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Abstract

The detection of planetary transits in the light curves of active stars, featuring correlated noise in the form of stellar
variability, remains a challenge. Depending on the noise characteristics, we show that the traditional technique that
consists of detrending a light curve before searching for transits alters their signal-to-noise ratio and hinders our capability
to discover exoplanets transiting rapidly rotating active stars. We present nuance, an algorithm to search for transits in
light curves while simultaneously accounting for the presence of correlated noise, such as stellar variability and
instrumental signals. We assess the performance of nuance on simulated light curves as well as on the Transiting
Exoplanet Survey Satellite light curves of 438 rapidly rotating M dwarfs. For each data set, we compare our method to
five commonly used detrending techniques followed by a search with the Box-Least-Squares algorithm. Overall, we
demonstrate that nuance is the most performant method in 93% of cases, leading to both the highest number of true
positives and the lowest number of false-positive detections. Although simultaneously searching for transits while
modeling correlated noise is expected to be computationally expensive, we make our algorithm tractable and available as
the JAX-powered Python package nuance, allowing its use on distributed environments and GPU devices. Finally, we
explore the prospects offered by the nuance formalism and its use to advance our knowledge of planetary systems around
active stars, both using space-based surveys and sparse ground-based observations.

Unified Astronomy Thesaurus concepts: Exoplanet detection methods (489); Stellar activity (1580); Time series
analysis (1916); Gaussian Processes regression (1930); Computational methods (1965); GPU computing (1969)
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1. Introduction

Transiting exoplanets are keystone objects for the field of
exoplanetary science, but detecting transits in light curves featuring
stellar variability and instrumental signals remains a challenge
(e.g., Pont et al. 2006; Howell et al. 2016 or Clarice Yaptangco
et al. 2024). For this reason, known transiting exoplanets tend to be
found around quieter stars, or belong to the population of close-in
giants whose transit signals dominate over stellar rotational
variability (Simpson et al. 2023). However, transiting exoplanets
around active stars are discoveries with significant scientific value.
First, as younger stars are more active (Skumanich 1972), being
able to detect planets transiting active stars will favor the discovery
of young planetary systems (e.g., Newton et al. 2022). Second, as
stellar variability may originate from surface active regions (such
as starspots), transiting exoplanets can be used to map the
photosphere of active stars (e.g., Morris et al. 2017), benefiting
both the study of stellar atmospheres and the concerning impact of
their nonuniformity on planetary atmosphere retrievals (Rackham
et al. 2018). Overall, enabling the detection of transits in light
curves with high levels of correlated noises will greatly benefit the
study of terrestrial exoplanets around late M dwarfs, usually
observed at lower signal-to-noise-ratio (S/N) and more likely to
display photometric variability (e.g., Murray et al. 2020 or Petrucci
et al. 2024).

Original content from this work may be used under the terms

BY of the Creative Commons Attribution 4.0 licence. Any further
distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

Commonly used transit-search algorithms, such as the Box-
Least-Squares (BLS) algorithm (Kovéacs et al. 2002), are
capable of detecting transits in light curves containing only
transit signals and white noise. Using this method, the simplest
way to detect transits in a light curve featuring correlated noise
(either astrophysical or instrumental) is to first clean it from
nuisance signals before performing the search. This strategy is
widely adopted by the community, both using physically
motivated systematic models like Luger et al. (2016, 2018) or
filtering techniques (Jenkins et al. 2010; Hippke et al. 2019).
However, when correlated noise starts resembling transits, this
cleaning step, often called detrending, is believed to degrade
their detectability (see Section 4.3 of Hippke et al. 2019). In
this case, the only alternative to search for transits is to perform
full-fledged modeling of the light curve, including both transits
and correlated noise, and to compute the likelihood of the data
to the transit model on a wide parameter space, an approach
largely avoided due to its intractable nature. Nonetheless,
Kovécs et al. (2016) ask: Periodic transit and variability
search with simultaneous systematics filtering: Is it worth it?
The latter study explores a handful of cases and generally
discards the benefit of using a full-fledged approach.

In this paper, we identify regions of light curves morpho-
logical parameter space for which a full-fledged transit search is
necessary, and we present nuance,” a method to search for
transit signals while simultaneously modeling correlated noises

7 Throughout the paper, nuance written in italics refers to the algorithm, while

nuance in sans-serif refers to its implementation published as a Python
package in its version 0.5.2 (see Section 3.5).
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in a tractable way. In Section 2, we describe the effect of
correlated noise on transit light curves and the effect of its
detrending on transit signal detectability. In Section 3, we
present nuance, and the two main steps on which this method is
based: the linear search and the periodic search. In Section 4,
we test the performance of nuance on a wide variety of cases
and compare our method to commonly used transit-search
algorithms. This includes transits injected in synthetic data sets,
but also in the Transiting Exoplanet Survey Satellite (TESS)
light curves of 438 rapidly rotating M dwarfs. Finally, in
Section 5, we discuss the results and the limitations of nuance,
before concluding in Section 6.

2. Motivation

A strong assumption when using the BLS algorithm to
search for transits is that the searched data set only contains
transit signals and white noise, justifying the need for
detrending. In this section, we explore this effect by simulating
light curves containing a transit signal and correlated noise in
the form of stellar variability and study how detrending the
latter affects the transit signal detectability depending on the
light-curve morphological characteristics. Hence, we first
present how transit light curves are simulated, using a
stochastic model of stellar variability, and describe the
detection metric we employ to quantify transit detectability in
the presence of correlated noise.

2.1. Light-curve Simulations

To perform this study, we want to simulate realistic light
curves that contain instrumental signals, transit signals, and
correlated noise with characteristics that can be controlled
using a set of interpretable parameters. To this end, we
model light curves as realizations of a Gaussian process (GP;
Rasmussen & Williams 2005; Aigrain & Foreman-Mackey
2023) with a mean containing the instrumental and transit
signals, and a kernel allowing us to model different forms of
correlated noise controlled by its hyperparameters.

Letf be the simulated differential flux of a star sampled and
arranged in the vector f associated with the vector of times ¢,
such that

fN N(”" E)»

i.e., thatf'is drawn from a GP of mean g and covariance matrix
3. For practical reasons, we model g as a linear combination
of M explanatory variables, such that

= Xw, ey

where the first M —1 columns of X are contemporaneous
instrumental time series measurements, such as the position of
the star on the detector, the sky background, co-trending basis
vectors, or any other explanatory variables. The last column of
X is a box-shaped transit signal with a fixed epoch, duration,
and period. This way, the transit signal is part of the mean
linear model, meaning that once the design matrix X is
constructed the transit is only parametrized by its depth A.
As we are interested in active stars whose fluxes feature
correlated noise in the form of stellar variability, we choose a
physically motivated GP kernel to model the covariance matrix
3., describing stellar variability through the covariance of a
stochastically driven damped harmonic oscillator (SHO; Fore-
man-Mackey et al. 2017; Foreman-Mackey 2018) parametrized
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by its quality factor Q, its pulsation w and the amplitude of the
kernel function o (the full expression of the kernel function is
provided in Appendix A). This choice of mean and kernel
function completely defines the GP, from which light curves
with different levels of correlated noise can be drawn (see an
example in Figure 1).

2.2. Transit Detectability

One way to quantify the detectability of a unique transit
signal is to compute its S/N expressed as

S/N =2,
g

where A is the transit depth, o is the measurement uncertainty
(assuming homoscedasticity), and n is the number of points
within transit. Although this metric is useful to assess the
strength of the transit signal given a certain photometric
precision, it does not account for the presence of correlated
noise. However, instrumental and other astrophysical signals
will necessarily affect the detectability of transits in realistic
light curves (Pont et al. 2006). For this reason, the combined
differential photometric precision (CDPP; Jenkins et al. 2010)
metric was developed and used in the context of the Kepler
mission to assess the level of correlated noise in light curves,
affecting the detectability of transits with a given duration. The
CDPP is computed by decomposing the data in the time-
frequency domain using wavelets and measuring the signifi-
cance of a distorted transit signal in the whitened data. For a
given transit duration, the CDPP is then a measure of the noise
remaining after filtering the light curve in each frequency band,
taking the presence of nonstationary correlated noise of a given
timescale into account (see Jenkins et al. 2010 for more
details). Hence, we can estimate the significance of the transit
signal accounting for the presence of correlated noise as

~

A

S/N = ,
CDPP)

2

where CDPPp is the CDPP computed for a given transit
duration D and A is the transit depth after detrending. For
simplicity, the CDPP is computed using the method from
Gilliland et al. (2011) implemented in the Lightkurve Python
package (Lightkurve Collaboration et al. 2018) and A is the
depth obtained by solving Equation (1) with the last column of
X containing a normalized transit model.

Figure 2 shows the S/N from Equation (2) computed for a
unique transit observed in the absence (gray) and presence of
correlated noise (red). As illustrated in this figure, the presence
of correlated noise strongly decreases the transit signal S/N,
which would ultimately limit its detectability.

2.3. Detrending Methods and Their Effects

The presence of instrumental correlated noise motivated the
development of systematics detrending algorithms, such as the
Trend Filtering Algorithm (TFA; Kovacs et al. 2005, in its
primary use case), SYSREM (Tamuz et al. 2005), or Pixel Level
Decorrelation (PLD; Deming et al. 2015, see also EVEREST
from Luger et al. 2016, 2018). Most of these methods rely
on the shared nature of instrumental signals among light curves
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Figure 1. The top plot shows the simulated flux time series of an active star drawn from the GP model described in Section 2.1. This data set corresponds to an
observation of 4 days with an exposure time of 2 minutes. The mean of this signal consists of a periodic transit signal of period P = 0.7 days, duration D = 1.2 hr, and
depth A = 2% (dark gray) plus an instrumental signal (blue). Correlated noise in the form of stellar variability is simulated with an SHO kernel of hyperparameters
w=m/6D, Q =45, and ¢ = A. Finally, white noise with a standard deviation of 0.1% is added to the diagonal of the covariance matrix.

(or neighboring pixels) such that the correction applied should
not degrade the transit signal and can be modeled using
contemporaneous measurements (e.g., detector’s temperature,
pointing error, sky background, or airmass time series). But
even after instrumental signals have been removed, stellar
variability and other astrophysical signals remain, which gave
rise to several approaches. Some of them are physically
motivated and make use of GPs (e.g., Aigrain et al. 2016),
others are empirical and make use of filtering and data-driven
algorithms (Jenkins et al. 2010; Hippke et al. 2019). In this
section, we show how these techniques impact transits
detectability, depending on the morphological characteristics
of light curves.

In Figure 3, we simulate a transit signal on top of which we
add photometric stellar variability with different timescales,
sampled from a GP with an SHO kernel described in
Appendix A. For each light curve, we reconstruct and detrend
stellar variability in two ways: one using the widely adopted
Tukey’s bi-weight filter, presented in Mosteller & Tukey
(1977) and using the implementation from wétan® (Hippke
et al. 2019); the other using the same GP from which the data

8 https: //github.com/hippke/wotan

have been sampled. We then estimate the resulting transit depth
and compute the remaining transit S/N using Equation (2).
Figure 3 clearly shows the effect of both detrending techniques
on transits S/N, and intuitively suggests that this degradation
due to detrending is strongly dependent on the correlated noise
characteristics encountered.

To explore the parameter space for which detrending is the
most problematic, we employ the model described in
Section 2.1 to simulate 10,000 differential light curves with
different morphological characteristics and compute the
remaining transit S/N after detrending. In order to place the
stellar variability hyperparameters on a relative scale with the
transit signal parameters, we reparametrize the SHO kernel
with

2

5 A and Q =10, 3)
where 7 is the relative timescale of the variability with respect
to the transit duration and ¢ the relative amplitude of the
variability against the transit depth, both being adimensional.
Hence, for (7, §) = (1, 1), the expressions of w and ¢ given in
Equation (3) correspond to a variability signal with a period
half that of the transit duration, and a correlated noise
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Figure 2. Illustration of the effect of correlated noise on a single transit S/N.
An hour-long transit of depth 0.5% is generated on top of white noise (standard
deviation of 0.15%) as part of a 24 hr observation with an exposure time of 1
minute (top). Then, in the bottom plot, correlated noise is added, generated
using a GP with an SHO kernel of hyperparameters w = 60, Q = 0.5, and
oc=A/4. The S/N on the right of each light curve is computed using
Equation (2). Models used to simulate these data are provided in Section 2.1.

amplitude comparable to the transit depth, i.e., strongly
resembling the simulated transit signal.

For each of the 10,000 light curves generated, we separately
reconstruct and detrend the variability signal using the two
techniques employed in Figure 3, i.e., one using an optimal bi-
weight filter with a window size 3 times that of the transit
duration (Hippke et al. 2019) and the other using a GP with an
optimal kernel. We then compute the detrended transit S/N
using Equation (2).

Figure 4 shows that there exists an entire region in the (7, )
parameter space for which the bi-weight detrending degrades
transit S/N to the point of no detection (S/N < 5). Although
more robust, the same effect is observed when detrending with
an optimal GP. Hence, detrending makes transit search blind to
many systems, especially when the widely adopted bi-weight
filter is used. We note that, outside this problematic parameter
space, both techniques perform relatively well and such a
degradation of the transit S/N should not be expected.
Although this study should be extended to other detrending
techniques, it highlights the need for a more informed transit-
search algorithm able to deal with correlated noise, at least if
present in the form of stellar variability.

3. nuance

When searching for exoplanets using an indirect method,
such as using transits or radial velocities, the initial detection is
often as important as the follow-up observations, ultimately
leading to the confirmation of the planetary candidate. For that
reason, the final product of most transit-search algorithms
consists of a periodogram: a 1D detection metric given a set of
trial periods that allows us to identify the presence of a
potential candidate and the period and epoch at which it should
be followed up.

If we assume that a transit is defined by its period P, epoch
Ty, duration D, and depth A, we then wish to compute the
likelihood of such a transit being present in the data for a set of
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periods P, leading to an interpretable periodogram. As we are
interested in following up transits with specific parameters,
such as a well-defined epoch, the likelihood we wish to
compute must not be marginalized over all parameters other
than P but rather spe01ﬁcally computed at the maximum-
likelihood parameters T, D, and A, leading to the profile
likelihood

Q(P) = p(fIP, Ty, D, A), 4)

where f denotes the data. In this section, we present nuance, an
algorithm to compute transit-search periodograms in a tractable
way and detect planetary transits in light curves containing
correlated noise such as instrumental signals and photometric
stellar variability. In Section 3.1, we explain how our approach
requires two separate steps in order to remain tractable and
present these steps in Sections 3.2 and 3.3, leading to the
transit-search periodogram described in Section 3.4. Finally,
we present the nuance Python package in Section 3.5 and
perform a control test of our implementation against BLS in
Section 3.6.

3.1. The Approach

As in Section 2.1, let us assume that f is a vector of size N
containing the flux of a star observed at times ¢ such that

[~ N&Xw, %),

i.e., that f is drawn from a GP of mean Xw and covariance X.
Again, we set the first M — 1 columns of the (N x M) design
matrix X as contemporaneous measurements and the last
column as a normalized box-shaped transit of period P, epoch
Ty, and duration D. This way, the transit signal is part of the
linear model and its depth A can be solved linearly. Under this
assumption, the log-likelihood of the data given the presence of
a periodic transit signal of period P, epoch Ty, duration D, and
a mean linear model with coefficients w is (Rasmussen &
Williams 2005)

Inp(fIP. To, D, w) = —%(f ~ XwTE(f — Xw)

- lln|2]|—E1n27r. (®)]
2 2

Given the linearity of the mean model for P, T, and D fixed,
this likelihood is maximized for the least-squares parameters

w=(XTS1X) IXTSIf
with uncertainties o = (X7X X)L (6)

As we are only interested in the transit depth, we will omit w in the
remainder of this paper and simply write likelihood expressions
depending on its last value A =w,, such as p(flP, To, D, A),
where all other parameters of w are taken at their maximum-
likelihood values.

Hence, given a period P, computing Q(P) boils down to a
nonlinear optimization involving several evaluations of the
likelihood given in Equation (5). While this is tractable for a
few periods, it becomes highly untractable for the large set of
trial periods required to properly sample a transit-search
periodogram (on the order of tens of thousands).

To remain tractable, nuance employs an extension of the
strategy used by Foreman-Mackey et al. (2015), which has
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Figure 3. In each plot on the left, correlated noises simulated using a GP with an SHO kernel are added (blue line) to an original light curve containing a transit of
depth A = 0.8%, duration D = 0.1 day, and white noise with a standard deviation of 0.15% (top left). The hyperparameters of the kernel are fixed to Q = 10 and
o = 0.8%, with the pulsation w increasing from top to bottom. The resulting stellar variability signals are then reconstructed using (in purple) Tukey’s bi-weight filter
with an optimal window size of 3 x D (see Hippke et al. 2019), and (in red) a GP with the same kernel used to simulate the data. In each case the variability is

reconstructed, subtracted, and the transit S/N computed using Equation (2).

significant intellectual overlap with the methods used by
Aigrain & Irwin (2004) and Jenkins et al. (2010). This
approach separates the transit search into two components: the
linear search and the periodic search. During the linear search,
the likelihood p(f|To, D, A) of a single nonperiodic transit is
computed for a grid of epochs and durations, each time solving
for A linearly. Then, the periodic search consists of combining
these likelihoods to compute the likelihood p(f|P, Ty, D, A) of
the data given a periodic transit signal for a range of periods P.
These combined likelihoods yield p(f|P, fo, 13, A), a transit-
search periodogram on which the periodic transit detection is
based. nuance differs from Foreman-Mackey et al. (2015) and
other existing transit-search algorithms as it models the
covariance of the light curve with a GP, accounting for
correlated noise (especially in the form of stellar variability)
while keeping the model linear and tractable. This way, nuance
searches for transits while, at the same time, modeling
correlated noise, avoiding the separate detrending step that
degrades transit signals S/N (see Section 2).

3.2. The Linear Search

The goal of the linear search is to compute the likelihood
p(fiTo, D, A) for a grid of epochs { 7; }; and durations { D; };.
For each pair (T}, D)) the transit depth A,;; is linearly solved,

which leads to the set of maximum likelihoods
{InL;; }ij = {Inp(fIT;, Dj, Aip)}ij-

An example of such a grid of likelihoods is shown in Figure 5.
To prepare for the next step, uncertainties on the depths o;; are
also computed using Equation (6) and stored.

3.3. The Periodic Search

We then need to combine the likelihoods computed from the
linear search to obtain

p(fIP, To, D, A),

i.e., the probability of a periodic transit of period P, epoch Ty,
duration D, and depth A given the data f. For a given transit
duration D, any combination of (P, Ty) leads to K transits, for
which it is tempting to write

K
pUfIP, To, D, D) = T] p(fITx, D, A, @)
k

where {T}}, are the epochs matching (T, P) and { Ay }, the
corresponding depths, so that

K
lnp(f|P’ Tb’ D7 A) - Zln,Ck.
k



THE ASTRONOMICAL JOURNAL, 167:284 (20pp), 2024 June

7=2.0
SNR: 5l | 10 6

7=3.0

bi-weight

T=4.0

Garcia et al.

T=5.0

4.0

2 3 4

Figure 4. Transit S/N computed for 10,000 differential light curves with varying morphological characteristics. All light curves span 2.8 days with an exposure time
of 2 minutes and contain the same transit signal of duration D = 1 hr, depth of 0.5%, and white noise with a standard deviation of 0.1%. Light curves at the top and
right side of the central plot are shown with their corresponding 7 and ¢ values, which again correspond to the relative timescale of stellar variability against the transit
duration, and the relative amplitude of stellar variability against the transit depth. The two central plots show the transit S/N after detrending the light curves with one
of two methods. On the left, light curves are detrended using Tukey’s bi-weight filter with an optimal window size of 3 x D (see Hippke et al. 2019), while on the
right, light curves are detrended using a GP with the same kernel used to simulate the data.

This is the joint likelihood of transits belonging to the same
periodic signal but with varying depths {A};. However,
individual transits from a periodic signal cannot be considered
independent, and should instead be found periodically and
share a common transit depth A. To this end, it can be shown
(see Appendix B) that there is a closed form expression for the
joint likelihood of K individual transits with depths and errors
{ Ay, ox }x assuming a common depth A, corresponding to

K K

np(fIP. To, D, A) = S In Ly — %z
k k

Ay — A

x | In(o? —ln02+02 —|—(k—

( (@b~ Inta” + o) + <2

withL:iiandAzozi& (8)
2 2 2"

g k Ok k Ok
In order to compute this joint likelihood, we must assume
that the likelihoods computed during the linear search are
independent. However, the individual transits combined in
the periodic search are not independent. Indeed, by using a GP,
we assume that points belonging to separate transits may
have a nonzero covariance. In practice, we notice that this
covariance is small enough to consider each transit as
independent, a reasonable assumption for most physically
realistic data sets.

While Equation (8) takes a closed form, the individual
epochs matching 7, and P are not necessarily available in the
grid of epochs {T;};. In Foreman-Mackey et al. (2015), a
similar issue is solved by using the nearest neighbors in the
epochs grid. Instead, to allow for the efficient matrix
computation of Equation (8), we interpolate the likelihood

grid from {7;}; to a common grid of transit phases {®;};,
leading to the periodic search log-likelihood

InP(P) = {Inp(fIP, ¢;» D)} i;

shown for few periods in Figure 6. In the latter equation, A, is
omitted since being interpolated from the linear search using ¢;,
D/‘, and TO =0.

3.4. The Transit-search Periodogram

Using Equation (8), we can now compute In P for a range of
periods and phases, and build a transit-search periodogram
using Equation (4). This has two disadvantages: First, each
likelihood p(fiTy, D, A) estimated during the linear search is
computed using N measurements. Hence, combining transits in
the periodic search, through A, o, and the product of K
likelihoods { Ly }, (see Equation (8)), artificially leads to a
likelihood involving up to N x K measurements. For this
reason, one has to normalize each likelihood InP, by keeping
track of the number of points used to compute each of them,
which differs from one phase to another. Second, the maximum
value of the likelihood In P is relative to a given data set, so a
more intuitive and absolute metric must be used to relate to the
transit signal detection (such as the Signal Detection Efficiency
in Kovécs et al. 2002). This motivates a final step to produce an
interpretable transit-search periodogram Q.

For any period P, instead of taking Q(P) as the maximum
value of In P, we compute the maximum-likelihood parameters

(¢g, D) = arg max{ Inp(f|P, &;, D)) }i; )
‘f)i’D/
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Figure 5. Principle and output of the linear search. The simulated data set (top) corresponds to the one shown and described in Figure 1. First, a set of durations and
depths { T}, D; },; is generated. For each pair of indices (i,j), the likelihood Inp (f|T;, D;, A; ;) is computed using the parameters from Equation (6) and the expression
of Equation (5). This process yields the grid of log-likelihoods In L (bottom plot), as well as the {A;;, 0;;};; transit depths and errors inferred linearly using

Equation (6).

and define Q(P) as being equal to the S/N of the transit of

period P, epoch Ty = ¢y X P, duration D, and depth A, i.e.,

op) = 2,
g

where A and o are obtained using Equation (8) with the last
column of X containing a periodic transit signal of period P,
epoch Ty, duration D, and depth 1. This process and the
resulting periodogram Q are shown in Figure 7.

Hence, periodic transit of period P with the maximum S/N, i.e.,
maximizing Q, is adopted as the best candidate, basing the
confidence in this signal through its S/N. The parameters of this
transit are the period P, epoch Ty = ¢oP, duration D (Equation (9)),
and depth A with error o (given by Equation (8)).

3.5. An Open-source Python Package

The methods presented in this paper are made available
through the nuance open-source Python package hosted
at https://github.com/lgrcia/nuance, released on the Python
Package Index9, and with documentation and tutorials hosted
at https: / /nuance.readthedocs.io. All following mentions of
nuance refer to version 0.6.0 (Garcia et al. 2024).

To instantiate a search, a user can start by creating a Nuance
object with

from nuance import Nuance
nu=Nuance (time, flux, gp=gp, X=X)

where gp is a tinygp GP instance and X is the design matrix of
the linear model. nuance exploits the use of tinygp,'® a Python
package powered by JAX,'" allowing for custom kernels to be

® https:/ /pypi.org/project /nuance/
0 https://github.com/dfm/tinygp
1 https: //github.com/google /jax

built and highly tractable computations. We can then define a
set of epochs tOs and durations Ds and run the linear
search with

import numpy as np

tO0s=time.copy ()

# a range of 10 durations
Ds=np.linspace (0.01, 0.2, 10)
nu.linear_search (t0s, Ds)

Finally, the periodic search is run with

# range of periods
periods=np.linspace (0.1, 5, 2000)
search=nu.periodic_search (periods)

From this search object, the best transiting candidate
parameters can be computed (search.best), or the Q period-
ogram retrieved (search.Q_snr), together with valuable
information about the transit search. The Nuance object also
provides methods to perform transit search on light curves from
multiplanetary hosts, the advantage of nuance being that the
linear search only needs to be performed once and reused for
the search of several transiting candidates (see Section 4.3). An
extensive and maintained online documentation is provided at
nuance.readthedocs.io.

3.6. Comparison with BLS

To start testing nuance against existing methods, a simple
adimensional normalized light curve is simulated, consisting of
. . . .. —4

pure white noise with a standard deviation of 5 x 10
spanning 6 days with an exposure time of 2 minutes. From
this signal, we produce 4000 light curves, each containing box-
shaped transits with periods randomly sampled from 0.3 to 2.5
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Figure 6. Periodic search likelihood PP(P) computed for different trial periods P. Notice how the maximum value of P for the alias period P = 0.35 day (left plot) is
lower than for P =2 x 0.35 = 0.7 day, a result of combining the log-likelihoods using Equation (8) instead of Equation (7), in favor of individual transits matching a

common depth A.

days, durations of 50 minutes, and depths randomly sampled to
lead to transit S/Ns ranging from 4 to 30. For each light curve,
transits are searched using two different tools: nuance, using
its implementation from the Python package described in the
previous section; and the BLS algorithm from Kovécs et al.
(2002; using astropy’s BoxLeastSquares'? implementation).
We note that the Transit-Least-Squares algorithm (Hippke &
Heller 2019), which includes the effect of limb-darkening in
the base transit template, could also be used here. However, as
this effect has a negligible impact on transit detection compared
to the effect of correlated noise, we choose to make our
comparisons with BLS only.

For both methods, 3000 trial periods from 0.2 to 2.6 days are
searched, with a single trial duration fixed to the unique known
duration of 50 minutes. A transit signal is considered detected
if the absolute difference between the injected and the
recovered period is less than 0.01 day. To ease the detection
criteria, orbital periods recovered at half or twice the injected
ones (aka aliases) are considered as being detected. For this
reason, detected transit epochs are not considered (although
manually vetted). Results from this injection—recovery proce-
dure are shown in Figure 8.

These results demonstrate the qualitative match between the
detection capabilities of nuance and BLS on light curves with
no correlated noise, where the BLS algorithm should be
optimal. Explaining the subtle differences observed between
the two methods when only white noise is present is beyond the
scope of this paper, and we will assume that any differences
observed in the following sections are due to the different
treatments of correlated noise.

4. Performance

Figure 4 shows that nuance’s full-fledged modeling
capabilities may not always be necessary and may only be
beneficial for certain noise characteristics, relative to the
searched transit parameters. Here, we evaluate the performance
of nuance in the relative parameter space (7, ¢) described in
Equation (3) and probe when its specific treatment of correlated
noise in the transit search becomes necessary.

12 https: / /docs.astropy.org/en/stable/api/astropy.timeseries.
BoxLeastSquares.html

We perform this study by comparing nuance to the
approach that involves removing stellar variability from light
curves before performing the search on a detrended data set.
The following detrending strategies, each followed by a search
with the BLS algorithm, are compared:

bi-weight+BLS: employs an optimal bi-weight filter
implemented in the wétan Python package with an optimal
window size of 3 x D, ie., 3 times the transit duration
(e.g., Hippke et al. 2019 and Dransfield et al. 2024).

GP+BLS: employs a GP conditioned on the data
(e.g., Lienhard et al. 2020). The kernel of the GP and its
optimization is described on a case-by-case basis.

Bspline+BLS: employs a B-spline'” for detrending, fitted
using the scipy.interpolate.spirep function'* (e.g., Hippke
et al. 2019 and Canocchi et al. 2023).

harmonics+BLS: employs a linear harmonic detrending,
where the light curve is modeled as a Fourier series including
four harmonics of the stellar rotation period with coefficients
found through ordinary least squares.

iterative+BLS iteratively detrends the light curve with a
sinusoidal signal fitted to the data, each time using the
dominant period of the residuals found using a Lomb-Scargle
periodogram (five iterations).

Like in previous sections, we consider the planet detected if
the recovered period is within 0.01 day of the true period or a
direct alias (such as 2 times or half the true period). Again, we
ignore the exact match between the injected and recovered
transit epochs, although we visually vet that the found epochs
are consistent with the ones injected. We consider a transit
detectable if its original S/N is greater than 6. Hence we define
true positives as detectable transits recovered with the correct
period (or an alias) and a measured S/N greater or equal to 6,
and false positives as nondetectable transits recovered with a
measured S/N greater or equal to 6.

As we noticed that few methods were still affected by the
remaining stellar variability after detrending, the grid of orbital
periods being searched for does not contain the stellar rotation
period P, and its aliases. In practice, this is done by removing

13 https: //docs.scipy.org/doc/scipy /reference /generated /scipy.interpolate.
BSpline.html

14 https: //docs.scipy.org/doc/scipy /reference /generated /scipy.interpolate.
splrep.html
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Figure 7. For each period P, the joint likelihood P(P) is computed using Equation (8), and the value of the maximum-likelihood transit S/N is retained as Q(P).

all orbital periods P from the search grid such that dP = g is
less than 2% from an integer value, i.e., |dP — [dP]| < 0.02.

4.1. Comparisons on Simulated Light Curves

Our first comparison data set consists of 4000 light curves
simulated using the model described in Section 2.1. We
simulate a common periodic transit added to all light curves, of
period P = 1.1 days, epoch Ty =0.2 days, duration D =0.04
days, and depth A = 1%. Each light curve consists of a 4 day
observation with an exposure time of 2 minutes, leading to
N = 2880 data points with a normal error of 0.1%.

For a given pair of (7, ), we simulate stellar variability using
a GP with an SHO kernel of hyperparameters defined by
Equation (3) computed with respect to the injected transit
parameters D and A. The same kernel is used for the search
with nuance and with the GP+BLS method, an optimal choice
on equal footing with the optimal 3 x D window size of the bi-
weight filter employed in the bi-weight+BLS search. The
4000 pairs of (7, 6) are drawn from

T~ UO.1, 10), § ~ U(0.1, 25) and O ~ U(10, 100),

where U(a, b) denotes a uniform distribution of lower bound a
and upper bound b.

4.1.1. Results

The results of this injection—recovery procedure are shown in
Figure 9 and highlight particularly well the benefit of nuance
against most other methods. Except for the GP+BLS approach,
nuance leads to a much higher rate of true positives for transits
with relatively small depths compared to the stellar variability
amplitude (i.e., § > 2), and duration comparable to the stellar
variability period (i.e., 7 < 2). On the other hand, the GP+BLS
strategy seems almost as performant as nuance, recovering
most of the injected transits and only lacking detection in a
relatively comparable portion of the (7, 6) parameter space. We
note that these empirical statements only concern simulated
light curves with a given amount of white noise and may vary
depending on the length of the observing window or the
number of transits. For this reason, quantifying which values of
(7, 6) nuance outperform these methods would only apply to
this specific but representative example. However, we verify
that our conclusions remain qualitatively valid for various
simulation setups.

This injection-recovery is done in a particularly optimal
setup, on simulated light curves that are not all physically
realistic and using an optimal GP kernel, hence demonstrating
the performance of nuance only on a purely synthetic basis.
Hence, we strongly emphasize that these tests do not reflect
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well the performance of each method on real data sets. In the
next section, we perform transits injection-recovery on real
space-based light curves.

4.2. Comparisons on Rapidly Rotating M Dwarfs TESS Light
Curves

In order to assess the performance of nuance on real data
sets, we inject and recover transits into light curves from TESS
(Ricker et al. 2015). We focus this proof of concept on the light
curves of 438 M dwarfs found to have detectable rotation
signals with periods lower than one day (Ramsay et al. 2020),
which lead to a parameter space justifying the use of nuance.
For each of the 438 targets, transits are injected and recovered
in the TESS 2 min cadence SPOC Simple Aperture Photometry
and Pre-search Data Conditioning light curves (PDCSAP;
Caldwell et al. 2020) of a single sector (the first being observed
for each target) spanning on average 10 days. To our
knowledge, none of these 438 targets have been searched for
planetary transits before. However, we note that the presence of
existing transit signals in these light curves before the injection
of simulated ones is possible, but will not affect the relative
comparison of one method to another. As described in the
following sections, our experiment considers a total of
438 x 100 light curves, where transit signals are injected and
recovered.

4.2.1. Light-curve Cleaning and Transits Injection

As some of the techniques compared to nuance can be
affected by gaps in the data, we only use continuous
measurements from half a TESS sector. We assume that all
methods (including nuance) are based on an incomplete model
of the data that does not account for stellar flares. For this
reason, the light curve of each target is cleaned using an
iterative sigma-clipping approach.

For each iteration, points 3 times above the standard
deviation of the full light curve (previously subtracted by its
median) are identified. Then, the 30 adjacent points on each
side of the found outliers are masked. This way, large flare
signals are masked, using a total of three iterations. At each

10

iteration, the GP kernel hyperparameters are reoptimized. As
PDCSAP light curves often start with a ramp-like signal, the
first 300 points (as well as the last 300 points) of each
continuous observation are masked. Finally, each light curve is
normalized by its median value. Such a cleaned light curve is
shown in Figure 10. We note that the gaps left after sigma
clipping may be problematic for some of the detrending
techniques (such as bspline+BLS). However, adopting this
flare-cleaning step and analyzing light curves with a few small
gaps is a practice commonly found in the literature.

For each of the 438 light curves considered, transits of
planets with 10 different orbital periods combined with 10
planetary radii are individually considered, for a total of 100
periodic transits injection—recovery per target. Orbital periods P
are sampled on a regular grid between 0.4 and 5 days, and
planetary radii R, are sampled on a regular grid designed to
yield a minimum transit S/N of 2 and a maximum of 30. Using
Equation (2) with 0,=0, the planetary radius leading to a
transit with a desired S/N s is given by

R, =R, n"iJos,

where o is equal to the mean uncertainty estimated by the
SPOC pipeline, R, is the radius of the star reported by Ramsay
et al. (2020), and n is the number of points in transit computed
using a transit duration assuming a circular orbit. In total,
438 x 100 light curves are produced and searched for transits,
corresponding to planets radii ranging from 0.46R, to 12.29R,
and a median radius of 2.40R,.

4.2.2. Stellar Variability Kernel

In the GP+BLS and nuance methods, we model light curves
using a GP with a mixture of two SHO kernels of period P, and
P, /2, where P, is the rotation period of the star. This model is
representative of a wide range of stochastic variability in stellar
time series'” (e.g., David et al. 2019; Gillen et al. 2020). In
order to account for additional correlated noises, we

15 https://celerite2.readthedocs.io /en/latest /api/python
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Figure 9. Rate of true positives for the 4000 simulated light curves. The color scale represents the fraction of true positives, white if all injected transits are recovered
in a given portion of the (7, §) parameter space, and black if none are recovered.

complement this kernel with a short and a long-timescale The hyperparameters of this kernel are optimized on
exponential term, so that the full kernel can be expressed as trimmed and cleaned light curves containing the injected
K=k 4 kot s+ k transits, using the scipy.optimize.minimize wrapper provided

L R B by the jaxopt Python package,'® and taking advantage of the

with JAX implementation of tinygp and its quasi-separable
. kernels'’ (Foreman-Mackey et al. 2017). As correlated noise

L. ky a SHO kernel with hyperparameters is expected to affect the light-curve uncertainty estimates
01=1/2+ Qy + 60, performed by SPOC, the diagonal of the full covariance matrix

of the data (i.e., their uncertainty, assuming homoscedasticity)

wy = _4r and S = 0—2, is held free, increasing the number of optimized parameters to

P 402 -1 A+ fHw O nine. The optimization is performed using the BFGS algorithm

(Fletcher 1987), minimizing the negative log-likelihood of the

2. k> a SHO kernel with hyperparameters data as expressed in Equation (5) (without transit), i..,
£ o accounting for a linear systematic model of the data in addition

— to stellar variability. For simplicity, and to adopt a uniform
(I + flws Q> treatment for all target light curves, a design matrix X with a
single constant column is adopted, such that the systematic
model only consists of a single parameter corresponding to the

0>=1/2 + Qp, wy=2w;and S, =

where Qy is the quality factor for the secondary oscillation, 5Q mean value of the differential flux (expected to be close to 1)
is the difference between the quality factors of the first and the solved linearly. Our motivations for choosing this very
second modes, f is the fractional amplitude of the secondary simplistic baseline, despite the capability of nuance to account
mode compared to the primary, and o is the standard deviation for more complex linear models, is discussed in Section 5.2.

of the process. Kernels k3 and k4 are expressed as

[t — ¢ ) 4.2.3. Search Parameters and Transit Detection Criteria

k(t, t') = o% exp| — . L .
For all techniques, we only search for transits with a duration

fixed to the known duration of the injected transits. This is

with £ and o l?eing the scale and standard deviation of the mainly done for computational efficiency and allows for a
process, respectively. These are meant to model short and long-

timescale nonperiodic correlated noise. In total, the rotation ' https:/ /jaxopt.github.io/stable/_autosummary /jaxopt.ScipyMinimize.html
kernel k has eight hyperparameters. "7 hitps:/ /tinygp.readthedocs.io/en/latest/api/kernels.quasisep.html
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Figure 11. Rate of true and false positives for all methods as a fraction of detectable transit signals.

narrower comparison between nuance and all BLS-based
techniques. Finally, the search is done over 4000 trial periods
linearly sampled from 0.3 to 6 days. A realistic transit search on
a wider parameter space (e.g., multiple trial durations) is
discussed in the next section.

4.2.4. Results

An example of the transit injection—recovery and its result is
shown in (Figure 19) for the target TIC 1019692, a
representative example of the kind of stellar variability
encountered in our data set. Figure 11 shows the global results
of the injection—recovery for all targets, while Figure 12 shows
the true and false positives plotted against the relative
parameters 7 and ¢ (defined in Equation (3)). These figures
are a synthesis of Figure 13, which shows the rate of true and
false positives binned in the full parameter space (7, 0).

Compared to other techniques, we find that nuance leads to
the highest number of true positives, with successful detection

12

of 76% of the 7008 detectable transits injected (Figure 11).
While the performances of other methods strongly depend on
the characteristics of the variability, nuance is the best
technique in 93% of cases, leading to both the highest number
of true positives and the lowest number of false positives
(Figure 11).

From Figure 11, we note that the number of true positives of
the GP+BLS method is much worse than what could be
anticipated from the results presented in Figure 9, where the GP
kernel was fully optimal (given it was also used to simulate the
data). In that case, our kernel might not be optimal, whether
because of its form or because of the values of its
hyperparameters. In any case, the fact that the same kernel
performs significantly better when used with nuance shows
that our method is less sensitive to the choice of kernel and its
optimization compared to detrending with a GP.

Finally, in Figure 14, we observe a dependence between the rate
of true positives and the injected planet radii. Overall nuance
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Figure 13. Rate of true and false positives binned over the full parameter space (7, 6) for all methods and all targets.

leads to significantly higher true positives in all radii bins
compared to other methods, except for BLS+harmonics (which
dominates other methods), which shows a similar yield for planets
with radii less than 2R,. Hence, we note that the advantage of
nuance is particularly significant for planets larger than 2Rg.
This can be explained by the fact that, for a transit signal to be
comparable to a high-amplitude stellar variability signal, i.e., when
nuance shows an advantage, a larger transit depth, hence a larger
planetary radius, is required. Although this particular result highly
depends on the variability present in the studied data set, we

13

conclude that the performance of nuance is not sensitive to the
searched planets’ radii.

When analyzing the light curves of the 438 targets from
Ramsay et al. (2020), our search solely focused on the injected
transit signals. Although nuance seems particularly well suited
to search for real transit signals in this data set, we did not
conduct such a study. To be done properly, this task would
simply require a search on a wider and finer trial epochs and
durations grid, using all available TESS sectors; a project that
we highly encourage.
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4.3. Comparison for a Multisector TESS Candidate: TOI-540

In order to further validate nuance on a realistic data set, we
focus this section on the multisector TESS light curves of TOI-
540, and the search for its Earth-like companion TOI-540 b
(Ment et al. 2021). As we will see, nuance does not have
significantly superior performance for this candidate. However,
its light curves feature a very typical stellar variability signal
(see Figure 15), that would commonly be detrended before
searching for planetary transits.

We downloaded the 2 minute cadence SPOC PDCSAP light
curves of TOI-540 observed in five sectors (4, 5, 6, 31, and 32).
Like in the previous section, we use a Lomb-Scargle
periodogram and identify the 0.72 day rotation period of the
star, which we use as an initial value to optimize the kernel
described in Section 4.2.2 on each sector independently. Here
again, we employ an upper sigma clipping to mask flares out of
the data. The resulting light curve for sector 4 and its mean
model are shown in Figure 15.

For each sector, we perform the linear search of nuance on
the cleaned light curve, using the original times as the trial
epochs and 10 trial transit durations linearly sampled from 15
minutes to 1.5 hr. We then perform the periodic search on all
sectors combined, using a concatenation of all linear searches.
By adopting this by-sector GP modeling of the light curve, the
linear search of nuance scales linearly with the number of
sectors being processed.

This approach is adopted for efficiency but also to
encapsulate the changing properties of stellar variability from
one sector to another, often separated by year-long gaps. The
periodic search is done on 20,000 trial periods ranging from 0.5
to 10 days.'® This search, using nuance, is compared to the
more traditional approach that consists of detrending each
sector with a bi-weight filter and then searching for transits
with the BLS algorithm (denoted bi-weight+BLS and
described in Section 4.2) on all sectors combined. Since we do
not know the transit duration a priori, we perform the
detrending and BLS search using 15 filtering window sizes
sampled from 30 minutes to 5 hr and retain the search that leads
to the highest transit S/N peak in the periodogram (as done

% we acknowledge that the grid of trial periods and durations used in this
study is nonoptimal for a real transit search. However, this simple choice is
sufficient for our periodogram comparison against BLS. Optimal grids of
parameters for realistic transit searches are discussed in Hippke &
Heller (2019).
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e.g.,in the SHERLOCK transit-search pipeline described in
Pozuelos et al. 2020). The results of this comparison are shown
in Figure 16.

After a first periodic search, trial epochs in windows of
widths 2 x D centered on the detected periodic transits are
masked. In practice, this is done by masking the linear search
products {InL;;};;, {A;}y;, and {o;;};; (defined in
Section 3.2).

As seen in Figure 16, the S/N periodogram using
bi-weight+BLS and nuance are very similar, with the
known transiting exoplanet TOI-540 b detected with an orbital
period P=1.24 days. This is well expected as the relative
parameter 7 equals 13 for TOI-540 b,"” which lies outside the
range where nuance is expected to be beneficial (see Figure 4).
Nonetheless, the nuance periodogram of TOI-540 features less
spurious S/N peaks, largely due to the penalty naturally
occurring when single transits with different depths are
periodically combined. In the second search (right panel) of
Figure 16, we also notice a higher number of peaks that would
lead to false positive detections of transits in the bi-weight
+BLS case. The proper treatment of correlated noise in nuance,
as observed in Section 4.2, makes these peaks nonsignificant,
avoiding a large number of false detections.

We note that finding a known TESS candidate that displays
characteristics for which nuance is expected to be significantly
beneficial proved to be very challenging during the writing of
this paper, as transits with such characteristics are expected to
be missed by current state-of-the-art techniques (see, e.g.,
Figure 9). Nonetheless, we verify that nuance is capable of
finding a large number of already known transiting exoplanet
candidates, in light curves featuring various forms of correlated
noises, at least as efficiently as with commonly used
techniques. We reserve the search for new transit signals to a
follow-up publication.

5. Discussion

In the previous section, we demonstrated the capability of
nuance to search for synthetic or known transit signals, in
simulated or real data sets. Here, we discuss the caveats of this
algorithm, the advantages and limitations of the nuance
implementation, and future prospects for its extension.

5.1. Processing Time

In Figure 17, the processing time of nuance linear and
periodic search are recorded against the number of points in a
simulated light curve, assuming a simple nonoptimized GP
with a squared exponential kernel. These are compared to the
processing time of bi-weight+BLS (see Section 4.1)
separated into the bi-weight filtering step and the BLS search.

As seen in Figure 17, most of the computational costs of
nuance and the bi-weight+BLS method come from the
linear search and the bi-weight filtering step. This is not always
true and depends on the size of the trial durations and period
grids. One advantage of nuance is that the linear search can be
performed separately on different continuous observations, and
then combined in the periodic search. Hence, if searching for
transits in separate observations with approximately similar
durations, such as different TESS sectors or different ground-
based nightly observations, the computational cost of nuance

19 Using Equation (3) with the stellar rotation P = 0.72 days and the known
transit duration D = 29.5 minutes of TOI-540 b (Ment et al. 2021).
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Figure 15. Sector 4 light curve of TOI-540. The cleaned signal (gray points) has been masked for flares (black points), and the black line corresponds to the mean of

the GP model.

grows linearly with the number of observations (see gray line in
Figure 17). Nonetheless, considering a variety of other
detrending algorithms, nuance is expected to perform between
one and 2 orders of magnitude slower than more conventional
techniques associated with BLS.

Nonetheless, searching for TOI-540 b transits with the
parallelized implementation of nuance (see Section 4.3) on the
12 cores of an Apple M2 Max chip, took only 5 minutes and
35s, 1 minute 50 s for the five sectors linear searches (around
22's per TESS sector), and 3 minutes 45 s for the combined
periodic search. In comparison, the brute force search with bi-
weight+BLS, consisting of trying 15 bi-weight windows,
took a total of 1 minute 49 s (only 7 s each).

Because of its computational cost, we do not recommend
using nuance in the general case, but rather when light curves
contain correlated noise with specific characteristics. If
employing a bi-weight filter for detrending, these character-
istics correspond to the ones discussed in Section 2. But as
these strongly depend on the type of detrending technique
employed (see Figure 9), we do not provide general guidelines
as to when nuance should be preferred over a specific
detrending technique. To aid users in making an informed
choice of algorithm, extensive benchmarks, and guidelines are
reserved for future developments and will be progressively
shared on nuance’s online documentation.*’

5.2. Systematics Modeling

Throughout the paper, a single-column design matrix X,
corresponding to the mean differential flux (ideally unitary),
was employed, hence assuming that the instrumental systema-
tics signals were nonexistent. In practice, nuance has been
developed to linearly model systematic signals through more
complex design matrices (as in Foreman-Mackey et al. 2015),
in addition to its capability to model correlated noise while
searching for transits. This feature is intentionally unexploited
in the comparisons presented in Section 4, as detrending light
curves assuming a linear systematics model, such as PLD co-
trending vectors (Deming et al. 2015), is highly incomplete if
applied to data while ignoring the presence of other
astrophysical signals. Comparisons involving more complex
design matrices would also be sensitive to the choice of linear

20 https:/ /nuance.readthedocs.io /en/latest/
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components and would have unwanted repercussions on their
results.

As an illustration, the NEMESIS pipeline (Feliz et al. 2021)
starts processing the differential light curves by employing a
linear systematics detrending using a least-squares fit of the
data with a reduced PLD basis, before smoothing the signal
from stellar variability using an approach similar to the
one employed in the bi-weight+BLS approach (see
Section 4.2), hence detrending the systematics with an
incomplete model that does not account for stellar variability.
To account for stellar variability while fitting the linear
systematics model to the data, a step further would be to use
a GP, such as done in the EVEREST (Luger et al. 2018)
pipeline. However, this would also involve some potential
degradation of the transit signals (see, e.g., Figure 3), with a
hardly distinguishable origin. For these reasons, and to keep
our comparisons as targeted as possible, we do not compare
commonly used systematics detrending approaches and
decided to focus our comparisons solely on stellar variability
detrending techniques (although these two aspects often
overlap in the literature, e.g., in Luger et al. 2016).

Although not being demonstrated here, modeling systema-
tics signals while searching for transits on data acquired
sparsely is extremely promising for the search of transiting
exoplanets, including for ground-based observations that
usually suffer from daily interruptions. In this respect, we note
the similarity of our linear search (see Section 3.2) to the one
presented in Berta et al. (2012), which focused on the detection
of single eclipses in the MEarth light curves (Irwin et al. 2009).
Similarly, nuance would highly benefit the search for transiting
exoplanets around M dwarf type stars, such as the ones
observed by the SPECULOOS survey (Sebastian et al. 2021)
whose monitoring suffers from both increased red noise (due to
atmospheric and instrumental thermal effects discussed in,
e.g.,in Berta et al. 2012 and Pedersen et al. 2023) and
enhanced stellar variability (Murray et al. 2020). We reserve
this promising application for a future study.

5.3. The GP Kernel

While not being discussed in our study, the efficiency of
nuance to detect transits in correlated noise might be dependent
on the design of its GP kernel. In the ensemble comparison
of Section 4.2, the goal was to choose a kernel and an
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Figure 16. Transit-search S/N periodograms of TOI-540 using bi-weight+BLS and nuance. After a first periodic search (left panel), the epochs corresponding to
the maximum-S /N transit are masked before the second search is performed (right panel).

optimization strategy suited to most of the studied light curves,
leading to a few outliers in the results, which were indicative of
a badly designed and/or optimized kernel. An alternative,
recommended for more realistic blind searches, is to perform a
model comparison on well-selected kernels and to adapt the
optimization strategy to each data set.

When using nuance on TESS light curves for example, it
must be noted that the observed light-curve variability might
originate from contamination due to several nearby blended
stars, so a physically interpretable GP kernel representing a
single star activity is not necessarily appropriate. On the other
hand, a single squared exponential GP kernel might also be
sufficient for some applications; an aspect we intend to explore
in future applications.

Something to emphasize is that nuance cannot be used to
produce reliable detrended light curves, as an optimal GP is
often flexible enough to partially model transits (see Figure 3).
In contrast, the idea behind nuance is rather to compute the
likelihood of data against a model containing both transits and
correlated noise, without ever trying to disentangle both
signals. In practice, it means that it can be very hard to
actually verify the presence of transits found by nuance
visually, so that transits may be detected but remain hidden in
correlated noise. This is particularly true for stars displaying
very-high-frequency photometric pulsations (see the example
in Figure 18).

5.4. Prospects

The present implementation of nuance has the potential to be
extended to be used beyond the search of periodic box-shaped
transits. Here are ideas of possible use and extensions, from the
most straightforward to the most ambitious:

1. In order to compare nuance to BLS-based methods, we
injected and retrieved only box-shaped transits. However,
similarly to the Transit-Least-Squares algorithm from
Hippke & Heller (2019), limb-darkened transits can serve
as a base model in the linear search and are expected to
improve the transit search in the same way TLS provided
an improvement over BLS.

2. The linear search of nuance is a single-event detection
algorithm that can be used to search for single transit
events, but also detect transiting exocomets and flares, by
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simply changing the base astrophysical model in the last
column of the design matrix X. While not being tested
and benchmarked, nuance already integrates this feature.
An example of the detection of known transiting
exocomets in 3 Pictoris TESS light curves is shown in
Figure 18.

3. During the periodic search, no prior about the transit
duration related to the orbital period of the planet was
used. This was done in order to allow for the detection of
grazing transiting exoplanets that would produce
shorter-timescale transits compared to what is expected
from a circular orbit with a null impact parameter.
However, adding such priors might produce fewer
spurious periodogram peaks and be very beneficial for
the automatic search of transits in large data sets. Another
idea, similar to the one employed in Foreman-Mackey
et al. (2015), is to leverage model comparison in order to
reject transits that are better described by the GP model
alone. Both ideas come at no cost given our modeling
approach.

4. Finally, the formalism of nuance could be adapted and
used to search for exoplanets featuring transit time
variations (TTVs). Indeed, this application only requires a
modification of the periodic search, as the maximum
likelihood peaks close to linearly predicted transit epochs
may be considered. This could be done either with a
special nearest-neighbor algorithm or with a convolution
of the computed likelihood grid with a Gaussian kernel.
To maximize efficiency and interpretability, we would
recommend these approaches to be explored analytically,
rather than using a data-driven treatment of the linear
search products.

6. Conclusion

This paper presents nuance, an algorithm designed to detect
planetary transits in light curves featuring correlated noise in
the form of instrumental signals and stellar variability. In this
context, a conventional approach involves detrending a light
curve before searching for transits using the BLS algorithm.
However, we show that this approach degrades transit S/Ns
down to the point of not being detectable. Adopting commonly
used detrending strategies, we explore the extent of this
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linear search when applied to chunks of 10,000 points continuous observations, instead of considering these observations all together. This study is performed on a
single CPU core of an Apple M2 Max chip. While not being shown, we verify that both the BLS algorithm and nuance processing times scale linearly with the number
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Figure 18. Demonstration of the search of transiting exocomets in the TESS light curves of the star 3 Pictoris (2 minutes PDCSAP data from sector 33). This star is
known to display rapid ¢ Scuti type photometric variations with a period of about 30 minutes (Lecavelier des Etangs et al. 2022). The GP kernel and its
hyperparameters are chosen and optimized as in Section 4.2. Here, we simply used the linear search of nuance with a different base model, one that mimics the shape
of transiting exocomets (with 20 trial durations), to compute the S/N time series of the signal over one sector. The maximum-S /N events are displayed at the bottom
of the figure and match with the ones found by Lecavelier des Etangs et al. (2022).

degradation on simulated light curves, and its dependence on rotating M dwarfs. These injection—recovery tests reveal that
the photometric stellar variability characteristics, showing the nuance consistently outperforms commonly used transit-search
need for a full-fledged transit-search method like nuance. techniques, especially when the timescale of stellar variability is

The effectiveness of nuance is tested using a synthetic data set less than twice that of the transit duration. In all cases, nuance not
and further validated on real TESS light curves of 438 rapidly only leads to a higher number of true positive detections but also
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Figure 19. Results of the transits injection-recovery on TIC 1019692 half-sector light curve. Left: cleaned light curve with computed trend overplotted in black
(except for nuance where it corresponds to the mean of the GP model). Right: results of the transit search where a black square denotes a transit signal not detected,
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minimizes false positives, demonstrating its robustness and
reliability.

We make nuance publicly available through the nuance
open-source Python package, developed with JAX to allow its
use on distributed computing environments and GPU devices.
Overall, we acknowledge the limitations of nuance and its
increased computational cost compared to more conventional
techniques. Hence, nuance should be used as an alternative to
more traditional techniques only in the presence of substantial
correlated noise. As guidelines for choosing our method over
other techniques are highly dependent on the type of detrending
algorithm employed, we reserve this study for future work.

Finally, we suggest future improvements and extensions of
the algorithm, including its application for detecting single
transits, exocomets, flares, and exoplanets featuring TTVs,
underscoring its versatility and potential for broader impact in
astronomical research.

The software presented in this work is open source under the
MIT License and is available athttps://github.com/lIgrcia/
nuance, with documentation and tutorials hosted athttps://
nuance.readthedocs.io.
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Appendix A
SHO Kernel

In order to model stellar variability and its effect on transit
detection, we employ a simple physically motivated GP kernel,
describing stellar variability through the covariance of an SHO
(Foreman-Mackey et al. 2017; Foreman-Mackey 2018) taking
the form

k(r) = o2 exp(ﬂ)

20
l+wrt forQ=1/2
x {4 cosh(f w7/2 Q) + sinh(f wr/2Q)/f forQ < 1/2
cos(gwT/2Q) +sin(gwt/20)/¢g forQ >1/2
where 7= |f; — 1], fzm
and g=.40*—-1,
(AD)

where Q is the quality factor of the oscillator, w is its pulsation,
and o is the amplitude of the kernel function. GP computations
in this paper use the implementation from tinygp,?' a Python
package exposing the quasi-separable kernels from Foreman-
Mackey (2018) and powered by JAX.?

Appendix B
Proof for the Periodic Search Expression

From the linear search presented in Section 3.2, we retain
and index by k the parameters of the K individual transits
whose epochs {T;}; are compatible with a periodic signal of
period P and epoch 7. From the likelihoods of these transits
(computed in Section 3.2), we want an expression for

pUfIP. T, D, A) = [T p(fITk, D, A),
keT
i.e., given a depth D, the likelihood of the data given a periodic
transit signal of period P, epoch Ty, and common depth A.
Since only {p(f|Tx, D, Ap)} is known (i.e., transits with
different depths), we decompose

PUIT D, &) = [p(fITi D. Dp(Ala)dA,

where p(f|T;, D, A) is the probability of the k-th transit to have a
depth A and p(A|A) the probability to observe the depth A
knowing the existence of a common depth A. In other words,
Equation (B1) involves the likelihood of the nonperiodic transit k to
be part of a periodic transit signal with a common depth A.

Since each depth A; is found through generalized least
squares, each follows a normal distribution AN(Ay, oi),
centered on A, with variance o7 and an amplitude £y, leading
to the likelihood function

(BI)

A - Ak)z)

pUfIT D, &) = ckexp(_ 2
20k

2 https://github.com/dfm/tinygp
2 https: //github.com/google/jax
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As for the common transit depth A, it can be estimated through
the joint probability of all other transit depths than A, such
that

K
A~ T MA;, o),

i=k
with
K K A
Lz =3 Lz and =02y % (B2)
o i=k Oi i=k Oi
Hence
- 1 (A — A)?
AlA) = ——exp| ———|.
We can now rewrite Equation (B1) as
p(fITk, D, A)
(A - AY? (A - AP?) <
———|dA.
fexp( > 2 )exp( 52

The integral in this equation is a product of Gaussian integrals
that can be obtained analytically, leading to

o} 1 (Ap — A)?
T., D, A) = L —k  ex __k—.
P17k ) k pER Pl e
Finally,
K L
Inp(fIP, To, D, A) = Y In Ly — EZ
k k
A)2
(m(Uk) —In(o? 4+ o}) + %) (B3)
oyt o

the log-likelihood of the data given a periodic transit signal of
period P, epoch T, duration D, and common depth A. In order
to reduce the number of times Equation (B2) is computed, we
adopt the biased estimates

éL Z

> and
so A and o are independent of k in the last sum of Equation (8).

(B4)

CY=

o2 o;
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