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MANY CLIQUES IN BOUNDED-DEGREE HYPERGRAPHS"
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Abstract. Recently Chase determined the maximum possible number of cliques of size t in a
graph on n vertices with given maximum degree. Soon afterward, Chakraborti and Chen answered
the version of this question in which we ask that the graph have m edges and fixed maximum degree
(without imposing any constraint on the number of vertices). In this paper we address these problems
on hypergraphs. For s-graphs with s > 3 a number of issues arise that do not appear in the graph
case. For instance, for general s-graphs we can assign degrees to any i-subset of the vertex set with
1 <i<s—1. We establish bounds on the number of ¢-cliques in an s-graph H with i-degree bounded
by A in three contexts: H has n vertices; H has m (hyper)edges; and (generalizing the previous
case) ‘H has a fixed number p of u-cliques for some u with s <u <t. When A is of a special form we
characterize the extremal s-graphs and prove that the bounds are tight. These extremal examples
are the shadows of either Steiner systems or partial Steiner systems. On the way to proving our
uniqueness results, we extend results of Fiiredi and Griggs on uniqueness in Kruskal-Katona from
the shadow case to the clique case.
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1. Introduction. There has been recent interest in generalized Turan problems:
determining the maximum (or minimum) number of copies of a fixed graph T that a
graph G can contain, subject to a variety of constraints. The roots of this problem
go back to Turdn’s theorem [23] and its extension by Zykov [25], which determine,
respectively, the maximum number of copies of Ko and K; in a graph on n vertices
containing no K,;1. The paper of Alon and Shikhelman [1] proved many foundational
results and introduced the general problem to a wider audience.

1.1. Many cliques in bounded-degree graphs. We will focus on hypergraph
versions of three generalized Turan problems: determining the maximum number of
cliques in graphs of bounded degree, using either vertices, edges, or cliques as a
“resource.” We discuss the graph problems below; for a more complete history see
[2, 4, 5, 6, 12, 17, 18]. The first phase of progress in these problems consisted of
“signpost” results: estimates that are best possible infinitely often, but not for all
values of the parameters.

We write k*(G) for the number of cliques of size ¢ (and always insist that ¢ > 1).
Similarly k2*(G) is the number of cliques of size at least ¢ in G. The next two theorems
are versions of results due to Wood, phrased to match the hypergraph results we prove
later.
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THEOREM 1 (Wood [24]). If G is a graph on n vertices with A(G) <r —1, then
kG < (’;) and K21(G)< 2 (27— 1)
r r

with equality when G =aK,.

THEOREM 2 (Wood [24]). If G is a graph having m edges with A(G) < r —1,
then

kt(G)<(’£”(:> and  k22(G) <

)

with equality when G = aK,.

Quite recently, results in this direction were proved that are best possible for all
values of the parameters. The vertex problem was solved by Chase [4]. He proved a
conjecture of Gan, Loh, and Sudakov [12] using their reduction of the problem to the
case t = 3. Later Chao and Dong [3] gave a new proof of Theorem 3 that proves the
result for all ¢ simultaneously.

THEOREM 3 (Chase [4], Chao and Dong [3]). Let G be a graph with A(G) <r—1
on n vertices. Let a and b satisfy n=ar +b with 0 <b<r. Then

a()s)

with equality for the graph G = aK, U Ky, the disjoint union of a copies of K, and
one copy of K.

Using Theorem 3, Chakraborti and Chen [2] solved the edge problem.

THEOREM 4 (Chakraborti and Chen [2]). Let G be a graph with A(G) <r —1
having m edges. Let a and b satisfy m=a(5) +b with 0<b< (). Then

K'(G)<a C) +EL(Co(D))

with equality for the graph G = aK, UCy(b). Here, C2(b) is the colex graph having b
edges: the graph on vertex set N whose edges are the first b pairs in colexicographic
order.

In this paper we are concerned with hypergraph versions of these problems. To
state the questions we need to introduce our notation for hypergraphs and discuss the
issue of degrees in hypergraphs. This we do next.

In section 2 we discuss various versions of the Kruskal-Katona theorem, which is
central in this area. In section 3 we prove general results for arbitrary degree bounds.
In section 4 we introduce constructions which, in some cases, give optimal exam-
ples, and prove some results about optimality and asymptotic optimality. Finally, in
section 5 we mention some open problems.

1.2. Hypergraph definitions and questions. Our notation is mostly
standard.

DEFINITION 5. An s-graph H is a pair (V,E) consisting of a set of vertices V
together with a subset € C (‘S/) Frequently we’ll suppress mention of the verter set
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and simply use H to refer to the edge set. If I CV has size i, then we define the
neighborhood H(I) of I to be the (s —i)-graph with edge set

EHI)={E\I:ICE€&(H)}.
The degree of I in H is the number of these edges, i.e.,
dn(l)={E € E(H): ICE}.

We let the vertex set of H(I) be the union of all the edges in E(H(I)), i.e., we omit
all vertices not contained in an edge of H(I). The maximum i-degree of H is simply

Ai(H) :max{dH(I) Te (‘Z/) }

We now define shadows and cliques in hypergraphs.

DEFINITION 6. Suppose that A is an s-graph. The shadow of A on level q (where
q<s) is given by

04(A)={B:|B|=q and 3JA€ A s.t. BC A} = U (A)
aca N

The set of cliques on level ¢ (where t > s) is

K'(A) = {C: |C| =t and (S) QA}.
We let k*(A) = |Kt(A)].
We can now state the questions we address in this paper.

QUESTION 1. Suppose that an s-graph H has n vertices and that for some 1 <
i<s—1and D >0 we have A;(H) < D. Given t > s, what is the mazimum possible
value of k*(H)? In other words we aim to determine

max{k'(H) : H an s-graph with n vertices and A;(H) < D}.

QUESTION 2. Suppose that an s-graph H has m edges and that for some 1 <i <
s—1 and D > 0 we have A;(H) < D. Given t > s, what is the mazimum possible
value of k*(H)? In other words, what is

max{k'(H) : H an s-graph with m edges and A;(H) < D}?

QUESTION 3. Suppose that an s-graph H has k*(H) =p for some u > s and that
for some 1 <i<s—1 and D > 0 we have A;(H) < D. Given t > u, what is the
mazimum possible value of k*(H)? That is, determine

max{k'(H) : H an s-graph with k*(H) =p and A;(H) < D}.

1.3. Related extremal problems. The area of extremal problems for hyper-
graphs is rich and deep. The Kruskal-Katona theorem, which we discuss in section 2,
is an upper bound on the number of ¢-cliques in an s-graph with a given number of
edges. Moreover, it implies a bound on the number of ¢-cliques in an s-graph having a
given number of u-cliques for some s <u <t. In [9], Frohmader improved this bound
in the case s =2.

The Kruskal-Katona theorem puts few restrictions on the s-graphs involved. A
substantial amount of work has been done when we forbid large cliques in our s-
graphs. The earliest such result is by Zykov [25]. He proved the following result for
graphs.
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THEOREM 7 (Zykov [25]). If H is a graph on n vertices containing no (r + 1)-
clique, then k' (H) < k*(T.(n)). Here T,.(n) is the Turdn graph, that is to say, it is the
complete r-partite graph on n vertices whose parts are of sizes as equal as possible.

The analogous result where we constrain G to have m edges is much more recent.
The following result is due to Frohmader [8]. To describe the result we need to define
the r-partite colex Turdan graph. Let r be a positive integer. The r-partite colex order
is the restriction of the colex order on @) to {ij:i#£j (mod r)}. The r-partite colex
Turdn graph with m edges, CT,.(m), is the graph on vertex set N whose edge set
consists of the first m edges in r-partite colex order. (Note that if m = ¢,.(n), then
the unique nontrivial component of CT;.(m) is isomorphic to T.(n).)

THEOREM 8 (Frohmader [8]). If G is a K,41-free graph with m edges and 2 <
t<r, then k"(G) <k'(CT,(m)).

In stark contrast to these positive results about graphs, even the Turan problem
for s-graphs with s > 2 is apparently intractable. For no r > s > 3 is the problem of
determining

max{|H|: H is an s-graph on vertex set [n] not containing an (r + 1)-clique}

solved for all n, even asymptotically. (See Keevash’s survey [15] for extensive discus-
sion of this problem.) The hypergraph analogue of Theorem 8 seems no easier.

In a recent paper, Liu and Wang [20] determined the maximum number of ¢-cliques
in an s-graph on n vertices containing at most k disjoint edges (for n sufficiently large).

In the context of hypergraphs with bounded degree, Jung [13] considered the
question of minimizing the ratio |9s—1(#)|/|H| for s-graphs H having bounded 1-
degree. Jung’s results have a spirit similar to ours, but are not directly comparable. In
an opposite direction Fiiredi and Zhao [11] considered 3-graphs H with large minimum
degree and gave asymptotically best possible lower bounds on the size of d2(H).

2. The Kruskal-Katona theorem. The fundamental theorem given in The-
orem 10 below was proved independently by Kruskal [19] and Katona [14]. It shows
that for a given number of edges m, the s-graph with the most ¢-cliques and the
smallest g-shadow is the colex hypergraph, denoted C(m), whose edges form an ini-
tial segment in the colexicographic (or colex) order. Colex order is defined on finite
subsets of N by A < B if and only if max(A A B) € B. The original version of
the Kruskal-Katona theorem discussed only shadows, but the version below describes
also a closely related version, giving bounds on the number of cliques in s-graphs. For
completeness we prove these versions (and slightly more) in Appendix A.

DEFINITION 9. We define the following functions mapping a number of edges m
to the size of the q-shadow and the number of t-cliques of C(m):

9;(m) =10,(C(m))| and k:(m) =K (C(m)).

THEOREM 10 (the Kruskal-Katona theorem [14, 19]). For all 0 < ¢ <s <t <mn,
if A is an s-graph on vertex set V with |V|=mn, then we have

[0(A) = 05(m)  and  K'(A) <k (m),

where m = | A|. In other words, the colex s-graph C(m) has the smallest g-shadow and
the largest number of t-cliques among all s-graphs of size m.

We also record here the following relationship between the functions k% and 9]/ —;.
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LEMMA 11. For all 0<s<t<n and 0<m < (%),

o (3 -(() )

2.1. Cascade notation. The standard way of describing initial segments of the
colex order is cascade notation, introduced by Kruskal in [19]. A good reference for
the material in this subsection is Chapter 6 of the book [7] by Frankl and Tokushige.

DEFINITION 12. We will say that an integer sequence (Mg, Ms—1,-..,Ns—p+1) IS G
cascade if it is strictly decreasing. We will define, for s > 1 and arbitrary cascades
(nsa Ns—1y.-- 7ns—l+l) Of length 14 > 07

£—1
o Ns—k
[nsansfla'“vnszJrl]s— g .
s—k

k=0
We say that a cascade is a strict s-cascade if ng_ > s—k for all0<k<?¢—1, and
also ¢ < s. In that case every term in (the sum defining) [ns,ns—1,...,Ns—pt1]s @8
positive.
Remark 13. In checking that a cascade (ng,ms_1,...,Ms—gr1) is strict it is suffi-

cient to check that ns_; > s —k for k=4¢ — 1, because if so, then for every k < ¢ —1
we have

Neg_gp>Ngpr1+ U —1—-k)>s—4l+1+{—-1—-k)=s—k.
DEFINITION 14. If B is a family of sets, each disjoint from a fized set A, we write
A+ B for the family
A+B={AUB:BeB}.
LEMMA 15. For allm >0 and all s > 1 there exists a unique strict s-cascade such

that m = [ng,Ns—1,...,Ns—pt1]s- Indeed (ng,ns_1,...,ns_pr1) 18 the unique strictly
decreasing sequence of length £ >0 satisfying

<m< s
S S
_ _ 1
Ns + Ns—1 <m< Ns + Ns 1+ 7
s s—1 S s—1

N Ns—1 Ns—r4+2 N Ns—1 n87€+2+1
<5)+(51)+ +<5€+2><m<<s>+<51)+ +<s€+2>’
Ng Ng_—1 Ns—0+1 _

<8)+<8—1)+ +<s—€—|—l>_m‘

If (ns,ns—1,...,ns—¢41) has length 1, then the first of these inequalities is satisfied
with equality on the left. If m =0, then we get the unique sequence of length O for all
s > 1. Moreover, for all m >0 and s > 1 the colex initial segment of (T) of length m
18

-1
o . . [nsfk]
C(m)—kL_JO<{nsj+l.0§j<k:}+(sk ,
where (Mg, Ms—1,...,Ns—py1) 1S the unique s-cascade such that m = [ng,ns_1,...,

ns—[+1]s-
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DEFINITION 16. For all m > 0 and all s > 1, we denote by is(m) the unique
s-cascade such that m = [ng,ns_1,...,Ns—¢11]s, guaranteed by Lemma 15.

Using cascade notation, we can exhibit lovely expressions for the number of cliques
and the size of the shadow of a colex initial segment.

LEMMA 17. If (ns,Ms—1,...,Ms—g+1) S a strict s-cascade and m = [ng,Ns_1,...,
ns—f-&-l]s; then

kﬁ(m) =k'(C(m)) = [ns,ns_1,-.-,Ms_011]t, and
05 (m) =104(C(m))| = [ns,ns5-1, .-, M5 41]q-

Proof. The proof is straightforward. See [7] for a proof of the shadow case when
q= s — 1. The general shadow result and the proof for cliques are similar. Note that
neither the t-cascade nor the g-cascade needs to be strict. 0

2.2. Lovasz Kruskal-Katona. Cascades have the merit of giving the precise
values of 97(m) and kf(m), but are somewhat unwieldy to work with. There is
a simpler form of the Kruskal-Katona theorem, due to Lovész [21], that is often
strong enough. We work with the natural polynomial generalization of the binomial
coefficient (}!) to real values of n.

DEFINITION 18. For a real number x and natural number k, the generalized bi-
nomial coefficient is defined as (§) = (z)(x —1)---(x — k +1)/k!. Note that (}) is
strictly increasing for x >k — 1 and all y > 0 can be represented in the form y = (i)
for some x >k — 1.

LEMMA 19 (Lovész [21]). Let H be an r-graph. If |H| = (¥), where u>r is real,
then |0k (H)| > (}) for all k € [r].

The clique version of this result is a straightforward consequence.

THEOREM 20. Let s,t €N with t > s. Let H be an s-graph with |H| = (OS”), where

x>s—1is real. Then if v <t we have k'(H) =0 and otherwise k(1) < ().

Proof. If < t, then |H| < (z) and in particular H does not have enough edges
to contain a t-clique, i.e., k'(H) = 0. If z > ¢, then let T = K*(H), so T is a t-
graph. We define u >t by |7] = (}). By Lemma 19, the number of s-sets (edges
of H) contained in edges of T (t-cliques of H) is at least (*). The number of edges
of H contained in t-cliques of H is at most the number of edges of H, so we have
(7) = |H|] > (%). Since (%) is strictly increasing in z for z > s — 1 we must have
z>u>t, so k'(H)=|T|=(}) < (). 0

t

3. Signpost results for hypergraphs. In this section we prove “signpost”
versions of Theorems 3 and 4 for hypergraphs. We solve three related problems,
fixing the numbers of vertices, edges, and cliques. For each problem we prove an
upper bound on the number of t-cliques.

3.1. Hypergraphs with a fixed number of vertices. We start with a bound
on the number of ¢-cliques in an s-graph on n vertices with maximum degree at most
A. The argument bounds the number of cliques that can contain a fixed i-set I and
deduces a bound on the total number of t-cliques.

THEOREM 21. Let 1 <4< s and suppose that H is an s-graph on n vertices such
that A;(H) < A. Then
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F(H) < (”) kz‘:égA).

i
If equality holds, then for each I € ([?]) the neighborhood H(I) contains k'”'(A)
(t — i)-cliques.

Proof. We count pairs (I, K) where I € ([7;]), K € K'(H), and I C K. Counting
by t-cliques in H we have a total of (f) k'(H). On the other hand consider I € ([?]).
For cliques K that contain I, all s-sets E such that I C F C K must be in H. Thus
{K:ICKeK'H)} < k'"*(H(I)). Since by hypothesis [H(I)| = du(I) < A we
have

{EK:ICKeK'(H)} <k (H(I)) <kZHA)

by Theorem 10. Thus, summarizing, we have

t .
(1) wen < (7)),
i i
n\ kL4 (A)
voo < ()50
i/ )
If we have equality, then k*="(H(I)) = k.Z4(A) for every I € ([7;]). O
From this result the following corollary is immediate from our known bounds on
kiE
COROLLARY 22. Let 1 <i < s and suppose that H is an s-graph on n vertices
such that A;(H) < A.

(a) If the cascade representation of A is given by [Ms—iyNs—i—1,- s Ns—i—0+1]s—i,
then

kt(’H) < <n) [ns—i,ns—i—h“~>ns—i—£+1]t—i

i ()

(b) If A= (“"!) for some (not necessarily integral) x> s, then we have
—\d i) (7)

7
()
if x>t and k'(H) =0 for s<z <t.
Proof. The two parts follow from Theorem 21 together with Lemma 17 and The-
orem 20, respectively. 0

3.2. Hypergraphs with a fixed number of edges. We switch now to con-
sidering hypergraphs with a fixed number of edges.

We write K%, (E) for the set of t-cliques in H containing the edge E and ki, (E)
for |K%,(E)|.

LEMMA 23. For any s-graph H and t > s,

k(M) (i) = ki(E).

EcH
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Proof. Count the pairs (E,K), where EC K € KT (H), in two ways. 0

LEMMA 24. Let H be an s-graph containing an edge E € H, and let I C E with
|I| =i. Let K be at-clique of H containing E. Then K\ I is a (t —i)-clique in H(I),

and ki, (E) < Ky (B ).

Proof. We'll show that K — K \ I is map from K% (FE) to K;[(ZI)(E \ I), from
which it is clear that the map is an injection. We have |[K'\ I|=t—isince I C EC K.
Consider then an (s — ¢)-subset FF C K\ I. We have FUI € (I:) C H, hence

F=(FUI)\I€H(I). Therefore K\ I € K" #(H(I)) and K\IEK;[&)(E\I). O

LEMMA 25. Let 1 < i < s <t and suppose that H is an s-graph such thal
Ai(H) < (7)) for some (not necessarily integral) x >t —1. If I C E € H and

J =H(I), then

EHT) (@ = 8)-s)
VA (A I

where kt=1(J) is the number of (t — i)-cliques in the (s —1i)-graph J. If equality is
achieved, then |J|= (*"1) and k'~(J) = (?7)).

s—1 t—1

Proof. The number of edges in the neighborhood is | J| = dx (1) < A;(H) < (ﬁ:z),

so |J| = (532) for some s —i — 1<y <ax—i Ify<t—i, then k'=4(J) =0, so the
lemma holds. Otherwise, y >t — 4. By Theorem 20, k*~(J) < ( v ), SO

(1> kt_i(j) < (tgz)

|‘7| B (szi)
Cyly—1)--(y—s+i+1)(y—s+i)---(y—t+i+1) (s —1)
yly—1)---(y—s+i+1) (t—1)!
. (y—5+l)(t—s) .
= —(t — i)(tfs) using s <t
(x_s)(t—s)
(2) = (t_i)(tfs)’

since (r — s)(t—s) is a strictly increasing function of x for z > ¢ — 1, and we have
t—1 _
y+i>t—1 1 20 = ((jj;:;_—?, then equality holds in (2), so y +i = z, and

|7 = (“"!). Then equality in (1) implies that k*~%(7) = (Y_7). 0

Remark 26. The expression k.~%(m)/m is not an increasing function of m, whereas
(T—5)(t—s) . . .
=9, Isan increasing function of x. For values of m where

t—i t—i
k—i(m) _ ko—i(m')
(3) ———— = max —————

m m’'<m m/

we can improve Lemma 25 to say that if A;(H) <m, then

KUT) _ kim)
M m

r—1

For m = (I7}) where z is an integer, it is easy to check that (3) holds. It is an
interesting question to determine which values of m satisfy (3).

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/18/25 to 129.186.192.119 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

1444 RACHEL KIRSCH AND JAMIE RADCLIFFE

THEOREM 27. Let 1 <i < s and suppose that H is an s-graph having m edges
such that Ai(H) < (27%) for some (not necessarily integral) x > s. Then, for all
t>s+1,

k'(H) < mé%
If equality holds, then for each I € 9;(H) we have K'=*(H(I)) = (*}).
Proof. If t > x, then k*(H) = 0 because any i-set I contained in a t-clique would
have dy (1) > (i:z) > (f::) Therefore we may assume t < z. We will count

S={(I,E,K):ICECKecK'H),|I|=1i,|E| = s}

in two ways. Counting by K, then F, then I, we obtain

- ()()

Counting by I, then E, then K, and letting J = H([), we obtain
S|= D D ku(E)
1€0,(H) BT
< Z Z kf{l(E\I) by Lemma 24

1€0;(H) EDI

— Z kt*i(j) (z —Zz) by Lemma 23

I1€d;(H)
< ! o &=y 19)(2575) |7| by Lemma 25
s—1 (t - Z)(t—s)
I€9;(H)
t— Z> (:17 - 5)(t—s)
= ) dy(I)
<s —i) (t —1)(—s) IE;(H)
t— z) (i=s)
= du (1)
_ t— Z H
<t s/ (=) 1€0,(H)

Therefore, k*(H) (%) (5) =S|

S

The last equation follows from the fact that (7) ()= W =(0)G0).

T
s

IfFEY(H)=m Efg , then we have equality in the above application of Lemma 25 for
every I € 9;(H). By Lemma 25, k*~H(H (1)) = (*~) for every I € 8;(H). 1]
y y t—i y

3.3. Hypergraphs with a fixed number of cliques. In this section we con-
sider s-graphs that have a fixed number of u-cliques, for some u > s. The numbers of
vertices and edges are not specified. We will use the following lemma to connect this
problem to our previous results.
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LEMMA 28. Let 1 < i < s < u and suppose that H is an s-graph such that
Ai(H) < (275) for some (not mecessarily integral) x > s. If x < u, then H has no
u-cliques, and otherwise the u-graph U := K*(H) satisfies A;(U) < (71).

Proof. For any i-set I of vertices of H, let X =U(I) and let F =H(I). We prove
first that K C K“~%(F). Consider an arbitrary (u —i)-edge E; of K. By definition it
satisfies EfUI € K"(#H), so every s-set in Er U is an edge of H, and every (s —i)-set
in Ey is an edge of H(I). Therefore E; is a (u —4)-clique in H(I) = F, as required.

We are given that |F| = dy(I) < (°~}), so we have |F|= (,¥,) for some s—i—1<
y < x —i. By Theorem 20, if y < u — i, then k“~¢(F) = 0, i.e., K is empty, and
otherwise k4~ (F) < (uﬁz) < (i:;) If < u, then we are always in the first case.
Otherwise we have dy/(I) = |K| < k“~H(F) < (*2)). O

u—1

We generalize Theorem 27 as follows. The s =u case is exactly Theorem 27.

THEOREM 29. Let 1 < i < s < u and suppose that H is an s-graph such that
k“(H) =p and A;j(H) < (277) for some (not necessarily integral) x > s. Then, for all
t>u,

k'(H) Sp(%)-

(2)
If equality holds, then for each I € 0;(U) we have k'~ (U) = (f:;), where U = K“(H).
Proof. By Lemma 28, we can apply Theorem 27 to the u-graph U := K"(H).
Since U is a u-graph with p edges and A;(U) < (2:2), Theorem 27 implies that for
all t > u we have k'(U) < p%, with equality only if for each I € 9;(U) we have
K9 UT)) = (l_z) Recall s < u <t. Given a t-clique T in the s-graph H, every

t—i
u-set in T is a wu-clique of H, so T is also a t-clique in the u-graph U. Therefore

B0 <K@ <p (. 0

4. Extremal hypergraphs and asymptotic tightness. In this section we
discuss the extent to which the signpost results from the previous section are tight.
We begin in subsection 4.1 by discussing cases where colex hypergraphs are the unique
examples achieving the bounds in Theorem 10. In subsection 4.2 we then introduce
some constructions that we use to produce cases of equality in our theorems. In
the later subsections we discuss the three signpost results in relation to asymptotic
tightness and uniqueness of examples.

4.1. Uniqueness in Kruskal-Katona. We introduce two definitions from [10]
by Fiiredi and Griggs.

DEFINITION 30. Given 1 < ¢ < s <n we say that m is a jumping number (or
(s,q)-jumping number if we want to be more explicit) if 95(m + 1) > J;(m). We say
that m 1is a colex-unique number if all s-graphs with m edges satisfying |0,(H)| =
0;(m) are isomorphic to Cs(m).

The following two theorems are proved in [10].

THEOREM 31 (Firedi and Griggs [10]). Suppose that 1 < q¢ < s < n and that

0<m< (Z) is represented by the strict s-cascade m = [Ng,Ns_1,...,Ns—p+1]s- Then
m is an (s,q)-jumping number if and only if £ <q.

THEOREM 32 (Fiiredi and Griggs [10]). Suppose that 1 < q¢ < s < n and that
0<m< (Z) is represented by the strict s-cascade m = [ng,Ns_1,...,Ns—¢+1]s. Then
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m is a colex-unique number for all m<s+1. If m>s+1, then m is a colex-unique
number if and only if one of the following is true:

(a) m is a jumping number, i.e., £ <q, or

(b) there exists n' <n such that m = (Ti/) -1
For m> s+ 1 conditions (a) and (b) are mutually exclusive.

The next lemma and the subsequent corollary will help us in the process of tracing
the criterion for uniqueness through the steps of the proof of Theorem 10.

LEMMA 33. Suppose that u,v > 1 and the cascade representations
N =1[nyyNy—1, s Nyt 1)u and M =[my,My—1,. s My—p41]v
Satisfy My—p+1 ="My_p41. Let b=ny_g1+1 =my_¢11. Suppose moreover that
{0, ny—kt2,s s N1, N U {b,my—pi2y .oy my—1,myp  ={b,b+1,...,u+v—1}
and
{0,y s N1, M} N by My—pt2y .oy M1, My } = {b}.
Then N + M = (“Z”) = (“*”).

v

Proof. Consider first the case that min(u,v) = 1. Without loss of generality we
suppose that v =1. Then u4+v —1=wv so for some 1 <b < v we have

N+M=[b;+[v,v—1,v—2,...,b+1,b],
v Z
_b+§(z’>
=b+(w—b+1)=v+1= (“*”).
u

Now suppose that u,v > 1. By symmetry we may suppose that n, =u+v—1. If
k>1, then we let

N,: [nu_l,nu_g,...,b].

Note that the representations of N’ and M satisfy the hypotheses of the lemma, with
u'=u—1 and k' =k — 1. By induction we get

N M= (u—l—v—l) LN M= (u+v—1) N (u—l—v—l) _ (u—&-v)-
Uu U u—1 U

On the other hand if k¥ = 1, then we're forced to have N = [u +v — 1], and M =
[u+v—1],, so

N M— (u+v—1> N <u+v—1) _ <u—|—v—1> N <u—|—v—1) _ (u—i—v). q
U v u u—1 Uu
COROLLARY 34. Suppose that 1 < s<n and that 0 <m < (f) Let

m= [n87n8717 . '7”87(«%1}8

be the s-cascade representation of m. Then the (n — s)-cascade representation of
m/ = (") —m is

/ li /
n—ss p—s—17--- ’nn—s—k-l-l]n—sv
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where ng_gy1=n,_,_,., and, writing b for this value,

(T){b,ns_g+2, coone—,nsfULbng, o pionn ool t={bb+1,...,n—1},
{b,ng_pqo,...,ne—1,ns N {bng,__pioy g o} ={b}.
In particular k+¢—1=n—0, so k=n—{¢—b+1.
Proof. With n),__.nl_. ,...,b defined to satisfy (f) it is easy to check that
nes—ktl = b>n—s—k+1and k <n—s. Using Remark 13 we deduce that
) /

(nl,_gynl_o_1,-..,b) is a strict (n — s)-cascade. Then, by Lemma 33,

s+ (n—2s) n
[ns’ns—l“"?ns—“‘l]s"" [n;—s’n;—s—lv'"’n/n—s—k-i-l]"_s: ( S ) N (8)

n/

Thus [0y, M, g 155N _g_py1ln—s is the (n — s)-cascade representation of

() —m. 0

S

THEOREM 35. Suppose that 1 <s<t<n and that 0 <m < (’;) Let
m+1= [nsans—la e >ns—2+1]s

be the s-cascade representation of m + 1, having length €. Then m has k!(m +1) >
kL(m) if and only if t <l +ngs_p11 — 1. In this case we say that m is an (s,t)-clique-
Jumping number.

Proof. From Lemma 11 we have

Thus k*(m + 1) > k*(m) exactly if we have

on(() == oni((7) - m -

ie., (Z) —m —1is an (n — s,n — t)-jumping number. By Corollary 34, the length of
the (n — s)-cascade representation of (Z) —m—1lisk=n—L0—ns_yr1+1, so by
Theorem 31 weneed n — € —ng_py1 +1<n—t ie, t<l+mns,_ g1 — 1 O

THEOREM 36. Suppose that 1 < s<t<mn and that 0 <m < (Z) Let
m= [n87ns—1a s ans—f-‘rl]s

be the s-cascade representation of m, having length £. Then the colex s-graph H =
C(m) is unique up to isomorphism satisfying |H| = m and k'(H) = kL(m) if either
m> (:) —n+s—1 holds or m < (Z) —n+s—1 and one of the following two (mutually
exclusive) conditions holds:
(a) t<l+ng_pr1—1 (equivalently m — 1 is an (s,t)-clique-jumping number), or
(b) for some n—s+2<n'<n we have m= (Z) — (n’is) +1.

Proof. By Lemma 11, the colex s-graph H = C(m) is unique up to isomorphism
satisfying |H| =m and k'(H) = k! (m) if and only if all (n — s)-graphs with (7) —m
edges satisfying [0, —¢(H)| = 9 —; ((") —m) are isomorphic to C,,—((7) —m). Applying
Theorem 32, and using Corollary 34 and Theorem 35 for condition (a), yields the
result. In condition (b), note that n’ <n—s+1 and m = (7;) - (n"_/s) +1 imply m > (2)
—n+s—1. |
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’
n

COROLLARY 37. If m= (S) with n' >t, then C(m) is the unique s-graph H, up
to isomorphism, with m edges achieving k'(H) =k (m).

Proof. By Theorem 36, it suffices to show that either (Zl) >(M —-n+s—1or

condition (a) is satisfied. For that condition note that m = [ns,ns_1,...,Ns—pt1]s =
[n']s has length ¢ = 1 and final entry ns_¢11 = n/, and we have t <1+ n' —1 by
hypothesis. ]

4.2. Steiner shadows and packing shadows. Here we define and discuss
some important hypergraphs that turn out to be optimal examples in some cases of
our problem.

DEFINITION 38. A Steiner system with parameters i,r,n (abbreviated as S(i,r,n))
is a collection of r-sets of some n-set V' that covers each i-set of V exactly once. That
is to say, it is an r-graph A on vertex set V' such that for all I € (‘Z/) there exists a
unique A € A such that I C A.

It has been known for a long time (by straightforward counting arguments) that
in order for a Steiner system with parameters i,7,n to exist it must be the case that
certain divisibility conditions are satisfied. In groundbreaking work Peter Keevash
[16] showed (among other things) that for sufficiently large n these conditions are also
sufficient.

THEOREM 39 (Keevash [16]). For fized i < r and for n sufficiently large, an
S(i,r,n) exists if and only if for all 0 < j < i we have that (r — j)u—;) divides
(n—5)-j)-

COROLLARY 40. For fized i <, the set of n for which an S(i,r,n) exists has
positive lower density.

Proof. The divisibility conditions are certainly satisfied if n —i+ 1 is divisible by
7(:), so the lower density of {n:an S(i,r,n) exists} is at least 1/r(;. O

We can weaken the definition of a Steiner system to require only that each i-set
is covered at most once (rather than exactly once), giving the following definition.

DEFINITION 41. An i-packing of r-sets (abbreviated as a P(i,r)), also called a
partial Steiner system, is a collection of r-sets of some set V' that covers each i-set
of V' at most once. That is to say, it is an r-graph A on vertex set V' such that for
all I € (‘Z/) there exists at most one A € A such that I C A. Equivalently, any distinct
r-sets A,B € A have |ANB| <.

Existence of P(i,r)’s is guaranteed for all values of the parameters. For instance,
a disjoint collection of r-sets is a P(i,r) for all i > 1.

The hypergraphs that will be useful to us are not only Steiner systems and pack-
ings themselves, but their shadows on layers intermediate between ¢ and r.

DEFINITION 42. A Steiner shadow with parameters i,r,n,s, abbreviated 0sS(%,
r,n), is the s-shadow of an S(i,r,n). A packing shadow with parameters i,r,s, ab-
breviated 05 P(i,r), is the s-shadow of an i-packing of r-sets.

We will show later that Steiner shadows and packing shadows provide examples
showing that the signpost results we prove are best possible (at least for some values

of the parameters). The following lemma computes relevant parameters of these
hypergraphs.

LEMMA 43. If1<i<s<r and Ais a P(i,r), then, if we write H for the s-graph
0s(A), the following hold.
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(a) For all i <j<r we have |0;(A)| = (;)|A| In particular, H has (7)|A] edges,
and for all s <t <r we have k'(H) = |0,(A)| = (})|Al.

(b) If I € 0;(H), then H(I) = KT(:Z), which implies that dy(I) = (:::) and

KU H(T) = (T_i). In particular A;(H) = (T—i).

t—1 s—1

In particular if H is a Steiner shadow 955 (i,7,n), then parts (a) and (b) hold with
A= (1)/(;), and 8:(3) = (7).
Proof. The proof is straightforward. 0

We use the following lemma to prove the two corollaries following it: that two
conditions on clique counts in neighborhoods force a hypergraph to be a packing
shadow or a Steiner shadow, respectively.

LEMMA 44. Suppose that i > 1, that i +2 < s <t <r, and that H is an s-graph
with A;(H) < (070, If H(I) = Kﬁs__il) for all I € 0;(H), then H is a packing shadow
0sP(i,r).

Proof. For all sets I € 0;(H) we write A; for the vertex set of H(I). Then
Ry = Ay U I has the property that for all s-sets S O I we have S € H if and only
if SCR;. Welet R={R;:1€9;(H)}. We'll show that R is a P(i,7) and that
H=05(R).

First let’s show that if I € 9;(H) and J € (FEI), then also J € 9;(H) and Ry = Ry.
We'll first prove the special case where |J N I|=i—1. If R; # R, then we can choose
an s-set S in Ry containing I UJ and an element of R;\ R, since s > i+ 2. We have
ICSCRy,s0S€eH. Since JC S we have J € 9;(H). Finally we have JC S Z Ry,
so S ¢ H. This contradiction implies that Ry = R;. For any J € (}?) there exists a
sequence I = Jy, J1,...,Ji, = J of i-sets of Ry such that |J; N Jey1|=17—1, and by the
argument above we get that R;, = R for all /.

From this we can show that if T € 9;(H), then (sz) C H. To see this, consider
Se (}i’) and pick J € (f) Since JCSC R;=Rj we have S € H.

Finally, set R ={R;:I € 9;(H)} as above. To show that R is a P(i,7), suppose
R; and Ry are both in R, and J C R; N Ry is an i-set. Then by the result in the
second paragraph R; = R;y = Rp/. The last thing we need to show is that H = 05(R).
If S € H, then for any i-set of S we have I C S C Ry, so S € 95(R). On the other
hand if S € 95(R), then there exists I € 9;(H) with S C Ry and hence S € H by the
result in the third paragraph. ]

COROLLARY 45. Suppose that i > 1, that i + 2 < s<t<r, and that H is an
s-graph with A;(H) < (17%). If we have k*~*(H(I)) = (}~}) for every i-set I contained
in an edge of H, then H is a packing shadow OsP(i,r).

Proof. Corollary 37 implies that for all I € 0;(H) we have H(I) = Kﬁ‘:z)
Lemma 44 completes the proof. 0

The corresponding result for Steiner shadows also follows.

COROLLARY 46. Suppose that i > 1, that i +2 < s <t <r, and that H is an
s-graph with A;(H) < (::z) If we have k=4 (H(I)) = (;:Z) for every i-set I of vertices
of H, then H is a Steiner shadow 9sS(i,r,n).

Proof. Let V' be the vertex set of H. Given I € (‘Z/) we have k'~H(H(I)) =
(7)) and t < 7, so K'*(H(I)) > 1. Thus 9;(H) = (‘Z/) By Corollary 45, H is a
packing shadow 0sP(i,r) with 0;(H) = (‘:), i.e., a Steiner shadow 9;S5(i,r,n), where
n=|V]. O
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4.3. Equality cases for the three problems. Here we characterize the ex-
tremal hypergraphs for some cases of each of the three problems from section 3. All
the cases we discuss are ones where H is an s-graph and A;(H) < (Z:z) for some
r>sand i < s. We also show, for all three problems, that for these particular degree
bounds our results are asymptotically tight.

4.3.1. Hypergraphs with a fixed number of vertices. For degree bounds
of the form (;::)7 with r an integer, we show that Steiner shadows achieve the bound

from Theorem 21, and that they are the only s-graphs that do when i <s—2. We do
not know whether other s-graphs achieve the bound when i =s — 1.

THEOREM 47. Let 1 <i<s<t<r, wherer is an integer, and suppose that H is
an s-graph on n vertices. N
(a) If H is a Steiner shadow 855(i,r,n), then N;(H) = (1"}) and k*(H) = Eri (7).

That is, H achieves the upper bound in Theorem 21,8_z _
(b) If we further assume that s #i+ 1, then H satisfies both A;(H) < (17}) and
K'(H) = E;; (7) if and only if H is a Steiner shadow 955 (i, ,n).
Note that by Theorem 39 the set of n for which Steiner shadows 955(i,7,n) exist
has positive lower density.
Proof. For both parts, note that ki:’l((giz)) = (;:Z) and (:::) (:) = (;) (2) (as in
Corollary 22), so % = kt:(téA)
First, suppose H = 9,(A), where A is an S(i,7,n). By Lemma 43, H has A;(H) =
("=%) and k*(H) = %(;).

S—1

Now, suppose s 7é i+1(so3<i+2<s)and H is an s-graph on n vertices such

that A;(H) < (17!) and k*(H) = Ei; (7). By the condition for equality in Theorem 21,
for each I € ([?]) the neighborhood H(I) contains (~!) (t — i)-cliques, and so by

Corollary 46, H is a Steiner shadow 955(i,7,n). d

Now we show that the upper bounds given by Theorem 21 and Corollary 22 are
asymptotically tight. We make use of the famous result where R6dl’s nibble was first
introduced.

THEOREM 48 (Rodl [22]). The mazimum number of edges in an i-packing of

—
N—

i

r-sets in [n] is (1 — o, (1)) Ok

THEOREM 49. For 1 <i<s<t<r<mn, let N be the mazimum value of kt(H)
over all s-graphs H on n vertices with A;(H) < (0°%). Then

o

()

Proof. Let A be an i-packing of r-sets in V' with |A| = (1 — on(l))%, as guar-

| () by

N=(1-o0n(1))

n

—
—

i

()

anteed by Theorem 48. Then H = 0,(A) has k'(H) = [A[(}) = (1 — 0n(1))

Lemma 43. For every I € (‘Z/), we have

dog(l) = {(;_;) if I € 0;(A),

0 otherwise,
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so Aj(H) < (Z:Z) Together with Theorem 21 this implies that N =

(1- oAl))%(D- D
In the proof of Theorem 49, A covers (1—0,(1))(7}) of the i-sets in V, i.e., almost
all of them, so there exists H that is almost a Steiner shadow and almost attains

the upper bound. In particular it seems highly plausible that a stability version of
Theorem 47 holds.

Remark 50. Theorem 39 gives an alternative proof of Theorem 49.

4.3.2. Hypergraphs with a fixed number of edges. For degree bounds of
the form (Z:z), with r an integer, we show that packing shadows achieve the upper
bound in Theorem 27, and that for ¢ < s — 2, they are the only s-graphs that achieve
this bound. Again, we do not know whether only packing shadows achieve the bound
when ¢ =s— 1.

THEOREM 51. Let 1 <i<s<t<r, wherer is an integer, and suppose that H is
an s-graph having m edges. .
(a) If H is a packing shadow OsP(i,r), then A;(H) = (07%) and k'(H) = mgﬁg

K3

That is, H achieves the upper bound in Theorem 27. In particular, if ( ) | ;n,

T
S

then H = (T) Kﬁs) achieves equality.

s

(b) If we further assume that s #1i+ 1, then H satisfies both A;(H) < (Z:z) and

(H) m(s)
Proof. First, suppose H = 05(A), where A is a P(i,r). By Lemma 43, A;(H) =
("~7), and we have m = [.A|(7) and k'(H) = |A|(}), so k'(H) = mgf.g.
(s

If (:) ‘ m, then 2 K" is a P(i,r), and its s-shadow is 7% K ). Note that

(2) ()

(i)~ )= 5)

and 2,5 8) = (7).

Now, suppose s #i+1 (so 3 <i+2 < s) and H is an s-graph having m edges with
Ai(H) < (020 and KY(H) =m (t> We have equality in the statement of Theorem 27.

if and only if H is a packing shadow OsP(i,r).

— \s—1 (g) ‘
The last sentence of Theorem 27 shows that k*~*(H(I)) = (}~}) for every I € 0;(H).
By Corollary 45, H is a packing shadow 95 P(i,7). d

The bound given by Theorem 27 is asymptotically tight.
THEOREM 52. For 1<i<s<t<r andm>1, let M be the maximum value of
k'(H) over all s-graphs H having m edges with A;(H) < (1~}). Then

s—1

M=(1- om(l))mgﬁg.

Proof. Given i,s,t,r,m, let m=a(") +bfor 0<b< (7). Then M > kt(aK®)) =

a(p) = (1= 2ym Since 055 < (1)l & = 0, 50 M > (1= o).
S (2) b’

Theorem 27 implies M <m o) completing the proof. ]

~—|
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4.3.3. Hypergraphs with a fixed number of cliques. When the degree
bound is of the form (Z:Z), with r an integer, we show that the upper bound given
by Theorem 29 is achieved by any s-graph H for which the edges that contribute to
the u-clique count of ‘H form a packing shadow. By excluding the case s = u, which is
addressed in Theorem 51, we find that these are the only s-graphs that achieve this
bound. The case s =i+ 1 is included here. In particular, when s =1 + 1, all degree
bounds A > ¢ — i are of the form (’;:z) for some r > t, so are covered by Theorem 53.

THEOREM 53. Let 1 <i<s<u<t<r, wherer is an integer, and suppose that
H is an s-graph with A;(H) < (0°}). Let p=k*(H). Then k'(H) :p(,ﬁ) if and only
if the set of edges of H that are contained in a u-clique of H is a pc?ckmg shadow
0sP(i,7). In particular, if (;) |p, then H = %Kﬁs) achieves equality.

Proof. First, let &€ = {E€H : ECU for some U € K“(H)}, and suppose £ =
05(A), where Ais a P(i,r). Note k*(E) = k*(H). Any edges in H\E are not contained
in u-cliques of H so cannot be contained in t-cliques of H. Therefore k'(E) = k' (H).

By Lemma 43, we have p= k*(H) = |A|("), and k*(H) = |A|("), so K'(H) = pg;;.
If (7) | p, then 2 K" s a P(i,r), and its s-shadow is -2 K'¥. Note that

() ()

() =g () =5 (0)

Now, suppose kt(H) = p% By Lemma 28, the u-graph U := K“(H) satisfies
AU) < (Z:ZZ) The last sentence of Theorem 29 states that for each I € 9;(U) we
have k'~4(U) = (;:2) By Corollary 45, U is a packing shadow 9, P(i,r). Let A be a
P(i,r) such that U = 9,(A). Since K“(H) =U, every edge S of H that is contained
in a u-clique U of H is in 0s(A), because there is some r-set R € A such that S C
UCR. O

Theorem 29 is asymptotically tight, by a proof very similar to that of Theorem 52.

THEOREM 54. For 1<i<s<u<t<randp>1, let P be the mazimum value
of k'(H) over all s-graphs H having k" (H) =p with A;(H) < (1~}). Then
SN

u

4.3.4. A theorem on 2-graphs. We also obtain the following corollary giving
the maximum number of ¢-cliques among 2-graphs with a fixed number of u-cliques
and an arbitrary constant upper bound on the maximum degree.

THEOREM 55. Suppose 3<u <t <r and G is a graph such that k*(G) =p and
A(G)<r—1. Then

(a) K'(G)<p(;)/ ()

(b) the mazimum value of k'(G) over all such graphs is (1 —o0,(1))p(})/(0);

(¢) we have k'(G) = p(})/(]) if and only if G (after removing any edge not
contained in a u-clique) is a (p/(]))K, (possibly together with some isolated
vertices). In particular, we have equality if and only if (Z) }p.
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Proof. Apply Theorems 29, 53, and 54 with s =2 and i =1. Note that a packing
P(1,r) is a set of disjoint r-sets, so its 2-shadow forms a set of disjoint r-cliques. O

Theorem 55 is a signpost answer to a question in the concluding remarks of [2].

5. Open problems. Many interesting problems still remain. We list some of
them here.

PROBLEM 1. If A;(H) < (::z), where T is an integer, Theorems 47, 51, and 53
completely characterize the s-graphs that achieve the upper bounds given by Theorems
21 and 27 for i < s—2 and Theorem 29 for u # s. In particular, these upper bounds
cannot be achieved for some values of the problem parameters.

(a) For wvalues of i, v, and n for which Steiner systems S(i,r,n) do not exist
(either because they do not satisfy the necessary divisibility conditions or be-
cause n is too small—see Theorem 39), Theorem 47 shows that all s-graphs
H on n vertices having A;(H) < (::z) have k' (1) < (3)(3)/(;), although
by Theorem 49, max{k'(H)} = (1 — 0, (1))(})(})/ (). Which such s-graphs
have the mazimum number of t-cliques?

(b) By Lemma 43, if H = 05(A), with A a P(i,r), then |H| = k*(H) = (})|A].
Therefore, by Theorem 51, when m+1 (2), all s-graphs H having m edges and
A(H) < (20 have k(M) < m(})/(0), although by Theorem 52,
max{k'(H)} = (1 — om(1))m(})/(}). Which such s-graphs have the mawi-
mum number of t-cliques?

(c) Similarly, by Theorem 53, when p{ (Z), all s-graphs having k*(H) = p and
Ai(H) < (520 have KH(H) <p(})/ (%), although by Theorem 54, max{k!(H)}
= (1—0,(1))p(})/(}). Which such s-graphs have the mazimum number of
t-cliques?

PROBLEM 2. Among s-graphs with As_1(H) <r —s+1 (the s=i+1 case) we
have determined the exact mazimum number of t-cliques and found extremal s-graphs.
(a) Are there s-graphs H on n wvertices with Ag_1(H) < r — s+ 1 that have

kt(H) = E*lg (}) but are not Steiner shadows 855(s — 1,7,n)?
(b) Are there S,sigraphs H on m edges with As_1(H) <7 —s+1 that have k' (H) =

t

O

PROBLEM 3. We have characterized the extremal s-graphs and proved that our

upper bounds are asymptotically tight only when the i-degree bound is (Z:z) for some

integer r. Are the upper bounds given by Corollary 22, Theorem 27, and Theorem 29
tight when the i-degree bound does not have this form?

ki (m)

but are not packing shadows 0sP(s —1,1)?

t 7
PROBLEM 4. For which values of m does = MaXm/'<m ksr(:,l)? (See

Remark 26.)

Appendix A. Kruskal-Katona details. In this appendix we give proof de-
tails for some of the results in section 2. We prove a slightly expanded version of
Theorem 10, one that discusses upshadows as well as (down) shadows and cliques. To
state this result we define another total order on finite subsets.

DEFINITION 56. The retrolexicographic (or retlex) order on finite subsets of N
is defined by A <g B if and only if max(A A B) € A. We write Rs(n,m) for the
<p-initial segment of size m in ([Z]).

In addition, given a ground set [n] and an s-graph A on [n], we define

A={[n]\A: Ac A},

an (n — s)-graph on [n] with the same size as A.
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Remark 57. The definition has the following symmetries with the colex order.

(a) We have A <g B if and only if A > B, i.e., retlex is the reverse of colex order.

(b) If both A and B are subsets of [n], then, since AA B=([n]\ A) A ([n]\ B),
we have [n]\ A<g[n]\ B if and only if A< B.

In particular for 0 <m < (Z) we have

Re(n (M) =m) = (") \ew)  and ReGmmi=com)

Note that colex initial segments are independent of n (provided m < (2) ), whereas
retlex initial segments depend in an essential way on n. Since there are many nice
presentations of the bound on shadows (see, for instance, [7]) we will only prove the
clique and upshadow bounds.

THEOREM 10 (the Kruskal-Katona theorem [14, 19]). For all 0 <g<s<t<mn,
if A is an s-graph on vertex set V with |V|=mn, then we have

04(A)[ = 05(m),  K'(A)<k{(m),  and  |U'(A)|=[U"(Rs(n,m))],

where m = |A|. In other words, the colex s-graph C(m) has the smallest q-shadow
and the largest number of t-cliques among all s-graphs of size m, whereas the smallest
upshadow is achieved by the initial segment in the retlex order.

Proof. We may assume without loss of generality that V = [n]. We'll start by
proving the upshadow bound from the shadow bound. Given & C ([Z]) and writing
E={[n]\E:Ee&}C (n[ﬁ]s), we have

On—t(E)={[M\T:|T|=t and 3 ([n]\ E) €€ s.t.([n]\T) S ([n] \ E)}
- {[n] \T:Te <[’Z]> and IE €€ s.t.ECT} = TH(E).

Thus, by the shadow bound, to minimize |U*(£)| = |Ut(€)| we can take & to be a colex
initial segment, i.e., by Remark 57(a), take £ to be a retlex initial segment. Now, for
the clique bound, note that

(519,

Thus to maximize |K*(A)| we can take ([Z]) \ A to be a retlex initial segment, i.e., by
Remark 57(b), take A to be a colex initial segment. d

Using Remark 57 we can immediately read out of the proof of the previous theo-
rem the functions k% and 9]/~ .

LEMMA 11. For all0<s<t<n andogmg(:),

o= (3)-22(() =)
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Proof. We have
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