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In this paper, we propose and analyze a finite-element method of variational data assimilation for a second-
order parabolic interface equation on a two-dimensional bounded domain. The Tikhonov regularization
plays a key role in translating the data assimilation problem into an optimization problem. Then the
existence, uniqueness and stability are analyzed for the solution of the optimization problem. We utilize the
finite-element method for spatial discretization and backward Euler method for the temporal discretization.
Then based on the Lagrange multiplier idea, we derive the optimality systems for both the continuous and
the discrete data assimilation problems for the second-order parabolic interface equation. The convergence
and the optimal error estimate are proved with the recovery of Galerkin orthogonality. Moreover, three
iterative methods, which decouple the optimality system and significantly save computational cost, are
developed to solve the discrete time evolution optimality system. Finally, numerical results are provided
to validate the proposed method.

Keywords: data assimilation; second-order parabolic interface equation; finite-element method optimiza-
tion; gradient-based iterative method.

1. Introduction

One major type of data assimilation aims to identify an initial condition by incorporating distributed
observations over a time period into a dynamic system in order to improve the performance of the
forecast. Such problems arise, for instance, in weather prediction (Brandt & Zaslavsky, 1997; Bruneau
et al., 1997; Rihan et al., 2005; Fisher et al., 2009), ocean state forecast (Rozier et al., 2007; Agoshkov
et al., 2008; Agoshkov & Ipatova, 2010; Ipatova et al., 2010; Tinka et al., 2010; Le Dimet et al., 2017,
Garcia-Archilla et al., 2020), geoscience (Marchuk & Zalesny, 1993; Le Dimet et al., 2004; Auroux,
2007; Vo & Durlofsky, 2015; Gesho et al., 2016; Tarrahi et al., 2016; Tang et al., 2020), chemistry (Veersé
et al., 2000; Triantafyllou et al., 2005; Le Dimet et al., 2017) and so on. Currently there are several main
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452 X.LIET AL.

categories of data assimilation techniques. First, statistical methods are based on the Bayes’ theorem and
consider the data assimilation as a recursive Bayesian estimation, see, e.g., Hansen & Penland (2007);
Apte et al. (2008); Dimitriu (2008); Li & Xiu (2008); Mandel et al. (2008); Evensen (2009); Mandel
et al. (2009); Stroud et al. (2010); Zamani et al. (2010); Iglesias et al. (2013); Fossum & Mannseth
(2014); Bergou et al. (2016); Gonzélez et al. (2017); Meldi & Poux (2017); Abarbanel et al. (2018); Reich
(2019). Second, variational methods are based on optimal control theory and minimize an appropriately
designed cost functional which measures the distance between the state variable and the distributed
observations, see, e.g., Daescu & Navon (2003); Auroux (2007); Daescu & Navon (2007); Agoshkov
et al. (2008); Apte et al. (2008); Jiang & Douglas (2009); Korn (2009); Rhodes & Hollingsworth (2009);
Fehrenbach et al. (2010); Gronskis et al. (2013); Stefanescu et al. (2015); Mons et al. (2016); Binev
et al. (2017); Taddei (2017); Arcucci et al. (2019); Funke et al. (2019). Besides, nudging method and
continuous data assimilation approach have also become popular in a lot of research fields recent years,
see, e.g., Zou et al. (1992); Auroux & Nodet (2012); Rebholz & Zerfas (2021) and (Olson & Titi, 2003;
Azouani et al., 2014; Markowich et al., 2016).

Over the past few decades, a vast amount of literature employing variational methods has been
contributed to investigate the data assimilation problem for parabolic equations. In Lions (1971), J. L.
Lions provided an elementary introduction of the adjoint method to recover parameters for parabolic
partial differential equations. Motivated by this approach, researchers afterwards employed similar
thoughts on the initial recovery of parabolic types of dynamics systems. In Yamamoto & Zou (2001);
Burman et al. (2018), thorough analysis and efficient numerical methods were developed to attain the
optimal initial condition of the heat equation. In Clason & Hepperger (2009), a forward approach
to reconstruct the initial state was presented for the convection-diffusion equation and a practical
algorithm is established. Moreover, the nonlinear parabolic equations, such as in water movement and
in radiative heat transfer problems, were studied in Le Dimet & Shutyaev (2001); Pereverzyev et al.
(2008) by reducing nonlinearity. However, to our current knowledge, few studies have investigated data
assimilation for parabolic interface equations, which describe a variety of physical phenomena and have
extensive applications.

Parabolic interface equations model physical or engineering problems when two or more distinct
materials or fluids with different conductivities or diffusions are involved. Unlike a normal parabolic
equation, many important features, such as the lower global regularity, interface jump conditions and
discontinuous coefficients, need to be addressed more both theoretically and numerically, see, e.g.,
Babuska (1970); Chen & Zou (1998); Vaughan et al. (2006); He et al. (2011, 2013).

The main interest of this paper is to investigate the variational data assimilation for a second-order
parabolic interface equation. A conventional way for solving such a problem is through optimization
techniques. Under the constraint of the parabolic interface equation, we formulate the data assimilation
problem as an optimization problem and minimize a cost functional that consists of a regularization
term and the misfit between the state variable and the distributed observations. The regularization
term and the misfitting term use weighted L> norm to account for the background and observations
error covariance. Existence and uniqueness of such a minimization problem are established. We further
demonstrate the stability analysis of the optimal solution and investigate the stability behavior affected by
the error covariance operators and the regularization parameter. We also provide the first order necessary
optimality system in continuous level with a weak and strong form.

In order to numerically approximate the proposed data assimilation problem, a finite-element method
(FEM) is constructed for the spatial approximation to handle the interface and the discontinuous
coefficient in the constraint equation, while the backward Euler scheme is utilized as a temporal
discretization. A fully discrete optimality system is then derived by applying the Lagrange multiplier
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VARIATIONAL DATA ASSIMILATION 453

rule. A priori error estimation between the numerical approximation and the solution to the continuous
data assimilation problem is carried out by introducing a variety of auxiliary equations to overcome
the analysis gaps between the classical FEM (Chen & Zou, 1998) and the FEM in data assimilation.
Moreover, we develop three decoupled iterative methods based on the conjugate gradient method, the
BFGS method and the steepest descent method, in order to reduce the computational cost of solving the
discrete optimality system.

The rest of this article is organized as follows: in Section 2, we introduce the second-order parabolic
interface equation and provide the necessary mathematical preliminaries. In Section 3, we prove the
wellposedness of the continuous data assimilation problem and derive the optimality system. In Section 4,
we discuss the finite-element approximation to the continuous data assimilation problem and show
its convergence analysis. In Section 5, three iterative methods are illustrated in detail that address the
extreme computational cost. In Section 6, numerical experiments are presented to verify the expected
performance. In Section 7, we draw some conclusions.

2. The second-order parabolic interface equation and preliminaries

We consider the following second-order parabolic interface equation:

u,— V- (Bx,y)Vu) =f, in2 x (0,T],
u(-,0) =ugy, ing2, 2.1
u=0, ondf2 x (0,T],

together with the jump interface condition,

0
[u]| - = 0, [ﬁ(x,y)a—;:] I =0. 2.2)

Here £2 C R? is an open bounded domain, the curve I” is a smooth interface that separates £2 into two
subdomains 2 and 2~ such that 2 = QT U R~ U T, [u]| = u™ | — u~ |- is the jump of function
u across the interface I", where ut = u| o+and u™ = u|o-, 71 is the unit normal vector along interface
I’ pointing to 27, % is the normal derivative of u and B(x,y) is assumed to be a positive piecewise
constant function

BT if(ny) e 27,
e S T

and the source term f is given discontinuously as

froif(xy) € 27,

JEYD =0 ity e 2

We now introduce necessary preliminaries for the discussion of the data assimilation problem
concerning equations (2.1)-(2.2). Let || - || denote norm of bounded linear operators, (-, -) denote inner

product in a Hilbert space, || - || denote the L2-norm, | - |, denote the L>°-norm and || - ||, denote the
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standard norm in the Sobolev space W™2(§2), which is also written as H™(£2). For the temporal—spatial
function spaces over (0, T) x £2, we define

m T

for1 <p < oo, W™ (0,T;B) = {u(r) € Bforae.te (0,T)and 2 / lu? @)%, dt < oo
. 0
j=0

forp = oo, W™(0,T;B) = Ju(t) € Bforae.t € (0,T) and max [ess sup ||u(f)(t)||@ <00y ;
ogj<m 0<i<T
which are equipped with corresponding norms

1

m T
ooz = | D /0 WO, de)
=0

lllymoc 0.7 = max {ess sup [u? @)l ),
ojsm 0T

where £ is a general Banach space. As usual, we let (0, T; #) = wOr (0, T; #) and H™(0,T; B) =
W20, T; B).
We shall also need the following spaces:
X =H'"Q)NH*QH NH*(Q),

Y=L*@Q)NnH' QD NnH (2,
equipped with norms

llully = ||M||H1(_Q) + ||14||H2(_Q+) + ”u”HZ(_Q*)s

||M||y = ||“||L2(_Q) + ||M||H1(_Q+) + ”u”Hl(_Q*)-

We write Y(0,T) = L*(0, T;X) N H' (0, T; Y).
To introduce a weak form of the interface problem (2.1)—(2.2), we define the continuous bilinear
form a(-, -): Hé (£2) x Hé (£2) — R and the associated operator A : Hé (2) > H~1(£2) as follows:

a(u,v):/ ﬁ(x,y)Vu-Vvdxdy:/ BTVu- Vvdxdy + B~ Vu-Vvdxdy,
2 o+ 2-

a(u,v) = (Au,v),

where (-, -) defines the duality pairing between H -1(2) and Hé (£2). We may also use (-, -) to refer a
general duality pairing in other Banach space. As usual, a(-,-) has been assumed to be coercive and
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continuous, i.e.,

a(u,u) > C,||lul? Yu e HA\($2), (2.3)
a(u,v) < Cllull,IIvll, Yu,v € Hy(£2). (2.4)

Setting W(0, T) = L*(0, T; H} (£2)) N H' (0, T; H~'(£2)), the weak formulation can be stated as follows
Chen & Zou (1998):

Givenf € L*(0,T; H™'(£2)), findu € W(0,T) satisfying
du 1
591) +a(u,V) = (f9v>9 VVEH()(Q),
u(-0) =uy atr=0 inL*(£). (2.5)

Note that (2.5) can be expressed in the form:

ou . -1
E—i—Au—f:O in H (£2),

u(-,0) = uy in L*(£2).

Throughout this paper, C is a generic positive constant that is independent of the mesh parameter &
and the time step t and is not necessarily the same at each occurrence.

3. Variational data assimilation

Let U denote the admissible solutions set that could be either L?(£2) or a closed convex subset of L(£2).
Given T > 0, o > 0, a distributed observation & € LZ(O, T;LZ(QO)), a nonzero measure subset £2, C
£2, and a background information ug € LZ(SZ), the variational data assimilation for the second-order

parabolic interface equation is given by

2

~ L 2 o b
min F(uy) = E/0 18— Gutup) I g, dr + 5 Huo —ub HO,B 3.1)

subject to

<8u > 1
-V +a(u3v) = (f,V) VVGH()(Q),
ot (3.2)

u(-0)=uy atr=0 in L*().

Here the mapping u(u) : L*(£2) — W(0,T) is defined as the solution of (3.2) with the initial value Uy.
The mapping ¥ : L2(2) — LZ(Q()) is a restriction of function v(-, 1) € L*(£2), i.e.,

Yv=v|gp =v forpoints (x,y) € £2,.
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Also ¥ has the following basic properties
191 <1, % = xq,,

where ¥ is the adjoint operator of ¢, and x, is the characteristic function. We also give the notations
I ke, = RV, = Clorg, and - 55 = (B = ()gp RC0) 2 LX(R,) = LA(£2,)
and B : L>(2) — L*(£2) are all bounded, self-adjoint and positive definite operators accounting for
the observations and background error covariance. Further discussion for R and B will be provided in
the numerical approximation Section 4. Here we interpret the boundedness and positive definiteness as
follows:

|®. Doreny.,| <AROIPlo.g,Idll00, Yr.g € L*(82,), 3.3)
(RC.Dp.Poq, = re®IPIGg, VpeL*(£2,), (3.4)

|- @osl < 2BlIplolglly  Vp.q € L*(82), (3.5)
(Bp.p) = Agllpllg  ¥p € L*(82), (3.6)

where AR (2), AR(#) and 1 B> AB are all positive real numbers. We further assume that

sup AR() =R >0, inf ag(t) =g > 0. (3.7)
0<t<T 0<t<T

The minimization of % fOT e — 94 (”0)”%,&.(20 dt in (3.1) is the primary goal, which tries to drive
the state variable u (i) close to the distributed observations & over (0, T) x £2, via adjusting the initial
condition u. The second term % [|uy — uSHg’ g incorporates the background information, also works as a
Tikhonov regularization and plays a key role in guaranteeing the uniqueness and stability of the optimal
solution for the data assimilation problem. The « is a regularization parameter to balance the minimizing
in the cost functional according to the reliability of observations and background information. It is
well-known that the identification of initial conditions of diffusion equations such as heat equation is
severely ill-posed because of the smoothing property of solutions. That is, the solution does not depend
continuously on the data so that small noise in data may cause huge errors in the initial temperature. This
lack of stability can be alleviated by investigating the deviations in solutions in an admissible set that
is usually defined to be a bounded set in some appropriate function space. This so-called conditional
stability of initial value identifications was extensively studied in the literature and provides some
insightful guidance to numerical solutions of practical inverse problems, we refer to Li er al. (2009)
and Yamamoto & Zou (2001) for more details. In practical computations, the choice of the regularization
parameter « is important and tricky and usually makes use of statistical information about the noise level
3 in the observation information . Roughly speaking, the approaches include a priori choice ¢ = «(8),
a posteriori choice @ = «/(8, i) and heuristic rules « = a (i), we refer to Engl er al. (1996) and Vogel
(2002, Chap. 7) for a comprehensive study. In our problem setting in (3.1)—(3.2), the noise information
can be incorporated into the error covariance operators R and B contained in the norms || - [[o g o, and
| - lp,5> respectively, thus the regularization parameter o can be simply chosen as 1.

For the minimization problem (3.1)—(3.2), provided that 02 and I" are smooth enough, f €
L? O, T; L2 (2)),ne L2 0, T; LZ(.QU)), and ug € Lz(.Q), we have the following existence and uniqueness
result.
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VARIATIONAL DATA ASSIMILATION 457

THEOREM 3.1 (Lions, 1971, Theorem 1.1) There exists a unique solution u € U for the data assimilation
problem (3.1)—(3.2). Furthermore, the solution uy, is characterized by

T
F'(uy) (v — ug) =/0 (gu(uo) —u,%u@) — %u(uo))O’R’Qn dr + o (“0 — ug,v — MO)OB >0 Vvel.
(3.8)

Next, we show that the solution of problem (3.1)—(3.2) is stable with respect to the perturbations on
the distributed observations and the regularization parameter «.

THEOREM 3.2 The solution of problem (3.1)—(3.2) continuously depends on the regularization parameter
«a, observations i, and background information ug. Le., let u be the optimal solution with regularization
parameter o + €, perturbed observations it + €,, and background information ug + €3, where €; € R,
€ € L*(0,T; L2(.QO)) and €3 € L2(£2). Assume C is a positive constant and % < C, we then have
the following estimate:

B

2 2 2
0 AR 2 AP 2 b2 A 2
alitg = 10l < | 5= ) Ne2lfa iz, | 1 ) (ol +1615) 1611+ €{ ) @+laiD?lesil.

Proof. Using the optimality condition (3.8) gives us

T
/0 (Gut@g) — it — €. Gu(v) — Gu(@g))g 5 . A+ (@ +€)) (ao — b — ey v — ”_‘0)03 >0 WweUl.

(3.9)
Taking v = ug in (3.9) and v = i, in (3.8) provides us

T
/0 (gu(ﬁo) — I’:t — 62, gu(uo) — gu(ﬁo))O’R’Qo dr + (Ol + El) (17{0 — Mg — 63, Uy — IZO)OB 2 O,

T
/ (gu(uo) — i, Gu(ug) — gu(uo))ORS2 dfr + o (uo - ug, iy — “0) > 0.
0 H\swao

0,B

Adding the two inequalities together leads to
r 2 2
/ G uuy) — Gulg) g g .o, df + (@ +€)) llug — uyllg 5
0

T
S /0 (62, gu(ljlo) — gu(uo))O’R’Qn dt + El (u() — ug, MO — 17!0)03 + (a + 61) (63, MO — 17{0)073 .
(3.10)
For terms in the left-hand side of (3.10), we use (3.4) and (3.7) to have

T
/ 1L u(ug) — Gulig) 1§ g, At + (o + € llug — o155
0

T
> g /0 luCug) — wCiig) 13 o, A+ Al — leg Dllug — iig 3. (3.11)
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For terms in the right-hand side (3.10), we use (3.3), (3.5), (3.7), and apply Cauchy—Schwarz and Young’s
inequality,

T
/0 (€2, Gu(iip) — Gu(up))or,e, dt + €1 (Mo —ub,up — ﬁo)OB + (a +€1) (€3,up — Up)o B

T
R - B b -~ B p
<2 [ ealog, Iutuo) = atio)lo.g, dr -+ 4%1er o = ] o = olo + 47 + er Dles oo — ol
R)2

A (1B)2
2 B
<AR/O Jutu) = (i) g, -+ - /()Illelo,godt+7|61|||uo ol + ;- (luol + 14§15) le1

B\2
AB oo (A7) ”53”0 2
+ —le - ———(x + |1
5 l€tllluo = uollg plell (a+lerh

(3.12)

Combining (3.10)—(3.12) leads to

2By2 2
o 08T @52 A2 lesll
rple = 2lerDllu = iollg < 5 | lleallg g, dr+ - ® o+ ler)?

2)Bleql

(1ol -+ WI3) tert + <

Setting |€;| < 7, we have the inequality

R 2 B 2 B 2
alig — ol < ( Sz ) Neal? (= (Ilu 15+l )Ie o 22) @+ le el
0 =10l S\ g ) 1l rorwy T 5y ) (Hollo Hiollo )l P 12 llesllo.
(3.13)

which implies that the solution of problem (3.1)—(3.2) continuously depends on the observational data
~ b
i, ug, and «. O

The inequality (3.13) indicates that the solution stability would depend on « and the property of
operators R and B, the property of B especially matters more. Once R and B have been prescribed, the
regularization parameter o will dominate the stability.

With guarantee of the wellposedness, we next derive the optimality system to solve for the optimal
initial condition. For presentation convenience, we consider the admissible set U = L2(£2) in the rest of
paper, we also give remarks for specific cases of U € L?(£2).

There are multiple ways to work out the optimality system, such as dual method and the Lagrange
multiplier rule. The core idea behind them are all essentially based on fundamental calculus of variation.
In our case, we consider the variational data assimilation problem (3.1)—(3.2) as a PDE-constrained
optimization, and adopt the Lagrange multiplier rule to relax the constraint. We first introduce the

Lagrange multiplier (u*? O)) € W(0,T) x L*(£2) and form the Lagrange functional:
1T ) o b2
Ly ug, u 1) = 5/0 I = Gutug) 1 g g, A1 + 5 Huo —ub HO’B

T
+/ (<%,u*> + a(u,u™) — {f, u*)) dr + (u(-,0) — uo,u*(~,0)) ) (3.14)
0
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*

Calculus of variation of (3.14) with respect to the multiplier (u*l(l 0)

) recovers the constraint equation

(3.2). Calculus of variation of (3.14) with respect to (u , we obtain

u
. 0)

0.5 (u,ug, u*, 1)

T T
Y= / (0 — YGulug), —9v)oRr.q dt —I—/ (<@, u*> +a(v, u*)) dr + (v(-,0), u*(-,0))
ou 0 hnte 0 at

T T
=A(¢@_gm@yﬂhm%m+4 «%Mﬁ+mwm)m+w@mmhw
:0,

0L (u, ug, u*, ugy) b *
= (k0 = 6:2),,, — G 0) = 0.

(3.15)

Taking integration by part in time on the first equation of (3.15), we have
T
/O (i'2 - gu(u0)7 _gV)O,R,QO dr + (V(" T)’ M*(', T)) - (V(', 0)7 M*(', O))
T Ju*
+/ (_ <_’V> +a(v, u*>) dr + (v(-, 0),u*(-,0)) = 0.
0

ot

By imposing u*(-, T) = 0, we have

T ou* . T R
[;(—<m,ﬁ+am,w)dmié (& — Gulu). 9v) g g, . (3.16)

recall that a(v, u*) = a(u*, v) from the definition of the bilinear form a(-, -).
We now summarize the above operations (3.14)—(3.16) and conclude the optimality system:

<%v> +a(,v) = (f,v) Vv e Hy(Q),
u(-,0) =uy in Lz(.Q),
ou* " N 1
— <W,v> +aw*,v) = (u — gu(uo),gv)o’&go Vv e Hy($2), (3.17)

W, T) =0 inL*(R),

—ub — (y*( _ 2
“(“0 Mo,Z)O’B @*(-,0),2) =0 Vze L ().
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460 X.LIET AL.

Taking integration by part in space of 2, 2~ and following a density argument, the optimality system
(3.17) can also be stated as a strong form:

%_V(’B(x’y)Vu) :f in 2 x (O,T],

u(-,0) =uy in$2,
u=0 ondf2 x (0,T],
[ullp =0 onI x(0,T],

[( )%}l =0 I x (0,T]
,BJC,ya?1 r= onl x (0,T],

- aa_f — V- (Bx,y)Vu*) = xg R (i —Gu(uy)) in 2 x [0,7), (3.18)
uw*(-,T) =0 in £,

u* =0 ond2 x[0,7T),

[w*]l- =0 onTI x[0,7),

[ﬁ(x,y)aai*} lF =0 onrl x[0,7),

n

aB (uo — ug) — W (,0)=0 ing.

Since the minimization problem (3.1)—(3.2) is strictly convex, the first order necessary condition
above is also sufficient. The latter optimality system with strong form can provide more options on the
numerical solving.

REMARK 3.3 If the admissible set is considered as U = {u, € L2(.Q) :a < uy < b}, then the optimal
=1, % —1, %
solution is an orthogonal projection of B”T("O) +u8 onto U, i.e., uy = max {a, min {b, B”T("O) —i—ug}}.

REMARK 3.4 For the interface conditions with jump [B(x, y)gﬂZH r = gand [u]| = 0, the constraint
equation in (3.1)—(3.2) can be replaced by

<%v> +a(u,v) = {f,v) + (g,v) Vv e H}(2),

u(-0)=u, atr=0 in L*(£).

We are still able to apply the Lagrange multiplier rule as shown above to attain the corresponding
optimality system.

If the interface conditions with jump [B(x, y)%’;ﬂ r = g and [u]| = p are both nonhomogeneous,
the solution u is no longer in H'(£2) space, and we cannot define classical weak formulations and weak
solutions. However, assume I” is smooth and p € H 1/ 2(F ), we can use the extension theorem to do a
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homogenization. We have an extended function w; such that w, | = p and satisfies

ow,
ot

wi(-,0) = w(l) in27",

—V-(BTVw) =0 in2" x (0,T],

p on I x (0,T],
w, =
"7 Jo onae*t\I x Tl

We can further extend w; from 227 to 2

B in 21,
2710 in 2,

which gives a function w, with [w, ]| = p. Setw = u—w,, we have a nonhomogeneous jump parabolic
interface equation

raa—‘/:—V(IBVW) :f inQX(O,T],

uo—w(l) in 21,
U in 27, (3.19)
Wl =0 on I' x (0,T],

w(,0) =wy = [

8W2

0
[ﬁ(x,y)a—g} lr=8— 07 on I" x (0,T].

So far, we are available to introduce the weak formulation for equation (3.19) and formulate the data
assimilation problem as:

| LT @ ’
vg)lérlljF(Wo) = 5/0 | (@ —Gw,) — gW(WO)”(Z),R,QO dr + B HWO - (”8 N w2(~,0)) HO,B

subject to

ow ow, I
—.v)+aw,v) ={f,v) +{g— —=,v), YveH;(),
at on

w(,0)=w, atr=0 in L*(£).

To obtain u, and u, we first solve for w,, and w, then have uy = wy + w,(-,0) and u = w + wj.
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4. A finite-element approximation and convergence analysis

To numerically compute the solution discussed in Section 3, we present a fully discrete approximation
to the data assimilation problem (3.1)—(3.2), that uses a piecewise linear finite-element method in space
and the backward Euler scheme in time.

For the spatial discretization, we first approximate the smooth interface I" and boundary 952 with
line segments, the union of such line segments forms an approximated interface I, and boundary 9£2,,.
The domain circumscribed by 92, is denoted with £2,, which is an approximation of §2. I'), divides £2;,
into two subdomains .Q,‘f and §2,, which forms an approximation of 2% and £27, respectively.

Let Z;’ denote a family of triangulation of .Q;' and .7, denote a family of triangulation of £2,” such
that

T= 0Ty

We need the vertices on 952, or I, of a triangle t;, € .7}, to be vertices of 352, or I, respectively. We
also assume the triangulation .7}, satisfies the usual sort of quasi- uniformity condition.

Associated with .7, is the finite-element space V), = span{¢; }l_l , where ¢; is piecewise linear
polynomials and N, is the number of finite-element nodes. The admissible set of discrete optimal
solutions is then denoted by U, =V, N U.

For the time discretization we uniformly constructatime grid0 =ty <t <t, < f3... < t,.. <ty =
T with time step T = 1% Let I, = (t,_;,t,] denote the n sub-interval. We use the finite-dimensional
space

Vip={v:[0,T] = V), :v|, €V, isconstantin time}.

Let " be the value of v € V_ ;, at 7, and V7, be the restriction to [, of the functions in V.
Given specific h, T and o > 0, the fully d1screte approximation of problem (3.1)—(3. 2) is stated as

uo, €Uy

subject to
n+1 n
w, " —u
h h +1
A b a () = G Y€V
4.2)
0
Uy = Up p>
where
1 < ~n n n| 2 o b 2
Flug) = 57 -0 = Gy o png, + 5 H“o,h —Ug H : (4.3)
2 " Mpsfio D 0,8,
n—=

Here, i; and ug , can be viewed as finite-element interpolations or projections of #" = i(-,,) and ug,
respectively. Mimicking the definition in the continuous case, we define ¥ : L%(.Q) — L%(QO) as
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the restriction mapping and ¥, = zjn\’: 1 9, Xy, as a piecewise constant function in time. We also have
I 15k 2, = Ri Vg, = Cdogpa, and |- 155, = By) = (5 )op, RY = Ry(o1,)  Li(82,) =
L%(.QO) and B, : L%(.Q) — L,ZI(Q) are all bounded, self-adjoint and positive definite operators
accounting for the observation and background error covariance. The operator R, = 227:1 Ryx;, is
a piecewise constant function in time. Lﬁ(.s?o) and L%(Q) are L2 spaces consisting of the span of the
finite-element basis {(;51-}5\2 |- We also have the following operator properties:

\(p, Dogr.e,| < plog,lalog, ¥p.ae€Li($2,), (4.4)
(Rip.p)o.g, = *rrllPlis.g, VP € Li(£2,), (4.5)

1. Do, | < X2 Ipllollglly  Vp.q € Li(R2), (4.6)
(Byp.p) = 2, P15 Vp € Li(82), 4.7)

where )»RZ,)»RZ and )»Bh,)\Bh are all positive real numbers. Recall the operator: R,(f) =

N
2on=1 R X (te((n—1)7 ,n77) and denote AR = 5“P0<z<T)‘Rh(Z) @ Doy, < XR"(I)||P||0,QO||‘1||0,9,,

Vp.q € L;(2,)}and {Ag, = info_. <7 rg, o) 10 Dor.2,] = *ry0IPlog, dllog, P € Li(2,)}.
we note that

AR — KSSENAR;, >0, Ag, = 1;221\/)“’?2 > 0. (4.8)
We also notice that, if we restrict the discussion of R(:,¢,), R}, B and B, in the finite dimensional space,
i, R(t,), R : L2(2,) — LX(£2,) and B,B), : L2(2) > L2 (£2), then R(-,1,) = R', B = B, and
R distinguishes from R, only with a time approximation. In other words, the spatial approximation for
operators R and B cannot be necessarily applied in the context of finite-element methods. The operator
¢, is slightly different, the temporal approximation to ¢ is not in need automatically, we can assume
there is no spatial difference neither, i.e., 4 = ¢, when defined in space L%l(.Q). For clarity, we will
remark more about the difference between the cost functions with and without spatial approximation of
operators R and B in the following.

REMARK 4.1 For case without spatial approximation of operators R(:, #,) and B, the cost functional (4.3)
is equivalent to the following matrix—vector formulation:

N
1 - T - o T
. - _ n n-n n n-n -bh -> >h >
min  F, (g ;) = 37 E (uh -9 uh) My (uh -9 uh) + 5 (uo’h - uo’h) Mg, (uo’h - uo,h) .
n=1

EO,h eRMp

4.9)

In (4.9), the matrix representation of the operator %" is still denoted by ¥, ¢4 gives the values of
uy at mesh grids within the observation domain £2,,. i, h,ﬁg p iy, and ii;l’ are vector representations

b An n . . . Np . . n
of U, j> U o Uy and u; with finite-element basis {¢i}i=1- The observation error covariance R and
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background error covariance B), are incorporated into the weighted mass matrix M, R? and Mg, , which
are assembled from the finite-element method:

Np
Mpy = [ / Z¢i¢idxdy] , My, = [ / thqubidxdy:| .
£2 supp{$i.6;}C 2o 2 ij=1

For case with spatial approximation for operators R(-,#,) and B, the cost functional (4.3) can be
equivalent to the following matrix—vector formulation:

uo,n€

min PGy = 57 il (o (i — ) m, (0 (i — %)

+ % (Ph (ﬁlé,h - Zlo’h))TM (Ph (ﬁg,h - Z‘O,h)) . (4.10)

In (4.10), M, and M are mass matrices assembled as M, = [f.o ¢,9; dx dy] and M =
o supp{$i,$;}C 82,
Np
ij=

[ Jo &; dx dy] v We still denote the matrix representation of operators R} and B;, with R} and By, R},

and By, correspond to the inverse of the observation and background error covariance matrix. Since R},
and B, are symmetric and positive definite, we have the decompositions R} = (QZ)TQZ and B;, = P;Ph
for some invertible matrices Q) and P,

In real applications, the cost functional (4.10) is more often to be used since the observations {itZ}
is usually evaluated at a set of discrete time moments {z, }5:1 and of spatial mesh grids.

N
n=1

Similar to the proof for the wellposedness of the continuous data assimilation problem, one can prove
the wellposedness of the fully discrete data assimilation problem (4.1)—(4.3). Due to the page limitation,
the details are omitted here.

THEOREM 4.2 Given T = 1% and mesh size h, for each fixed regularization parameter ¢, there exists a
unique optimal solution u ;, € U, such that the cost functional (4.3) is minimized.

Proof. First, note that the [*-norm is continuous, the operators h", RZ and B;, are all bounded,
and the solution mapping 74" : uy, +— u; = J"(uy,) is continuous by using the stability of
the discretized parabolic interface equation (4.2). The cost functional (4.3) is composed by all these
continuous mappings and thus is also continuous. Next, we show that the cost functional (4.3) is strictly
convex by calculating its second-order derivative. The first order derivative of Fj, (i ) is

N

oF, (u 9 (9w}
MZZ‘CZ itz-%h”u;l’,—wz +a(u0h—u8h,z) Vze U, (4.11)
3u0h 8u0h ? ? 0,8y,

, ; 0,R!,$2,

n=1

From (4.11), we calculate the second-order derivative of F), (u ;)

2 N N 2
0 Fh(uO,h)( V)_Tz : _8({9}:’142)‘} _3(%;147[) +r 2 W gy _8 (%7”2)( V)

Y dugp dug py ¢ he2n T dup?
0.5 n=1 - : ORLQ2,  n=l O.h O.RY.$2,

+a(v,208, VYz,ve Uy
4.12)
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Furthermore, we have ” (g u”)( v) = o> ) (u,,)

e (z,v) due to the linearity of ¥/, and (z, v) =0
because of the linearity of the parabolic interface equation (4.2). Therefore, with (4. 12) We have

32Fh(”0h) n n @nyn
Tt —’Z ) 20 ) st ataus, > rg el Yee Uy @12
0. 0.h o Jorra,

which concludes the strictly convexity of (4.3). The convexity and continuity indicate that (4.3) is lower-
semi-continuous. Then, similar to the proof in (Lions, 1971, Theorem 1.1), by arguing a constructed
minimizing sequence on the lower-semi-continuous cost functional (4.3), we can conclude that there
exist an optimal solution u ;. Using the strictly convexity again, we claim that the optimal solution is
unique. This completes the proof. (]

THEOREM 4.3 The solution of problem (4.1)—(4.3) continuously depends on the observational data
{itZ}, the background information ug n and the parameter «. Le., let Ijto,h be the optimal solution for

regularization parameter o +¢,, perturbed observations {i} +¢,, }, and background information ug e

where €; € R, e(n) € L2(.Q ) and €3 € L*(£2). Assume C is a positive constant and % < Cand
SUP| << €y S €2, We then have the following estimate:

2 2 2
) 2o 2 25 2 b 2 2 2
el = toally < 7| 5= ) leall o, +{ 7 (ol + 1 515) ter1+( 5~ ) (@ +1eableslo
h""Dh h h

Proof. With (4.11), the first order optimality condition of problem (4.1)—(4.3) is given by

OFp(ug ) 54”3
——— (@ —up) =t Z ity — Gy uy, — % (Z — uo,p) +o(ugp — ulé,h,z)o,Bh

Ot i duo 0.R%,2,

=

=1 Z (ty, — G, 4 () (uo ) — ”Z(Z)))O,R;;,Qg yy (uo,h — ug’h,z — uo,h)o 5, >0
n=1 ’
4.14)

Similar to Theorem 3.2, inequality (4.14) is the key to prove the stability. We can apply the same
techniques as in the proof of Theorem 3.2 to complete the proof. (I

REMARK 4.4 In finite dimensional spaces, bounded operators are all compact. Therefore, A%, A g, and
ABr A B, are all determined by the max-min eigenvalues of {R},} and By,.

In order to derive the discrete optimality system and solve for u ;,, we apply the Lagrange multiplier
rule and form the Lagrange functional:

2

N
_ _ 1 N o
L (s ug g ) = 57 Z |a — <, “(2),RZ,520 +3 H”o,h — ug’h”OBh
n=1 ’

n+1 n
+7 Z < +A il n+1,uzn> + (M2 — uO,h?“ZO) s (4.15)

n=0
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where i, = (u}luﬁufl ..... uh) and iy = (uj) ,uzl,uzz,u;‘f, ..... *N 1). Recall that (Au,v) = a(u,v),

and A is self-adjoint in the sense of {Au, V)1 xH) = (Av, u) 1 H& Then we rewrite (4.15) as

2
n nil2 o b N xN N xN 0 *0
-9y, ”0,RZ,90 + 5 uop — Ug 05, + \uy ,uy, uy uy )+ \uy, — o, up,

n+l un
+fZ i)+ (A ) = ()
N N *n 1 _ *n
1 2 o
P AN cgn, n - n
=57 Z:, |, — G, ||0,R;,.Qa T3 H“Oh ”OhH Z N
n=

< (uh, U ”h

oS fa, n>_fz4fn, P () — (o)
i (4.16)

Using standard techniques of calculus of variations, we derive equations that correspond to rendering
(4.16) stationary. Variations in the Lagrange multiplier it} recover the constraint equation (4.2). Variations
with respect to Uy and uz, forn=1,2,3...N — 1 yield

= iyt 3
0L (it o - ity) b %0
. =% \Uyp — Uy 3y OB —\U, 53y =0,
\Bh

3u0’h
0L (i, g 105 wit —
h> *0,h> *h _ h h *n—1 ~n n, n cgh —
e T <A“h ’Vh> — 7 (i, — Gy G, Vh)o,R;,Qo =0.
h
4.17)

Imposing uZN = 0 when calculating the variation with respect to ul,:] results in the discrete optimality
system:

u’vh +a( n+1"’h) = {fur1> V)
Up = Up,p>
_ uZ"“t_ “Zn’vh +a(u ) = (XQ R (An+l %hnﬂuzﬂ) ’Vh)’ (4.18)
MZN =0,
(O‘Bh tg, — g h) ”ho’zh) 0

forn=0,1,2,3....N — 1.

We shall expect the discrete solution in (4.18) to converge to the solution of (3.17). That is, given
fixed «, Uy —> Ug, Uy —> U and u;; — u* should be attained while the time step 7 and finite-element
mesh size 4 diminish (Yamamoto & Zou, 2001).
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THEOREM 4.5 For each fixed regularization parameter «, let {u ,},. o be the corresponding sequence of
minimizer of the discrete data assimilation problem (4.1)—(4.3). Then {u ,},. o converges to the optimal
solution u,, of the continuous problem (3.1)—-(3.2) as i, — 0.

Proof. It is not difficult to see F, (1) < C for some constant C independent of / and 7. This can be
verified by noticing that F, (u, ;) < F), (ug ) while F, (ug’ ») can be uniformly bounded by i, f and ug.

Then we can show that [|u [lp < ./ ﬁFh(uo’h) =+ ulo”h llo by using the cost functional F, (i ;) in (4.3):

aip b alp
V3 : (||“0,h||0— H“O,hHO) < \/Th Ugp — “0h H“Oh “Oh 05, \/FhTo,h)'

Hence we can extract a subsequence {u ;,} from {u , } such that {u, ;,} weakly converges to ©u*in L*(2).
We conclude furthermore

T
2 1 ~ 2
— G (u w > = u—“Gu(u* dr.
im 57 ZH B o logye, = 5 [ 1= Fuw)lire,

Thus, for Vv € U, by the weakly lower semicontinuity we deduce

n,n 2 Q.. . b 2
F(u*) < hm 1nf 57 Z | — Gty (ug ) }O,RZ,,QO + 5 léfrrlglg Huo’h/ — Ug gy 08,
< liminf Fh/ (MO h/) < lim inf Fh/ (T[h/ (V))
W, 1—0 ? h,t—0
Lt 2 o b2
=3 [ a = DU 0, d -+ I =l 5 = FO. (4.19)
0

where 7, is the L? projection operator from U to U, e
Then (4.19) and the uniqueness result in Theorem 3.1 imply that p* is the optimal solution of the
problem (3.1)—(3.2) and thus the theorem is proved. U

Besides a general convergence result in Theorem 4.5, under appropriate assumptions, we can obtain
the optimal finite-element convergence rate for ug — ug j,, u — u;, and u* — uj.

Compared with the classical FEM analysis, the difficulties in our case lie in the undetermined initial
condition from the forward state equation and the Galerkin orthogonality we miss on the backward
adjoint equation, both of which would lead to the invalidity of the classical analysis framework. In order
to overcome these difficulties, we introduce the following auxiliary equations to bridge the analysis in
the data assimilation problem and the classical FEM approximation results (Chen & Zou, 1998):

Bu(uo’h)
at

,v> +aulug ), v) = (f.v),
(4.20)

M(“o,h)(',o) = Uy p>
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a k
<_uRh—(uh), v> +a (“zh (uh)’v) = (g*Rh(ﬁh — %huh), V) s

. “21)
u;keh (up)(,T) =0,

ouls(up 1) * *R(it
<_RTM, v> +a (kg ), v) = (4 7RG = Guug,)),v). 4.22)

M;k?(uo’h)(', T) =0.

The motivation of the constructions for (4.20) and (4.21) is to remove the uncertainties on the initial
condition and source term. We then convert the target error estimate into an intermediate error that can
be controlled by using (4.22) and the additional equalities oB(u, — ug) —u*(-,0) = 0 and B, (“O,h —
u(b)’h) - u,’zo = 0 in the optimality systems. The details will be demonstrated in the following theorem and
lemmas.

THEOREM 4.6 Let (u,u*,uy) € W(0,T) x W(0,T) x U and (u,uy,uyy) € Vo x Vo, x U, be
solutions of the continuous optimality system (3.18) and discrete optimality system (4.18), respectively.
Assuming u, u* and u,, are smooth enough, the observation &, € L*(0, T; L*(£2,)) N L°(0, T; L*(£2,)),
and the operators R, Ry,, i, ity,, ug, ug’ , satisfy the following approximation:

T
/ ((R— Rh)P, C])(),go ds < CT”P”LZ(;,T;LZ(QO)) ||C]||L2(t,T;L2(QU)),
t

e HO <O i = iyl < C (T +12)

for any p,q € %0, T; L%(QO)) and 7 > ¢ > 0. Then we have the optimal finite-element convergence
rate

litg = o llg + 1 = w20 7200y + 6% = il 2o 20y < € (220 2pdX) 42 470,

. . . B R
where C(£2,a, Mg, th) is a constant that depends on 2, and is proportional to é, i— and ;‘T as well.
B B

This is the major theorem we are going to show in this section. To prove it, some useful inequalities
need to be derived based on the auxiliary equations first.

LEMMA 4.7 Let (u(uo’h),u;’;h (up), up(uy ) € W(O,T) x W(0,T) x W(0, T) be solutions for equations
(4.20), (4.21) and (4.22), let (u,u*,uy) € W(0,T) x W(0,T) x U be the solution of (3.17), and
let (up,uy,ugy,) € Vo, x Vo, x U, be the solution of (4.18). Assume that the observations

i, € L*0,T;L*(£2,)) N L®(0,T;L*(£2,)) and, for ¥p,q € L?(0,T;L3(52,)), R — R, satisfies the
approximation:

T
/ ((R —Rp)p, ‘])0,90 ds < CT”P”LZ(;,T;LZ(QO)) ||(1||L2(1,T;L2(QO)),
t
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then we have the following inequalities
lle — ”(MO,},)”LZ((),T;LZ(Q)) < C””o - MO,h”os (4.23)

sup H (M;}h (up) — u;‘e(uo,h)) (-J)H

<¢ (AR”’}’I = il 20,7202, + M o) = w2 0,122+ r)’
o<I<T

2Q)
(4.24)

R Ryn _ =
“”;keh (up) — up(ug ;) ”LZ(O,T;LZ(Q)) <C ()L lu(uo ) — upll20m:2202)) + 27 Nty = ll 20,702 (02,)) + T)’
(4.25)

| = ug o) 20 70202y < CHF g = g - (4.26)

Proof. By subtractions between the forward equation in (3.17) and (4.20), (4.21) and (4.22), and the
backward equation in (3.17) and (4.22), respectively, we obtain the following new equations

<MV> +alu—uu),v) =0,

ot 4.27)
(u — uluy ), 0) = uy — ug
0 (1, (4y) — (g ) ) )
_ - v )+ a (g, () — ug(ug ), v)
(4.28)
(1, (1) — wh(atg)) (- T) = 0,
8 k* *
&W,» +a (u* — g ). v)
R R (4.29)
= (9*R(it — Gu) — G R — Gu(uy ). v) »
(" — u g ) (. T) = 0.
Taking v = u — u(u ;) in (4.27) and integrating from O to 7, we find out
1 dllu — 2 t
/ lw ds -+ / a(u — “(”Oh)7 u— M(MO h)) ds =0. (430)
0 2 ds 0 ’ ’

Using the coercivity of the bilinear form a(-, -), equation (4.30) infers

t
Il — uug ) 011G +2C, / e = uug ) I ds < g — 113
0
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Thus, we have the inequality

flu— U(uo,h)||L2(0,T;LZ(Q)) < Clluy — Mo,h”o- (4.31)

For equation (4.28), we need to rewrite the right-hand side terms as follows:

<_ 9 (1, () — w0 )

5 ,V> +a (u}‘gh (up) — up(ug p), V) = (9*Ry (i, — Gpup) — G*R(it — Gu(ug p)), v)
= (g*Rh(fth — Gup) — G Ry, — Gyup) + 9 Ry, — Gpup) — 9 Rt — Gup) + G R0 — Guy,)
—G*R(i — Gu(ug ) v)

= ((Ry — R (ly — Gpup) + R(@y — ) + R(Gulug ) — Gup), 9v)g g -
Taking v = “7%;, (uy,) — uk(ug ;) on the previous equation, we have
1 dllug, () — wh (g 115

2 dr
= ((Ry = R) @y, — Fyy) + R(@y, — i) + R(Guuy) — Gup), G (uf, () — fttg,))) g -

a (g, (u,) — (g 1), uf, () — (g )

Integrating both sides from ¢ to T implies
2 | i, ) = e, g G0 g+ [ @ (uf, () — kg ), g, () — ufe(ug ) dr
t

T
= / ((Rh — R)(I,Zh — ghuh) + R(ﬁh — l’/\i) + R(gu(uo’h) — guh),g (M;}h(uh) - u;(uo’h)))o’go ds.
t
(4.32)

Note that (u;}h (u) — ux(ug,))(-,T) = 0 has been used in (4.32). Applying the coercivity of the
bilinear form a(:, -), the boundedness of operators R and R, the Cauchy—Schwarz inequality, Poincaré’s
inequality and Young’s inequality on the previous equation, we have

1 T

5 | (g, ) — i (g 1)) 1) ||(2) + Cc/t |k, () — ug (g ) ||? ds
< Cyrliy, — ghuh”Lz(t,T;Lz(.Qg)) ||”7z,, (uy) — ”;(?(”O,h) ||Lz(,,T;H1(_Q))
+ CZ)“R”l}h - I}”LZ(I,T;LZ(Q,;)) ”M;};h (uh) - u;k?(u(),h) ||L2(I,T;H1(Q))

R
+ CsaMlulug ) = wyll 2722 4k, ) = ko) | 2 roart )
2 i 2
* * ~
< CC ||uRh (uh) - uR(“O,h) ||L2(I,T;H1(.Q)) + 4CC ”uh - ghuh”Lz([’T;Lz(_Qo))

3(C3’\R)2 3(C3’\R)2

A A2 A\ T _ 2
+ T”uh u”LZ(t,T;LZ(.QQ)) + 4CC ”u(uo’h) uh”LZ(t,T;LZ(.Q))'

(4.33)
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Reorganizing inequality (4.33) provides us

) 3C32 T
[ otk o) = i atg,0) )l < =5 / iy — Gy 3., s
c t
2 2
3 (C2AR) T ~ A2 3 (C3)\R) T »
2C_C /t iy, — ully o, ds + Z—CL/O llue(ug ) — uyllg ds. (4.34)

Since i, u,, € L*(0, T; L2(.Qo)), we have a supremum over time ¢ for the term |it;, — 4, u;, ||% 2, which
allows us to bound this term from above. Therefore, (4.34) further implies:

R Ry~ A
k) = o) | 120712529y < € (* luCuop) = upll 207222y + A7 ity = Ul 20, 7:22(20) + T)’
(4.35)

su uh (up) — wh(u ot < C (MR \utugp) —u ) + Ry, — ) +1).
2 | (s, ) = o) .0 < € (WMo = wall 207220+ X508 = W20 71200, + 7)
(4.36)

For equation (4.29), we take v = u* — uj (), use the coercivity, the Cauchy—Schwarz inequality,
Poincaré’s inequality and Young’s inequality, and proceed similarly as (4.33)—(4.34), to obtain the
following inequality:

| " — o) 0y < CORZ g ) = g 120 4.37)

(4.37) gives us

" — g o) | ooy < CHN o) = ull20.7:2202))- (4.38)

Finally, combining (4.38) and (4.31) leads to

* * R
[0 = wilwo )| 120 72200 S € lltg = wo lo-

The proof of Lemma 4.7 is completed. t

Now we are in position to connect the inequalities derived above with the classical FEM convergence
results Chen & Zou (1998). Using the triangle inequality and inequality (4.23), we can bound |u —
up ||L2 (0,T:L2(R2)) as follows:

e = wpll2 0,120y < N —uug 20, 70202)) + 14y ) =l 20102002

< C”I/to — uO,h”O + ||M(I/t0’h) — uh”Lz(O,T;LZ(Q))' (439)
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From inequalities (4.25) and (4.26), [[u* — uj || [2(0,T:L2(2)) €an be bounded similarly:

[l — ”Z”Lz(O,T;LZ(Q)) <l — “}ke(“o,h)||L2(o,T;L2(:2))
*k * *k *k
+ H uR(uO,h) - uRh (uh) HLZ(O,T;LZ(.Q)) + ”uRh (uh) — Uy HLZ(O,T;LZ(.Q))

R
< CA%lug — ug pll + ||u;$h(uh) — uj, ”LZ(O,T;IQ(Q))

+ C ()\.R”u(uogh) — uh||L2(0,T;L2(Q)) + )\.R”ilh - ’jl”Lz(O,T;Lz(Q”)) + T) . (440)

Note that u;, and “Z are the classical FEM approximations of u(u ;) and ”;keh (u,), convergence and
error estimates between them are obtained immediately while traditional regularities are satisfied.

From inequalities (4.39) and (4.40), we observe that the convergence analysis now points to the only
undetermined term |[|ug — ug 5 llo. Another two conditions aB(u, — ug) —u*(-,0) = 0 and aB),(uy), —
uf ) — ur = 0 will be used to work on [|uy — ug -

LEmMA 4.8 Under the same conditions for u, u*, u, ug 5, u;; (uo,h) and u(u ;) as in Lemma 4.7, we have
the following error estimate:

0

1 B|.,b b
g = oo < - (ko0 =0 +ar® |ut, =t ) 4.41)

Proof. Recalling the property of the operator B and using the equalities B, (i , — ug,h) - uzo = 0and
aB(uy — uf) — u*(-,0) = 0, we find out

hpllitg = w15 < (Blug — g ).ty — ttg,) = (“*("0) — BB, "1’ + aB (“g - ug,h) sUp — “o,h) :

(4.42)

Q| =

Recall B = B; when they both act on the finite dimensional space Li(.Q), hence B_lBh = ], where
I: L%(SZ) — L,%(.Q). Therefore, we can rewrite (4.42) and manipulate it further

1
2 0 b b
Ml — g l13 < ~ (w00 = + B (= ) 10 — w0,

(4 0) = (g 1) 0) + g 1) -, 0) — 13 + B (uf = uf ) g — g )

QI— Q|+

(G 0) = )00, 110 = 1) + wglatg ) 0) = i, g = g )

+ (B (uf — u) oo — w0) ) - (4.43)
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Our focus next is to handle the first term in the right-hand side of (4.43). We first need equations (4.27)
and (4.29) from the proof in Lemma 4.7. Taking v = u* — uy(u ;) in (4.27) gives us

T _ T
/ <W, ut — u}‘}(uo,h)> dr +/ a(u — u(uy ), ut — u;‘}(uo,h)) dt=0
0 0

Applying integration by parts with respect to ¢ on the previous equation, we obtain

T /9 (u* —u* T
_/ <w,u—u(u0h)> dl+/ a(u* —u;;(u()h),u—u(u()h)) dr
0 ot ’ 0 ’ ’
+ (* — up(ug )T, (= (g ) T)) — (@ — ugug ) (5 0), (u — ulug ;) (- 0)) = 0. (4.44)
To work on equation (4.44), we take v = u — u(u ,) on equation (4.29) to have

< A(u* — up(ug ;)

- KMy
at

= (g*R(gu(Mo’h) - %u), u— “(uo,h)) ’

(u* — up(ug ), T) = 0.

— u(uo,h)> +a(™ — ug(ug ), u — ulugy,))

(4.45)

Using (4.45) the equation (4.44) is simplified as follows:

T
(" = (g ) (- 0), (= u(ug ) (-, 0)) = — /0 (R (G — Gulug ) - Gu— Guluyy)), o dt

We know that [, (R (Yu —Guuyy)) , Gu —Guluy,,))
definiteness of the operator R, which then tells us

0. df is non-negative due to the positive

(u*(-,0) — up(ug ) (-, 0), uy — 1y ) < 0. (4.46)
Combining (4.46) with (4.43), we find out
1
2 b b
Apllug — ugylly < S5 ((“R(uo W0 — 130wy — ug ) + (“B (”o - Mo,h) S Uy — “o,h))

< & Jcanco-

||M0 —ugyllo + ar® HMOh — Uy H g — “o,h”o) .
4.47)

Hence

”R(“o w(0) — ”ZO

1
Bl,b _ b
o = ol < 25 (] oo i =],
B

The proof is completed. (]
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By using the triangle inequality and (4.24), the last step necessary for Theorem 4.6 is provided by

8~ o),

<|

0 — i () 0) |+ e, ) (. 0) = izt O

< max )‘u,’;i—u;h(uh)(.,ti)

* s
0<i<N—1 ‘0+0211£’T luk, () MR(Mo,h)HO

< omax (! — up, () (1)

0<iKN—-1
(4.48)

We have nearly achieved our goal of connecting the convergence in the data assimilation problem
with classical FEM convergence results. Rearranging inequalities (4.39), (4.40), (4.41) and (4.48), we
conclude

o — uonllo + Nl — unll 207022y + 1™ = wjll 207202002

< (€4 Ca® 4 1) luo = uosllo + (CRF + Dllutwon) = wsllzorzszy + €7 + i, 6) = 5 10 720

B (c+enf+1)
+ ——————= i —iwll2or2,)

aAp
R CAR(C+CrR+1) Cc(C+cCaf+1)
g CA™ + 1 + T ||M(u(),h) - Mh”LZ(O,T;LZ(Q)) +{C+ T T
C+C}“R+1 *i * (C+C}LR+1))‘B b b * *
+ —ats Krjnga}s/(ﬁ1 ufh — u* (up) (-, 1) ot — Huo — g, Ho + |ug, (un) — uj; ||L2(0,T;L2<.Q))

N CAR(C+CaR +1)

it — inll20.7:122,))-
s L2(0.T5L2(2,))

Using results in Chen & Zou (1998), the following classical error bounds hold:

*i_ ok A I W lloe h
Jmax | =i, (), 1) < COPlloghl + ),

i, ) = il 20 7020y < CCH*lloghl + 1),
luug ) = wyll 2072202y < CUPlloghl + 7).
Finally, we have the convergence result

llug — M(),h”o + lu— “h“LZ(o,T;LZ(_Q)) + flu* — MZ“LZ(O’T;L2<_Q)) <C (Ol,)»B,)&R) (h2 + 1),

which completes the proof of Theorem 4.6.
Also, the dependence of the constant C indicates that the property of B, R and the small regularization
parameters may cause the numerical accuracy to degenerate. Hence, in practice one needs to use more

‘0 + C (}»R”M(Mo’h) — uh”Lz(O,T;LZ(Q)) + A-R||£th - i\t”LZ(O,T;LZ(QO)) + T) .

Gz0z Aenigad | uo Jasn saueiqi] AlsiaAlun uoswal) Aq 0£899//1 S/ 1 /Sy/e1onte/eulewl/woo dnoojwepese//:sdjy wol) papeojumod



VARIATIONAL DATA ASSIMILATION 475

refined mesh size / and time step 7 to reduce the finite-element approximation error caused by small «,
Y
Ap, or large ratio i—B

REMARK 4.9 If the discrete cost function is given as (4.9), that means we have both temporal and spatial
approximations for operators R and B. In this case, the approximation R — R;, in Theorem 4.6 needs to
satisfy, for V p,q € L2(R2,),

T
/ ((R— Rh)P, C])(),_Qa ds < C(7 + h2)||P||L2(t,T;L2(QO)) ”q”LZ(LT;Lﬁ(QU))'
t

In addition, we need to modify the proof of step (4.43) in Lemma 4.8:

Ralltg o3 <~ (7.0 — BB G0 + B (i — ) g — )

_ l * ¥ * _ %0 _ 1 *0 _ b _

=\ (-, 0) — up(uy ;) (-, 0) + ug(ug ) (-, 0) — uy, +uh BB, +aB Uy p ) »to — Upp
1

~ ((“*("0) - “Z(“o,h)("o)auo - “o,h) (“R(uo W 0) — “h Uy — uo,h)

+ (B (B‘1 - B;l) 0 uy — uo,h) + (063 (ug - ”gh) Uy = uo,h)) :

(4.49)
So far, we realize that one more condition for Theorem 4.6 is in need:
(57" = B") p.a)| < CHlplolally ¥p.g € L3(2). (4.50)
Then using (4.50) and doing the same manipulations as steps (4.44)—(4.46), we end up with
1
hgllug — ug 4115 < 5 ( (g ) (-5 0) — up o 140 = uollo + P |u o 140 = oo
o |y, — | g - u0h||0) 4.51)

The result of Lemma 4.8 will be given as

lug — ugplly < (HMR(uOh)( 0) = |+ 252+ ar |uy, —uf ).

Then the optimal finite-element convergence rate can still be achieved.

REMARK 4.10 One can prove that the solution u of the regularized problem (3.1)—(3.2) converges to
the unique solution (if exist) or minimum norm solution of the original ill-posed problem (i.e., problem
(3.1)—(3.2) with ¢ = 0), with even convergence rates with respect to the regularization parameter « if
we assume certain source conditions (cf. (Engl et al., 1996, Chap. 5.4)). Combined with the a priori
finite-element error estimate established in Theorem 4.6, this will enable us to choose the appropriate
parameters coupling the regularization parameter «, the noise level §, the mesh sizes 4 and t, to achieve
an optimal convergence. We refer to von Daniels & Hinze (2020) and the references therein for a similar
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idea. Once the noise level is given and fixed, the regularization parameter can be chosen with either a
priori or a posterior rule, while the discretization parameters can be chosen accordingly by using the
error estimates established in Theorem 4.6.

5. Iterative methods solving the discrete optimality system

Due to the forward in time nature in the state equation and backward in time nature of the adjoint equation,
solving the discrete optimality system directly would produce a massive linear system and encounters
computational difficulties. Considering the stability in data assimilation problem, in this section we
develop three iterative algorithms, based on the BFGS method, the conjugate gradient(CG) method, and
the steepest descent method, to decouple the discrete optimality system, which improve the computation
efficiency significantly.

5.1 Matrix—vector calculation

To show a concrete implementation of these gradient-based iterative methods, we first provide a finite-
element assembling and give readers a matrix-vector calculation of the gradient at each iteration.
Recall the discrete optimality system, forn =0,1,2,3,...,N — 1,

n+1 n
u u
h h n+1
<— >+a( ’Vh) = (fug1: Vi)

u*n+l s
_< h - h v, +a(uZ",vh) (Xg R (An+] gn+l n+l)’vh)’ G.h

b *0 _
(th (“O,h - “o,h) — Uy ’Zh) =0.

Considering the integral formula of the forward equation in (5.1), we have

ul‘H—l n
/ hivhdxdy—i-/ ﬁ+VuZ+1Vvhdxdy+/ ﬂ_VuZ“Vvh dxdy:/ fnt_lvhdxdy—i-/ Srg1vndxdy.
Q T ot Q- fohs Q- 5.2)

For each time moment n, uj = ZJ | U u’¢;, plugging uy, into (5.2) and using v;, = {¢;}; bl to test (5.2),
we obtain

Np n+1 n
1 ( u

2= ) ntl gt 00 99i 4. n+1 g+ 09 9¢i
[ gt [ Z Bt syt [ Z Bt oL dxdy

o 00 0 et 0 0, )
/72 gl sy [ Z ol sty = [ sy [ g sy
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Then the matrix—vector formulation of the forward equation is
it'n-‘rl -’n
h Up —n+l _ Zn+l

-0 _ =
Up = Ugp,

where

Np Np
R R dxdy} [ e
ij=
99; 3¢, 39 3¢, o
— + 1Y +_ 7
Q= |: Q+ﬁ x ox ded :|1J=1 " [/Sﬁﬁ dy dy dxdy]uzl

_ 09 i 4. } [ _09¢; i . }
* |: .Q*ﬁ a dx ij=1 - 2 IB ay ay ij=1 .

Similarly, the matrix—vector formulation of the discrete backward equation can be written as

—>*n+l = %kn

—u R >
M /’l h + Quzn — b*n+1’

where

Np

B+l — |:/Q X.Q,,RZH (i‘ZH _ %zﬂuzﬂ) ¢l_dxdyi|

i=1

Now the gradient at k™ iteration, F ;l (u(()k;)l) is calculated as follows:

—>n+l(k) —>n(k)
M uy Uy + Qﬁzﬂ(k) — bn-i—l’
T

000 _ =)
Uy = = Upp
—»*n-‘,—l(k) >xn(k)

M uy Uy 4 Q~*n(k) 1

T
qu(k) _ 6’
5 O\ (=Buk)  -b.By ~+0(k)
F) (uo,h) =« (uo,h Yo ) U

=By, (k)

where uoh ® and ”0 W satisfy Muo”(k) Mp, iy, and M _'h i

=b
MBhuO,h'

477

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)
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Solving equations (5.6)—(5.7) with initial condition ;‘(()],{})l forward and backward to obtain I; ;1 (u(()k,)l)

will be a basic ingredient for all our algorithms. Note that n and k in above represent steps for the time
evolution and the gradient iteration, we will keep these notations in the rest of presentation.

REMARK 5.1 We also need to remind readers that p is the vector representation of an element p in a
Hilbert space with finite-element basis {q)i};\i’]. Especially, ||f7||% will refer ||]3||(2) = (.p)y = P Mp,
where M is the mass matrix.

5.2 The conjugate gradient method

Conjugate gradient method (CG) is a popular algorithm to solve variational problems, it can achieve a
superlinear convergence rate only considering the first order derivative. The main feature of CG is that the
current descent direction d is conjugate orthogonal to all previous descent directions d°, d", d?, ..d*~!,
which allows a convergence within finite iterations for the finite dimension optimization. A standard CG
algorithm update is given as follows:

e Initialize u(o) and d° = (”(()Oi)z)
* Update u(kH) q(()kz, + ykd* with

P G _ (A () 7 ()

= . gk = .
(7 (u5") 75 (u6"))

k —
—F (uffy) + B k=1,
* ¥ is a positive number determined with exact line search by minimizing the functional y, =

argmin,, . F’ h(u(k) + y*d*) or using inexact line search methods, such as the Armijo or Wolfe
condition.

The CG method Marchuk & Shutyaev (2002, 2004) can also be understood as an accelerated steepest
descent method based on fixed point theorem, and a natural CG variant is expressed as follows.

o Initialize u( ) and ﬁ(()l})l
Ut A = 38 — o4 () + o (55—

the term u(()k;)l — u(()kh s called a momentum term accounting for the acceleration.

We will adopt the first CG version as our presentation and provide an exact line search method to
optimally determine the step sizes y* and gX.
Recall that the CG method Hestenes & Stiefel (1952) was originally developed to solve linear system

«/x = b, where o/ is a positive definite operator (or matrix), 5.9

or equivalently to find out the minima of the quadratic functional

J(x) = %(szx,x) — (b, x). (5.10)
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The standard CG algorithm with exact line search to solve (5.9) or (5.10) is illustrated as:

Algorithm 1 Classic Conjugate Gradient Algorithm

Input: X9 tol;
Compute the gradient at x©: J/(x(@) = &7x© — p, initialize ro = —J'(x©) and dy=—J (x©), set
error=1and k = 0;
while error >_t01 do
Compute d* = o d;
(r 128 k) .
(dp-dy)’
Update xk+D = x*k+D 4y g,
Compute ry | = r; — v dy;

Compute y;, =

(Mg 15 Ty 1)

(’”k’ ’"k) ’
Compute d; | = 1,y + Bid;s
Set k = k + 1 and error = |[r; {|;

end while
Output: x

Compute 8, =

(k+1);

For purpose of implementing the Algorithm 1 into our data assimilation problem, we first rewrite the
optimization problem (3.1)—(3.2) as a reduced form:

2

17 o
in Flug) =5 [ lli—Fulld g, dr+ 5 g — uf)
min F(up) 2/0 lite=Gullor.e,dt+ 7 Jto = Hof, , (5.11)

S.t. u :Sfl/lo,

where the operator S : L*(£2) — W(0,T) is defined by the parabolic interface constraint (3.2) and the
subscript f corresponds to the source term. Since the equation (3.2) is a linear PDE, the operator Sy is an
affine mapping. Hence, S}Q(uo), the derivative of S at i, does not depend on u, and f. More concretely,
we have '

Sj(ug)z = Soz Yz € LX(R2), or S}(ug) = S (5.12)

We then denote by S = (S}(uo))* : W(0,T) — L*(£2) the adjoint operator of Sy or S}(uo). That is,

(q, SOZ>(W(0,T)’,W(O,T)) = <S8q, Z) (L2(2),L2(£2)) (513)
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for V(g,z) € W(,T) x L*(£2). Recall (3.14)—(3.16), we have Séq = &(-,0), where @ solves the
following backward parabolic equation

oD @ _
_<E’V>+a( ,V) = (C],V>,

&, T) =0.

(5.14)

For convenience, we always keep the discussion in the continuous level, the solving of the discrete
data assimilation will be a straightforward discretization of the continuous one.
By doing a calculus of variation, we derive the optimality condition

(F (). 2) = (@B (uy — 1) .2) - (R(ﬁ — GSpup), (%Sf)/ (uo)z)
= (th (’40 - ug) ,Z) - (((%Sf)/ (uo)))|F R(it — gSfuo),z)
=0 Vzel*(Q), (5.15)

Using the linearity of ¢ and (5.12), we update the optimality condition (5.15) as

(aB (uo - ug) ,z) - (Sé%*R(ﬁ - gsfuo),z) —0 Vzel’ (), ie.
(5.16)
oB (u — ) — S5 R — 4 S;u) = 0.
For clarity, we remind readers that the operator S acting on 4*R(it — & Syu) is equivalent to solve the
backward adjoint equation in (3.17) with source term ¥*R(i — ¥4 Sfuo), which exactly gives u*(-,0).
Note that ozBug and S§</*Rii are known variables, therefore, (5.16) can be temporarily written as

aBugy + S§9*RYSpuy = Sg4* Rit + aBu). (5.17)

For S;, we can decompose it as:
Spuy = Sp0 + Soug. (5.18)
Apparently, S, is a linear operator and S0 is a known variable, this finally allows us to rewrite (5.17) as:
aBuy + S§G*RYSguy = S§4*Rit — S * RS0 + aBuf). (5.19)

We now claim that the operator aB + S;9*R%S,, is positive definite. First, («B + S;9*RYS,)" =
oB + SS%*R%SO is obviously true. Second, for V0 # z € LZ(.Q), we have

(B + S§G*RGS) 2.2) = a(Bz,2) + (S RISz, 2) = (Bz,2) + (RYSy2.9Sz) > ahglizll§.
(5.20)
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In (5.20), we have used the positive definiteness of the operators B and R.
So far, we can write the optimality condition (5.16) in form of (5.9),

A uy = (B + S;9*RYSy) g, b = S§9*Rit — S;9*RYS;0 + aBu.

We here further clarity the operation of .2/ acting on an element u, € L?(£2). First, recall that Spz is to
solve the parabolic interface equation with initial z and source term 0. Second, the operator Sj; acting on
&*R¥Y Sz is equivalent to solve the backward adjoint equation with initial 0 and source term ¢ *R¥ S z.
Therefore, <77 is obtained by sequentially solving the following forward and backward equations:

<%V> +a(y,v) = (0,v),

ot (5.21)
1//(" 0) =3,
a *
- <l$ V> + a(lﬂ*7 V) = (g*ng, V) )
ot (5.22)
v*(,T) =0,
/7 =aBz+ ¢¥*(.,0). (5.23)
In discrete level, (5.21)—(5.23) can be written in matrix—vector form as follows:
IZ}?JFI — 17};: 7 n+1 A
M———+ =0,
V) (5.24)
I/_}I’(l) = z»
W;,k’1+l &;n . )
-M + N __ bn+ ,
Qi =1by, (5.25)
¥V =0,
oz = a4 0, (5.26)

- - Np
where Mg, = MZ5h and B! = | [ o R4 i g dxay]
All work in (5.15)-(5.26) essentially have provided us all of the information to update the CG
iterations. We summarize these ingredients into Algorithm 2 to solve our data assimilation problem.

REMARK 5.2 We never use the information b = S (54 *Rit — Y *R%SfO) + aBub. Because b — o/ uj,

essentially is the negative gradient —F" (), we can use (5.6)—(5.8) to find it out.

Gz0z Aenigad | uo Jasn saueiqi] AlsiaAlun uoswal) Aq 0£899//1 S/ 1 /Sy/e1onte/eulewl/woo dnoojwepese//:sdjy wol) papeojumod



482 X.LIET AL.

Algorithm 2 Conjugate Gradient Algorithm

Input: ﬁ(o) and tol;
Compute F/ (”0 h) initialize 7, = —F (u(o)) and d() = _F (u(o)) set
error = 1, and start the iteration step k 0;
while error > tol do
Compute d;, = 7d,, by solving equations (5.24)—(5.26) sequentially;

1713

Compute y, = ——=—;
(i d)yg

Compute 7y, | =7} — yk,;z{dk;
Update u(kH) = u(()k,i + J/kZlk;

1y
Compute §; = ” k+1||0'

7l

Compute Zlk_H =T + :Bkak;
Set k = k + 1 and error = |7 [l
end while

Output: ﬁ(()k,fl),

5.3 The BFGS method

For gradient-based iterative algorithm, the descent direction d* at each step is the key component to
determine its effectiveness, which is generally written as

4 = —DF) (u(()k})l)

Choosing D, as an identity operator gives the steepest descent method that usually has a global

convergence, but possibly with slow convergence rate. For D, = (F " (u (k))) the Newton’s method

is obtained with a fast (locally quadratic) convergence rate. Unfortunately, Newton method involves the
calculation of the second-order derivative and its inverse, which are not an easy task in data assimilation
due to the complexity of the constraints and the large-scale dimension of unknowns. To address this
issue, the BFGS method was developed as a replacement of the Newton method, since it can achieve
a superlinear or nearly quadratic local convergence rate without much effort to compute the second-
order derivative and its inverse. The BFGS method essentially tries to approximate the inverse of the
second-order derivative in the following way:

D, = (1 okt @ gk)) Dy, (1 okt e sk)) + 0 sk @ 55, (5.27)

where sk = u(()k;l —u(()kh U,g =F, (u(k)) —F (uOh 1)) and 6% =
p.q € Lj(£2),

G k FSR The operator ® is defined as, for

(P®qz=(q.2p. VzeLj(f). (5.28)
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The above update is based on a continuity assumption for the second-order derivative of the cost
functional. The expression (5.27) is obtained by searching a bounded operator D, that is as close as
possible to the previous D, _; in the sense of a weighted Hilbert—Schmidt norm Hinze et al. (2009);
Vuchkov et al. (2020):

k

. L1 1 : k
min - sz (D—D;_,) W2 subject to Dg~ = s“.

DeZL(12(2),13($2)) 2

HS

Here, .# represents a general linear bounded operator, W is a weighted operator satisfying Ws* = gf, and

the constraint Dg* = s* comes from a secant approximation of the second-order derivative of F (U, )
at u(()k})l.
The BFGS algorithm can now be briefly described as follows:

e Initialize u(()o})l and a bounded positive definite operator D,.

» Update uékz_l) = uék})l — ykD\F}, (u(()k})l) with

Do, k= 0,
D, =
k [(1 — 0 sk @ ¢)) Dyy (I — 05 (g" @ 59) + OF(s* @ 59, k> 1.

» ykis determined with exact line search or an inexact line search method.

Next, we show how to compute the matrix form of D, in a more explicit way with the operation ®
working on the Lﬁ(Q) space. Based on the definition in (5.28), for p,q € L%(Q), we deduce

PRQz=(q.9p =3 Mip=M§"%p =pM "z, ¥z e L;(£2). (5.29)

Therefore, the matrix representation of p ® g acting on L%(Q) is p(MTg)T. Meanwhile, the calculation
of 6% is straightforward

. 1 1

CGkeh  STMgE

Now we can rewrite (5.27) as a matrix and vector multiplication form:

2k MT"k T ok MT"k T 2k MT"k T
Dkz(l—&)Dk_l(l—g( $) ) s (5.30)

ST Mgk ST Mgk ST Mgk
We summarize the BFGS iterative algorithm in Algorithm 3. Note that the y¥ is simply picked as 1

in the Algorithm 3, reader can also apply the inexact line search method introduced in Subsection 5.4 to
update y* at each step and obtain faster convergence.

5.4  The steepest descent method with inexact line search

The BFGS and CG methods can provide fast convergence rate and solve the discrete optimality system
(4.18) effectively for most of cases. However, for any numerical scheme, there exists a trade-off between
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Algorithm 3 BFGS Algorithm

Input: ”0 h, a posmve definite matrix Dy, and tol;

Compute F (u ) the first descent direction —D,, 2 (u ) and the first update u(l) = ft(()?,)l —

DOF (u(o)) Set error—l and start the iteration step k = 1;
while error > tol do
Compute F' / h (u(k) );

Compute ¥ = u(k) ‘(()kh D gk =F, (M(k)) — Fy(ug (k L)

_ (MT k)T (MT k)T *k(MT*k)T .
Compute D, = (1 — ﬁ D, \I- g’]\TMg + sngMsgk .
Update ﬁ(()k; D= _u'(()k,)L (u(k))

Setk = k + 1 and error = [|F,(u§)) lo:
end while

its stability and convergence rate. In other words, the BFGS and CG methods are relatively less stable
and hence may cause the algorithms to diverge for some of the data assimilation scenarios that have low
stability, e.g., small regularization parameter « in the cost functional (4.1).

To tackle this numerical problem, we present the steepest descent method Hinze et al. (2009); De
Reyes (2015) in this section to gain more stablhty at the cost of a lower convergence rate. With the
gradient information F W ) = aBy (g, — uo) — iy O shown in (4.17), a simple steepest descent method
to solve the discrete data assimilation problem is 111ustrated as follows:

e Initialize u(o)

(k+1) = (k) k (k)
* Update iy, =~ = uy) — F/ (”0 h)
« ykis determined with exact line search or an inexact line search method.

We here present an inexact line search algorithm using Armijo backtracking method to update the
y*: find y* via repeatedly solving the forward equation (5.6) with initial value

- (k+1 * k :
gy = ity — V'F, (uéi) by updating " = py*, (5.31)

until the following inequality is satisfied

Fo (i) < Py () + 8v* (Fr () =i (u65) ) - (5.32)

where y* is typically initialized as a constant equal or greater than 1, and § and p are chosen in (0, 1).
The straight line

Yo =F, (uék,i) +oyk (F,; (ug",i) —F, (ug‘},)) (5.33)
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is a search line, which evaluates the decreasing of the cost functional (4.3). If the point ( k F h(u(k)

yk (uZO(k) yu(()k,)l))) is underneath the line (5.33), yk is a good candidate of descent step size, otherwise,

we need to go through step (5.31) until the inequality (5.32) is satisfied.
We now summarize the steepest descent method algorithm:

Algorithm 4 Steepest Descent Algorithm

Input: y, 6, p, ;‘(()11’ and tol;

Set k = 0;
while error > tol do
Compute F (uo h)

Inexact line search for y*:
while F,(uly) — v F}, (ug)) > F,(ug) + 8y (Fh (), —F (u (">))
Reduce y: y = py;
Solve (5.6) with initial condition u

Fyl) — yFy @)

(k) I3 h (u(k)) to compute

end while

Output y as y*;

Update u(kH) = u(()k,), (M(k))

Set k = k + 1 and error = ||F), (M(k))”o,
end while
Output: Zt(()k; b,

6. Numerical experiments

In this section, we use the methods developed in this paper to numerically show the data assimilation
performance. The finite-element space is chosen on continuous piecewise linear polynomials, and the
backward Euler scheme is used for time discretization. L and L2 norm errors will be used to evaluate
the numerical results. But we focus more on the L2 norm error, since the way we measure the distance
between observations and state variable in the cost functional is in an L? norm sense.

6.1 Verification of the finite-element convergence rate

Before discussing the data assimilation performance, we first provide an example to verify the optimal
FEM convergence rate from Theorem 4.6. Given a set of smooth observations and for each fixed
regularization parameter o, we expect to observe that the finite-element approximation converges in
a second order regarding to L? norm. Mesh sizes of 1/8, 1/16, 1/32 and time steps of 1/32, 1/128,
1/512 are used, respectively. For each fixed «, the discrete solution with 7 = 1/64 and T = 1/2048 will
be considered as the analytical solution.
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TABLE 1  The finite-element convergence rate of the recovered initial solution u

Finite-element convergence rate

o ||u0—u0’é|| ||u0—u0’1716|| rate ||u0—uo’%|| rate #
1 7.1 x 1072 1.7 x 1072 2.06 33x 1073 2.35
11—0 6.1 x 1072 14 x 1072 2.12 2.7 %1073 2.37
% 59 %1072 1.3 x 1072 2.17 2.6 x 1073 2.32
550 5.8 x 1072 1.3 x 1072 2.15 2.5 %1073 2.37
o0 59x 1072 1.3 x 1072 2.15 25% 1073 2.37

For the setup of the parabolic interface equation, we consider u as follows:

uT =sin(r - x)sin(w - y)sin(z+ 1) in 2% x (0,71,
u =
T =2sin(w - x) sin(w - y)sin(z+ 1) in 27 x (0,77].

s
|

Other relevant parameters are set as: 7 =1, 8~ = %, T =(0,1)x (0,1), 2~ =(1,2) x (0,1) and
I' : x = 1. The boundary condition and jump interface condition satisfy u =0 on 92, [u]| =0on I',
and [B(x, y)%]“« = 0. Both f* and f~ can be computed by using u™, u~, B+, and B~.

For the observation function %, we use

A —{(1) sin(7 - x) sin(w - y)sin(z+ 1) in Q7 % (0,T],
u=
%_(2) sin(r - x) sin(r - y)sin(z + 1) in 27 x (0,T].

We consider the background information as:

l/lO:

b 2sin(r - x)sin(x - y)sin(l) in 27T,
4sin(r - x) sin(wr - y)sin(l) in £27.

The observations window is £2, = [0,2] x [0, 1] and (0, T'], where T = 1. In this scenario, we assume the
error covariance related operators for observations and background information are R = 10 and B = 1.

Numerical results are displayed in Table 1, where the L? norm errors appear to satisfy the optimal
second-order convergence rate for different «.

6.2 Data assimilation performance [

We now investigate the data assimilation performance utilizing the methods proposed in Section 5. The
model setup for experiments are given as follows: 27 = (0,1) x (0,1), 2~ = (1,2) x (0,1), I' :
x=1,p8"=1land B~ = % The analytical solution u is: u™ = sin(w - x) sin(r - y) sin(¢ + 1) and
u~ = 2sin(m - x) sin(w - y) sin(z + 1), and f* and f~ can be computed based on 8, 87, u™ and u~. The
space and time observations windows are considered in £2,, = [0.25, 1.75]x[0.25,0.75] and (0, T'], where
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TABLE 2 Data assimilation with BFGS method

Data assimilation performance: BFGS method

o N — wll20.1) e — upll oo 0.1y Iteration #
10 3.84 x 1073 241 x 1073 25
1 3.19 x 1073 233 x 1073 13
o 2.76 x 1073 2.09 x 107 20
% 2.81 x 1073 2.07 x 1073 28
0 3.76 x 1073 2.11 x 1073 63
g - - o0

T = 1. We introduce the observations and background noises by adding multivariate normal distributions
eh, ~ N0, (ﬁl)z),n =1,2,3,---,Nand e, ~ A(0, (%1)2) into the exact solution (discrete values
of u at mesh grids along time moment ¢,) as our observations and background information. Note that the
covariance matrix are now uniform diagonal matrix (ﬁl )2 and (11—01 )2, and R} and By, are 100/ and 10/.
We test the expected performance by adjusting the regularization parameter . The spatial and temporal
step sizes are set to be 1/50 and 1/200, respectively.

By the way, we evaluate the data assimilation performance based on the L2(0, T) and L*°(0, T) norm
relative errors, which are defined as follows:

N

N
e — w12 I~ #ilieca
||“_uh||L2(0,T) = ZT—’ ||“_“h||L°°(0,T) ZZT—'

llun |3 "l (2)

n=1 n=1

Here, N is the number of time steps according to T and 7.

In Tables 2— 4, the numerical simulations show accurate forecasting results which match the practical
expectation. In addition, the convergence comparison among the three iterative methods indicates that
the CG and BFGS methods are preferred for the well-conditioning or the moderate-conditioning data
assimilation cases because of their higher convergence rate, and the steepest descent method is a backup
for some extreme ill-conditioning scenarios only because of its stability advantage.

6.3 Data assimilation performance Il

In this subsection, we further verify our proposed data assimilation methods with more diversified
experiments, which are based on different time and space observation windows and conductivity jumps
across the interface I" in the parabolic interface equation (3.2). The model setup for experiments are
given as follows: 27 = (0,1) x (0,1), 2~ = (1,2) x (0,1) and I" : x = 1. The boundary condition
and jump interface condition satisfy u = 0 on 982, [u]|r = 0, [B(x, y)%ﬂ r = 0, and the source term
fT =f" = 4xy+9. The spatial and temporal step sizes are set to be 1/50 and 1,200, respectively. Also,
based on the numerical test in Subsection 6.2, we empirically choose a fixed regularization parameter
o = % for all cases and alternatively use the BFGS and CG methods to compute simulation results in
the following.
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TABLE 3 Data assimilation with conjugate gradient method
Data assimilation performance: conjugate gradient method
o ||M —_ uhlle(O,T) ||I/l —_ uh”LOO(O,T) Iteration #
10 3.84 x 1073 241 x 1073 5
1 3.19 x 1073 233 x 1073 8
™ 276 x 1073 2.09 x 1073 17
% 279 x 1073 2.08 x 1073 28
1 -3 -3
5 3.73%x 10 2.10 x 10 78
# — — 00
TABLE 4  Data assimilation with steepest descent method
Data assimilation performance: steepest descent method
o N — wyll20.1) N — wpll 0.1 Iteration#
10 3.83 x 1073 241 x 1073 18
1 3.18 x 1073 232 x 1073 67
. 276 x 1073 2.08 x 107 453
% 279 x 1073 2.08 x 1073 672
0 3.71 x 1073 2.09 x 1073 843
& 245 x 1073 2.03 x 1073 1263
TABLE 5  The BFGS method is used to compute the numerical results, Ite = Iteration
Data assimilation performance: 87 =0.5,8~ =2, T =1
Space WindOW | |I/t — Mh| |L2(0,T) ||u — Mhl |L°°(0,T) Ite#
2, =10,2] x [0,1] 2.00 x 1073 592 x 1074 52
2,=1[1,2] x [0,1] 2.40 x 1073 420 x 1073 53
2,=10,1]1 x [0,1] 2.50 x 1073 7.57 x 1074 49
2,=102,12] x [0,1] 2.50 x 1073 7.25 x 1074 49
2,=1[0.8,1.8] x [0,1] 3.40 x 1073 1.70 x 1073 52
2,=10.2,1.2] x [0.2,0.8] 2.29 x 1073 3.27 x 1073 43
2,=10.8,1.8] x [0.2,0.8] 3.40 x 1073 1.50 x 1073 52

We will consider 87 = 0.5 and 8~ = 2 for the moderate conductivity jump test and 81 = 0.5 and
B~ = 20 for the large conductivity jump test. For both cases, we firstly numerically run the corresponding
parabolic interface model on the time period (0,1.125] based on an initial condition wy=sin(s -x) sin(7r -y)
(note that this initial condition wy, is only used to generate data, not the one we intend to recover). We
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TABLE 6  The CG method is used to compute the numerical results, Ite = Iteration

Data assimilation performance: B+ = 0.5, =20,T = 1

Space window N — uplli20.1) llu =yl 0,1 Ite#
2,=10,2] x [0,1] 220 % 1073 6.16 x 10~ 17
2,=1[12]1x[0,1] 5.70 x 1072 2.90 x 1073 5
, = 10,11 x [0, 1] 2.30 x 1073 6.17 x 10~ 19
2,=1002,1.2] x [0,1] 2.50 x 1073 7.35 x 107* 22
2,=10.8,1.8] x [0,1] 420 x 1073 1.90 x 103 13
2,=10.2,1.2] x [0.2,0.8] 2.90 x 1073 8.72 x 1074 21
2,=10.8,1.8] x [0.2,0.8] 420 x 1073 1.80 x 103 12

TABLE 7 The BFGS method is used to compute the numerical results, Ite = Iteration

Data assimilation performance without background information: 8 T=05p8"=2T=1
Space window N — upllr20.1) lu =yl 0,1 Ite#
2,=10,2] x [0, 1] 1.90 x 103 6.83 x 10~* 81
2,=11,2] x[0,1] 7.82 x 1072 475 x 1072 80
:2,, [0,1] x [0, 1] 1.25 x 1072 443 x 1073 85
2,=1002,1.2] x [0, 1] 7.40 x 1072 2.50 x 1073 76
2,=108,1.8] x [0,1] 3.23 x 1072 1.93 x 1072 79
2, =102,1.2] x [0.2,0.8] 7.70 x 1073 2.60 x 1073 72
2, =1[0.8,1.8] x [0.2,0.8] 3.32 x 1072 1.99 x 1072 79

TABLE 8 The CG method is used to compute the numerical results, Ite = Iteration

Data assimilation performance without background information: BT =058 =20,T=1
Space window N — wpll20.1) N — wpll o 0.1) Ite#
2,=10,2] x [0, 1] 2.70 x 1073 1.30 x 1073 16
2,=11,2]1 x[0,1] 1.95 x 107! 9.70 x 1072 6
2,=10,1] x [0, 1] 2.50 x 1073 7.14 x 1074 33
2 =102,1.2] x [0,1] 2.50 x 1073 9.26 x 10~* 35
2,=10.8,1.8] x [0,1] 4.82 x 1072 2.49 x 1072 18
2, =102,1.2] x [0.2,0.8] 3.20 x 1073 1.20 x 1073 34
£ =10.8,1.8] x [0.2,0.8] 4.96 x 1072 2.56 x 1072 19

add Gaussian noise e}, ~ .4(0, (ﬁ])z) to the numerical solution on the time period (0.125, 1.125] as
observation data {i} } (noise size compared to data with respect to L? norm is around 11.2% for moderate
jump test and 9.3% for large jump test) and add Gaussian noise e, ~ A4 (0, (11)2) onto the numerical

solution at # = 0.125 as background information “0 ;- In other words, the solution at # = 0.125 will be the
real initial condition we target on recovering, which will also be used to achieve better state predictions.
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Tables 5 and 6 display decent state simulation results for different observation windows while both
moderate and large conductivity jump models are considered. The numerical tests show that it is more
efficient to collect observations from small conductivity region to have better simulation result, which
makes sense that the state in small conductivity region is less diffusive and more sensitive to initial
conditions compared with the larger conductivity region. In general, the more data we use, the more
accurate the data assimilation result is. In Tables 7 and 8, we test our data assimilation methods while
the background information is absent (i.e., the regularization term in the objective function is simply
%””O,h”% and other setup are the same). We are still able to achieve accurate assimilation results once
observations are provided relevant or sufficient enough. However, the simulation performance without
background information is generally poorer than experiments with background information, which
emphasizes the importance of background information in data assimilation, especially for cases of only
partial observations available. This is expected in the sense of the balance between the accuracy and the
available information. In addition, the numbers of iterations in Tables 5-8 again demonstrate the effi-
ciency of the developed CG and BFGS methods. All of these validate the proposed methods in this paper.

7. Conclusion

In this paper we propose a variational data assimilation method for a second-order parabolic interface
equation and demonstrate the wellposedness of such a problem by using weighted L? norms. The
Lagrange multiplier rule is used in the derivation of the optimality systems. By utilizing a finite-element
method we develop a numerical approximation and analyze its convergence properties with respect
to the continuous data assimilation. The optimal convergence rate is established by recovering the
Galerkin orthogonality in the optimality systems. Based on the efficient iterative algorithms developed in
Section 5, the numerical experiments validate the proposed methods in this paper and display promising
results.
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