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Located at the bottom of the main sequence, ultracool dwarf stars are
widespread in the solar neighbourhood. Nevertheless, their extremely low
luminosity has left their planetary population largely unexplored, and only
one ofthem, TRAPPIST-1, has so far been found to host a transiting planetary

system. In this context, we present the SPECULOOS project’s detection

of anEarth-sized planetinal7 h orbit around an ultracool dwarf of M6.5
spectral type located 16.8 pc away. The planet’s high irradiation (16 times
that of Earth) combined with the infrared luminosity and Jupiter-like size of
its host star make it one of the most promising rocky exoplanet targets for
detailed emission spectroscopy characterization withJWST. Indeed, our
sensitivity study shows that just ten secondary eclipse observations with
the Mid-InfraRed Instrument/Low-Resolution Spectrometer on board JWST
should provide strong constraints on its atmospheric composition and/or
surface mineralogy.

At the end of the main sequence, ultracool dwarf stars (UDS)" have
spectral typesbetween M6.5and L2, masses between 0.07 and 0.1 solar
masses (M,,), sizes similar to Jupiter and effective temperatures between
2,200 and 2,850 K (ref. 2). The Search for Planets Eclipsing Ultra-cool
Stars (SPECULOOS) project’®*aims to perform a volume-limited (40 pc)
transit search of -1,650 very-low-mass stars and brown dwarfs, includ-
ing ~-900 UDS". It is based on a network of six robotic 1-m-aperture
telescopes: the four telescopes of the SPECULOOS-South Observatory
(SSO) in Chile’, Artemis, the first telescope of the SPECULOOS-North
Observatory (SNO) in Tenerife®, and the SAINT-EX telescope in San
Pedro Martir Observatory in Mexico’. SPECULOOS achieved its first
mainresultin 2015 with the discovery, by its prototype on the robotic
60 cmtelescope Transiting Planets and Planetesimals Small Telescope
(TRAPPIST)'", of a system composed of seven Earth-sized planets in
close orbitsaround an M8-type UDS at 12 pc (refs. 11,12). More recently,
SPECULOOS discovered asuper-Earth orbiting in the habitable zone of
LP 890-9 (also known as SPECULOOS-2, TOI-4306), an M6-type dwarf
star at 32 pc (ref. 13).

SPECULOOS-3 (aka LSPM J2049+3336) is an isolated UDS of
spectral type M6.5 + 0.5 located 16.75 pc away. It is one of the ~365

SPECULOOS Program1targets that are small and close enough to make
the detailed atmospheric characterization of atemperate Earth-sized
planet possible with JWST®. It was observed by SAINT-EX for five nights
in2021, and by SNO-Artemis for three nights in2022. Visual inspection
ofthe 2021and 2022 light curves showed some transit-like structures
that motivated future intensive monitoring of the star. It was thus
re-observed by SNO-Artemis fromJuly to September 2023. In total, 18
transit-like structures were observed by SNO-Artemis in 2023 and could
be related to a period of ~0.72 d. Furthermore, the other transit-like
structuresinthe 2021 (SAINT-EX) and 2022 (SNO-Artemis) light curves
corresponded to the identified transit ephemeris (Fig. 1). Follow-up
photometric observations were also made to confirm the transit and its
achromatic nature using the SSO 1 mtelescopes, the TRAPPIST-North
0.6 m telescope at Oukaimeden Observatory in Morocco, the 1.5 m
telescope at SierraNevada Observatory in Spain, the Multicolor Simul-
taneous Camera for studying Atmospheres of Transiting exoplanets 3
(MuSCAT3) instrument on the 2 m Faulkes North telescope in Hawaii,
the 3.8 m UK Infrared Telescope (UKIRT) in Hawaii and the High Perfor-
mance Camera (HiPERCAM) instrument on the 10 m Gran Telescopio
Canarias (GTC) telescope at La Palma (Fig. 2).
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Fig.1|Discovery transit photometry of SPECULOOS-3 b. Transit photometry
obtained by SAINT-EX and SNO-Artemis between 2021 and 2023 (phase-folded,
detrended and binned with a2 min bin width). The light curves are shifted along the
yaxis for clarity. The SAINT-EX and SNO measurementsin thel +z,i’and z’ filters
are,onaverage, the means of 2.8,21.6, 6.0 and 2.5 photometric data points. The
error bars are the mean errors of the points within the bin divided by the square
root of the number of points. The black lines show the best-fit transit models.

New spectroscopic observations with the Kast Double Spectrograph
mounted on the 3 m Shane telescope at Lick Observatory (Fig. 3a), the
SpeX spectrographmounted onthe 3 m NASA InfraRed Telescope Facil-
ity (IRTF) telescope in Hawaii (Fig. 3b) and the Calar Alto high-Resolution
searchfor M dwarfswith Exoearthswith Near-infrared and optical Echelle
Spectrograph (CARMENES) mounted on the 3.5 m telescope at Calar
Alto Observatory, as well as high-resolution images obtained with the
‘Alopeke instrument on the Gemini North telescope in Hawaii, were
gathered. Combined with archival absolute magnitudes and the Gaia
Extended Data Release 3 (EDR3) parallax, some of the new spectra (fol-
lowing flux calibration) enabled the luminosity of the star to be measured
as0.000835+0.000019 L (where L istheluminosity of the Sun) follow-
ingthe procedure described inref. 14 and references therein.

Results

Two astrophysical cases had to be excluded to confirm the planetary
nature of the candidate. The first caseis that of abackground eclipsing
binary blended with the target’simages in the data. Owing to the high
proper motion of the target (0.46 arcsec yr™), archivalimages directly
refuted this hypothesis by confirming that no background source of
significant brightnessis located behind its current position (Extended
Data Fig.1). The second case is that of a bound eclipsing binary com-
panion. Several factors argue against this hypothesis when considered
individually, and allow us to fully discard it when considered globally:
(1) the stability of the star’s radial velocity at the 50 m s level over a
1yr period as inferred from APOGEE spectra®, and the lack of a radial
velocity slope larger than 5 m s™ d? over the two month period covered
by observations of the CARMENES high-resolution spectrograph; (2)
the non-detection of a companion object in the GEMINI North
high-resolution images (Extended Data Fig. 2); (3) the non-detection
of asecondary spectrum in the CARMENES, Kast and SpeX spectra
(Fig. 3); (4) the fact that the global spectral energy distribution of the
targetis closely fitted by the spectral model of anisolated -M6.5 dwarf
(Extended DataFig. 3); (5) the excellent agreement between the stellar
density inferred from the transits (55.13:9 P, Where p is the density

of the Sun) and that deduced from the basic parameters of the star
(55+15p,); and (6) the achromatic nature of the transit depth from
~470 nm (g’ filter) to ~2.2 um (Fig. 2).

The age of the system is constrained to 6.63‘_3 Gyr fromits kine-
matics (Methods), and the star’s luminosity, mass and radius are
0.084 +0.002%,10.1 + 0.2% and 12.3 + 0.2% of those of the Sun, respec-
tively. Just slightly larger than TRAPPIST-1, SPECULOOS-3 is the
second-smallest main sequence star found to host a transiting planet
(Fig. 4a). The small size of the host star—only slightly larger than Jupi-
ter—translates toan Earth-like radius for the transiting planet, as deduced
fromits ~0.5% transit depth. Table 1 presents the physical properties of
the system, as derived from a global Bayesian analysis of the transit
photometry (includinga priori knowledge of its stellar properties) with
anadaptive Markov chain Monte Carlo (MCMC) code (Methods).

The planetis very similar in size to the Earth: 0.977 + 0.022 R,,. Its
equilibriumtemperature is 553 + 8 K, assuming a null Bond albedo and
afull heat redistribution. Its mass, and thus its composition, remains
unconstrained by our observations thus far. Nevertheless, several fac-
torsstrongly suggestarocky composition. Fromatheoretical point of
view, the intense extreme ultraviolet (1-1,000 A) emission of low-mass
stars during their early lives'® makes it unlikely that such asmall planet
onsuchashortorbit could have maintained a substantial envelope of
hydrogen'®. From an empirical point of view, SPECULOOS-3 b falls well
within the rocky side of the radius gap—that is, the paucity of planets
with radii between 1.5 and 2 R, attributed to photo-evaporative pro-
cesses'” >, Wealso note that all of the known Earth-sized planetsin the
NASA exoplanet archive?* have masses that imply rocky compositions.

Ultimately, measuring the mass of SPECULOOS-3 b is essential to
determinewhetheritisindeed rocky, and to further constrainits compo-
sition. By our estimates, areasonable observing programme (<5 nights)
that would be able to detect the radial velocity signal of the planet’s
Doppler reflex motion could be accomplished using state-of-the-art
spectrographs (Methods). Such observations should be able to differ-
entiate between Earth-like, iron-poor and water-rich compositions®.

Discussion

TRAPPIST-1b is the closest analogue to SPECULOOS-3 b in terms of
host star size (0.123 R, versus 0.119 R,), planet size (0.98 R, versus
1.12 Re) and equilibrium temperature (553 K versus 400 K) (Fig. 4).
Nevertheless, the two systems seem to be very different: TRAPPIST-1
hosts aresonant system of seven short-orbit rocky planets, while an
intensive photometric monitoring campaign of SPECULOOS-3 with
SNO and MuSCAT3 failed to detect any outer transiting planets over
al0 day period range (Methods). Thisindicates thatboth systems had
different formation/evolution histories. As outlined by recent works,
resonant systems like TRAPPIST-1are rare because they are prone to
disruption by dynamical instabilities**. SPECULOOS-3 b could thus
be the outcome of suchadisruption. Outer planets may still exist, but
on much longer and/or mutually inclined orbits. Nevertheless, we
cannotexclude the possibility that outer well-aligned planets do exist,
but that they are just too small to be detected with current observa-
tions (Methods).

With currentirradiation16 times larger than Earth’s, which should
have been muchlarger during the ~-800 Myr pre-main sequence phase
ofthe star, the possibility of it retaining a substantial secondary atmos-
phere is slim. Nevertheless, it is possible that a volatile-rich initial
composition could have sustained a steady-state secondary atmos-
phere despite this adverse environment?**°, Compared with the more
temperate TRAPPIST-1 planets, SPECULOOS-3 b has the advantage
that transit transmission spectroscopy®' or emission or phase curve
photometry®>* are not the only methods available to assess the pres-
ence of an atmosphere. Indeed, the planet is hot enough and its host
star small and infrared-bright enough to make it possible to measure
its dayside emission spectrum with the MIRI/LRS instrument aboard
JWST. Figure 4b shows how SPECULOOS-3 b compares in terms of its
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Fig.2|Optical and infrared transit photometry of SPECULOOS-3 b. a, Phase-
folded transit photometry of SPECULOOS-3bintheg’,r’,i’,1+z,z"and K;filters
(from top to bottom). The photometry are binned with a2 min bin width and the
light curves are shifted along the y axis for clarity. Theg’, r’,i’and z’ light curves
are dominated by the extremely precise GTC/HiPERCAM light curves from

only one transit, while the K light curve is the stack of two transits observed by
UKIRT/WFCAM intheK;filter. Theg’,r’,i’,1+z,z’ and K, measurements are, on
average, themeans of 7.6, 5.3,17.4,16.2,26.9 and 17.7 photometric data points.
Theerror bars are the mean errors of the points within the bin divided by the
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square root of the number of points. The black lines show the best-fit transit
models. b, Measured transit depths in the different filters (dots with error

bars). The measurements and the errors are, respectively, the means and the
standard deviations of the posterior probability distributions derived from

the global MCMC analysis. The measurements are compared with the transit
depth measured in the global MCMC analysis assuming acommon transit depth
(dashedlines mark 1o error bars). All measurements agree at better than 1o with
the common transit depth measurement.

potential as atarget for emission spectroscopy with other known trans-
iting terrestrial planets (R, <1.6 Ry) thatare cool enough (7., < 880 K) to
have adayside made of solid rock. Planets with 7., > 880 K are expected
to have molten (lava) surfaces and no atmospheres, except perhaps
for vaporized rocks*. The potential for investigating these planets
with emission spectroscopy is quantified using the ESM*, which is
proportional to the expected signal-to-noise ratio of aJWST second-
ary eclipse detection at mid-IR wavelengths. With an ESM value of 7.8,
SPECULOOS-3bisone of the smallest planets above the recommended
threshold of ESM = 7.5 (ref. 35) that identifies the top targets for emis-
sion spectroscopy with JWST.

Such observations could not only reveal the presence of an atmos-
phere while avoiding the critical problem of stellar contamination
inherent to transit transmission spectroscopy’® (as observed for
TRAPPIST-1b (ref. 31) or GJ 1132 b (ref. 37); see details in Methods), but
also constrain the mineralogical surface of this Earth-sized exoplanet,
if airless. We explored the possibility of revealing the nature of the
planetwith theJWST in emission. We simulated emission spectroscopy
observations with theJWST MIRI/LRS mode using PandExo (Methods).
We then modelled the emission spectra of several plausible atmos-
pheric scenarios and bare rock surfaces (Methods). These models
included CO,-dominated or H,0-dominated atmospheres, as well as
surfaces resulting from various geological configurations: primary
crusts from the solidification of a magma ocean (ultramafic and feld-
spathic), secondary crusts produced by volcanic eruptions (basaltic)
or tertiary crusts produced by plate tectonics (granitoid). We found
that with only ten occultations observed with MIRI/LRS we could reach
the required precision to assess the presence of an atmosphere and
distinguish between the most plausible atmospheric scenarios, or, if
the planet is airless, distinguish between 50% of competing surface
models at 40 (Fig. 5 and Extended Data Tables 1 and 2). Finally, if the
planet is airless, emission spectroscopy can also be used to reveal
the planet’s geological history by constraining the surface emissivity
spectrum and indirectly its albedo. Indeed, old bare-rock planets are
expected to be much darker than those with fresh geologic surfaces

due to the effect of space weathering (as observed on Mercury or the
Moon*®). Space weathering timescales are short (~100 yr) for close-in
planets around active stars like SPECULOOS-3 b, such that any detec-
tion of a high-albedo dayside would require the planet’s surface to be
geologically very young and indicate the presence of active volcanism
or tectonic overturn (Extended Data Fig. 4).

These results motivate a dedicated study of SPECULOOS-3 b
through emission spectroscopy with JWST, and encourage us to pur-
sue the search for, and detailed study of, the still poorly understood
terrestrial planets in orbit around ubiquitous UDS.

Methods

Discovery SPECULOOS photometry

The first SPECULOOS observations of the target were acquired in
2019 and 2021 with the SAINT-EX 1 m telescope’ inthel + z filter. Two
of the 2021 light curves included a transit of SPECULOOS-3 b. They
were noticed, but the star was not ranked then as a high-priority
target because of the high level of correlated noise in these two light
curves due tobad weather conditions. In July 2022, the SNO-Artemis
1m telescope® observed the target for three nights, also in the [ + z
filter. One of the three resulting light curves (29 July 2022) showed
a clear transit-like signature. Intensive monitoring of the star was
then initiated from July 2023, first with SNO-Artemis. Several clear
transit-like structures showed up in subsequent light curves. They
could be related to a period of ~0.719 d, and their shape (duration,
depth) was consistent with an Earth-sized planet transiting the star
(Fig. 1). SNO-Artemis pursued its monitoring of the star up to the
end of September 2023, resulting in 37 light curves of 2 h or more
in duration. Several transit windows were also observed in August
and September 2023, with some of or all the four 1 m telescopes of
the SSO’ at ESO Cerro Paranal Observatory in Chile. Some of these
observations were takeninthel + zfilter, othersin thei’and z’ filters to
assess the chromaticity of the transit. In total, SNO-Artemis observed
18 transits of SPECULOOS-3 b, and SSO telescopes observed five of
them (Supplementary Table 1).
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Fig.3|Optical and infrared spectroscopy of SPECULOOS-3. a, Normalized
Kast red-optical spectrum of SPECULOOS-3 compared with M6, M7 and M8
spectral standards (STD) from ref. 53 with an M7 spectral type providing the
best-fit (Methods). F,, flux. Individual comparisons are offset vertically in steps
of 0.5, and the spectral flux uncertainties are indicated by the grey line along the
bottom. Prominent line and molecular features in the optical spectra of late-M
dwarfsare labelled, and the inset shows a close-up of the region encompassing
Ha 6,563 A emission (detected) and Lil 6,708 A absorption (not detected).

b, Normalized SpeX near-infrared spectrum of SPECULOOS-3 (short-wavelength
cross-dispersed datain black and prism data in magenta) compared with a
medium-resolution spectrum of the M6 dwarf Wolf 359 (blue line, offset by

0.2 flux units). Prominent spectral features of M dwarfs are noted, and regions of
high telluric absorption (®) are shaded grey. The grey line at the bottom of the
plotillustrates the uncertainties for the target spectrum. The inset box highlights
the K-band region and its metallicity-sensitive Cal, Naland CO features, which
are nearly identical between SPECULOOS-3 and Wolf 359.

Host star properties
SPECULOOS-3 (also known as 2MASS J20492745+3336512 and LSPM
J2049+3336) was identified as a high-proper-motion stellar object
in 2005*, and as a nearby late-type M dwarfin 2014*°. Spectra taken
by the SDSS-3 APOGEE survey led to the first effective temperature
estimate of 2,765-2,800 K and an upper limit of 8 km s™ for its vsini,
(ref. 41), with i, the stellar inclination angle. The three barycentric
radial velocities measured from APOGEE spectra (two in 2013, one in
2014) were stable at the 50 m s™ level, supporting the hypothesis of
anisolated star*’. On the basis of photometric data and the star’s Gaia
DR2 parallax (59.733 + 0.088 mas; ref. 43)**, aspectral type of M6.5 + 1.5
was estimated.

We observed SPECULOOS-3 twice with the SpeX near-infrared
spectrograph® on the 3.2 m NASA IRTF. On 30 August 2021 (UT),

we collected amedium-resolution spectrum (1/AA = 2,000) using the
short-wavelength cross-dispersed mode, covering 0.80-2.42 pum.On11
August 2023 (uT), we collected alow-resolution spectrum (1/AA =120)
using the prism-dispersed mode, covering 0.70-2.52 um. All data were
reduced using Spextool v4.1**. The final spectra are showninFig.3b. The
short-wavelength cross-dispersed and prism-dispersed spectra have
median signal-to-noise ratios of 55 and 250 per pixel, respectively. To
assign aninfrared spectral type, we used the SpeX Prism Library Analy-
sis Toolkit SPLAT* to compare the short-wavelength cross-dispersed
spectrumto spectral standardsinthe IRTF Spectral Library***, finding
abest match to the M6 dwarf Wolf 359 (Fig. 3b). We also compared the
prism datawith low-resolution standards defined inref. 50, and found
abestmatchinthe 0.8-1.3 umrange to the M7 standard VB 8. We there-
foreadopted aninfrared spectral type of M6.5 + 0.5 for SPECULOOS-3.
Using the relation of ref. 51 and following the approach of ref. 13, we
estimated aniron abundance of [Fe/H] =+ 0.08 + 0.11.

We obtained ared optical spectrum of SPECULOOS-3 with the Kast
Double Spectrograph®onthe 3 mShane Telescope at Lick Observatory
on 29 September 2022 (uT). We used the red channel with 600/7,500
gratingand 1.5”-wide slide to obtain 6,000-9,500 A spectra at an aver-
ageresolution of 1/A1=1,900. Datawere reduced using the kastredux
package available at https://github.com/aburgasser/kastredux. The
final spectrum (Fig. 3a) has a signal-to-noise ratio of 90 at 8,350 A. We
determined an optical classification by comparing it to late-M dwarf
spectral templates fromref. 53, and found the M7 standard provided
the best fit. Index-based classifications®**° indicated a classifica-
tion closer to M6. We therefore adopted a mean optical classifica-
tion of M6.5 + 0.5, consistent with our infrared data. We measured
the metallicity statistic {=1.026 + 0.005 (ref. 57), consistent with
[Fe/H] =+0.04 + 0.20 using the calibration of ref. 58, also consistent
with our infrared data.

We performed an analysis of the broadband spectral energy
distribution (SED) of the star together with the Gaia DR3 paral-
lax with no systematic offset applied (see, for example, ref. 59) to
determine an empirical measurement of the stellar radius, follow-
ing the procedures described in refs. 14,60,61. We pulled the JHKg
magnitudes from 2MASS, the W1-W3 magnitudes from WISE, the
Ggp and Gy magnitudes from Gaia, and the gzy magnitudes from
Pan-STARRS. Together, the available photometry spans the full
stellar SED over the wavelength range 0.4-10 um (Extended Data
Fig. 3). We also used the absolute flux-calibrated Kast and SpeX
spectrophotometry for comparison (see above). We fitted the SED
using PHOENIX stellar atmosphere models®?, with the free param-
eters being T.and metallicity ([Fe/H]), taking the V-band extinction
coefficient A, = 0 due to the proximity of the system to Earth. The
resulting fit (Extended Data Fig. 3) has a best-fit T.;=2,680 + 60 K
and [Fe/H] =-0.15 + 0.25, with a reduced x* of 2.1. Both values were
consistent with the adopted values inferred as described in the next
section. Integrating the model SED gave the bolometric flux at Earth,
Foo=9.54 £ 0.22 x 10" erg s cm™. Taking this F,,,;and the Gaia parallax
directly provided the bolometric luminosity, L, =8.35+0.19 x10™* L,
which with the Stefan-Boltzmann relation implied a stellar radius
R, =0.1342 £ 0.0062 R,. We note that this radius, together with the
spectroscopically-derived vsini upper limit from APOGEE (8 kms™)
implied a projected rotation period of P,,,/sini > 0.85 d.

We adopted the weighted average of the Kast (visible) and SpeX
(near-IR) measurements for the star’s metallicity: [Fe/H] = 0.07 £ 0.10.
Using the Gaia EDR3 parallax and the 2MASS H magnitude of the
star, we estimated the effective temperature of SPECULOOS-3 to be
T.+=2,829 + 30 K using the empirical relationship T (M,,) of ref. 63,
and accounting for its internal error of 29 K. This T value is in excel-
lentagreement with those inferred by ref. 41andref. 15, butintension
with thatinferred from our SED fitting (2,680 + 60 K). In this context,
we decided to adopt (as before in our global analysis, see below) the
weighted average of the two estimates and an error bar large enough
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Fig. 4| Comparison of SPECULOOS-3 b with other rocky exoplanets.

a, Sizes of host stars in solar radii (R,) and incident stellar fluxes of known
sub-Neptune-sized exoplanets. The sizes of the symbols scale linearly with the
radius of the planets. The background is colour-coded according to stellar size
(in solar masses), with the UCD regime shown in orange. The red, yellow, and
blue shadings show, respectively, the regimes of M-dwarfs, of G-dwarfs and
K-dwarfs, and of more massive stars. The positions of the terrestrial Solar System
planets are shown for reference. One can see that SPECULOOS-3 b extends the
unique planet sample of TRAPPIST-1to a larger stellar flux. b, SPECULOOS-3b
inthe context of other known transiting terrestrial exoplanets (with a planetary

Planetary radius (Rg)

radius R, < 1.6 Earthradii (R,)) that are cool enough (equilibrium temperature

T., < 880K;ref. 34) to have a dayside made of solid rock (in contrast to hotter
magma worlds with molten surfaces). The planets are shown as a function of their
radius and emission spectroscopy metric (ESM)*. Data points are colour-coded
according to their T,,. The shaded green area highlights planetary radii most
similar to Earth’s (0.9-1.1R,). The dashed horizontal line represents the ESM
threshold of 7.5 recommended by ref. 35 to identify the top targets for emission
spectroscopy with JWST. SPECULOOS-3 b is one of the smallest planets amenable
to emission spectroscopy with MIRI/LRS. Data from ref.116.

to encompass the value of 2,680 K from the SED fitting, resulting in
T.+=2,800 + 120 K. We then used the Stefan-Boltzmann law to com-
pute the stellar radius as R, = 0.123 + 0.011 R, from our adopted T,
and measured L,,. Finally, we estimated the mass of the star to be
M, =0.1017 £ 0.0024 M, from its 2MASS K magnitude and its Gaia
EDR3 parallax, using the relationship of ref. 64 and accounting for its
internal error of 0.0023 M,,.

Using the PyAstronomy/gal_uvw routine® based on the algorithm
of ref. 66, with the Gaia EDR3 coordinates and proper motions of the
star®” and its APOGEE radial velocity” an input, we computed the fol-
lowing galactic velocities in the local standard of rest frame for
SPECULOOS-3: U=47.16 +0.29 kms™, V=21.34 + 0.43 km s, and
W=-3.68 +0.26 kms™. These values were computed using the local
standard of rest frame correction of ref. 68, U, V, W, =[+8.50,+13.38,
+6.49]. These velocities would place the star, statistically speaking, in
the thindisk of our Galaxy, suggesting an age of less than -8 Gyr (ref. 69).
A more careful analysis comparing the kinematics of SPECULOOS-3 to
nearby co-moving stars (within 5 km s™ in UVW) with a similar metal-
licity (within 0.2 dex) using data from GALAH DR37° yielded an
uncertainty-weighted average age of 6.615% Gyr.

We also ran stellar evolution modelling using structure
models presented in ref. 71. We used the luminosity and metal-
licity as derived above as constraints. We obtained a stellar mass
(M, =0.1001+0.0015M,), radius (R, = 0.125+ 0.002 R,)) and effec-
tive temperature (7= 2,780 + 30 K) in excellent agreement with
the estimates obtained above. Finally, the pre-main sequence phase
for a 0.10 M star lasts about 800 Myr, suggesting a greater age for
SPECULOOS-3.

TESS photometry

We downloaded the TESS 2-min-cadence PDCSAP Sector 41 and 55
light curve using lightkurve’. Analysis of the TESS photometry of
SPECULOOS-3 revealed its flaring nature, led to a marginal detection
ofthe transit of SPECULOOS-3 b and did not resultin an unambiguous
determination of its rotation period (Supplementary Fig. 1).

MuSCAT2 photometry

Atransit of SPECULOOS-3 b was observed on 12 August 2023 with the
MuSCAT2 multi-imager instrument” at the Telescopio Carlos Sanchez
located at the Teide Observatory (Spain). Unfortunately, the night
was cloudy and the resulting photometry was too noisy to be of any
scientific use.

MuSCAT3 photometry

We used the 2.0 m Faulkes Telescope North at Haleakala Observatory
located in Hawaii to observe SPECULOOS-3. The telescopeis equipped
with the MuSCAT3 multi-band imager’. The campaign was started on
the single night of 3 September 2023, and then from 15 September 2023
to26 September 2023. The main goal of this campaign was to search for
additional transiting planets in the system. During this campaign, we
observed two full transits of SPECULOOS-3bon uT 17 and 19 September
2023intheSloang’,r’,i’and zfilters. All datasets were calibrated using
the standard LCOGT BANZAI pipeline”, and photometric measure-
ments were extracted in an uncontaminated target aperture using
the PROSE pipeline”.

TRAPPIST-North photometry

TRAPPIST-North is a 60 cm robotic telescope located at Oukaime-
den Observatory in Morocco”” . It observed a total of six transits of
SPECULOOS-3bon2,4,5,17,28 and 30 August 2023 in the I + zand
Sloan-z’ filters. When combined, the resulting light curves confirmed
the transit, but we did not include them in our global analysis as their
precision was substantially lower than the precision obtained with the
other telescopes.

T150 photometry

We conducted a full-transit observation of SPECULOOS-3 b on 20 Sep-
tember2023 using the T150 at the SierraNevada Observatoryin Granada
(Spain). The T150is a150 cm Ritchey-Chrétien telescope equipped with
athermoelectrically cooled 2 K x 2 K Andor iKon-L BEX2DD CCD camera
with a field of view of 7.9’ x 7.9” and pixel scale of 0.232”. We used the
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Table 1| Parameters of the SPECULOOS-3 system

Parameter Valuez+1o error
Stellar parameters

Spectral type M6.5+0.5

Parallax 59.701+0.043mas
Distance 16.750+0.012 parsec

Right ascension (RA) (J2000)

20h 49min 27.440s

Declination (dec) (J2000)

+33°36'50.96"

Proper motion (RA) -207.809+0.038 masyr™'
Proper motion (dec) -412.815+0.037masyr"
Radial velocity 17.816£0.019kms™

U galactic velocity 4716+0.29kms™

V galactic velocity 21.34+0.43kms™

W galactic velocity -3.68+0.26kms™

G magnitude 15.380+0.003mag

K magnitude 10.541+£0.016 mag

Mass 0.1009+0.0024M,,
[Fe/H] +0.07+0.10dex
Luminosity 0.000835+0.000019L,
Effective temperature (T ¢) 2800+29K

Radius 0.1230+0.0022R,,
Density 54.7+2.5p,
log,o[surface gravity (cgs)] 5.265+0.014dex
Projected rotational velocity vsini 4.2+0.4kms™

Age 6.6755 Gyr

Planetary parameters

Orbital period 0.71912603+0.00000057d

Mid-transit time

BJDypg 2459790.58344+0.00032

Transit depth (R,/R,)?

5,291+116 ppm

Transit impact parameter

0.124+0.085R,

Transit duration

27.36+0.23min

Orbital inclination 89.44+0.39deg

Orbital semi-major axis 0.007330+0.000055AU
12.81x0.20R,

T 553+8K

(assuming Az=0 and full heat

redistribution.)

Irradiation 16.54+0.42S,,

Radius 0.977+£0.022R,
0.07273+0.00080R,

The properties of the SPECULOOS-3 system were gathered from different sources or derived
through a global Bayesian analysis of the transit photometry (Methods). BJD;ps, barycentric
Julian date expressed in barycentric dynamical time; R,, stellar radius; v, rotational velocity;

i, stellar inclination; A, Bond albedo.

Johnson-Cousinlfilter with an exposure time of 60 s. The photometric

datawere extracted using the Astrolmage) package®.

GTC/HiPERCAM photometry

A full transit of SPECULOOS-3 b was observed simultaneously (DDT
programme GTC2023-216) in five ‘Super’-SDSS filters u,gr.i.z, on
17 September 2023 with the HIPERCAM® instrument mounted on the
10.4 m GTC located in the Roque de los Muchachos Observatory in
theisland of LaPalma. The observations covered about1.94 h centred

around a predicted transit. We reduced the data using the HIPERCAM
pipeline, which allowed us to perform aperture photometry with fixed
apertures or scaled to the full-width at half-maximum (FWHM) of the
individual frames. The set-up that provided the most precise photom-
etry consisted of fixed aperture sizes for the u;and z,bands, and scaled
apertures for the rest. A reference star was constructed by summing
the fluxes from four nearby stars in the u,, g, and r, bands, and from
one nearby star in the i; and z, bands. The final light curves showed a
clear detection of the transit in all but the u,band, in which the target
was estimated to have amagnitude of -22.7, and thus the photon noise
dominated over the expected transit depth. Additionally, around 6 min
after the egress of the transit, a flare was detected in the three bluest
bands, with a duration of about 5 min and peak amplitudes of 3%,
9% and140%in ther,, g;and u,bands, respectively.

UKIRT photometry

On 27 and 30 August 2023, two transits of SPECULOOS-3 b were
observedintheK,filter (meanwavelength = 2.2 um, width = 0.34 um)
with the WFCAM camera on the UKIRT 4 m telescope on Maunakea,
Hawaii. Our dataanalysis started from the calibrated images obtained
with the WFCAM detector number 3, which included SPECULOOS-3 and
dozens of stars of similar magnitude in its 13.65’ x 13.65’ field of view.
Forthefirstrun, the FWHM of the target’s point-spread function (PSF)
ranged fromabout1.5t02.75 pixels (WFCAM pixel scale = 0.4”), witha
medianvalue of1.92 + 0.25 pixels. The PSF was thus poorly sampledin
animportant part of the images. Despite the active guiding, the xand
y positions of the star drifted -1 pixel over the run. The fluxes of the
target and comparison stars were measured in the images with IRAF/
DAOPHOT®. The resulting differential light curves showed substantial
correlated noise that we attributed to the FWHM variations, the drift
of the stars on the detector and the poor sampling of the PSF. For the
second run, the FWHM of the target’s PSF ranged from roughly 2.5t0 4.5
pixels, withamedian value 0f2.69 + 0.53 pixels. The PSF was thus better
sampled than in the first run, resulting in more precise photometry.
Heretoo, thexandy positions of the target drifted -1 pixel along the run.

CARMENES high-resolution spectroscopy

We observed SPECULOOS-3 with the CARMENES instrument® installed
at the 3.5 m telescope of Calar Alto Observatory in Almeria, Spain.
CARMENES has two channels, one in the visible (VIS, 520-960 nm,
R=94,600) and one in the near-infrared (NIR, 960-1,710 nm,
R=380,400). We collected two 1,800 s observations per night (sepa-
rated by around 3 h) on the four nights between 28 September 2023 and
10ctober 2023 and four more observations on 18 and 22 October, 24
November and 8 December 2023. Two of the observations with the NIR
channelwere not usable dueto a probleminone ofthe NIR detectors on
the night of 28 September. The VIS and NIR spectra taken on the night of
22 October were observed during astronomical twilight, meaning that
both were contaminated by the solar spectrum. The raw images were
reduced using the caracal pipeline®. The signal-to-noise ratios ranged
around 9 and 30 for the VIS and NIR, respectively. We used Serval® to
simultaneously determine the vsini, (using parameter -vsinauto in
Serval) and the radial velocities from the VIS spectra. To determine
vsini, we compared the spectrum of our target with template spectra of
starswithvarious spectral types. Usingan M4V template (J11477+008/
Ross 128) the single-measurement uncertainties and the radial veloci-
ties scatter around the mean were minimized, as compared to using
the other templates (M5.5:J00067-075/G) 1002; M6.0:J07403-174/G)
283 B; M7.0:)02530+168/Teegarden’s star). The vsini, estimated with
that template was 4.2 + 0.4 km s, Assuming that the stellar spin axis
aligned tothe orbit of planetb, this would resultinarotation period of
1.48 + 0.14 d. Theradial velocities measured from the VIS and NIR spec-
tra have mean uncertainties of 69.0 ms™and 21.9 ms™, respectively.
Theiranalysis discards aslope withanamplitude larger than5ms™d™
over the two months covered by the CARMENES observations.
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Fig. 5|Simulated JWST MIRI/LRS emission spectra of SPECULOOS-3 b.

a, Model emission spectra of SPECULOOS-3 b for two plausible atmospheres and
two bare-surface scenarios for comparison. Simulated MIRI/LRS data are shown
for the10 bar CO,atmosphere model. b, Model emission spectra for a range of
surface compositions. Simulated MIRI/LRS data are shown for the ultramafic
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surface model as an example. The simulated data were obtained with PandExo'?

assuming ten occultation observations with MIRI/LRS. These data are binned
witha constant bin width of 1 pm (average number of points per bin foraand
b =35) and without any Gaussian scatter around the model, for visual clarity.

The error bars are the lo errors computed by PandExo.

High-angular-resolutionimaging

SPECULOOS-3 was observed on 4 October 2023 uT using the ‘Alopeke
speckle instrument mounted on the Gemini North 8 m telescope®®®.
‘Alopeke provides simultaneous speckle imaging in two bands (562 nm
and 832 nm) with output data products including a reconstructed
image with robust contrast limits on companion detections®®, Twelve
sets of 1,000 x 0.06 s images were obtained and processed in our
standard reduction pipeline®’. Extended Data Fig. 2 shows our final
contrast curves and the 832 nm reconstructed speckle image. We
found that SPECULOOS-3 is a single star to within the angular and
contrastlevels achieved with no close companions detected brighter
than 5-6 magnitudes below that of the target star from 0.1”out to 1.2”.
At the distance of SPECULOOS-3 (d =16.75 pc), these angular limits
correspond to spatial limits of 1.7 to 20 Au. It is possible to detect
companions down to the diffraction limit of Gemini’s 8 m mirror, but
with poorer contrast. Equal-brightness companions were excluded
at 20 mas (0.34 Av).

Using the Baraffe models’®, Amag = 5 at 832 nm, the reddest of
bothbands correspondedtoa 0.071 M, (74 Jupiter masses M;,,) object,
atthe maximumageinferred for SPECULOOS-3A (8 Gyr). Thismass only
left sub-stellar objects as plausible companions, unless exactly aligned
with the line of sight. If acompanion was exactly on the line of sight at
the time of observation, it would produce amaximum change in radial
velocity. Atadistance of 3.4 AU, a 74 M,,, object would produce aradial
velocity displacement on SPECULOOS-3A with astellar semi-amplitude
K, =2.8kms™over an orbital period P=15 yr. This radial velocity dis-
placement was already refuted by the APOGEE observations.

Lower limit on the magnitude of abackground star

Thanks to the relatively high proper motion of SPECULOOS-3
(-0.5”yr™), we were able to assess presence of abackground star at its
current position (RA =20 h 49 min 27 s, dec =+33° 02’ 35”). We used
a2MASS image” obtained in 1998 in the ] band. We detected no pos-
sible additional source at the current position of SPECULOOS-3. The
faintest star in the 2MASS image has a) magnitude of 16.7. We adopted
this value as an absolute lower threshold for the J-band magnitude
of a background source blended with SPECULOOS-3 in our images
obtained with SNO-Artemis telescope. We also compared our current
images with Digitized Sky Survey archival images taken more than six
decades ago. This comparison (Extended Data Fig.1) did not reveal any
background object at the position of the target.

Global analysis of the transit photometry

We performed several global analyses of the transit light curves gath-
ered by SPECULOOS, UKIRT/WFCAM, GTC/HiPERCAM and MuSCAT3.
These analyses were all done with Trafit, arevised version of the adaptive
Markov chain Monte Carlo code presented in refs. 92-94. The model
assumed for each light curve was composed of the eclipse model of
ref. 95, multiplied by a baseline model aiming to represent the other
astrophysical and instrumental mechanisms able to produce photo-
metric variations. For eachlight curve, the baseline model consisted of
a polynomial function of external parameters (for example, time, air-
mass, x and y positions and so on) selected by minimization of the
Bayesian information criterion’. In our nominal analysis, the stellar
massM,, radiusR,, metallicity [Fe/H], parallax m,, effective temperature
T.and luminosity L, were kept under the control of the following prior
normal probability distribution functions (PDFs): N(0.1017,0.0024*) M.,
N(0.123, 0.011%) R,, N(0.16, 0.07%) dex, N(57.701, 0.043%) mas,
N(2800,120% K and N(0.000835, 0.000019?) L, respectively. These
prior PDFsreflected our a priori knowledge of the stellar properties (see
‘Host star properties’ above). Given its extremely short orbital period,
acircular orbit was assumed for the planet under tidal circularization
arguments”. Aquadratic limb-darkening law” was assumed for the star.
Forthebandpassesg’,r’,i’,z’and K,, values and errors for thelinear and
quadratic coefficients u; and u, were derived from the tables of ref. 98,
and the corresponding normal distributions were used as prior PDFsin
the MCMC (Supplementary Table 2). For the non-standard filter 1 + z,
we adopted the mean value of the i’ and Z’ filters for both coefficients.
Forourthree analyses, a preliminary MCMC chain of 50,000 steps was
first performed to estimate the need to rescale the photometric errors”.
Alonger MCMC analysis was then performed, composed of two chains
0f100,000 steps, whose convergence was checked using the statistical
test of ref. 99. In our nominal analysis, we assumed a common transit
depthforallbandpasses. The parameters derived from this analysis for
thestarandits planet are shownin Table 1. Our second analysis assumed
different transit depths in each bandpass to check the chromaticity of
the transit. The resulting transit depths are showninFig.2. They areall
consistent with each other at less than 1o, a decisive element in the
confirmation of the planetary nature of SPECULOOS-3 b. Finally, we
performed a third analysis assuming a non-informative uniform prior
onthestellar radius and luminosity to obtainan unbiased measurement
of the stellar density from the transit photometry alone. It resulted ina
stellar density of 55.1*29 p,, in excellent agreement with the density of
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55+15 p, derived fromthe a priori knowledge of the star, thus providing
further validation of the planetary origin of the transit signals. We also
performed individual analyses of the transit light curves to measure the
mid-transit timing for each of them (Supplementary Table 3). A linear
regression analysis of these timings/epochs did not reveal any signifi-
cantdeviation from astrictly periodic orbit.

Search for asecond planet

Under the arguments presented by ref. 100, we intensively monitored
SPECULOOS-3 with SNO-Artemis and MuSCAT3 (datadescribed above)
inthe hopes of detecting additional transiting planets on longer orbital
periods. Our visual inspection of all the gathered light curves did not
reveal any convincing additional transit-like structure. After detrend-
ing, removal of flares and of transits of SPECULOOS-3 b, we performed
a global analysis of all our ground-based light curves with the TLS
algorithm'® that failed to detect any significant power excess indica-
tive of asecond transiting planet. We also analysed the flattened TESS
light curve with the SHERLOCK package'*>. We found, at first, astrong
signal corresponding to the 0.72 d candidate, which allowed us to
confirm the detectability of this planetin TESS data (Supplementary
Fig.1). Aside from this signal, we found a few other weaker signals that
were all refuted by our ground-based observations. We then performed
injection and retrieval experiments on this dataset, which allowed us
to establish detection limits. To this end, we used our MATRIX pack-
age'%', which generated a sample of synthetic planets by combining
arange of orbital periods, planetary radii and orbital phases that were
injected in the TESS flattened light curve. In particular, we generated
2,700 scenarios processed in the search for transits using a process
that mimicked the SHERLOCK procedure. From the results displayed
inSupplementary Fig.2, we conclude that TESS data allow us to detect
Earth-size planets with orbital periods shorter than1d. However, the
detectability of such small planets rapidly decreases for longer orbital
periods, and if they exist and transit, their detection would be very
challenging. On the other hand, transiting super-Earth planets with
sizes larger than 1.5 Ry would be easily detectable with recovery rates
ranging from 60-100% for any orbital period up to 10 d, which allowed
us to conclude that planets like this do not exist in the system.

Prospect for mass measurements

Assuming a rocky composition (5.5+ 0.3 g cm™) for SPECULOOS-3 b,
the expected mass would be 0.93*02 M. Its short orbital period (0.72d)
means that SPECULOOS-3 b is expected to produce a radial velocity
signal with a semi-amplitude K = 3.1+ 0.4 m s™ that should be within
reach of state-of-the-art high-resolution high-stability spectrographs
mounted on 10-m-class telescopes. To test this hypothesis, we used
(1) the empirical relation or late, slowly rotating M dwarfs, obtained as
part of the instrumental commissioning of the MAROON-X instru-
ment'®* at the 8.1 m Gemini North telescope (published online at https://
www.gemini.edu), and (2) the empirical linear dependence of the
precision on vsini, (ref. 105) with the CARMENES measurement to
estimate that a monitoring campaign of 30-45 MAROON-X spectra
should result in a 3-40 detection of the radial velocity signal of
SPECULOOS-3 b and, hence, to a first measurement of its mass.

TheJWST emission opportunity

Measuring the emission spectrum of an exoplanet is typically harder
than measuringits transmission spectrum. However, emission comes
with advantages that overall make it arobust method to study an exo-
planet.In particular, emission spectra are not affected by stellar photo-
spheric heterogeneity. Indeed, in transit, the average stellar spectrum
over the transit chord can differ from the rest of the photosphere
because of heterogeneities leading to spurious spectral featuresin the
transmission spectrum®*'°%'7, As expected, this effect is observedin the
case of TRAPPIST-1b (part of GO 1281 (ref. 31)), which makes inferring an
atmosphere for the TRAPPIST-1 planets a challenging task. UDS are also

known to be magnetically active with frequent flaring (confirmed from
the TESS light curves and ground-based photometric observations).
Unfortunately, this can be damaging for transmission spectroscopy
asfrequent flares visiblein the NIR can affect the shape of the eclipses
and theretrieval of the planet’s parameters (see recommendationsin
ref. 31about the TRAPPIST-1b transit spectrum). Luckily, the contrast
of flares drops with longer wavelengths and their mid-IR counterpart
should impact the light curves much less. Emission spectroscopy has
otheradvantages over transmission spectroscopy. First, the interpre-
tation of emission spectrais not dependent on the mass of the planet.
Second, emission spectra provide the energy budget of the planet,
whichis essential to understanding its atmosphere’s chemistry and its
dynamics, and can be used to constrain the planet’s albedo. Finally, in
the absence of an atmosphere, emission spectroscopy instead directly
accesses the planetary surface where its mineralogy can be studied,
something that is impossible to achieve with transmission spectros-
copy. For all these reasons, emission spectroscopy is a more reliable
methodtoassessthe presence of anatmosphere and study the nature of
terrestrial planetsaround UDS. And, as shown on Fig. 4b, SPECULOOS-3
bisoneofthe smallest terrestrial planets thatis withinreach of JWST in
emission spectroscopy with MIRI/LRS. We therefore modelled plausible
atmospheric and surface scenarios and compared them to realistic
simulations of MIRI/LRS observations of SPECULOOS-3 b in emission.

Model emission spectra

We first modelled the emission spectra of SPECULOOS-3 b assuming
CO,-dominated and H,0-dominated atmospheres, which are among
the most plausible atmospheric composition families for hot, rocky
planets®. To do this, we performed 3D global climate model calcula-
tions using the state-of-the-art Generic Planetary Climate Model'**'%’,
The modelincludes self-consistent treatment of radiation, convection
and clouds. Parameterizations of these processes are detailed in
ref. 109.Inshort, radiation is computed by the correlated-kapproach,
using opacity tables based on the Hlgh-resolution TRANsmission
molecular absorption and High-TEMPerature molecular spectroscopic
databases; convection is represented through dry and moist adjust-
ment schemes; H,0 and CO, cloud formation is treated using a prog-
nostic scheme, and assumes a fixed amount of cloud condensation
nuclei. Simulations showed a strong temperature inversion in the
stratosphere, as well as a strong day-night temperature contrast,
affecting the emission spectra (Fig. 5a). Although the global climate
modelincluded cloud formation, no H,0 or CO, clouds formed inthese
simulations due to the high irradiation the planet receives, which
reduces the planet’s albedo and thus increases its thermal emission.
We then modelled the theoretical emission spectrum of an airless
planet with a null albedo and the absence of heat redistribution by
considering the planetary flux to be a sum of black bodies calculated
for a grid of Ty, where 6 and ¢ are the longitude and the latitude,
respectively. The temperature of the sub-stellar point (at zenith)
was chosen to be the maximal dayside temperature defined as

14 ) ) o )
Taaymax = Tu X1/ 2 % (g) ,where ais the planet’s semi-major axis. The
’ a

temperature then decreased with increasing latitude and longitude.
In addition to this simple blackbody model, we modelled emission
spectra for several geologically plausible planetary surface types,
including ultramafic crust formed from the solidification of amagma
oceanor high-temperature lava flows, basaltic crust that formed from
volcaniceruptions like those on present-day Earth and granitoid crust
formed from crustal reprocessing. The data for different surfaces were
based on single scattering albedos derived in ref. 110. An ultramafic
crustand agranitoid crust would be mainly composed of silicates that
haveintense spectral features between 8 and 12 pm due to Si-O stretch-
ing"?, and these features are detectable with MIRI/LRS observations
(see PandExo simulations below and Fig. 5b). In addition to searching
for spectral features, emission spectroscopy can also constrain the
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planet’s dayside albedo and thus its geological history. In the Solar
System, airless bare rocks like the Moon and Mercury are much darker
thanfresh geologic surfaces due to the effect of space weathering’®. If
SPECULOOS-3 b is an airless rocky planet, then we would similarly
expect its surface to become progressively darker. We performed
simulations of this effect by considering the albedo effect of graphite
particles on a fresh ultramafic surface, using the same approach fol-
lowed inref. 111. We found that even moderate space weathering would
substantially lower the dayside albedo, thereby increasing the planet’s
brightness temperature (and thus eclipse depth) at MIRI/LRS wave-
lengths (Extended Data Fig. 4). For reference, the space weathering
timescale on TRAPPIST-1cwas estimated to be 10?-10° yr (ref. 33); given
their similar planetary and stellar parameters, the space weathering
timescale for SPECULOOS-3 b should be of asimilar order of magnitude.
Any detection of a high-albedo dayside would thus require that the
planet’s surface is geologically very young, indicating that the planet
has avery active volcanism or tectonic overturn.

PandExo simulations

We used the PandExo™ simulation tool to estimate the noise of a sin-
gle secondary eclipse observation of SPECULOOS-3 b with MIRI/LRS
in slitless spectroscopy mode. For the stellar spectrum, we used the
best-fit PHOENIX model from our SED fitting (see above), normalized
toa/mag=11.501. We assumed 180 groups per integration to optimize
the observing efficiency (-99%), while keeping the counts level below
90% saturation according to JWST Exposure Time Calculator. This
yielded a total time per integration (including readout and reset) of
28.63 s. We set the total observing time to 2.9 h. This duration took
intoaccountamarginof1hforthe start of the observations, 30 min for
the stabilization of the detector, 28 min of baseline before the start of
the eclipse, 28 min during the eclipse and 28 min of baseline after the
eclipse.Finally, we assumed asystematic noise floor of 30 ppmbased on
the performancesreported from previous observations (for example,
ref. 113). We then tested how many secondary eclipse observations
would be necessary to distinguish different models from one another,
following anapproach similar to that of ref. 114. For each pair of models,
we conducted a chi-square test and obtained a Pvalue representing the
probability that the simulated data from the model to be tested were
consistent with the second model. For each simulated dataset, we used
the PandExo output thatincluded arandom Gaussian noise component
(‘spectrum_w_rand’key inthe output file). We started with one eclipse
and increased the number of eclipses until the two models were dis-
tinguishable by 40, corresponding to a Pvalue of less than 0.000063.
We conducted these tests using a variety of wavelength bins, either of
constantresolution R (1/A2) or constant width (A1). We found that the
models were maximally distinguishable for aresolution R =3 inthefirst
case, or a bin width =2 pm in the second case. Extended Data Table 1
shows the number of secondary eclipse observations needed to distin-
guishthe CO,and H,0 atmospheric models from two common airless
planet models (blackbody and basaltic) at 40. At most, seven eclipses
were needed to assess the presence of the most plausible atmosphere
for SPECULOOS-3 b with 40 confidence. Extended Data Table 2 also
shows that observing two additional occultations, thatis, nine occulta-
tionsintotal, should allow one to distinguisha CO,-dominated atmos-
phere from an H,0-dominated one. Should there be no evidence for
an atmosphere, the MIRI/LRS emission spectrum could be used to
assess different surface compositions. Extended Data Table 2 reports
the number of secondary eclipse observations needed to distinguish
different surface models at 40. About 50% of the considered surface
pairs should be distinguishable at >4o with ten eclipse observations.

Data availability

All the data (Kast, SpeX and CARMENES spectra; SPECULOOS,
Saint-EX, T150, MuSCAT3, GTC/HiPERCAM, UKIRT/WFCAM and TESS
light curves) used in this work are publicly available via Zenodo at

https://doi.org/10.5281/zenod0.10821723 (ref. 115). Source data are
provided with this paper.

Code availability

The PROSE code used toreduce the SPECULOOS, TRAPPIST, and MuS-
CAT3 dataisavailable at https://github.com/Igrcia/prose. The TRAFIT
codeusedtoanalyse thelight curvesisaFortran2003 code that canbe
obtained fromthe first author onreasonable request. The HIPERCAM
pipeline is available at https://cygnus.astro.warwick.ac.uk/phsaap/
hipercam/docs/html/. The SHERLOCK package used to search for
planets in the TESS data is publicly available at https://github.com/
franpoz/SHERLOCK. The detection limits in the TESS data were
computed using the MATRIX package, which is publicly available at
https://github.com/PlanetHunters/tkmatrix. The code used to cre-
ate Extended Data Fig. 1is available at https://github.com/jpdeleon/
epoch. The Generic Planetary Climate Model code (and documenta-
tion on how to use the model) used in this work can be downloaded
fromthe SVNrepository at https://svn.Imd.jussieu.fr/Planeto/trunk/
LMDZ.GENERIC/. The Donuts codeis available at https://github.com/
jmccormac01/Donuts. More information and documentation are
available at http://www-planets.Imd.jussieu.fr. The kastredux code
used toreduce the Kast optical spectrumis available at https://github.
com/aburgasser/kastredux.
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Extended DataFig. 1| Evolution of the position of SPECULOOS-3. Left:
Archivalimage of the target taken in 1951 using a photographic plate on the
Palomar Schmidt Telescope as part of the National Geographic Society - Palomar
Observatory Sky Atlas (POSS-I) survey. Right: MuSCAT3 z,band image taken in
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Extended Data Fig. 2| Speckle imaging of SPECULOOS-3. Result from speckle main figure. These curves show the sensitivity in two bands (blue =562 nmand
imaging with the ‘Alopeke instrument mounted on the 8-m Gemini-North red =832 nm). The observations reveal there are no companions with a brightness
telescope, on Maunea Kea, Hawai'i. The inset on the top right shows the final greater than 5 to 6 magnitudes at distances above 0.1” from SPECULOOS-3A,
image produced by our analysis, which is summarized by the two curves of the which corresponds to a physical distance of approximately 1.7 AU.
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Extended DataFig. 3 | Spectral energy distribution of SPECULOOS-3. Red fluxes from the best-fit PHOENIX atmosphere model (black). Overlaid on the
symbols represent the observed photometric measurements, where the model are the absolute flux-calibrated spectrophotometric observations from
horizontal bars represent the effective width of the bandpass, and the vertical SpeX (gray swathe) and Kast (yellow).
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Extended Data Fig. 4 | Effect of space weathering on the emission spectrum of an airless SPECULOOS-3b. Mid-infrared eclipse depths increase with stronger
weathering of an ultramafic surface (see Methods for details).
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Extended Data Table 1| Detectability of atmospheres with MIRI/LRS

10 bar COo 10 bar HoO
Blackbody 4 4
Basaltic 7 6
10 bar CO9 - 9
10 bar HoO 9 —

Number of occultation observations with MIRI/LRS needed to distinguish the CO, and H,0 atmospheric models from two common airless planet models These numbers were obtained using

wavelength bins of constant resolution R=3.
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Extended Data Table 2 | Detectability of surface mineralogy with MIRI/LRS

Blackbody  Metal-rich  Ultramafic  Feldspathic  Basaltic = Granitoid  Fe-oxidized
Blackbody — >30 6 3 17 3 21
Metal-rich >30 - 9 4 >30 3 >30
Ultramafic 10 15 — 10 20 7 18
Feldspathic 4 5 14 - 6 >30 5
Basaltic >30 >30 16 5 - 4 >30
Granitoid 3 5 9 >30 5 - 4
Fe-oxidized >30 >30 12 5 >30 4 -

Number of secondary eclipse observations needed with MIRI/LRS to characterize the surface of SPECULOOS-3 b. The distinguishability of models was not analysed beyond 30 eclipses. Ten

eclipse observations should allow to distinguish 50% of competing surface models with 4 ¢ confidence (and 70% at 2 ).
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