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In this paper, we propose and analyze a finite-element method of variational data assimilation for a second-

order parabolic interface equation on a two-dimensional bounded domain. The Tikhonov regularization

plays a key role in translating the data assimilation problem into an optimization problem. Then the

existence, uniqueness and stability are analyzed for the solution of the optimization problem. We utilize the

finite-element method for spatial discretization and backward Euler method for the temporal discretization.

Then based on the Lagrange multiplier idea, we derive the optimality systems for both the continuous and

the discrete data assimilation problems for the second-order parabolic interface equation. The convergence

and the optimal error estimate are proved with the recovery of Galerkin orthogonality. Moreover, three

iterative methods, which decouple the optimality system and significantly save computational cost, are

developed to solve the discrete time evolution optimality system. Finally, numerical results are provided

to validate the proposed method.

Keywords: data assimilation; second-order parabolic interface equation; finite-element method optimiza-

tion; gradient-based iterative method.

1. Introduction

One major type of data assimilation aims to identify an initial condition by incorporating distributed

observations over a time period into a dynamic system in order to improve the performance of the

forecast. Such problems arise, for instance, in weather prediction (Brandt & Zaslavsky, 1997; Bruneau

et al., 1997; Rihan et al., 2005; Fisher et al., 2009), ocean state forecast (Rozier et al., 2007; Agoshkov

et al., 2008; Agoshkov & Ipatova, 2010; Ipatova et al., 2010; Tinka et al., 2010; Le Dimet et al., 2017;

García-Archilla et al., 2020), geoscience (Marchuk & Zalesny, 1993; Le Dimet et al., 2004; Auroux,

2007; Vo & Durlofsky, 2015; Gesho et al., 2016; Tarrahi et al., 2016; Tang et al., 2020), chemistry (Veersé

et al., 2000; Triantafyllou et al., 2005; Le Dimet et al., 2017) and so on. Currently there are several main
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categories of data assimilation techniques. First, statistical methods are based on the Bayes’ theorem and

consider the data assimilation as a recursive Bayesian estimation, see, e.g., Hansen & Penland (2007);

Apte et al. (2008); Dimitriu (2008); Li & Xiu (2008); Mandel et al. (2008); Evensen (2009); Mandel

et al. (2009); Stroud et al. (2010); Zamani et al. (2010); Iglesias et al. (2013); Fossum & Mannseth

(2014); Bergou et al. (2016); González et al. (2017); Meldi & Poux (2017); Abarbanel et al. (2018); Reich

(2019). Second, variational methods are based on optimal control theory and minimize an appropriately

designed cost functional which measures the distance between the state variable and the distributed

observations, see, e.g., Daescu & Navon (2003); Auroux (2007); Daescu & Navon (2007); Agoshkov

et al. (2008); Apte et al. (2008); Jiang & Douglas (2009); Korn (2009); Rhodes & Hollingsworth (2009);

Fehrenbach et al. (2010); Gronskis et al. (2013); Ştefănescu et al. (2015); Mons et al. (2016); Binev

et al. (2017); Taddei (2017); Arcucci et al. (2019); Funke et al. (2019). Besides, nudging method and

continuous data assimilation approach have also become popular in a lot of research fields recent years,

see, e.g., Zou et al. (1992); Auroux & Nodet (2012); Rebholz & Zerfas (2021) and (Olson & Titi, 2003;

Azouani et al., 2014; Markowich et al., 2016).

Over the past few decades, a vast amount of literature employing variational methods has been

contributed to investigate the data assimilation problem for parabolic equations. In Lions (1971), J. L.

Lions provided an elementary introduction of the adjoint method to recover parameters for parabolic

partial differential equations. Motivated by this approach, researchers afterwards employed similar

thoughts on the initial recovery of parabolic types of dynamics systems. In Yamamoto & Zou (2001);

Burman et al. (2018), thorough analysis and efficient numerical methods were developed to attain the

optimal initial condition of the heat equation. In Clason & Hepperger (2009), a forward approach

to reconstruct the initial state was presented for the convection-diffusion equation and a practical

algorithm is established. Moreover, the nonlinear parabolic equations, such as in water movement and

in radiative heat transfer problems, were studied in Le Dimet & Shutyaev (2001); Pereverzyev et al.

(2008) by reducing nonlinearity. However, to our current knowledge, few studies have investigated data

assimilation for parabolic interface equations, which describe a variety of physical phenomena and have

extensive applications.

Parabolic interface equations model physical or engineering problems when two or more distinct

materials or fluids with different conductivities or diffusions are involved. Unlike a normal parabolic

equation, many important features, such as the lower global regularity, interface jump conditions and

discontinuous coefficients, need to be addressed more both theoretically and numerically, see, e.g.,

Babuska (1970); Chen & Zou (1998); Vaughan et al. (2006); He et al. (2011, 2013).

The main interest of this paper is to investigate the variational data assimilation for a second-order

parabolic interface equation. A conventional way for solving such a problem is through optimization

techniques. Under the constraint of the parabolic interface equation, we formulate the data assimilation

problem as an optimization problem and minimize a cost functional that consists of a regularization

term and the misfit between the state variable and the distributed observations. The regularization

term and the misfitting term use weighted L2 norm to account for the background and observations

error covariance. Existence and uniqueness of such a minimization problem are established. We further

demonstrate the stability analysis of the optimal solution and investigate the stability behavior affected by

the error covariance operators and the regularization parameter. We also provide the first order necessary

optimality system in continuous level with a weak and strong form.

In order to numerically approximate the proposed data assimilation problem, a finite-element method

(FEM) is constructed for the spatial approximation to handle the interface and the discontinuous

coefficient in the constraint equation, while the backward Euler scheme is utilized as a temporal

discretization. A fully discrete optimality system is then derived by applying the Lagrange multiplier
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rule. A priori error estimation between the numerical approximation and the solution to the continuous

data assimilation problem is carried out by introducing a variety of auxiliary equations to overcome

the analysis gaps between the classical FEM (Chen & Zou, 1998) and the FEM in data assimilation.

Moreover, we develop three decoupled iterative methods based on the conjugate gradient method, the

BFGS method and the steepest descent method, in order to reduce the computational cost of solving the

discrete optimality system.

The rest of this article is organized as follows: in Section 2, we introduce the second-order parabolic

interface equation and provide the necessary mathematical preliminaries. In Section 3, we prove the

wellposedness of the continuous data assimilation problem and derive the optimality system. In Section 4,

we discuss the finite-element approximation to the continuous data assimilation problem and show

its convergence analysis. In Section 5, three iterative methods are illustrated in detail that address the

extreme computational cost. In Section 6, numerical experiments are presented to verify the expected

performance. In Section 7, we draw some conclusions.

2. The second-order parabolic interface equation and preliminaries

We consider the following second-order parabolic interface equation:

⎧

⎪

⎪

«

⎪

⎪

¬

ut − ∇ · (β(x, y)∇u) = f , in Ω × (0,T],

u(·, 0) = u0, in Ω ,

u = 0, on ∂Ω × (0,T],

(2.1)

together with the jump interface condition,

[u]|Γ = 0,

[

β(x, y)
∂u

∂�n

]

|Γ = 0. (2.2)

Here Ω ⊂ R
2 is an open bounded domain, the curve Γ is a smooth interface that separates Ω into two

subdomains Ω+ and Ω− such that Ω = Ω+ ∪ Ω− ∪ Γ , [u]|Γ = u+|Γ − u−|Γ is the jump of function

u across the interface Γ , where u+ = u|Ω+ and u− = u|Ω− , �n is the unit normal vector along interface

Γ pointing to Ω−, ∂u
∂�n is the normal derivative of u and β(x, y) is assumed to be a positive piecewise

constant function

β(x, y) =
{

β+ if (x, y) ∈ Ω+,

β− if (x, y) ∈ Ω−,

and the source term f is given discontinuously as

f (x, y, t) =
{

f+ if (x, y) ∈ Ω+,

f− if (x, y) ∈ Ω−.

We now introduce necessary preliminaries for the discussion of the data assimilation problem

concerning equations (2.1)-(2.2). Let ‖ · ‖ denote norm of bounded linear operators, (·, ·) denote inner

product in a Hilbert space, ‖ · ‖0 denote the L2-norm, ‖ · ‖∞ denote the L∞-norm and ‖ · ‖m denote the
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standard norm in the Sobolev spaceWm,2(Ω), which is also written as Hm(Ω). For the temporal–spatial

function spaces over (0,T) × Ω , we define

for 1 � p < ∞, Wm,p(0,T; B) =

⎧

«

¬

u(t) ∈ B for a.e. t ∈ (0,T) and

m
∑

j=0

∫ T

0
‖u(j)(t)‖p

B
dt < ∞

«

¬

­

;

for p = ∞, Wm,∞(0,T; B) =
{

u(t) ∈ B for a.e. t ∈ (0,T) and max
0�j�m

(

ess sup
0�t�T

‖u(j)(t)‖B

)

< ∞
}

;

which are equipped with corresponding norms

‖u‖Wm,p(0,T;B) =

⎛

¿

m
∑

j=0

∫ T

0
‖u(j)(t)‖p

B
dt

À

⎠

1
p

,

‖u‖Wm,∞(0,T;B) = max
0�j�m

(

ess sup
0�t�T

‖u(j)(t)‖B

)

,

where B is a general Banach space. As usual, we let Lp(0,T; B) = W0,p(0,T; B) and Hm(0,T; B) =
Wm,2(0,T; B).

We shall also need the following spaces:

X = H1(Ω) ∩ H2(Ω+) ∩ H2(Ω−),

Y = L2(Ω) ∩ H1(Ω+) ∩ H1(Ω−),

equipped with norms

‖u‖X = ‖u‖H1(Ω) + ‖u‖H2(Ω+) + ‖u‖H2(Ω−),

‖u‖Y = ‖u‖L2(Ω) + ‖u‖H1(Ω+) + ‖u‖H1(Ω−).

We write Y(0,T) = L2(0,T;X) ∩ H1(0,T;Y).

To introduce a weak form of the interface problem (2.1)–(2.2), we define the continuous bilinear

form a(·, ·): H1
0(Ω) × H1

0(Ω) → R and the associated operator A : H1
0(Ω) → H−1(Ω) as follows:

a(u, v) =
∫

Ω

β(x, y)∇u · ∇v dx dy =
∫

Ω+
β+∇u · ∇v dx dy+

∫

Ω−
β−∇u · ∇v dx dy,

a(u, v) = 〈Au, v〉,

where 〈·, ·〉 defines the duality pairing between H−1(Ω) and H1
0(Ω). We may also use 〈·, ·〉 to refer a

general duality pairing in other Banach space. As usual, a(·, ·) has been assumed to be coercive and
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continuous, i.e.,

a(u, u) � Cc‖u‖2
1 ∀u ∈ H1

0(Ω), (2.3)

a(u, v) � C‖u‖1‖v‖1 ∀u, v ∈ H1
0(Ω). (2.4)

Setting W(0,T) = L2(0,T;H1
0(Ω)) ∩H1(0,T;H−1(Ω)), the weak formulation can be stated as follows

Chen & Zou (1998):

Given f ∈ L2(0,T;H−1(Ω)), find u ∈ W(0,T) satisfying
〈

∂u

∂t
, v

〉

+ a(u, v) = 〈f , v〉, ∀v ∈ H1
0(Ω),

u(·, 0) = u0 at t = 0 in L2(Ω). (2.5)

Note that (2.5) can be expressed in the form:

∂u

∂t
+ Au− f = 0 in H−1(Ω),

u(·, 0) = u0 in L2(Ω).

Throughout this paper, C is a generic positive constant that is independent of the mesh parameter h

and the time step τ and is not necessarily the same at each occurrence.

3. Variational data assimilation

LetU denote the admissible solutions set that could be either L2(Ω) or a closed convex subset of L2(Ω).

Given T > 0, α > 0, a distributed observation û ∈ L2(0,T;L2(Ωo)), a nonzero measure subset Ωo ⊆
Ω , and a background information ub0 ∈ L2(Ω), the variational data assimilation for the second-order

parabolic interface equation is given by

min
u0∈U

F(u0) = 1

2

∫ T

0
‖û− G u(u0)‖2

0,R,Ωo
dt + α

2

∥

∥

∥u0 − ub0

∥

∥

∥

2

0,B
(3.1)

subject to

⎧

⎪

«

⎪

¬

〈

∂u

∂t
, v

〉

+ a(u, v) = 〈f , v〉 ∀v ∈ H1
0(Ω),

u(·, 0) = u0 at t = 0 in L2(Ω).

(3.2)

Here the mapping u(u0) : L2(Ω) → W(0,T) is defined as the solution of (3.2) with the initial value u0.

The mapping G : L2(Ω) �→ L2(Ωo) is a restriction of function v(·, t) ∈ L2(Ω), i.e.,

G v = v|Ωo
= v for points (x, y) ∈ Ωo.
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Also G has the following basic properties

‖G ‖ � 1, G
∗ = χΩo

,

where G ∗ is the adjoint operator of G , and χΩo
is the characteristic function. We also give the notations

‖ · ‖2
0,R,Ωo

= (R·, ·)Ωo
= (·, ·)0,R,Ωo

and ‖ · ‖2
0,B = (B·, ·) = (·, ·)0,B. R(·, t) : L2(Ωo) �→ L2(Ωo)

and B : L2(Ω) �→ L2(Ω) are all bounded, self-adjoint and positive definite operators accounting for

the observations and background error covariance. Further discussion for R and B will be provided in

the numerical approximation Section 4. Here we interpret the boundedness and positive definiteness as

follows:
∣

∣(p, q)0,R(·,t),Ωo

∣

∣ � λR(t)‖p‖0,Ωo
‖q‖0,Ωo

∀p, q ∈ L2(Ωo), (3.3)

(R(·, t)p, p)0,Ωo
� λR(t)‖p‖2

0,Ωo
∀p ∈ L2(Ωo), (3.4)

|(p, q)0,B| � λB‖p‖0‖q‖0 ∀p, q ∈ L2(Ω), (3.5)

(Bp, p) � λB‖p‖2
0 ∀p ∈ L2(Ω), (3.6)

where λR(t), λ
R(t) and λB, λ

B are all positive real numbers. We further assume that

sup
0<t�T

λR(t) = λR > 0, inf
0<t�T

λR(t) = λR > 0. (3.7)

The minimization of 1
2

∫ T
0 ‖û− G (u0)‖2

0,R,Ωo
d t in (3.1) is the primary goal, which tries to drive

the state variable u(u0) close to the distributed observations û over (0,T) × Ωo via adjusting the initial

condition u0. The second term α
2 ‖u0 − ub0‖2

0,B incorporates the background information, also works as a

Tikhonov regularization and plays a key role in guaranteeing the uniqueness and stability of the optimal

solution for the data assimilation problem. The α is a regularization parameter to balance the minimizing

in the cost functional according to the reliability of observations and background information. It is

well-known that the identification of initial conditions of diffusion equations such as heat equation is

severely ill-posed because of the smoothing property of solutions. That is, the solution does not depend

continuously on the data so that small noise in data may cause huge errors in the initial temperature. This

lack of stability can be alleviated by investigating the deviations in solutions in an admissible set that

is usually defined to be a bounded set in some appropriate function space. This so-called conditional

stability of initial value identifications was extensively studied in the literature and provides some

insightful guidance to numerical solutions of practical inverse problems, we refer to Li et al. (2009)

and Yamamoto & Zou (2001) for more details. In practical computations, the choice of the regularization

parameter α is important and tricky and usually makes use of statistical information about the noise level

δ in the observation information û. Roughly speaking, the approaches include a priori choice α = α(δ),

a posteriori choice α = α(δ, û) and heuristic rules α = α(û), we refer to Engl et al. (1996) and Vogel

(2002, Chap. 7) for a comprehensive study. In our problem setting in (3.1)–(3.2), the noise information

can be incorporated into the error covariance operators R and B contained in the norms ‖ · ‖0,R,Ωo
and

‖ · ‖0,B, respectively, thus the regularization parameter α can be simply chosen as 1.

For the minimization problem (3.1)–(3.2), provided that ∂Ω and Γ are smooth enough, f ∈
L2(0,T;L2(Ω)), û ∈ L2(0,T;L2(Ωo)), and ub0 ∈ L2(Ω), we have the following existence and uniqueness

result.
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Theorem 3.1 (Lions, 1971, Theorem 1.1) There exists a unique solution u0 ∈ U for the data assimilation

problem (3.1)–(3.2). Furthermore, the solution u0 is characterized by

F′(u0)(v− u0) =
∫ T

0

(

G u(u0) − û, G u(v) − G u(u0)
)

0,R,Ωo
dt + α

(

u0 − ub0, v− u0

)

0,B
� 0 ∀v ∈ U.

(3.8)

Next, we show that the solution of problem (3.1)–(3.2) is stable with respect to the perturbations on

the distributed observations and the regularization parameter α.

Theorem 3.2 The solution of problem (3.1)–(3.2) continuously depends on the regularization parameter

α, observations û, and background information ub0. I.e., let ū0 be the optimal solution with regularization

parameter α + ε1, perturbed observations û + ε2, and background information ub0 + ε3, where ε1 ∈ R,

ε2 ∈ L2(0,T;L2(Ωo)) and ε3 ∈ L2(Ω). Assume C is a positive constant and ‖ε3‖0
|ε1| � C, we then have

the following estimate:

α‖u0 − ū0‖2
0 �

(

λR√
2λRλB

)2

‖ε2‖2
L2(0,T;L2(Ωo))

+
(

λB

λB

)2
(

‖u0‖2
0 + ‖ub0‖2

0

)

|ε1| + C

(

λB

λB

)2

(α + |ε1|)2‖ε3‖0.

Proof. Using the optimality condition (3.8) gives us

∫ T

0

(

G u(ū0) − û− ε2, G u(v) − G u(ū0)
)

0,R,Ωo
dt + (α + ε1)

(

ū0 − ub0 − ε3, v− ū0

)

0,B
� 0 ∀v ∈ U.

(3.9)

Taking v = u0 in (3.9) and v = ū0 in (3.8) provides us

∫ T

0

(

G u(ū0) − û− ε2, G u(u0) − G u(ū0)
)

0,R,Ωo
dt + (α + ε1)

(

ū0 − ub0 − ε3, u0 − ū0

)

0,B
� 0,

∫ T

0

(

G u(u0) − û, G u(ū0) − G u(u0)
)

0,R,Ωo
dt + α

(

u0 − ub0, ū0 − u0

)

0,B
� 0.

Adding the two inequalities together leads to

∫ T

0
‖G u(u0) − G u(ū0)‖2

0,R,Ωo
dt + (α + ε1)‖u0 − ū0‖2

0,B

�

∫ T

0

(

ε2,G u(ū0) − G u(u0)
)

0,R,Ωo
dt + ε1

(

u0 − ub0, u0 − ū0

)

0,B
+ (α + ε1)

(

ε3, u0 − ū0

)

0,B
.

(3.10)

For terms in the left-hand side of (3.10), we use (3.4) and (3.7) to have

∫ T

0
‖G u(u0) − G u(ū0)‖2

0,R,Ωo
dt + (α + ε1)‖u0 − ū0‖2

0,B

� λR

∫ T

0
‖u(u0) − u(ū0)‖2

0,Ωo
dt + λB(α − |ε1|)‖u0 − ū0‖2

0. (3.11)
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For terms in the right-hand side (3.10), we use (3.3), (3.5), (3.7), and apply Cauchy–Schwarz and Young’s
inequality,

∫ T

0
(ε2, G u(ū0) − G u(u0))0,R,Ωo

dt + ε1

(

u0 − ub0, u0 − ū0

)

0,B
+ (α + ε1) (ε3, u0 − ū0)0,B

� λR
∫ T

0
‖ε2‖0,Ωo

‖u(u0) − u(ū0)‖0,Ωo
dt + λB|ε1|

∥

∥

∥u0 − ub0

∥

∥

∥

0
‖u0 − ū0‖0 + λB(α + |ε1|)‖ε3‖0‖u0 − ū0‖0

� λR

∫ T

0
‖u(u0) − u(ū0)‖2

0,Ωo
dt + (λR)2

4λR

∫ T

0
‖ε2‖2

0,Ωo
dt + λB

2
|ε1|‖u0 − ū0‖2

0 + (λB)2

2λB

(

‖u0‖2
0 + ‖ub0‖2

0

)

|ε1|

+ λB

2
|ε1|‖u0 − ū0‖2

0 +
(λB)2‖ε3‖2

0

2λB|ε1|
(α + |ε1|)2.

(3.12)

Combining (3.10)–(3.12) leads to

λB(α − 2|ε1|)‖u0 − ū0‖2
0 �

(λR)2

4λR

∫ T

0
‖ε2‖2

0,Ωo
dt + (λB)2

2λB

(

‖u0‖2
0 + ‖ub0‖2

0

)

|ε1| +
(λB)2‖ε3‖2

0

2λB|ε1|
(α + |ε1|)2.

Setting |ε1| � α
4 , we have the inequality

α‖u0 − ū0‖2
0 �

(

λR√
2λRλB

)2

‖ε2‖2
L2(0,T;L2(Ωo))

+
(

λB

λB

)2
(

‖u0‖2
0 +‖ub0‖2

0

)

|ε1| + C

(

λB

λB

)2

(α + |ε1|)2‖ε3‖0,

(3.13)

which implies that the solution of problem (3.1)–(3.2) continuously depends on the observational data

û, ub0, and α. �

The inequality (3.13) indicates that the solution stability would depend on α and the property of

operators R and B, the property of B especially matters more. Once R and B have been prescribed, the

regularization parameter α will dominate the stability.

With guarantee of the wellposedness, we next derive the optimality system to solve for the optimal

initial condition. For presentation convenience, we consider the admissible set U = L2(Ω) in the rest of

paper, we also give remarks for specific cases of U ⊆ L2(Ω).

There are multiple ways to work out the optimality system, such as dual method and the Lagrange

multiplier rule. The core idea behind them are all essentially based on fundamental calculus of variation.

In our case, we consider the variational data assimilation problem (3.1)–(3.2) as a PDE-constrained

optimization, and adopt the Lagrange multiplier rule to relax the constraint. We first introduce the

Lagrange multiplier

(

u∗

u∗(·, 0)

)

∈ W(0,T) × L2(Ω) and form the Lagrange functional:

L (u, u0, u
∗, u∗

0) = 1

2

∫ T

0
‖û− G u(u0)‖2

0,R,Ωo
dt + α

2

∥

∥

∥u0 − ub0

∥

∥

∥

2

0,B

+
∫ T

0

(〈

∂u

∂t
, u∗

〉

+ a(u, u∗) − 〈f , u∗〉
)

dt +
(

u(·, 0) − u0, u
∗(·, 0)

)

. (3.14)
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Calculus of variation of (3.14) with respect to the multiplier

(

u∗

u∗(·, 0)

)

recovers the constraint equation

(3.2). Calculus of variation of (3.14) with respect to

(

u

u(·, 0)

)

, we obtain

∂L (u, u0, u
∗, u∗0)

∂u
v =

∫ T

0
(û− G u(u0), −G v)0,R,Ωo

dt +
∫ T

0

(〈

∂v

∂t
, u∗

〉

+ a(v, u∗)

)

dt + (v(·, 0), u∗(·, 0))

=
∫ T

0

(

G
∗ (û− G u(u0)

)

, −v
)

0,R,Ωo
dt +

∫ T

0

(〈

∂v

∂t
, u∗

〉

+ a(v, u∗)

)

dt + (v(·, 0), u∗(·, 0))

= 0,

∂L (u, u0, u
∗, u∗0)

∂u0
z = α

(

u0 − ub0, z
)

0,B
− (z, u∗(·, 0)) = 0.

(3.15)

Taking integration by part in time on the first equation of (3.15), we have

∫ T

0

(

û− G u(u0), −G v
)

0,R,Ωo
dt + (v(·,T), u∗(·,T)) − (v(·, 0), u∗(·, 0))

+
∫ T

0

(

−
〈

∂u∗

∂t
, v

〉

+ a(v, u∗)
)

dt + (v(·, 0), u∗(·, 0)) = 0.

By imposing u∗(·,T) = 0, we have

∫ T

0

(

−
〈

∂u∗

∂t
, v

〉

+ a(u∗, v)
)

dt =
∫ T

0

(

û− G u(u0),G v
)

0,R,Ωo
dt, (3.16)

recall that a(v, u∗) = a(u∗, v) from the definition of the bilinear form a(·, ·).
We now summarize the above operations (3.14)–(3.16) and conclude the optimality system:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

«

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

¬

〈

∂u

∂t
, v

〉

+ a(u, v) = 〈f , v〉 ∀v ∈ H1
0(Ω),

u(·, 0) = u0 in L2(Ω),

−
〈

∂u∗

∂t
, v

〉

+ a(u∗, v) =
(

û− G u(u0),G v
)

0,R,Ωo
∀v ∈ H1

0(Ω),

u∗(·,T) = 0 in L2(Ω),

α

(

u0 − ub0, z
)

0,B
− (u∗(·, 0), z) = 0 ∀z ∈ L2(Ω).

(3.17)
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Taking integration by part in space of Ω+, Ω− and following a density argument, the optimality system

(3.17) can also be stated as a strong form:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

«

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

¬

∂u

∂t
− ∇ · (β(x, y)∇u) = f in Ω × (0,T],

u(·, 0) = u0 in Ω ,

u = 0 on ∂Ω × (0,T],

[u]|Γ = 0 on Γ × (0,T],
[

β(x, y)
∂u

∂�n

]

|Γ = 0 on Γ × (0,T],

− ∂u∗

∂t
− ∇ · (β(x, y)∇u∗) = χΩo

R
(

û− G u(u0)
)

in Ω × [0,T),

u∗(·,T) = 0 in Ω ,

u∗ = 0 on ∂Ω × [0,T),

[u∗]|Γ = 0 on Γ × [0,T),
[

β(x, y)
∂u∗

∂�n

]

|Γ = 0 on Γ × [0,T),

αB
(

u0 − ub0

)

− u∗(·, 0) = 0 in Ω .

(3.18)

Since the minimization problem (3.1)–(3.2) is strictly convex, the first order necessary condition

above is also sufficient. The latter optimality system with strong form can provide more options on the

numerical solving.

Remark 3.3 If the admissible set is considered as U = {u0 ∈ L2(Ω) : a � u0 � b}, then the optimal

solution is an orthogonal projection of B
−1u∗(·,0)

α
+ub0 ontoU, i.e., u0 = max

{

a, min
{

b, B
−1u∗(·,0)

α
+ub0

}}

.

Remark 3.4 For the interface conditions with jump [β(x, y) ∂u
∂�n ]|Γ = g and [u]|Γ = 0, the constraint

equation in (3.1)–(3.2) can be replaced by

⎧

⎪

«

⎪

¬

〈

∂u

∂t
, v

〉

+ a(u, v) = 〈f , v〉 + 〈g, v〉 ∀v ∈ H1
0(Ω),

u(·, 0) = u0 at t = 0 in L2(Ω).

We are still able to apply the Lagrange multiplier rule as shown above to attain the corresponding

optimality system.

If the interface conditions with jump [β(x, y) ∂u
∂�n ]|Γ = g and [u]|Γ = p are both nonhomogeneous,

the solution u is no longer in H1(Ω) space, and we cannot define classical weak formulations and weak

solutions. However, assume Γ is smooth and p ∈ H1/2(Γ ), we can use the extension theorem to do a
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homogenization. We have an extended function w1 such that w1|Γ = p and satisfies

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

«

⎪

⎪

⎪

⎪

⎪

⎪

⎪

¬

∂w1

∂t
− ∇ · (β+∇w1) = 0 in Ω+ × (0,T],

w1(·, 0) = w1
0 in Ω+,

w1 =
{

p on Γ × (0,T],

0 on ∂Ω+ \ Γ × (0,T].

We can further extend w1 from Ω+ to Ω

w2 =
{

w1 in Ω+,

0 in Ω−,

which gives a function w2 with [w2]|Γ = p. Set w = u−w2, we have a nonhomogeneous jump parabolic

interface equation

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

«

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

¬

∂w

∂t
− ∇ · (β∇w) = f in Ω × (0,T],

w(·, 0) = w0 =
{

u0 − w1
0 in Ω+,

u0 in Ω−,

[w]|Γ = 0 on Γ × (0,T],
[

β(x, y)
∂w

∂�n

]

|Γ = g− ∂w2

∂�n on Γ × (0,T].

(3.19)

So far, we are available to introduce the weak formulation for equation (3.19) and formulate the data

assimilation problem as:

min
w0∈U

F(w0) = 1

2

∫ T

0

∥

∥

(

û− Gw2

)

− Gw(w0)
∥

∥

2

0,R,Ωo
dt + α

2

∥

∥

∥w0 −
(

ub0 − w2(·, 0)

)∥

∥

∥

2

0,B

subject to

⎧

⎪

«

⎪

¬

〈

∂w

∂t
, v

〉

+ a(w, v) = 〈f , v〉 +
〈

g− ∂w2

∂�n , v

〉

, ∀v ∈ H1
0(Ω),

w(·, 0) = w0 at t = 0 in L2(Ω).

To obtain u0 and u, we first solve for w0 and w, then have u0 = w0 + w2(·, 0) and u = w+ w2.
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4. A finite-element approximation and convergence analysis

To numerically compute the solution discussed in Section 3, we present a fully discrete approximation

to the data assimilation problem (3.1)–(3.2), that uses a piecewise linear finite-element method in space

and the backward Euler scheme in time.

For the spatial discretization, we first approximate the smooth interface Γ and boundary ∂Ω with

line segments, the union of such line segments forms an approximated interface Γh and boundary ∂Ωh.

The domain circumscribed by ∂Ωh is denoted with Ωh, which is an approximation of Ω . Γh divides Ωh

into two subdomains Ω+
h and Ω−

h , which forms an approximation of Ω+ and Ω−, respectively.

Let T +
h denote a family of triangulation of Ω+

h and T
−
h denote a family of triangulation of Ω−

h such

that

Th = T
+
h ∪ T

−
h .

We need the vertices on ∂Ωh or Γh of a triangle τh ∈ Th to be vertices of ∂Ωh or Γh, respectively. We

also assume the triangulation Th satisfies the usual sort of quasi-uniformity condition.

Associated with Th is the finite-element space Vh = span{φi}i=Nbi=1 , where φi is piecewise linear

polynomials and Nb is the number of finite-element nodes. The admissible set of discrete optimal

solutions is then denoted by Uh = Vh ∩ U.

For the time discretization we uniformly construct a time grid 0 = t0 < t1 < t2 < t3... < tn... < tN =
T with time step τ = T

N
. Let In = (tn−1, tn] denote the nth sub-interval. We use the finite-dimensional

space

Vτ ,h = {v : [0,T] → Vh : v|In ∈ Vh is constant in time}.

Let vn be the value of v ∈ Vτ ,h at tn and Vnτ ,h be the restriction to In of the functions in Vτ ,h.

Given specific h, τ and α > 0, the fully discrete approximation of problem (3.1)–(3.2) is stated as

min
u0,h∈Uh

Fh(u0,h) (4.1)

subject to

⎧

⎪

⎪

«

⎪

⎪

¬

〈

un+1
h − unh

τ
, vh

〉

+ a
(

un+1
h , vh

)

= 〈fn+1, vh〉 ∀vh ∈ Vh,

u0
h = u0,h,

(4.2)

where

Fh(u0,h) = 1

2
τ

N
∑

n=1

∥

∥ûnh − G
n
h u

n
h

∥

∥

2

0,Rnh,Ωo
+ α

2

∥

∥

∥u0,h − ub0,h

∥

∥

∥

2

0,Bh
. (4.3)

Here, ûnh and ub0,h can be viewed as finite-element interpolations or projections of ûn = û(·, tn) and ub0,

respectively. Mimicking the definition in the continuous case, we define G n
h : L2

h(Ω) �→ L2
h(Ωo) as
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the restriction mapping and Gh = ∑N
n=1 G n

h χIn as a piecewise constant function in time. We also have

‖ · ‖2
0,Rnh,Ωo

= (Rnh·, ·)Ωo
= (·, ·)0,Rnh,Ωo

, and ‖ · ‖2
0,Bh

= (Bh·, ·) = (·, ·)0,Bh
. Rnh = Rh(·, tn) : L2

h(Ωo) �→
L2
h(Ωo) and Bh : L2

h(Ω) �→ L2
h(Ω) are all bounded, self-adjoint and positive definite operators

accounting for the observation and background error covariance. The operator Rh = ∑N
n=1 R

n
hχIn is

a piecewise constant function in time. L2
h(Ωo) and L2

h(Ω) are L2 spaces consisting of the span of the

finite-element basis {φi}Nbi=1. We also have the following operator properties:

∣

∣

∣(p, q)0,Rnh,Ωo

∣

∣

∣ � λR
n
h‖p‖0,Ωo

‖q‖0,Ωo
∀p, q ∈ L2

h(Ωo), (4.4)

(

Rnhp, p
)

0,Ωo
� λRnh

‖p‖2
0,Ωo

∀p ∈ L2
h(Ωo), (4.5)

|(p, q)0,Bh
| � λBh‖p‖0‖q‖0 ∀p, q ∈ L2

h(Ω), (4.6)

(Bhp, p) � λBh‖p‖
2
0 ∀p ∈ L2

h(Ω), (4.7)

where λRnh
, λR

n
h and λBh , λ

Bh are all positive real numbers. Recall the operator: Rh(t) =
∑N

n=1 R
n
hχ(t∈((n−1)τ ,nτ ]) and denote {λRh = sup0<t�T λRh(t) : |(p, q)0,Rh(t),Ωo

| � λRh(t)‖p‖0,Ωo
‖q‖0,Ωo

∀p, q ∈ L2
h(Ωo)} and {λRh = inf0<t�T λRh(t) : |(p, q)0,Rh(t),Ωo

| � λRh(t)‖p‖0,Ωo
‖q‖0,Ωo

∀p, q ∈ L2
h(Ωo)},

we note that

λRh = sup
1�n�N

λR
n
h > 0, λRh = inf

1�n�N
λRnh

> 0. (4.8)

We also notice that, if we restrict the discussion of R(·, tn),Rnh,B and Bh in the finite dimensional space,

i.e., R(·, tn),Rnh : L2
h(Ωo) �→ L2

h(Ωo) and B,Bh : L2
h(Ω) �→ L2

h(Ω), then R(·, tn) = Rnh, B = Bh, and

R distinguishes from Rh only with a time approximation. In other words, the spatial approximation for

operators R and B cannot be necessarily applied in the context of finite-element methods. The operator

Gh is slightly different, the temporal approximation to G is not in need automatically, we can assume

there is no spatial difference neither, i.e., G = Gh when defined in space L2
h(Ω). For clarity, we will

remark more about the difference between the cost functions with and without spatial approximation of

operators R and B in the following.

Remark 4.1 For case without spatial approximation of operators R(·, tn) and B, the cost functional (4.3)

is equivalent to the following matrix–vector formulation:

min
�u0,h∈RNb

Fh(�u0,h) = 1

2
τ

N
∑

n=1

(

�̂unh − G
n
h �unh

)T
MRnh

(

�̂unh − G
n
h �unh

)

+ α

2

(

�ub0,h − �u0,h

)T
MBh

(

�ub0,h − �u0,h

)

.

(4.9)

In (4.9), the matrix representation of the operator G n
h is still denoted by G n

h , G n
h gives the values of

�unh at mesh grids within the observation domain Ωo. �u0,h, �ub0,h,
�̂unh and �unh are vector representations

of u0,h, u
b
0,h, û

n
h and unh with finite-element basis {φi}Nbi=1. The observation error covariance Rnh and
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background error covariance Bh are incorporated into the weighted mass matrix MRnh
and MBh

, which

are assembled from the finite-element method:

MRnh
=

[∫

Ωo

Rnhφjφi dx dy

]

supp{φi,φj}⊂Ωo

, MBh
=

[∫

Ω

Bhφjφi dx dy

]Nb

i,j=1

.

For case with spatial approximation for operators R(·, tn) and B, the cost functional (4.3) can be

equivalent to the following matrix–vector formulation:

min
�u0,h∈RNb

Fh(�u0,h) = 1

2
τ

N
∑

n=1

(

Qnh

(

�̂unh − G
n
h �unh

))T
Mo

(

Qnh

(

�̂unh − G
n
h �unh

))

+ α

2

(

Ph

(

�ub0,h − �u0,h

))T
M

(

Ph

(

�ub0,h − �u0,h

))

. (4.10)

In (4.10), Mo and M are mass matrices assembled as Mo =
[

∫

Ωo
φjφi dx dy

]

supp{φi,φj}⊂Ωo

and M =
[

∫

Ω
φjφi dx dy

]Nb

i,j=1
. We still denote the matrix representation of operators Rnh and Bh with Rnh and Bh, R

n
h

and Bh correspond to the inverse of the observation and background error covariance matrix. Since Rnh
and Bh are symmetric and positive definite, we have the decompositions Rnh = (Qnh)

TQnh and Bh = PThPh
for some invertible matrices Qnh and Ph.

In real applications, the cost functional (4.10) is more often to be used since the observations {ûnh}Nn=1

is usually evaluated at a set of discrete time moments {tn}Nn=1 and of spatial mesh grids.

Similar to the proof for the wellposedness of the continuous data assimilation problem, one can prove

the wellposedness of the fully discrete data assimilation problem (4.1)–(4.3). Due to the page limitation,

the details are omitted here.

Theorem 4.2 Given τ = T
N

and mesh size h, for each fixed regularization parameter α, there exists a

unique optimal solution u0,h ∈ Uh such that the cost functional (4.3) is minimized.

Proof. First, note that the L2-norm is continuous, the operators G n
h , Rnh and Bh are all bounded,

and the solution mapping H n
h : u0,h �→ unh := H n

h (u0,h) is continuous by using the stability of

the discretized parabolic interface equation (4.2). The cost functional (4.3) is composed by all these

continuous mappings and thus is also continuous. Next, we show that the cost functional (4.3) is strictly

convex by calculating its second-order derivative. The first order derivative of Fh(u0,h) is

∂Fh(u0,h)

∂u0,h

z = τ

N
∑

n=1

(

ûnh − G
n
h u

n
h, −

∂
(

G n
h u

n
h

)

∂u0,h

z

)

0,Rnh,Ωo

+ α

(

u0,h − ub0,h, z
)

0,Bh
∀z ∈ Uh. (4.11)

From (4.11), we calculate the second-order derivative of Fh(u0,h):

∂2Fh(u0,h)

∂u0,h
2

(z, v) = τ

N
∑

n=1

(

−
∂
(

G n
h u

n
h

)

∂u0,h
v, −

∂
(

G n
h u

n
h

)

∂u0,h
z

)

0,Rnh,Ωo

+ τ

N
∑

n=1

(

ûnh − G
n
h u

n
h, −

∂2
(

G n
h u

n
h

)

∂u0,h
2

(z, v)

)

0,Rnh,Ωo

+ α(v, z)0,Bh ∀z, v ∈ Uh.

(4.12)
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Furthermore, we have
∂2(G n

h u
n
h)

∂u0,h
2 (z, v) = G n

h ∂2(unh)

∂u0,h
2 (z, v) due to the linearity of G n

h , and
∂2unh
∂u0,h

2 (z, v) = 0

because of the linearity of the parabolic interface equation (4.2). Therefore, with (4.12) we have

∂2Fh(u0,h)

∂u0,h
2

(z, z) = τ

N
∑

n=1

(

∂
(

G n
h u

n
h

)

∂u0,h

z,
∂
(

G n
h u

n
h

)

∂u0,h

z

)

0,Rnh,Ωo

+ α(z, z)0,Bh
� λBh‖z‖

2
0 ∀z ∈ Uh, (4.13)

which concludes the strictly convexity of (4.3). The convexity and continuity indicate that (4.3) is lower-

semi-continuous. Then, similar to the proof in (Lions, 1971, Theorem 1.1), by arguing a constructed

minimizing sequence on the lower-semi-continuous cost functional (4.3), we can conclude that there

exist an optimal solution u0,h. Using the strictly convexity again, we claim that the optimal solution is

unique. This completes the proof. �

Theorem 4.3 The solution of problem (4.1)–(4.3) continuously depends on the observational data

{ûnh}, the background information ub0,h, and the parameter α. I.e., let ū0,h be the optimal solution for

regularization parameter α+ε1, perturbed observations {ûnh+ε(n)}, and background information ub0,h+ε3.

where ε1 ∈ R, ε(n) ∈ L2(Ωo) and ε3 ∈ L2(Ω). Assume C is a positive constant and ‖ε3‖0
|ε1| � C and

sup1�n�N ε(n) � ε2, we then have the following estimate:

α‖u0,h − ū0,h‖2
0 � T

(

λRh
√

2λRhλBh

)2

‖ε2‖2
0,Ωo

+
(

λBh

λBh

)2
(

‖u0,h‖2
0 + ‖ub0,h‖2

0

)

|ε1|+C
(

λBh

λBh

)2

(α + |ε1|)2‖ε3‖0.

Proof. With (4.11), the first order optimality condition of problem (4.1)–(4.3) is given by

∂Fh(u0,h)

∂u0,h
(z− u0,h) = τ

N
∑

n=1

(

ûnh − G
n
h u

n
h, −

G
n
h ∂unh
∂u0,h

(z− u0,h)

)

0,Rnh,Ωo

+ α(u0,h − ub0,h, z)0,Bh

= τ

N
∑

n=1

(

ûnh − G
n
h u

n
h, G

n
h

(

unh(u0,h) − unh(z)
))

0,Rnh,Ωo
+ α

(

u0,h − ub0,h, z− u0,h

)

0,Bh
� 0.

(4.14)

Similar to Theorem 3.2, inequality (4.14) is the key to prove the stability. We can apply the same

techniques as in the proof of Theorem 3.2 to complete the proof. �

Remark 4.4 In finite dimensional spaces, bounded operators are all compact. Therefore, λRh , λRh and

λBh , λBh are all determined by the max-min eigenvalues of {Rnh} and Bh.

In order to derive the discrete optimality system and solve for u0,h, we apply the Lagrange multiplier

rule and form the Lagrange functional:

L
(

ūh, u0,h, ū
∗
h

)

= 1

2
τ

N
∑

n=1

∥

∥ûnh − G
n
h u

n
h

∥

∥

2

0,Rnh,Ωo
+ α

2

∥

∥

∥u0,h − ub0,h

∥

∥

∥

2

0,Bh

+ τ

N−1
∑

n=0

〈

un+1
h − unh

τ
+ Aun+1

h − fn+1, u
∗n
h

〉

+
(

u0
h − u0,h, u

∗0
h

)

, (4.15)
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where ūh = (u1
h, u

2
h, u

3
h, ....., u

N
h ) and ū∗

h = (u∗0
h , u∗1

h , u∗2
h , u∗3

h , ....., u∗N−1
h ). Recall that 〈Au, v〉 = a(u, v),

and A is self-adjoint in the sense of 〈Au, v〉H−1×H1
0

= 〈Av, u〉H−1×H1
0
. Then we rewrite (4.15) as

L
(

ūh, u0,h, ū
∗
h

)

= 1

2
τ

N
∑

n=1

∥

∥ûnh − G
n
h u

n
h

∥

∥

2

0,Rnh ,Ωo
+ α

2

∥

∥

∥u0,h − ub0,h

∥

∥

∥

2

0,Bh
+

(

uNh , u∗N
h

)

−
(

uNh , u∗N
h

)

+
(

u0
h − u0,h, u

∗0
h

)

+ τ

N−1
∑

n=0

(〈

un+1
h − unh

τ
, u∗n
h

〉

+
〈

Aun+1
h , u∗n

h

〉

−
〈

fn+1, u
∗n
h

〉

)

= 1

2
τ

N
∑

n=1

∥

∥ûnh − G
n
h u

n
h

∥

∥

2

0,Rnh ,Ωo
+ α

2

∥

∥

∥u0,h − ub0,h

∥

∥

∥

2

0,Bh
+ τ

N
∑

n=1

〈

u∗n−1
h − u∗n

h

τ
, unh

〉

+ τ

N
∑

n=1

〈

Au∗n−1
h , unh

〉

− τ

N
∑

n=1

〈

fn, u
∗n−1
h

〉

+
(

uNh , u∗N
h

)

−
(

u0,h, u
∗0
h

)

.

(4.16)

Using standard techniques of calculus of variations, we derive equations that correspond to rendering

(4.16) stationary. Variations in the Lagrange multiplier ū∗
h recover the constraint equation (4.2). Variations

with respect to u0,h and unh, for n = 1, 2, 3....N − 1 yield

∂L
(

ūh, u0,h, ū
∗
h

)

∂u0,h

zh = α

(

u0,h − ub0,h, zh

)

0,Bh
−

(

u∗0
h , zh

)

= 0,

∂L
(

ūh, u0,h, ū
∗
h

)

∂unh
vh = τ

〈

u∗n−1
h − u∗n

h

τ
, vh

〉

+ τ

〈

Au∗n−1
h , vh

〉

− τ
(

ûnh − G
n
h u

n
h, G

n
h vh

)

0,Rnh,Ωo
= 0.

(4.17)

Imposing u∗N
h = 0 when calculating the variation with respect to uNh results in the discrete optimality

system:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

«

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

¬

〈

un+1
h − unh

τ
, vh

〉

+ a
(

un+1
h , vh

)

= 〈fn+1, vh〉,

u0
h = u0,h,

−
〈

u∗n+1
h − u∗n

h

τ
, vh

〉

+ a
(

u∗n
h , vh

)

=
(

χΩo
Rnh

(

ûn+1
h − G

n+1
h un+1

h

)

, vh

)

,

u∗N
h = 0,
(

αBh

(

u0,h − ub0,h

)

− u∗0
h , zh

)

= 0,

(4.18)

for n = 0, 1, 2, 3.....N − 1.

We shall expect the discrete solution in (4.18) to converge to the solution of (3.17). That is, given

fixed α, u0,h → u0, uh → u and u∗
h → u∗ should be attained while the time step τ and finite-element

mesh size h diminish (Yamamoto & Zou, 2001).
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Theorem 4.5 For each fixed regularization parameter α, let {u0,h}h>0 be the corresponding sequence of

minimizer of the discrete data assimilation problem (4.1)–(4.3). Then {u0,h}h>0 converges to the optimal

solution u0 of the continuous problem (3.1)–(3.2) as h, τ → 0.

Proof. It is not difficult to see Fh(u0,h) � C for some constant C independent of h and τ . This can be

verified by noticing that Fh(u0,h) � Fh(u
b
0,h) while Fh(u

b
0,h) can be uniformly bounded by û, f and ub0.

Then we can show that ‖u0,h‖0 �

√

2
αλBh

Fh(u0,h)+‖ub0,h‖0 by using the cost functional Fh(u0,h) in (4.3):

√

αλBh

2

(

‖u0,h‖0 −
∥

∥

∥u
b
0,h

∥

∥

∥

0

)

�

√

αλBh

2

∥

∥

∥u0,h − ub0,h

∥

∥

∥

0
�

√

α

2

∥

∥

∥u0,h − ub0,h

∥

∥

∥

0,Bh
�

√

Fh(u0,h).

Hence we can extract a subsequence {u0,h′} from {u0,h} such that {u0,h′} weakly converges to μ∗ in L2(Ω).

We conclude furthermore

lim
h′,τ→0

1

2
τ

N
∑

n=1

∥

∥ûnh − G
n
h u

n
h(u0,h′)

∥

∥

2

0,Rnh,Ωo
→ 1

2

∫ T

0
‖û− G u(μ∗)‖2

0,R,Ωo
dt.

Thus, for ∀v ∈ U, by the weakly lower semicontinuity we deduce

F(μ∗) � lim inf
h′,τ→0

1

2
τ

N
∑

n=1

∥

∥ûnh′ − G
n
h u

n
h′(u0,h′)

∥

∥

2

0,Rn
h′ ,Ωo

+ α

2
lim inf
h′,τ→0

∥

∥

∥u0,h′ − ub0,h′

∥

∥

∥

2

0,Bh′

� lim inf
h′,τ→0

Fh′(u0,h′) � lim inf
h′,τ→0

Fh′(πh′(v))

= 1

2

∫ T

0
‖û− G u(v)‖2

0,R,Ωo
dt + α

2
‖v− ub0‖2

0,B = F(v), (4.19)

where πh is the L2 projection operator from U to Uh.

Then (4.19) and the uniqueness result in Theorem 3.1 imply that μ∗ is the optimal solution of the

problem (3.1)–(3.2) and thus the theorem is proved. �

Besides a general convergence result in Theorem 4.5, under appropriate assumptions, we can obtain

the optimal finite-element convergence rate for u0 − u0,h, u− uh and u∗ − u∗
h.

Compared with the classical FEM analysis, the difficulties in our case lie in the undetermined initial

condition from the forward state equation and the Galerkin orthogonality we miss on the backward

adjoint equation, both of which would lead to the invalidity of the classical analysis framework. In order

to overcome these difficulties, we introduce the following auxiliary equations to bridge the analysis in

the data assimilation problem and the classical FEM approximation results (Chen & Zou, 1998):

⎧

⎪

«

⎪

¬

〈

∂u(u0,h)

∂t
, v

〉

+ a(u(u0,h), v) = 〈f , v〉,

u(u0,h)(·, 0) = u0,h,

(4.20)
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⎧

⎪

⎪

«

⎪

⎪

¬

〈

−
∂u∗

Rh
(uh)

∂t
, v

〉

+ a
(

u∗
Rh

(uh),v
)

=
(

G
∗Rh(ûh − Ghuh), v

)

,

u∗
Rh

(uh)(·,T) = 0,

(4.21)

⎧

⎪

«

⎪

¬

〈

−
∂u∗

R(u0,h)

∂t
, v

〉

+ a
(

u∗
R(u0,h), v

)

=
(

G
∗R(û− G u(u0,h)), v

)

,

u∗
R(u0,h)(·,T) = 0.

(4.22)

The motivation of the constructions for (4.20) and (4.21) is to remove the uncertainties on the initial

condition and source term. We then convert the target error estimate into an intermediate error that can

be controlled by using (4.22) and the additional equalities αB(u0 − ub0) − u∗(·, 0) = 0 and αBh(u0,h −
ub0,h)−u∗0

h = 0 in the optimality systems. The details will be demonstrated in the following theorem and

lemmas.

Theorem 4.6 Let (u, u∗, u0) ∈ W(0,T) × W(0,T) × U and (uh, u
∗
h, u0,h) ∈ Vτ ,h × Vτ ,h × Uh be

solutions of the continuous optimality system (3.18) and discrete optimality system (4.18), respectively.

Assuming u, u∗ and u0 are smooth enough, the observation ûh ∈ L2(0,T;L2(Ωo)) ∩ L∞(0,T;L2(Ωo)),

and the operators R, Rh, û, ûh, u
b
0, u

b
0,h satisfy the following approximation:

∫ T

t

((R− Rh)p, q)0,Ωo
ds � Cτ‖p‖L2(t,T;L2(Ωo))

‖q‖L2(t,T;L2(Ωo))
,

∥

∥

∥u
b
0 − ub0,h

∥

∥

∥

0
� Ch2, ‖û− ûh‖L2(0,T;L2(Ωo))

� C
(

τ + h2
)

for any p, q ∈ L2(0,T;L2
h(Ωo)) and T > t � 0. Then we have the optimal finite-element convergence

rate

‖u0 − u0,h‖0 + ‖u− uh‖L2(0,T;L2(Ω)) +
∥

∥u∗ − u∗
h

∥

∥

L2(0,T;L2(Ω))
� C

(

Ω ,α, λB, λ
R
)

(h2 + τ),

where C(Ω ,α, λB, λ
Rh) is a constant that depends on Ω , and is proportional to 1

α
, λB

λB
and λR

λB
as well.

This is the major theorem we are going to show in this section. To prove it, some useful inequalities

need to be derived based on the auxiliary equations first.

Lemma 4.7 Let (u(u0,h), u
∗
Rh

(uh), u
∗
R(u0,h)) ∈ W(0,T) ×W(0,T) ×W(0,T) be solutions for equations

(4.20), (4.21) and (4.22), let (u, u∗, u0) ∈ W(0,T) × W(0,T) × U be the solution of (3.17), and

let (uh, u
∗
h, u0,h) ∈ Vτ ,h × Vτ ,h × Uh be the solution of (4.18). Assume that the observations

ûh ∈ L2(0,T;L2(Ωo)) ∩ L∞(0,T;L2(Ωo)) and, for ∀p, q ∈ L2(0,T;L2
h(Ωo)), R − Rh satisfies the

approximation:

∫ T

t

((R− Rh)p, q)0,Ωo
ds � Cτ‖p‖L2(t,T;L2(Ωo))

‖q‖L2(t,T;L2(Ωo))
,
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then we have the following inequalities

‖u− u(u0,h)‖L2(0,T;L2(Ω)) � C‖u0 − u0,h‖0, (4.23)

sup
0�t�T

∥

∥

∥

(

u∗Rh(uh) − u∗R(u0,h)

)

(·, t)
∥

∥

∥

L2(Ω)
� C

(

λR‖ûh − û‖L2(0,T;L2(Ωo))
+ λR‖u(u0,h) − uh‖L2(0,T;L2(Ω))+ τ

)

,

(4.24)

∥

∥u∗
Rh

(uh) − u∗
R(u0,h)

∥

∥

L2(0,T;L2(Ω))
� C

(

λR‖u(u0,h) − uh‖L2(0,T;L2(Ω)) + λR‖ûh − û‖L2(0,T;L2(Ωo))
+ τ

)

,

(4.25)

∥

∥u∗ − u∗
R(u0,h)

∥

∥

L2(0,T;L2(Ω))
� CλR‖u0 − u0,h‖0. (4.26)

Proof. By subtractions between the forward equation in (3.17) and (4.20), (4.21) and (4.22), and the

backward equation in (3.17) and (4.22), respectively, we obtain the following new equations

⎧

⎪

«

⎪

¬

〈

∂(u− u(u0,h))

∂t
, v

〉

+ a(u− u(u0,h), v) = 0,

(u− u(u0,h))(·, 0) = u0 − u0,h,

(4.27)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

«

⎪

⎪

⎪

⎪

⎪

⎪

¬

〈

−
∂

(

u∗
Rh

(uh) − u∗
R(u0,h)

)

∂t
, v

〉

+ a
(

u∗
Rh

(uh) − u∗
R(u0,h), v

)

=
(

G
∗Rh(ûh − Ghuh) − G

∗R(û− G u(u0,h)), v
)

,
(

u∗
Rh

(uh) − u∗
R(u0,h)

)

(·,T) = 0,

(4.28)

⎧

⎪

⎪

⎪

⎪

⎪

«

⎪

⎪

⎪

⎪

⎪

¬

〈

−
∂
(

u∗ − u∗
R(u0,h)

)

∂t
, v

〉

+ a
(

u∗ − u∗
R(u0,h), v

)

=
(

G
∗R(û− G u) − G

∗R(û− G u(u0,h)), v
)

,
(

u∗ − u∗
R(u0,h)

)

(·,T) = 0.

(4.29)

Taking v = u− u(u0,h) in (4.27) and integrating from 0 to t, we find out

∫ t

0

1

2

d‖u− u(u0,h)‖2
0

ds
ds+

∫ t

0
a(u− u(u0,h), u− u(u0,h)) ds = 0. (4.30)

Using the coercivity of the bilinear form a(·, ·), equation (4.30) infers

‖(u− u(u0,h))(·, t)‖2
0 + 2Cc

∫ t

0
‖u− u(u0,h)‖2

1 ds � ‖u0 − u0,h‖2
0.
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Thus, we have the inequality

‖u− u(u0,h)‖L2(0,T;L2(Ω)) � C‖u0 − u0,h‖0. (4.31)

For equation (4.28), we need to rewrite the right-hand side terms as follows:

〈

−
∂

(

u∗Rh(uh) − u∗R(u0,h)

)

∂t
, v

〉

+ a
(

u∗Rh(uh) − u∗R(u0,h), v
)

=
(

G
∗Rh(ûh − Ghuh) − G

∗R(û− G u(u0,h)), v
)

=
(

G
∗Rh(ûh − Ghuh) − G

∗R(ûh − Ghuh) + G
∗R(ûh − Ghuh) − G

∗R(û− G uh) + G
∗R(û− G uh)

−G
∗R(û− G u(u0,h)), v

)

=
(

(Rh − R)(ûh − Ghuh) + R(ûh − û) + R(G u(u0,h) − G uh), G v
)

0,Ωo
.

Taking v = u∗
Rh

(uh) − u∗
R(u0,h) on the previous equation, we have

− 1

2

d‖u∗
Rh

(uh) − u∗
R(u0,h)‖2

0

dt
+ a

(

u∗
Rh

(uh) − u∗
R(u0,h), u

∗
Rh

(uh) − u∗
R(u0,h)

)

=
(

(Rh − R)(ûh − Ghuh) + R(ûh − û) + R(G u(u0,h) − G uh),G
(

u∗
Rh

(uh) − u∗
R(u0,h)

))

0,Ωo
.

Integrating both sides from t to T implies

1

2

∥

∥(u∗
Rh

(uh) − u∗
Rh

(u0,h))(·, t)
∥

∥

2

0
+

∫ T

t

a
(

u∗
Rh

(uh) − u∗
R(u0,h), u

∗
Rh

(uh) − u∗
R(u0,h)

)

dt

=
∫ T

t

(

(Rh − R)(ûh − Ghuh) + R(ûh − û) + R(G u(u0,h) − G uh),G
(

u∗
Rh

(uh) − u∗
R(u0,h)

))

0,Ωo
ds.

(4.32)

Note that (u∗
Rh

(uh) − u∗
R(u0,h))(·,T) = 0 has been used in (4.32). Applying the coercivity of the

bilinear form a(·, ·), the boundedness of operators R and Rh, the Cauchy–Schwarz inequality, Poincaré’s

inequality and Young’s inequality on the previous equation, we have

1

2

∥

∥

(

u∗
Rh

(uh) − u∗
R(u0,h)

)

(·, t)
∥

∥

2

0
+ Cc

∫ T

t

∥

∥u∗
Rh

(uh) − u∗
R(u0,h)

∥

∥

2

1
ds

� C1τ‖ûh − Ghuh‖L2(t,T;L2(Ωo))

∥

∥u∗
Rh

(uh) − u∗
R(u0,h)

∥

∥

L2(t,T;H1(Ω))

+ C2λ
R‖ûh − û‖L2(t,T;L2(Ωo))

∥

∥u∗
Rh

(uh) − u∗
R(u0,h)

∥

∥

L2(t,T;H1(Ω))

+ C3λ
R‖u(u0,h) − uh‖L2(t,T;L2(Ω))

∥

∥u∗
Rh

(uh) − u∗
R(u0,h)

∥

∥

L2(t,T;H1(Ω))

� Cc
∥

∥u∗
Rh

(uh) − u∗
R(u0,h)

∥

∥

2

L2(t,T;H1(Ω))
+ 3C2

1τ
2

4Cc
‖ûh − Ghuh‖2

L2(t,T;L2(Ωo))

+ 3
(

C3λ
R
)2

4Cc
‖ûh − û‖2

L2(t,T;L2(Ωo))
+ 3

(

C3λ
R
)2

4Cc
‖u(u0,h) − uh‖2

L2(t,T;L2(Ω))
. (4.33)
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Reorganizing inequality (4.33) provides us

∥

∥

(

u∗
Rh

(uh) − u∗
R(u0,h)

)

(·, t)
∥

∥

2

0
�

3C2
1τ

2

2Cc

∫ T

t

‖ûh − Ghuh‖2
0,Ωo

ds

+ 3
(

C2λ
R
)2

2Cc

∫ T

t

‖ûh − û‖2
0,Ωo

ds+ 3
(

C3λ
R
)2

2Cc

∫ T

0
‖u(u0,h) − uh‖2

0 ds. (4.34)

Since ûh, uh ∈ L∞(0,T;L2(Ωo)), we have a supremum over time t for the term ‖ûh − Ghuh‖2
0,Ωo

, which

allows us to bound this term from above. Therefore, (4.34) further implies:

∥

∥u∗
Rh

(uh) − u∗
R(u0,h)

∥

∥

L2(0,T;L2(Ω))
� C

(

λR‖u(u0,h) − uh‖L2(0,T;L2(Ω))+ λR‖ûh − û‖L2(0,T;L2(Ωo))
+ τ

)

,

(4.35)

sup
0�t<T

∥

∥

∥

(

u∗Rh(uh) − u∗R(u0,h)
)

(·, t)
∥

∥

∥

L2(Ω)
� C

(

λR‖u(u0,h) − uh‖L2(0,T;L2(Ω))+ λR‖ûh − û‖L2(0,T;L2(Ωo))
+ τ

)

.

(4.36)

For equation (4.29), we take v = u∗ − u∗
R(u0,h), use the coercivity, the Cauchy–Schwarz inequality,

Poincaré’s inequality and Young’s inequality, and proceed similarly as (4.33)–(4.34), to obtain the

following inequality:

∥

∥

(

u∗ − u∗
R(u0,h)

)

(·, t)
∥

∥

2

0
� C(λR)2‖u(u0,h) − u‖2

L2(0,T;L2(Ω))
. (4.37)

(4.37) gives us

∥

∥u∗ − u∗
R(u0,h)

∥

∥

L2(0,T;L2(Ω))
� CλR‖u(u0,h) − u‖L2(0,T;L2(Ω)). (4.38)

Finally, combining (4.38) and (4.31) leads to

∥

∥u∗ − u∗
R(u0,h)

∥

∥

L2(0,T;L2(Ω))
� CλR‖u0 − u0,h‖0.

The proof of Lemma 4.7 is completed. �

Now we are in position to connect the inequalities derived above with the classical FEM convergence

results Chen & Zou (1998). Using the triangle inequality and inequality (4.23), we can bound ‖u −
uh‖L2(0,T;L2(Ω)) as follows:

‖u− uh‖L2(0,T;L2(Ω)) � ‖u− u(u0,h)‖L2(0,T;L2(Ω)) + ‖u(u0,h) − uh‖L2(0,T;L2(Ω))

� C‖u0 − u0,h‖0 + ‖u(u0,h) − uh‖L2(0,T;L2(Ω)). (4.39)
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From inequalities (4.25) and (4.26), ‖u∗ − u∗
h‖L2(0,T;L2(Ω)) can be bounded similarly:

‖u∗ − u∗
h‖L2(0,T;L2(Ω)) � ‖u∗ − u∗

R(u0,h)‖L2(0,T;L2(Ω))

+
∥

∥u∗
R(u0,h) − u∗

Rh
(uh)

∥

∥

L2(0,T;L2(Ω))
+

∥

∥u∗
Rh

(uh) − u∗
h

∥

∥

L2(0,T;L2(Ω))

� CλR‖u0 − u0,h‖0 +
∥

∥u∗
Rh

(uh) − u∗
h

∥

∥

L2(0,T;L2(Ω))

+ C
(

λR‖u(u0,h) − uh‖L2(0,T;L2(Ω)) + λR‖ûh − û‖L2(0,T;L2(Ωo))
+ τ

)

. (4.40)

Note that uh and u∗
h are the classical FEM approximations of u(u0,h) and u∗

Rh
(uh), convergence and

error estimates between them are obtained immediately while traditional regularities are satisfied.

From inequalities (4.39) and (4.40), we observe that the convergence analysis now points to the only

undetermined term ‖u0 − u0,h‖0. Another two conditions αB(u0 − ub0) − u∗(·, 0) = 0 and αBh(u0,h −
ub0,h) − u∗0

h = 0 will be used to work on ‖u0 − u0,h‖0.

Lemma 4.8 Under the same conditions for u, u∗, u0, u0,h, u
∗
R(u0,h) and u(u0,h) as in Lemma 4.7, we have

the following error estimate:

‖u0 − u0,h‖0 �
1

αλB

(∥

∥

∥u
∗
R(u0,h)(·, 0) − u∗0

h

∥

∥

∥

0
+ αλB

∥

∥

∥u
b
0,h − ub0

∥

∥

∥

0

)

. (4.41)

Proof. Recalling the property of the operator B and using the equalities αBh(u0,h − ub0,h)− u∗0
h = 0 and

αB(u0 − ub0) − u∗(·, 0) = 0, we find out

λB‖u0 − u0,h‖2
0 �

(

B(u0 − u0,h), u0 − u0,h

)

= 1

α

(

u∗(·, 0) − BB−1
h u∗0

h + αB
(

ub0 − ub0,h

)

, u0 − u0,h

)

.

(4.42)

Recall B = Bh when they both act on the finite dimensional space L2
h(Ω), hence B−1Bh = I, where

I : L2
h(Ω) �→ L2

h(Ω). Therefore, we can rewrite (4.42) and manipulate it further

λB‖u0 − u0,h‖2
0 �

1

α

(

u∗(·, 0) − u∗0
h + αB

(

ub0 − ub0,h

)

, u0 − u0,h

)

= 1

α

(

u∗(·, 0) − u∗
R(u0,h)(·, 0) + u∗

R(u0,h)(·, 0) − u∗0
h + αB

(

ub0 − ub0,h

)

, u0 − u0,h

)

= 1

α

(

(u∗(·, 0) − u∗
R(u0,h)(·, 0), u0 − u0,h) + (u∗

R(u0,h)(·, 0) − u∗0
h , u0 − u0,h)

+
(

αB
(

ub0 − ub0,h

)

, u0 − u0,h

))

. (4.43)
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Our focus next is to handle the first term in the right-hand side of (4.43). We first need equations (4.27)

and (4.29) from the proof in Lemma 4.7. Taking v = u∗ − u∗
R(u0,h) in (4.27) gives us

∫ T

0

〈

∂(u− u(u0,h))

∂t
, u∗ − u∗

R(u0,h)

〉

dt +
∫ T

0
a(u− u(u0,h), u

∗ − u∗
R(u0,h)) dt = 0.

Applying integration by parts with respect to t on the previous equation, we obtain

−
∫ T

0

〈

∂
(

u∗ − u∗
R(u0,h)

)

∂t
, u− u(u0,h)

〉

dt +
∫ T

0
a
(

u∗ − u∗
R(u0,h), u− u(u0,h)

)

dt

+
(

(u∗ − u∗
R(u0,h))(·,T), (u− u(u0,h))(·,T)

)

−
(

(u∗ − u∗
R(u0,h))(·, 0), (u− u(u0,h))(·, 0)

)

= 0. (4.44)

To work on equation (4.44), we take v = u− u(u0,h) on equation (4.29) to have

⎧

⎪

⎪

⎪

⎪

«

⎪

⎪

⎪

⎪

¬

〈

−
∂(u∗ − u∗

R(u0,h))

∂t
, u− u(u0,h)

〉

+ a(u∗ − u∗
R(u0,h), u− u(u0,h))

=
(

G
∗R(G u(u0,h) − G u), u− u(u0,h)

)

,

(u∗ − u∗
R(u0,h))(·,T) = 0.

(4.45)

Using (4.45) the equation (4.44) is simplified as follows:

(

(u∗ − u∗
R(u0,h))(·, 0), (u− u(u0,h))(·, 0)

)

= −
∫ T

0

(

R
(

G u− G u(u0,h)
)

,G u− G u(u0,h)
)

0,Ωo
dt.

We know that
∫ T
0

(

R
(

G u− G u(u0,h)
)

, G u− G u(u0,h)
)

0,Ωo
d t is non-negative due to the positive

definiteness of the operator R, which then tells us

(

u∗(·, 0) − u∗
R(u0,h)(·, 0), u0 − u0,h

)

� 0. (4.46)

Combining (4.46) with (4.43), we find out

λB‖u0 − u0,h‖2
0 �

1

α

(

(u∗
R(u0,h)(·, 0) − u∗0

h , u0 − u0,h) +
(

αB
(

ub0 − ub0,h

)

, u0 − u0,h

))

�
1

α

(∥

∥

∥u
∗
R(u0,h)(·, 0) − u∗0

h

∥

∥

∥

0
‖u0 − u0,h‖0 + αλB

∥

∥

∥u
b
0,h − ub0

∥

∥

∥

0
‖u0 − u0,h‖0

)

.

(4.47)

Hence

‖u0 − u0,h‖0 �
1

αλB

(∥

∥

∥u
∗
R(u0,h)(·, 0) − u∗0

h

∥

∥

∥

0
+ αλB

∥

∥

∥u
b
0,h − ub0

∥

∥

∥

0

)

.

The proof is completed. �
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By using the triangle inequality and (4.24), the last step necessary for Theorem 4.6 is provided by

∥

∥

∥u
∗0
h − u∗

R(u0,h)(·, 0)

∥

∥

∥

0

�

∥

∥

∥u
∗0
h − u∗

Rh
(uh)(·, 0)

∥

∥

∥

0
+

∥

∥u∗
Rh

(uh)(·, 0) − u∗
R(u0,h)(·, 0)

∥

∥

0

� max
0�i�N−1

∥

∥

∥u
∗i
h − u∗

Rh
(uh)(·, ti)

∥

∥

∥

0
+ sup

0�t<T

∥

∥u∗
Rh

(uh) − u∗
R(u0,h)

∥

∥

0

� max
0�i�N−1

∥

∥

∥u
∗i
h − u∗

Rh
(uh)(·, ti)

∥

∥

∥

0
+ C

(

λR‖u(u0,h) − uh‖L2(0,T;L2(Ω)) + λR‖ûh − û‖L2(0,T;L2(Ωo))
+ τ

)

.

(4.48)

We have nearly achieved our goal of connecting the convergence in the data assimilation problem

with classical FEM convergence results. Rearranging inequalities (4.39), (4.40), (4.41) and (4.48), we

conclude

‖u0 − u0,h‖0 + ‖u− uh‖L2(0,T;L2(Ω)) + ‖u∗ − u∗
h‖L2(0,T;L2(Ω))

�

(

C + CλR + 1
)

‖u0 − u0,h‖0 + (CλR + 1)‖u(u0,h) − uh‖L2(0,T;L2(Ω)) + Cτ +
∥

∥u∗
Rh

(uh) − u∗
h

∥

∥

L2(0,T;L2(Ω))

+ CλB
(

C + CλR + 1
)

αλB
‖û− ûh‖L2(0,T;L2(Ωo))

�

(

CλR + 1 + CλR
(

C + CλR + 1
)

αλB

)

‖u(u0,h) − uh‖L2(0,T;L2(Ω)) +
(

C + C
(

C + CλR + 1
)

αλB

)

τ

+ C + CλR + 1

αλB
max

0�i�N−1

∥

∥

∥u
∗i
h − u∗(uh)(·, ti)

∥

∥

∥

0
+

(

C + CλR + 1
)

λB

λB

∥

∥

∥u
b
0 − ub0,h

∥

∥

∥

0
+

∥

∥u∗
Rh

(uh) − u∗
h

∥

∥

L2(0,T;L2(Ω))

+ CλR
(

C + CλR + 1
)

αλB
‖û− ûh‖L2(0,T;L2(Ωo))

.

Using results in Chen & Zou (1998), the following classical error bounds hold:

max
0�i�N−1

∥

∥

∥u
∗i
h − u∗

Rh
(uh)(·, ti)

∥

∥

∥ � C(h2|log h| + τ),

∥

∥u∗
Rh

(uh) − u∗
h

∥

∥

L2(0,T;L2(Ω))
� C(h2|log h| + τ),

‖u(u0,h) − uh‖L2(0,T;L2(Ω)) � C(h2|log h| + τ).

Finally, we have the convergence result

‖u0 − u0,h‖0 + ‖u− uh‖L2(0,T;L2(Ω)) + ‖u∗ − u∗
h‖L2(0,T;L2(Ω)) � C

(

α, λB, λ
R
)

(h2 + τ),

which completes the proof of Theorem 4.6.

Also, the dependence of the constantC indicates that the property of B, R and the small regularization

parameters may cause the numerical accuracy to degenerate. Hence, in practice one needs to use more
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refined mesh size h and time step τ to reduce the finite-element approximation error caused by small α,

λB, or large ratio λR

λB
.

Remark 4.9 If the discrete cost function is given as (4.9), that means we have both temporal and spatial

approximations for operators R and B. In this case, the approximation R − Rh in Theorem 4.6 needs to

satisfy, for ∀ p, q ∈ L2
h(Ωo),

∫ T

t

((R− Rh)p, q)0,Ωo
ds � C(τ + h2)‖p‖L2(t,T;L2(Ωo))‖q‖L2

(

t,T;L2
h(Ωo)

).

In addition, we need to modify the proof of step (4.43) in Lemma 4.8:

λB‖u0 − u0,h‖2
0 �

1

α

(

u∗(·, 0) − BB−1
h u∗0

h + αB
(

ub0 − ub0,h

)

, u0 − u0,h

)

= 1

α

(

u∗(·, 0) − u∗
R(u0,h)(·, 0) + u∗

R(u0,h)(·, 0) − u∗0
h + u∗0

h − BB−1
h u∗0

h + αB
(

ub0 − ub0,h

)

, u0 − u0,h

)

= 1

α

(

(

u∗(·, 0) − u∗
R(u0,h)(·, 0), u0 − u0,h

)

+
(

u∗
R(u0,h)(·, 0) − u∗0

h , u0 − u0,h

)

+
(

B
(

B−1 − B−1
h

)

u∗0
h , u0 − u0,h

)

+
(

αB
(

ub0 − ub0,h

)

, u0 − u0,h

))

.

(4.49)

So far, we realize that one more condition for Theorem 4.6 is in need:

∣

∣

∣

((

B−1 − B−1
h

)

p, q
)∣

∣

∣ � Ch2‖p‖0‖q‖0 ∀p, q ∈ L2
h(Ω). (4.50)

Then using (4.50) and doing the same manipulations as steps (4.44)–(4.46), we end up with

λB‖u0 − u0,h‖2
0 �

1

α

(∥

∥

∥u
∗
R(u0,h)(·, 0) − u∗0

h

∥

∥

∥

0
‖u0 − u0,h‖0 + CλBh2

∥

∥

∥u
∗0
h

∥

∥

∥

0
‖u0 − u0,h‖0

+αλB
∥

∥

∥u
b
0,h − ub0

∥

∥

∥

0
‖u0 − u0,h‖0

)

. (4.51)

The result of Lemma 4.8 will be given as

‖u0 − u0,h‖0 �
C

αλB

(∥

∥

∥u
∗
R(u0,h)(·, 0) − u∗0

h

∥

∥

∥

0
+ λBh2 + αλB

∥

∥

∥u
b
0,h − ub0

∥

∥

∥

0

)

.

Then the optimal finite-element convergence rate can still be achieved.

Remark 4.10 One can prove that the solution u0 of the regularized problem (3.1)–(3.2) converges to

the unique solution (if exist) or minimum norm solution of the original ill-posed problem (i.e., problem

(3.1)–(3.2) with α = 0), with even convergence rates with respect to the regularization parameter α if

we assume certain source conditions (cf. (Engl et al., 1996, Chap. 5.4)). Combined with the a priori

finite-element error estimate established in Theorem 4.6, this will enable us to choose the appropriate

parameters coupling the regularization parameter α, the noise level δ, the mesh sizes h and τ , to achieve

an optimal convergence. We refer to von Daniels & Hinze (2020) and the references therein for a similar



476 X. LI ET AL.

idea. Once the noise level is given and fixed, the regularization parameter can be chosen with either a

priori or a posterior rule, while the discretization parameters can be chosen accordingly by using the

error estimates established in Theorem 4.6.

5. Iterative methods solving the discrete optimality system

Due to the forward in time nature in the state equation and backward in time nature of the adjoint equation,

solving the discrete optimality system directly would produce a massive linear system and encounters

computational difficulties. Considering the stability in data assimilation problem, in this section we

develop three iterative algorithms, based on the BFGS method, the conjugate gradient(CG) method, and

the steepest descent method, to decouple the discrete optimality system, which improve the computation

efficiency significantly.

5.1 Matrix–vector calculation

To show a concrete implementation of these gradient-based iterative methods, we first provide a finite-

element assembling and give readers a matrix-vector calculation of the gradient at each iteration.

Recall the discrete optimality system, for n = 0, 1, 2, 3, ....,N − 1,

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

«

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

¬

〈

un+1
h − unh

τ
, vh

〉

+ a
(

un+1
h , vh

)

= 〈fn+1, vh〉,

u0
h = u0,h,

−
〈

u∗n+1
h − u∗n

h

τ
, vh

〉

+ a
(

u∗n
h , vh

)

=
(

χΩo
Rnh

(

ûn+1
h − G

n+1
h un+1

h

)

, vh

)

,

u∗N
h = 0,
(

αBh

(

u0,h − ub0,h

)

− u∗0
h , zh

)

= 0.

(5.1)

Considering the integral formula of the forward equation in (5.1), we have

∫

Ω

un+1
h − unh

τ
vh dx dy+

∫

Ω+
β+∇un+1

h ∇vh dx dy+
∫

Ω−
β−∇un+1

h ∇vh dx dy =
∫

Ω+
f+n+1vh dx dy+

∫

Ω−
f−n+1vh dx dy.

(5.2)

For each time moment n, unh = ∑Nb
j=1 u

n
j φj, plugging unh into (5.2) and using vh = {φi}Nbi=1 to test (5.2),

we obtain

∫

Ω

∑Nb
j=1

(

un+1
j − unj

)

τ
φjφi dx dy+

∫

Ω+

Nb
∑

j=1

un+1
j β+ ∂φj

∂x

∂φi

∂x
dx dy+

∫

Ω+

Nb
∑

j=1

un+1
j β+ ∂φj

∂y

∂φi

∂y
dx dy

+
∫

Ω−

Nb
∑

j=1

un+1
j β− ∂φj

∂x

∂φi

∂x
dx dy+

∫

Ω−

Nb
∑

j=1

un+1
j β− ∂φj

∂y

∂φi

∂y
dx dy =

∫

Ω+
f+
n+1φi dx dy+

∫

Ω−
f−
n+1φi dx dy.
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Then the matrix–vector formulation of the forward equation is

⎧

⎪

«

⎪

¬

M
�un+1
h − �unh

τ
+ Q�un+1

h = �f n+1,

�u0
h = �u0,h,

(5.3)

where

M =
[∫

Ω

φjφi dx dy

]Nb

i,j=1

, �f n+1 =
[∫

Ω+
f+n+1φi dx dy

]Nb

i=1

+
[∫

Ω−
f−n+1φi dx dy

]Nb

i=1

,

Q =
[∫

Ω+
β+ ∂φj

∂x

∂φi

∂x
dx dy

]Nb

i,j=1

+
[∫

Ω+
β+ ∂φj

∂y

∂φi

∂y
dx dy

]Nb

i,j=1

+
[∫

Ω−
β− ∂φj

∂x

∂φi

∂x
dx dy

]Nb

i,j=1

+
[∫

Ω−
β− ∂φj

∂y

∂φi

∂y
dx dy

]Nb

i,j=1

.

(5.4)

Similarly, the matrix–vector formulation of the discrete backward equation can be written as

⎧

⎪

«

⎪

¬

−M
�u∗n+1
h − �u∗n

h

τ
+ Q�u∗n

h = �b∗n+1,

�u∗N
h = �0,

(5.5)

where

�b∗n+1 =
[∫

Ω

χΩo
Rn+1
h

(

ûn+1
h − G

n+1
h un+1

h

)

φi dx dy

]Nb

i=1

.

Now the gradient at kth iteration, �F′
h

(

u
(k)
0,h

)

, is calculated as follows:

⎧

⎪

«

⎪

¬

M
�un+1(k)
h − �un(k)h

τ
+ Q�un+1(k)

h = �bn+1,

�u0(k)
h = �u(k)

0,h,

(5.6)

⎧

⎪

«

⎪

¬

−M
�u∗n+1(k)
h − �u∗n(k)

h

τ
+ Q�u∗n(k)

h = �b∗n+1(k),

�u∗N(k)
h = �0,

(5.7)

�F′
h

(

u
(k)
0,h

)

= α

(

�uBh(k)0,h − �ub,Bh0,h

)

− �u∗0(k)
h , (5.8)

where �uBh(k)0,h and �ub,Bh0,h satisfy M�uBh(k)0,h = MBh
�uBh(k)0,h and M�ub,Bh0,h = MBh

�ub0,h.
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Solving equations (5.6)–(5.7) with initial condition �u(k)
0,h forward and backward to obtain �F′

h

(

u
(k)
0,h

)

will be a basic ingredient for all our algorithms. Note that n and k in above represent steps for the time

evolution and the gradient iteration, we will keep these notations in the rest of presentation.

Remark 5.1 We also need to remind readers that �p is the vector representation of an element p in a

Hilbert space with finite-element basis {φi}Nbi=1. Especially, ‖�p‖2
0 will refer ‖�p‖2

0 = (�p, �p)M = �pTM�p,
where M is the mass matrix.

5.2 The conjugate gradient method

Conjugate gradient method (CG) is a popular algorithm to solve variational problems, it can achieve a

superlinear convergence rate only considering the first order derivative. The main feature of CG is that the

current descent direction dk is conjugate orthogonal to all previous descent directions d0, d1, d2, ...dk−1,

which allows a convergence within finite iterations for the finite dimension optimization. A standard CG

algorithm update is given as follows:

• Initialize �u(0)
0,h and �d0 = − �F′

h

(

u
(0)
0,h

)

.

• Update �u(k+1)
0,h = �u(k)

0,h + γ k�dk with

�dk =

⎧

«

¬

− �F′
h

(

u
(0)
0,h

)

k = 0,

− �F′
h

(

u
(k)
0,h

)

+ βk�dk−1 k � 1,
βk =

(

�F′
h

(

u
(k)
0,h

)

, �F′
h

(

u
(k)
0,h

))

(

�F′
h

(

u
(k−1)
0,h

)

, �F′
h

(

u
(k−1)
0,h

)) .

• γk is a positive number determined with exact line search by minimizing the functional γk =
argminγ∈RFh(u

(k)
0,h + γ kdk) or using inexact line search methods, such as the Armijo or Wolfe

condition.

The CG method Marchuk & Shutyaev (2002, 2004) can also be understood as an accelerated steepest

descent method based on fixed point theorem, and a natural CG variant is expressed as follows.

• Initialize �u(0)
0,h and �u(1)

0,h.

• Update �u(k+1)
0,h = �u(k)

0,h − · k �F′
h

(

u
(k)
0,h

)

+ ¸k
(

�u(k)
0,h − �u(k−1)

0,h

)

.

the term �u(k)
0,h − �u(k−1)

0,h is called a momentum term accounting for the acceleration.

We will adopt the first CG version as our presentation and provide an exact line search method to

optimally determine the step sizes γ k and βk.

Recall that the CG method Hestenes & Stiefel (1952) was originally developed to solve linear system

A x = b, where A is a positive definite operator (or matrix), (5.9)

or equivalently to find out the minima of the quadratic functional

J(x) = 1

2
(A x, x) − (b, x). (5.10)
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The standard CG algorithm with exact line search to solve (5.9) or (5.10) is illustrated as:

Algorithm 1 Classic Conjugate Gradient Algorithm

Input: x(0), tol;

Compute the gradient at x(0): J′(x(0)) = A x(0) − b, initialize r0 = −J′(x(0)) and d0 = −J′(x(0)), set

error = 1 and k = 0;

while error > tol do

Compute d̄k = A dk;

Compute γk = (rk, rk)

(dk, d̄k)
;

Update x(k+1) = x(k+1) + γkdk;

Compute rk+1 = rk − γkA dk;

Compute βk = (rk+1, rk+1)

(rk, rk)
;

Compute dk+1 = rk+1 + βkdk;

Set k = k + 1 and error = ‖rk+1‖;
end while

Output: x(k+1);

For purpose of implementing the Algorithm 1 into our data assimilation problem, we first rewrite the

optimization problem (3.1)–(3.2) as a reduced form:

min
u0∈U

F(u0) =1

2

∫ T

0
‖û− G u‖2

0,R,Ωo
dt + α

2

∥

∥

∥u0 − ub0

∥

∥

∥

2

0,B

s.t. u =Sf u0,

(5.11)

where the operator Sf : L2(Ω) �→ W(0,T) is defined by the parabolic interface constraint (3.2) and the

subscript f corresponds to the source term. Since the equation (3.2) is a linear PDE, the operator Sf is an

affine mapping. Hence, S′
f (u0), the derivative of Sf at u0, does not depend on u0 and f . More concretely,

we have

S′
f (u0)z = S0z ∀z ∈ L2(Ω), or S′

f (u0) = S0. (5.12)

We then denote by S∗
0 = (S′

f (u0))
∗ : W(0,T)′ �→ L2(Ω)′ the adjoint operator of S0 or S′

f (u0). That is,

〈q, S0z〉(W(0,T)′,W(0,T)) = 〈S∗
0q, z〉(L2(Ω)′,L2(Ω)) (5.13)
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for ∀(q, z) ∈ W(0,T)′ × L2(Ω). Recall (3.14)–(3.16), we have S∗
0q = Φ(·, 0), where Φ solves the

following backward parabolic equation
⎧

⎪

«

⎪

¬

−
〈

∂Φ

∂t
, v

〉

+ a(Φ, v) = 〈q, v〉,

Φ(·,T) = 0.

(5.14)

For convenience, we always keep the discussion in the continuous level, the solving of the discrete

data assimilation will be a straightforward discretization of the continuous one.

By doing a calculus of variation, we derive the optimality condition

〈F′(u0), z〉 =
(

αB
(

u0 − ub0

)

, z
)

−
(

R(û− G Sf u0),
(

G Sf

)′
(u0)z

)

=
(

αBh

(

u0 − ub0

)

, z
)

−
((

(

G Sf

)′
(u0)

)∗
R(û− G Sf u0), z

)

= 0 ∀ z ∈ L2(Ω), (5.15)

Using the linearity of G and (5.12), we update the optimality condition (5.15) as

(

αB
(

u0 − ub0

)

, z
)

−
(

S∗
0G

∗R(û− G Sf u0), z
)

= 0 ∀z ∈ L2(Ω), i.e.

αB
(

u0 − ub0

)

− S∗
0G

∗R(û− G Sf u0) = 0.

(5.16)

For clarity, we remind readers that the operator S∗
0 acting on G ∗R(û− G Sf u0) is equivalent to solve the

backward adjoint equation in (3.17) with source term G ∗R(û− G Sf u0), which exactly gives u∗(·, 0).

Note that αBub0 and S∗
0G

∗Rû are known variables, therefore, (5.16) can be temporarily written as

αBu0 + S∗
0G

∗RG Sf u0 = S∗
0G

∗Rû+ αBub0. (5.17)

For Sf , we can decompose it as:

Sf u0 = Sf 0 + S0u0. (5.18)

Apparently, S0 is a linear operator and Sf 0 is a known variable, this finally allows us to rewrite (5.17) as:

αBu0 + S∗
0G

∗RG S0u0 = S∗
0G

∗Rû− S∗
0G

∗RG Sf 0 + αBub0. (5.19)

We now claim that the operator αB + S∗
0G

∗RG S0 is positive definite. First,
(

αB+ S∗
0G

∗RG S0

)∗ =
αB+ S∗

0G
∗RG S0 is obviously true. Second, for ∀ 0 �= z ∈ L2(Ω), we have

((

αB+ S∗
0G

∗RG S0

)

z, z
)

= α(Bz, z) +
(

S∗
0G

∗RG S0z, z
)

= α(Bz, z) +
(

RG S0z, G S0z
)

> αλB‖z‖2
0.

(5.20)
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In (5.20), we have used the positive definiteness of the operators B and R.

So far, we can write the optimality condition (5.16) in form of (5.9),

A u0 =
(

αB+ S∗
0G

∗RG S0

)

u0, b = S∗
0G

∗Rû− S∗
0G

∗RG Sf 0 + αBub0.

We here further clarify the operation of A acting on an element u0 ∈ L2(Ω). First, recall that S0z is to

solve the parabolic interface equation with initial z and source term 0. Second, the operator S∗
0 acting on

G ∗RG S0z is equivalent to solve the backward adjoint equation with initial 0 and source term G ∗RG S0z.

Therefore, A z is obtained by sequentially solving the following forward and backward equations:

⎧

⎪

«

⎪

¬

〈

∂ψ

∂t
, v

〉

+ a(ψ , v) = 〈0, v〉,

ψ(·, 0) = z,

(5.21)

⎧

⎪

«

⎪

¬

−
〈

∂ψ∗

∂t
, v

〉

+ a(ψ∗, v) =
(

G
∗RG ψ , v

)

,

ψ∗(·,T) = 0,

(5.22)

A z = αBz+ ψ∗(·, 0). (5.23)

In discrete level, (5.21)–(5.23) can be written in matrix–vector form as follows:

⎧

⎪

«

⎪

¬

M
�ψn+1
h − �ψn

h

τ
+ Q �ψn+1

h = �0,

�ψ0
h = �z,

(5.24)

⎧

⎪

«

⎪

¬

−M
�ψ∗n+1
h − �ψ∗n

h

τ
+ Q �ψ∗n

h = �bn+1
ψh

,

�ψ∗N
h = �0,

(5.25)

−→
A z = α�zBh + �ψ∗0

h , (5.26)

where MBh
�z = M�zBh and �bn+1

ψh
=

[

∫

Ω
χΩo

Rn+1
h G

n+1
h ψn+1

h φi d x d y
]Nb

i=1
.

All work in (5.15)–(5.26) essentially have provided us all of the information to update the CG

iterations. We summarize these ingredients into Algorithm 2 to solve our data assimilation problem.

Remark 5.2 We never use the information b = S∗
0

(

G ∗Rû− G ∗RG Sf 0
)

+ αBub0. Because b − A u0

essentially is the negative gradient −F′(u0), we can use (5.6)–(5.8) to find it out.
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Algorithm 2 Conjugate Gradient Algorithm

Input: �u(0)
0,h and tol;

Compute �F′
h(u

(0)
0,h), initialize �r0 = − �F′

h(u
(0)
0,h) and �d0 = − �F′

h(u
(0)
0,h), set

error = 1, and start the iteration step k = 0;

while error > tol do

Compute �̄dk = −−→
A dk by solving equations (5.24)–(5.26) sequentially;

Compute γk = ‖�rk‖2
0

(�dk, �̄dk)M
;

Compute �rk+1 = �rk − γk
−−→
A dk;

Update �u(k+1)
0,h = �u(k)

0,h + γk
�dk;

Compute βk = ‖�rk+1‖2
0

‖�rk‖2
0

;

Compute �dk+1 = �rk+1 + βk
�dk;

Set k = k + 1 and error = ‖�rk+1‖0;

end while

Output: �u(k+1)
0,h ;

5.3 The BFGS method

For gradient-based iterative algorithm, the descent direction dk at each step is the key component to

determine its effectiveness, which is generally written as

dk+1 = −DkF′
h

(

u
(k)
0,h

)

.

Choosing Dk as an identity operator gives the steepest descent method that usually has a global

convergence, but possibly with slow convergence rate. For Dk =
(

F′′
h (u

(k)
0,h)

)−1
the Newton’s method

is obtained with a fast (locally quadratic) convergence rate. Unfortunately, Newton method involves the

calculation of the second-order derivative and its inverse, which are not an easy task in data assimilation

due to the complexity of the constraints and the large-scale dimension of unknowns. To address this

issue, the BFGS method was developed as a replacement of the Newton method, since it can achieve

a superlinear or nearly quadratic local convergence rate without much effort to compute the second-

order derivative and its inverse. The BFGS method essentially tries to approximate the inverse of the

second-order derivative in the following way:

Dk =
(

I − θk(sk ⊗ gk)
)

Dk−1

(

I − θk(gk ⊗ sk)
)

+ θk(sk ⊗ sk), (5.27)

where sk = u
(k)
0,h − u

(k−1)
0,h , gk = F′

h(u
(k)
0,h)−F′

h(u
(k−1)
0,h ), and θk = 1

(sk ,gk)
. The operator ⊗ is defined as, for

p, q ∈ L2
h(Ω),

(p⊗ q)z = (q, z)p, ∀z ∈ L2
h(Ω). (5.28)



VARIATIONAL DATA ASSIMILATION 483

The above update is based on a continuity assumption for the second-order derivative of the cost

functional. The expression (5.27) is obtained by searching a bounded operator Dk that is as close as

possible to the previous Dk−1 in the sense of a weighted Hilbert–Schmidt norm Hinze et al. (2009);

Vuchkov et al. (2020):

min
D∈L

(

L2
h(Ω),L2

h(Ω)
)

1

2

∥

∥

∥W
1
2
(

D− Dk−1

)

W
1
2

∥

∥

∥

HS
subject to Dgk = sk.

Here, L represents a general linear bounded operator,W is a weighted operator satisfyingWsk = gk, and

the constraint Dgk = sk comes from a secant approximation of the second-order derivative of Fh(u0,h)

at u
(k)
0,h.

The BFGS algorithm can now be briefly described as follows:

• Initialize u
(0)
0,h and a bounded positive definite operator D0.

• Update u
(k+1)
0,h = u

(k)
0,h − γ kDkF

′
h

(

u
(k)
0,h

)

with

Dk =
{

D0, k = 0,
(

I − θk(sk ⊗ gk)
)

Dk−1

(

I − θk(gk ⊗ sk)
)

+ θk(sk ⊗ sk), k � 1.

• γ k is determined with exact line search or an inexact line search method.

Next, we show how to compute the matrix form of Dk in a more explicit way with the operation ⊗
working on the L2

h(Ω) space. Based on the definition in (5.28), for p, q ∈ L2
h(Ω), we deduce

(p⊗ q)z = (q, z)p = �qTM�zp = (MT�q)T�zp = �p(MT�q)Tz, ∀z ∈ L2
h(Ω). (5.29)

Therefore, the matrix representation of p⊗ q acting on L2
h(Ω) is �p(MT�q)T . Meanwhile, the calculation

of θk is straightforward

θk = 1

(sk, gk)
= 1

�skTM�gk .

Now we can rewrite (5.27) as a matrix and vector multiplication form:

Dk =
(

I − �sk(MT�gk)T
�skTM�gk

)

Dk−1

(

I − �gk(MT�sk)T
�skTM�gk

)

+ �sk(MT�sk)T
�skTM�gk . (5.30)

We summarize the BFGS iterative algorithm in Algorithm 3. Note that the γ k is simply picked as 1

in the Algorithm 3, reader can also apply the inexact line search method introduced in Subsection 5.4 to

update γ k at each step and obtain faster convergence.

5.4 The steepest descent method with inexact line search

The BFGS and CG methods can provide fast convergence rate and solve the discrete optimality system

(4.18) effectively for most of cases. However, for any numerical scheme, there exists a trade-off between
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Algorithm 3 BFGS Algorithm

Input: �u(0)
0,h, a positive definite matrix D0, and tol;

Compute �F′
h(u

(0)
0,h), the first descent direction −D0

�F′
h(u

(0)
0,h), and the first update �u(1)

0,h = �u(0)
0,h −

D0
�F′
h(u

(0)
0,h). Set error=1 and start the iteration step k = 1;

while error > tol do

Compute �F′
h(u

(k)
0,h);

Compute �sk = �u(k)
0,h − �u(k−1)

0,h , �gk = �F′
h(u

(k)
0,h) − �F′

h(u
(k−1)
0,h );

Compute Dk =
(

I − �sk(MT �gk)T
�skTM�gk

)

Dk−1

(

I − �gk(MT�sk)T
�skTM�gk

)

+ �sk(MT�sk)T
�skTM�gk ;

Update �u(k+1)
0,h = �u(k)

0,h − Dk
�F′
h(u

(k)
0,h);

Set k = k + 1 and error = ‖ �F′
h(u

(k)
0,h)‖0;

end while

its stability and convergence rate. In other words, the BFGS and CG methods are relatively less stable

and hence may cause the algorithms to diverge for some of the data assimilation scenarios that have low

stability, e.g., small regularization parameter α in the cost functional (4.1).

To tackle this numerical problem, we present the steepest descent method Hinze et al. (2009); De

Reyes (2015) in this section to gain more stability at the cost of a lower convergence rate. With the

gradient information �F′
h(u0,h) = αBh(�u0,h−�ub0)−�u∗0

h shown in (4.17), a simple steepest descent method

to solve the discrete data assimilation problem is illustrated as follows:

• Initialize �u(0)
0,h.

• Update �u(k+1)
0,h = �u(k)

0,h − γ k �F′
h

(

u
(k)
0,h

)

.

• γ k is determined with exact line search or an inexact line search method.

We here present an inexact line search algorithm using Armijo backtracking method to update the

γ k: find γ k via repeatedly solving the forward equation (5.6) with initial value

�u(k+1)
0,h = �u(k)

0,h − γ k �F′
h

(

u
(k)
0,h

)

by updating γ k = ργ k, (5.31)

until the following inequality is satisfied

Fh

(

u
(k+1)
0,h

)

� Fh

(

u
(k)
0,h

)

+ δγ k
(

F′
h

(

u
(k)
0,h

)

, −F′
h

(

u
(k)
0,h

))

, (5.32)

where γ k is typically initialized as a constant equal or greater than 1, and δ and ρ are chosen in (0, 1).

The straight line

y(γ k) = Fh

(

u
(k)
0,h

)

+ δγ k
(

F′
h

(

u
(k)
0,h

)

, −F′
h

(

u
(k)
0,h

))

(5.33)
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is a search line, which evaluates the decreasing of the cost functional (4.3). If the point
(

γ k,Fh(u
(k)
0,h+

γ k(u
∗0(k)
h − γ u

(k)
0,h))

)

is underneath the line (5.33), γ k is a good candidate of descent step size, otherwise,

we need to go through step (5.31) until the inequality (5.32) is satisfied.

We now summarize the steepest descent method algorithm:

Algorithm 4 Steepest Descent Algorithm

Input: γ , δ, ρ, �u(0)
0,h, and tol;

Set k = 0;

while error > tol do

Compute �F′
h(u

(k)
0,h);

Inexact line search for γ k:

while Fh(u
(k)
0,h − γFh

′(u(k)
0,h)) > Fh(u

(k)
0,h) + δγ

(

Fh
′(u(k)

0,h),−Fh′(u
(k)
0,h)

)

do

Reduce γ : γ = ργ ;

Solve (5.6) with initial condition �u(k)
0,h − γ �F′

h(u
(k)
0,h) to compute

Fh(u
(k)
0,h − γFh

′(u(k)
0,h));

end while

Output γ as γ k;

Update �u(k+1)
0,h = �u(k)

0,h − γ k �F′
h(u

(k)
0,h);

Set k = k + 1 and error = ‖ �F′
h(u

(k)
0,h)‖0;

end while

Output: �u(k+1)
0,h ;

6. Numerical experiments

In this section, we use the methods developed in this paper to numerically show the data assimilation

performance. The finite-element space is chosen on continuous piecewise linear polynomials, and the

backward Euler scheme is used for time discretization. L∞ and L2 norm errors will be used to evaluate

the numerical results. But we focus more on the L2 norm error, since the way we measure the distance

between observations and state variable in the cost functional is in an L2 norm sense.

6.1 Verification of the finite-element convergence rate

Before discussing the data assimilation performance, we first provide an example to verify the optimal

FEM convergence rate from Theorem 4.6. Given a set of smooth observations and for each fixed

regularization parameter α, we expect to observe that the finite-element approximation converges in

a second order regarding to L2 norm. Mesh sizes of 1/8, 1/16, 1/32 and time steps of 1/32, 1/128,

1/512 are used, respectively. For each fixed α, the discrete solution with h = 1/64 and τ = 1/2048 will

be considered as the analytical solution.
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Table 1 The finite-element convergence rate of the recovered initial solution u0

Finite-element convergence rate

α ||u0 − u0, 18
|| ||u0 − u0, 1

16
|| rate ||u0 − u0, 1

32
|| rate #

1 7.1 × 10−2 1.7 × 10−2 2.06 3.3 × 10−3 2.35
1
10 6.1 × 10−2 1.4 × 10−2 2.12 2.7 × 10−3 2.37

1
50 5.9 × 10−2 1.3 × 10−2 2.17 2.6 × 10−3 2.32

1
200 5.8 × 10−2 1.3 × 10−2 2.15 2.5 × 10−3 2.37

1
1000 5.9 × 10−2 1.3 × 10−2 2.15 2.5 × 10−3 2.37

For the setup of the parabolic interface equation, we consider u as follows:

u =
{

u+ = sin(π · x) sin(π · y) sin(t + 1) in Ω+ × (0,T],

u− = 2 sin(π · x) sin(π · y) sin(t + 1) in Ω− × (0,T].

Other relevant parameters are set as: β+ = 1, β− = 1
2 , Ω+ = (0, 1) × (0, 1), Ω− = (1, 2) × (0, 1) and

Γ : x = 1. The boundary condition and jump interface condition satisfy u = 0 on ∂Ω , [u]|Γ = 0 on Γ ,

and [β(x, y) ∂u
∂�n ]|Γ = 0. Both f+ and f− can be computed by using u+, u−, β+, and β−.

For the observation function û, we use

û =
{

11
10 sin(π · x) sin(π · y) sin(t + 1) in Ω+ × (0,T],
22
10 sin(π · x) sin(π · y) sin(t + 1) in Ω− × (0,T].

We consider the background information as:

ub0 =
{

2 sin(π · x) sin(π · y) sin(1) in Ω+,

4 sin(π · x) sin(π · y) sin(1) in Ω−.

The observations window is Ωo = [0, 2]×[0, 1] and (0,T], where T = 1. In this scenario, we assume the

error covariance related operators for observations and background information are R = 10 and B = 1.

Numerical results are displayed in Table 1, where the L2 norm errors appear to satisfy the optimal

second-order convergence rate for different α.

6.2 Data assimilation performance I

We now investigate the data assimilation performance utilizing the methods proposed in Section 5. The

model setup for experiments are given as follows: Ω+ = (0, 1) × (0, 1), Ω− = (1, 2) × (0, 1), Γ :

x = 1, β+ = 1 and β− = 1
2 . The analytical solution u is: u+ = sin(π · x) sin(π · y) sin(t + 1) and

u− = 2 sin(π · x) sin(π · y) sin(t+ 1), and f+ and f− can be computed based on β+, β−, u+ and u−. The

space and time observations windows are considered in Ωo = [0.25, 1.75]×[0.25, 0.75] and (0,T], where
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Table 2 Data assimilation with BFGS method

Data assimilation performance: BFGS method

α ||u− uh||L2(0,T) ||u− uh||L∞(0,T) Iteration #

10 3.84 × 10−3 2.41 × 10−3 25

1 3.19 × 10−3 2.33 × 10−3 13

1
10 2.76 × 10−3 2.09 × 10−3 20

1
50 2.81 × 10−3 2.07 × 10−3 28

1
500 3.76 × 10−3 2.11 × 10−3 63

1
106 − − ∞

T = 1. We introduce the observations and background noises by adding multivariate normal distributions

enob ∼ N (0, ( 1
100 I)

2), n = 1, 2, 3, · · ·,N and eb ∼ N (0, ( 1
10 I)

2) into the exact solution (discrete values

of u at mesh grids along time moment tn) as our observations and background information. Note that the

covariance matrix are now uniform diagonal matrix ( 1
100 I)

2 and ( 1
10 I)

2, and Rnh and Bh are 100I and 10I.

We test the expected performance by adjusting the regularization parameter α. The spatial and temporal

step sizes are set to be 1/50 and 1/200, respectively.

By the way, we evaluate the data assimilation performance based on the L2(0,T) and L∞(0,T) norm

relative errors, which are defined as follows:

‖u− uh‖L2(0,T) =

√

√

√

√

N
∑

n=1

τ
‖un − unh‖2

0

‖un‖2
0

, ‖u− uh‖L∞(0,T) =
N
∑

n=1

τ
‖un − unh‖L∞(Ω)

‖un‖L∞(Ω)

.

Here, N is the number of time steps according to τ and T .

In Tables 2– 4, the numerical simulations show accurate forecasting results which match the practical

expectation. In addition, the convergence comparison among the three iterative methods indicates that

the CG and BFGS methods are preferred for the well-conditioning or the moderate-conditioning data

assimilation cases because of their higher convergence rate, and the steepest descent method is a backup

for some extreme ill-conditioning scenarios only because of its stability advantage.

6.3 Data assimilation performance II

In this subsection, we further verify our proposed data assimilation methods with more diversified

experiments, which are based on different time and space observation windows and conductivity jumps

across the interface Γ in the parabolic interface equation (3.2). The model setup for experiments are

given as follows: Ω+ = (0, 1) × (0, 1), Ω− = (1, 2) × (0, 1) and Γ : x = 1. The boundary condition

and jump interface condition satisfy u = 0 on ∂Ω , [u]|Γ = 0, [β(x, y) ∂u
∂�n ]|Γ = 0, and the source term

f+ = f− = 4xy+9. The spatial and temporal step sizes are set to be 1/50 and 1/200, respectively. Also,

based on the numerical test in Subsection 6.2, we empirically choose a fixed regularization parameter

α = 1
5 for all cases and alternatively use the BFGS and CG methods to compute simulation results in

the following.
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Table 3 Data assimilation with conjugate gradient method

Data assimilation performance: conjugate gradient method

α ||u− uh||L2(0,T) ||u− uh||L∞(0,T) Iteration #

10 3.84 × 10−3 2.41 × 10−3 5

1 3.19 × 10−3 2.33 × 10−3 8

1
10 2.76 × 10−3 2.09 × 10−3 17

1
50 2.79 × 10−3 2.08 × 10−3 28

1
500 3.73 × 10−3 2.10 × 10−3 78

1
106 − − ∞

Table 4 Data assimilation with steepest descent method

Data assimilation performance: steepest descent method

α ||u− uh||L2(0,T) ||u− uh||L∞(0,T) Iteration#

10 3.83 × 10−3 2.41 × 10−3 18

1 3.18 × 10−3 2.32 × 10−3 67

1
10 2.76 × 10−3 2.08 × 10−3 453

1
50 2.79 × 10−3 2.08 × 10−3 672

1
500 3.71 × 10−3 2.09 × 10−3 843

1
106 2.45 × 10−3 2.03 × 10−3 1263

Table 5 The BFGS method is used to compute the numerical results, Ite = Iteration

Data assimilation performance: β+ = 0.5, β− = 2, T = 1

Space window ||u− uh||L2(0,T) ||u− uh||L∞(0,T) Ite#

Ωo = [0, 2] × [0, 1] 2.00 × 10−3 5.92 × 10−4 52

Ωo = [1, 2] × [0, 1] 2.40 × 10−3 4.20 × 10−3 53

Ωo = [0, 1] × [0, 1] 2.50 × 10−3 7.57 × 10−4 49

Ωo = [0.2, 1.2] × [0, 1] 2.50 × 10−3 7.25 × 10−4 49

Ωo = [0.8, 1.8] × [0, 1] 3.40 × 10−3 1.70 × 10−3 52

Ωo = [0.2, 1.2] × [0.2, 0.8] 2.29 × 10−3 3.27 × 10−3 43

Ωo = [0.8, 1.8] × [0.2, 0.8] 3.40 × 10−3 1.50 × 10−3 52

We will consider β+ = 0.5 and β− = 2 for the moderate conductivity jump test and β+ = 0.5 and

β− = 20 for the large conductivity jump test. For both cases, we firstly numerically run the corresponding

parabolic interface model on the time period (0,1.125] based on an initial conditionw0=sin(π ·x) sin(π ·y)
(note that this initial condition w0 is only used to generate data, not the one we intend to recover). We
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Table 6 The CG method is used to compute the numerical results, Ite = Iteration

Data assimilation performance: β+ = 0.5, β− = 20, T = 1

Space window ||u− uh||L2(0,T) ||u− uh||L∞(0,T) Ite#

Ωo = [0, 2] × [0, 1] 2.20 × 10−3 6.16 × 10−4 17

Ωo = [1, 2] × [0, 1] 5.70 × 10−2 2.90 × 10−3 5

Ωo = [0, 1] × [0, 1] 2.30 × 10−3 6.17 × 10−4 19

Ωo = [0.2, 1.2] × [0, 1] 2.50 × 10−3 7.35 × 10−4 22

Ωo = [0.8, 1.8] × [0, 1] 4.20 × 10−3 1.90 × 10−3 13

Ωo = [0.2, 1.2] × [0.2, 0.8] 2.90 × 10−3 8.72 × 10−4 21

Ωo = [0.8, 1.8] × [0.2, 0.8] 4.20 × 10−3 1.80 × 10−3 12

Table 7 The BFGS method is used to compute the numerical results, Ite = Iteration

Data assimilation performance without background information: β+ = 0.5, β− = 2, T = 1

Space window ||u− uh||L2(0,T) ||u− uh||L∞(0,T) Ite#

Ωo = [0, 2] × [0, 1] 1.90 × 10−3 6.83 × 10−4 81

Ωo = [1, 2] × [0, 1] 7.82 × 10−2 4.75 × 10−2 80

Ωo = [0, 1] × [0, 1] 1.25 × 10−2 4.43 × 10−3 85

Ωo = [0.2, 1.2] × [0, 1] 7.40 × 10−2 2.50 × 10−3 76

Ωo = [0.8, 1.8] × [0, 1] 3.23 × 10−2 1.93 × 10−2 79

Ωo = [0.2, 1.2] × [0.2, 0.8] 7.70 × 10−3 2.60 × 10−3 72

Ωo = [0.8, 1.8] × [0.2, 0.8] 3.32 × 10−2 1.99 × 10−2 79

Table 8 The CG method is used to compute the numerical results, Ite = Iteration

Data assimilation performance without background information: β+ = 0.5, β− = 20, T = 1

Space window ||u− uh||L2(0,T) ||u− uh||L∞(0,T) Ite#

Ωo = [0, 2] × [0, 1] 2.70 × 10−3 1.30 × 10−3 16

Ωo = [1, 2] × [0, 1] 1.95 × 10−1 9.70 × 10−2 6

Ωo = [0, 1] × [0, 1] 2.50 × 10−3 7.14 × 10−4 33

Ωo = [0.2, 1.2] × [0, 1] 2.50 × 10−3 9.26 × 10−4 35

Ωo = [0.8, 1.8] × [0, 1] 4.82 × 10−2 2.49 × 10−2 18

Ωo = [0.2, 1.2] × [0.2, 0.8] 3.20 × 10−3 1.20 × 10−3 34

Ωo = [0.8, 1.8] × [0.2, 0.8] 4.96 × 10−2 2.56 × 10−2 19

add Gaussian noise enob ∼ N (0, ( 1
100 I)

2) to the numerical solution on the time period (0.125, 1.125] as

observation data {ûnh} (noise size compared to data with respect to L2 norm is around 11.2% for moderate

jump test and 9.3% for large jump test) and add Gaussian noise eb ∼ N (0, ( 1
5 I)

2) onto the numerical

solution at t = 0.125 as background information ub0,h. In other words, the solution at t = 0.125 will be the

real initial condition we target on recovering, which will also be used to achieve better state predictions.
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Tables 5 and 6 display decent state simulation results for different observation windows while both

moderate and large conductivity jump models are considered. The numerical tests show that it is more

efficient to collect observations from small conductivity region to have better simulation result, which

makes sense that the state in small conductivity region is less diffusive and more sensitive to initial

conditions compared with the larger conductivity region. In general, the more data we use, the more

accurate the data assimilation result is. In Tables 7 and 8, we test our data assimilation methods while

the background information is absent (i.e., the regularization term in the objective function is simply
α
2 ‖u0,h‖2

0 and other setup are the same). We are still able to achieve accurate assimilation results once

observations are provided relevant or sufficient enough. However, the simulation performance without

background information is generally poorer than experiments with background information, which

emphasizes the importance of background information in data assimilation, especially for cases of only

partial observations available. This is expected in the sense of the balance between the accuracy and the

available information. In addition, the numbers of iterations in Tables 5–8 again demonstrate the effi-

ciency of the developed CG and BFGS methods. All of these validate the proposed methods in this paper.

7. Conclusion

In this paper we propose a variational data assimilation method for a second-order parabolic interface

equation and demonstrate the wellposedness of such a problem by using weighted L2 norms. The

Lagrange multiplier rule is used in the derivation of the optimality systems. By utilizing a finite-element

method we develop a numerical approximation and analyze its convergence properties with respect

to the continuous data assimilation. The optimal convergence rate is established by recovering the

Galerkin orthogonality in the optimality systems. Based on the efficient iterative algorithms developed in

Section 5, the numerical experiments validate the proposed methods in this paper and display promising

results.
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