
, all s-graphs \scrH having m edges and

\Delta i(\scrH ) \leq 
\bigl( 
r - i
s - i

\bigr) 
have kt(\scrH ) < m

\bigl( 
r
t

\bigr) 
/
\bigl( 
r
s

\bigr) 
, although by Theorem 52,

max\{ kt(\scrH )\} = (1  - om(1))m
\bigl( 
r
t

\bigr) 
/
\bigl( 
r
s

\bigr) 
. Which such s-graphs have the maxi-

mum number of t-cliques?
(c) Similarly, by Theorem 53, when p -

\bigl( 
r
u

\bigr) 
, all s-graphs having ku(\scrH ) = p and

\Delta i(\scrH )\leq 
\bigl( 
r - i
s - i

\bigr) 
have kt(\scrH )< p

\bigl( 
r
t

\bigr) 
/
\bigl( 
r
u

\bigr) 
, although by Theorem 54, max\{ kt(\scrH )\} 

= (1  - op(1))p
\bigl( 
r
t

\bigr) 
/
\bigl( 
r
u

\bigr) 
. Which such s-graphs have the maximum number of

t-cliques?

Problem 2. Among s-graphs with \Delta s - 1(\scrH ) \leq r  - s+ 1 (the s = i+ 1 case) we
have determined the exact maximum number of t-cliques and found extremal s-graphs.

(a) Are there s-graphs \scrH on n vertices with \Delta s - 1(\scrH ) \leq r  - s + 1 that have

kt(\scrH ) =
( n
s - 1)
( r
s - 1)

\bigl( 
r
t

\bigr) 
but are not Steiner shadows \partial sS(s - 1, r, n)?

(b) Are there s-graphs \scrH on m edges with \Delta s - 1(\scrH )\leq r - s+1 that have kt(\scrH ) =

m
(rt)
(rs)

but are not packing shadows \partial sP (s - 1, r)?

Problem 3. We have characterized the extremal s-graphs and proved that our
upper bounds are asymptotically tight only when the i-degree bound is

\bigl( 
r - i
s - i

\bigr) 
for some

integer r. Are the upper bounds given by Corollary 22, Theorem 27, and Theorem 29
tight when the i-degree bound does not have this form?

Problem 4. For which values of m does
kt
s(m)
m = maxm\prime \leq m

kt
s(m

\prime )
m\prime ? (See

Remark 26.)

Appendix A. Kruskal--Katona details. In this appendix we give proof de-
tails for some of the results in section 2. We prove a slightly expanded version of
Theorem 10, one that discusses upshadows as well as (down) shadows and cliques. To
state this result we define another total order on finite subsets.

Definition 56. The retrolexicographic (or retlex) order on finite subsets of N
is defined by A <R B if and only if max(A \bigtriangleup B) \in A. We write \scrR s(n,m) for the
<R-initial segment of size m in

\bigl( 
[n]
s

\bigr) 
.

In addition, given a ground set [n] and an s-graph \scrA on [n], we define

\scrA = \{ [n] \setminus A :A\in \scrA \} ,
an (n - s)-graph on [n] with the same size as \scrA .
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1454 RACHEL KIRSCH AND JAMIE RADCLIFFE

Remark 57. The definition has the following symmetries with the colex order.
(a) We have A<R B if and only if A>B, i.e., retlex is the reverse of colex order.
(b) If both A and B are subsets of [n], then, since A\bigtriangleup B = ([n] \setminus A)\bigtriangleup ([n] \setminus B),

we have [n] \setminus A<R [n] \setminus B if and only if A<B.
In particular for 0\leq m\leq 

\bigl( 
n
s

\bigr) 
we have

\scrR s

\biggl( 
n,

\biggl( 
n

s

\biggr) 
 - m

\biggr) 
=

\biggl( 
[n]

s

\biggr) \Big\backslash 
\scrC (m) and \scrR s(n,m) = \scrC n - s(m).

Note that colex initial segments are independent of n (provided m\leq 
\bigl( 
n
s

\bigr) 
), whereas

retlex initial segments depend in an essential way on n. Since there are many nice
presentations of the bound on shadows (see, for instance, [7]) we will only prove the
clique and upshadow bounds.

Theorem 10 (the Kruskal--Katona theorem [14, 19]). For all 0\leq q < s < t\leq n,
if \scrA is an s-graph on vertex set V with | V | = n, then we have

| \partial q(\scrA )| \geq \partial s
q (m), kt(\scrA )\leq kts(m), and | U t(\scrA )| \geq | U t(\scrR s(n,m))| ,

where m = | \scrA | . In other words, the colex s-graph \scrC (m) has the smallest q-shadow
and the largest number of t-cliques among all s-graphs of size m, whereas the smallest
upshadow is achieved by the initial segment in the retlex order.

Proof. We may assume without loss of generality that V = [n]. We'll start by
proving the upshadow bound from the shadow bound. Given \scrE \subseteq 

\bigl( 
[n]
s

\bigr) 
and writing

\scrE = \{ [n] \setminus E :E \in \scrE \} \subseteq 
\bigl( 

[n]
n - s

\bigr) 
, we have

\partial n - t(\scrE ) =
\bigl\{ 
[n] \setminus T : | T | = t and \exists ([n] \setminus E)\in \scrE s.t. ([n] \setminus T )\subseteq ([n] \setminus E)

\bigr\} 
=

\biggl\{ 
[n] \setminus T : T \in 

\biggl( 
[n]

t

\biggr) 
and \exists E \in \scrE s.t.E \subseteq T

\biggr\} 
=U t(\scrE ).

Thus, by the shadow bound, to minimize | U t(\scrE )| = | U t(\scrE )| we can take \scrE to be a colex
initial segment, i.e., by Remark 57(a), take \scrE to be a retlex initial segment. Now, for
the clique bound, note that

Kt(\scrA ) =

\biggl( 
[n]

t

\biggr) \Big\backslash 
U t

\biggl( \biggl( 
[n]

s

\biggr) \big\backslash 
\scrA 
\biggr) 
.

Thus to maximize | Kt(\scrA )| we can take
\bigl( 
[n]
s

\bigr) 
\setminus \scrA to be a retlex initial segment, i.e., by

Remark 57(b), take \scrA to be a colex initial segment.

Using Remark 57 we can immediately read out of the proof of the previous theo-
rem the functions kts and \partial n - s

n - t .

Lemma 11. For all 0\leq s\leq t\leq n and 0\leq m\leq 
\bigl( 
n
s

\bigr) 
,

kts(m) =

\biggl( 
n

t

\biggr) 
 - \partial n - s

n - t

\biggl( \biggl( 
n

s

\biggr) 
 - m

\biggr) 
.
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MANY CLIQUES IN BOUNDED-DEGREE HYPERGRAPHS 1455

Proof. We have

Kt(\scrC (m)) =

\biggl( 
[n]

t

\biggr) \Big\backslash 
U t

\biggl( \biggl( 
[n]

s

\biggr) \big\backslash 
\scrC (m)

\biggr) 
=

\biggl( 
[n]

t

\biggr) \Big\backslash 
U t

\biggl( 
\scrR s

\bigl( 
n,

\biggl( 
n

s

\biggr) 
 - m

\bigr) \biggr) 
=

\biggl( 
[n]

t

\biggr) \Big\backslash 
\partial n - t

\Biggl( 
\scrR s

\biggl( 
n,

\biggl( 
n

s

\biggr) 
 - m

\biggr) \Biggr) 

=

\biggl( 
[n]

t

\biggr) \Big\backslash 
\partial n - t

\biggl( 
\scrC n - s

\biggl( \biggl( 
n

s

\biggr) 
 - m

\biggr) \biggr) 
i.e., kts(m) = kt(\scrC (m)) =

\biggl( 
n

t

\biggr) 
 - \partial n - s

n - t

\biggl( \biggl( 
n

s

\biggr) 
 - m

\biggr) 
.
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