Patterns of Inquiry in a Community Forum for
Legal Compliance with Privacy Law

Sarah Santos*, Sara HaghighiT, Sepideh Ghanavati*, Travis D. Breaux', Thomas B. Norton?
*Software and Societal Systems Department, Carnegie Mellon University, Pittsburgh, Pennsylvania
{ssantos, tdbreaux} @andrew.cmu.edu
fSchool of Computing and Information Science, The University of Maine, Orono, Maine
{sara.haghighi, sepideh.ghanavati} @maine.edu
fCenter on Law and Information Policy, Fordham University School of Law, New York, New York
{tnorton1} @law.fordham.edu

Abstract—Software developers have variable access to legal
advice depending on the size and maturity of their organization.
To supplement direct access to legal counsel, some developers
seek advice through public forums, such as Reddit. This paper
presents an exploratory case study to analyze questions posted
on Reddit that concern compliance with the EU General Data
Protection Regulation (GDPR). We analyze seven posts, selected
using stratified sampling, then extract and code facts within
the post to discover a taxonomy of discourse patterns, which
describes how developers reason over legal privacy requirements.
We report results on types of facts, their conclusory statements,
and the main focus areas of developers when seeking legal advice.

Index Terms—requirements, legal compliance, forums

I. INTRODUCTION

Software developers must comply with various regula-
tions, such as the EU General Data Protection Regulation
(GDPR) [30]. In large organizations, developers work within a
privacy program managed by in-house legal counsel that helps
them assess privacy and legal risk or implement code design
reviews to ensure compliance. Small organizations, including
start-ups, often rely on hired outside counsel to set up their
privacy posture (e.g., write privacy notices, recommend third
parties, etc.). In this setting, access to knowledge and best
practices can be inconsistent and incomplete, leaving devel-
opers to seek advice on public forums [9], [27], [29], [39].

In this paper, we study discussions on the Reddit forum
r/GDPR to examine how developers talk about ambiguous
legal requirements [2], [26]. These forums show how in-
teractive discussions among developers and subject matter
experts can help developers build their understanding of how
to interpret legal terminology, what legal requirements mean
in practice, and how to avoid non-compliant edge cases in
design. In general, we focus on posts by those who are likely
developers or who are asking software development-related
questions, with a specific design description in their posts.
The discourse patterns offer insight into the information needs
of developers and the structure of arguments in support of
or against compliance claims. Using stratified sampling, we
randomly select seven posts from the r/GDPR subreddit, which
cover a range of GDPR topics including consent, exemptions,
retention, de-identification, user access to their data, and third-
party practices to conduct our case study analysis. We extract

facts presented in Reddit discourse and code them with a
grounded theory approach. Our findings present taxonomies
of fact types and systems and an analysis of how facts are
organized to understand legal compliance.

The results show that, on average, conclusory statements
make up ~18.9% of a Reddit post’s summary, suggesting
that developers provide minimal conclusory inferences about
“why” and “how” their software could satisfy a requirement.
Instead of inferential statements, developers focus on pro-
viding descriptive premises, which is ~81.1% of a typical
post’s summary. 30.4% of facts are about the interface between
software and its broader context, 34.2% are solely about
software design, and 35.4% are purely about the wider world,
including the legal context.

II. BACKGROUND AND RELATED WORK

A. Grounded Theory

Grounded theory is an inductive research process in which
theory emerges from the analysis of data [38]. In this research
approach, analysts often code a dataset, a process called
coding [32], and then interpret the codes to create a new
artifact (a theory) that describes or explains the data [38].
In requirements engineering, this method has been used to
discover requirements artifacts that generalize and originate
in the data, such as personas [19] and use cases [43].

Alternatively, grounded theory has been used to construct
models or taxonomies that explain phenomena observed in
the data [3], [7]. In these examples, the theory aims to gener-
ally describe or explain how phenomena produce engineering
behavior, whether this covers the communication methods of
developers [7] or the authorship of legal requirements [3].

In software engineering, Stol et al. argue that grounded
theory methods should meet specific reporting standards [37].
In this paper, we employ open coding [32], a commonly used
technique in conjunction with developing a grounded theory.
Similar to [3], [7], we are interested in understanding the
concepts and relations that describe patterns in a dataset. This
effort is exploratory and does not lead to a substantive theory.

B. Satisfiability Arguments

The notion of satisfiability has been applied to requirements
engineering through prior work on formal methods and model
checking of formalized requirements. Cimatti et al. [6] studied
automatically verifying requirements using satisfiability pro-
cedures from satisfiability modulo theory. Zahid et al. [44]
surveyed various studies of formal methods for requirements
in industrial-control systems. Other research efforts focus on
translating natural language requirements into formal logic [4].

Goals, which describe requirements to be achieved, main-
tained, or avoided [8], can be satisfied using formal arguments.
In goal modeling, satisfaction is realized through logical
AND/OR refinement and goal decomposition links to sub-
goals, and through obstacles and their countermeasures [22],
quantitatively and qualitatively [1], [25]. A goal’s satisfiability
is calculated from the total or partial satisfiability of sub-goals,
which relies on various numerical probabilities and tolerances.
Differences in satisfiability can be used to prioritize among
multiple design alternatives. Van Zee et al. use argument
schemes to capture stakeholder discussions about the accept-
ability of goal model elements [45]. Building on this work,
we explore legal requirements’ satisfiability for software.

Departing from formal methods to compute satisfiability,
we aim to understand informal, natural language arguments
for or against the satisfiability of legal requirements. In this
respect, stakeholders must assess whether a particular design
description satisfies the intent of a legal requirement. We draw
on the study of logical arguments in fields like philosophy, law,
and linguistics. Toulmin [40] defines three essential elements
of an argument: 1) claim, a central assertion the argument aims
to prove, 2) data or evidence, a supporting reason backing a
claim, and 3) warrant, an assumption linking the data to the
claim. Searle [34] offers additional nuance to Toulmin’s data
with his distinction of brute versus institutional facts: brute
facts exist independently of any social institution (e.g., the
Earth is 93 million miles from the Sun), whereas institutional
facts rely on some human context or social reality (e.g., she
is a student at Carnegie Mellon University). This distinction
of fact types adds additional properties to the supporting
evidence in Toulmin’s argument scheme. We build on these
ideas when analyzing the reasoning roles of sentences in
developer discussions. We combine Toulmin’s framework with
concepts from legal reasoning, namely the use of premises and
conclusions for legal arguments [24].

We also draw on discourse relations from linguistics, which
provide a framework to analyze sentence composition and
dependencies between sentences [35]. We are specifically
interested in logical dependencies between sentences assem-
bled to argue for a claim of legal satisfiability. We aim to
annotate units of discourse, sourced from a corpus of developer
discussions, with reasoning properties rooted in patterns of
argument from Toulmin [40], Searle [34], and Levi [24].

III. METHOD AND APPROACH

We employ a case study research design that is both
exploratory to answer “what” questions and explanatory to

answer “how” questions [42]. Our research questions are:
RQ1: What types of information do developers provide when
asking questions about compliance on online forums?
How do developers arrange this information to structure

an argument for or against requirements satisfiability?

RQ2:

A. The Case: /GDPR

We select the r/GDPR forum on Reddit, which is highly
active (i.e., over 52 million active daily users in 2019 [20]),
covers a diverse range of GDPR topics, and presents rich
descriptions of software features under GDPR. The platform
invites contributors to ask and answer a range of questions
about GDPR, from how to handle edge cases in data subject
access requests [14], to the legality of scraping anonymous
public data [15], to learning general best practices for data
privacy [11]. These discussions are technical in both legal
and software domains, providing insight into how GDPR
concepts are and should be implemented in practice. Con-
tributors include data controllers and processors, which the
GDPR [30] defines, respectively, as the persons who determine
“the purposes and means of the processing of personal data”
and who process “personal data on behalf of the controller.”
The data controller may or may not be the party collecting the
data from a data subject, whereas the data processor is often
the organization representing the developer who is seeking
clarification about whether an envisioned or implemented
feature is GDPR compliant.

As an example, one post [13] with a title, “Is this legal?”,
contains a picture of a paywall banner that raises legal con-
cerns. The banner appears after a user rejects cookies and
only allows access if the user either pays a fee or registers
an account with only five days of cookie-free access. GDPR
requires consent to be freely given, which means there is no
external pressure compelling a user to give consent [12]. These
pressures can include a range of negative consequences for
refusing consent, e.g., a power imbalance, detriment, condi-
tionality, etc. [10]. The paywall banner’s restrictions highlight
potential detriments, e.g., a financial burden via the fee, which
may prevent freely given consent. The example illustrates
either a gray area or a potential non-compliant situation
requiring further legal analysis. Developers can use this legal
analysis to inform design decisions affecting a feature’s legal
compliance.

B. Data Preparation

We selected seven posts by different authors from r/GDPR
that were posted between March and August 2023. The
posts were selected using stratified sampling from GDPR-
related topics: consent, de-identification, retention, data subject
access, disclosure to third parties, and legal exemptions.

Reddit users exhibit varying stylistic differences in tone
and style. To standardize the tone and style and generate text
with simpler, more atomic statements, we summarize both the
title and body for each post using gpt-4-0613 with default
parameter settings (temperature= 0.7), a system message of
“You are a helpful assistant.”, and this prompt template:

Please summarize the following scenario:

{post_title} {post_body}

The summaries normalize differences in point-of-view to a
third-person voice rather than a first-person voice specific to
a role (e.g., a web developer versus a website owner). They
also help reduce various emotive phrases, which are typically
irrelevant to evaluating factual evidence for legal compliance
(e.g., “I'm sorry if this might seem prosaic...”, “I’m not entirely
clear...”, “guidance would be much appreciated...”, etc.).

Here is an original post with its generated summary. Note
how the summary is more concise, has a neutral tone, and
standardizes the point of view to third-person voice:

Example 1 (Generated summary sample):
Original Reddit Post

Hello everyone
I need some help with GDPR compliance for my
website. Here’s the situation: my website is
hosted in Europe and it contains a third-party
integration with LaunchDarkly, a company based
outside of Europe. While the data sent to
LaunchDarkly does not include any personal
information, users’ browsers still establishes a
connection to their servers, which could
potentially reveal IP addresses.
As the website owner, I’m wondering if I have
any obligation to obscure these IP addresses,
even though I don’t process or store them. I'm
not entirely clear on what GDPR requires in this
situation, so any advice or guidance would be
much appreciated. Thanks in advance!

Generated Summary

The website owner is seeking help regarding GDPR

compliance for their website. The website
integrates with a third-party company called
LaunchDarkly, which is based outside of Europe.
Although the data sent to LaunchDarkly does not
contain personal information, users’ browsers
establish a connection to their servers,
potentially revealing IP addresses. The website
owner wants to know if they are obligated to
hide these IP addresses, even though they do not
process or store them. They are unsure about
the requirements of GDPR in this situation and
are seeking advice and guidance.

The seven generated summaries served as our target dataset
for manual analysis, available in this public workbook.

C. Analysis Method

Our method aims to discover the components that comprise
a satisfiability argument, which we define as a unit of logical
discourse that presents evidence, as premises, to support a
conclusion about whether a software system does or does not
satisfy some legal requirements. Our analytical objective is
to discover patterns of constructing arguments for or against
a claim about whether a software feature satisfies a legal
requirement. The method proceeds in two steps: (1) we extract
atomic facts from Reddit post summaries; (2) we open code
these facts based on their role in supporting an argument.

1) Extracting Facts: For each sentence in a generated
summary, we manually extract facts, where a fact is an atomic
simple sentence with a single subject, verb, and (optional)
object. A complex or compound sentence may include addi-
tional clauses, which we itemize into separate facts during this
analytical step. Note that facts are not necessarily descriptive
truths, but comprise a mix of indicative statements about “what
is” and optative statements about “what should be” [18]. We
do not exclude facts present in the source sentence, even if
they are not about the software’s design or legal context.

A single sentence in a summary can yield one or more facts.
For example, consider the following sentence from which we
extract three facts, I'1, F'2, and F'3:

Example 2 (Sample source sentence):

The website owner is seeking help regarding
GDPR compliance for their website.

Facts:

F1 There is a WEBSITE.

F2 WEBSITE is owned by an entity, OWNER.

F3 OWNER wants help with GDPR compliance for WEB-
SITE.

During fact extraction, we also extract variables, which are
the nominal agents involved in data processing or controlling,
typically expressed as a noun or noun-phrase. Example 2
shows the extracted variables, WEBSITE and OWNER.

2) Coding Facts: We employed open coding [32] to create a
shallow taxonomy of the fact types expressed by Reddit users.
The taxonomy aims to clarify what phrases constitute the
minimal unit of information needed to construct compliance
questions and answers, and how those units compose to answer
compliance questions. The coded units are then analyzed in a
second step to identify patterns of facts.

For each extracted fact, we begin by coding the fact type,
which indicates its role in a satisfiability argument. We began
without an initial set of codes and iteratively reviewed the list
of facts to discover these types. When we discovered a new
type, we iteratively reviewed the existing fact types to ensure
there were no overlaps. Where an overlap was possible, we
reviewed the coded facts to decide if the previously identified
facts should be re-coded using the newly discovered type.
After coding 48 facts, the list of fact types had saturated,
i.e., every fact subsequently reviewed fit one of the previously
identified fact types, and no new fact types were discovered.
We report the list of fact types in Section IV.

Next, we performed a second, higher-level round of analysis
to code reasoning properties of fact types, which describe a
type’s role in logical reasoning. We define reasoning prop-
erties as any feature of a fact type that describes how that
type is used in or appears in an argument. We identify two
specific reasoning properties for a fact type: 1) its reasoning
role, and 2) its presentation style. A type’s reasoning role
captures how the type is used in an argument. It is the
logical function that a fact type plays in an argument, such
as to provide evidence or infer a conclusory statement from

https://docs.google.com/spreadsheets/d/14ZMROogl1QSgotbIm5bgHUujqlDePklmZOC6rKmlDpc/edit?usp=sharing

provided evidence. Reasoning roles are determined by a fact’s
dependencies and relations to other facts in a given argument.
A type’s presentation style describes how the type appears in
an argument, such as explicitly stated or implicitly deduced.

When coding reasoning properties, we applied these to fact
types, rather than individual facts themselves. Our goal was to
identify broader reasoning patterns that remained consistent at
a higher level of abstraction above individual facts. We then
arranged fact types as “leaf” nodes in a taxonomic structure,
wherein parent nodes represent reasoning properties inherited
by child nodes. Each reasoning property corresponds to a layer
in the taxonomy (see Figure 1).

Finally, we performed a third round of analysis at the
fact level to tag each fact with its relevant system, i.e., the
physical or conceptual entity that a fact belongs to. We
then arranged the possible systems in a taxonomic structure,
which is separate but parallel to the taxonomy of reasoning
properties. Figure 2 in Section IV shows the taxonomy.

IV. RESULTS

We now present our results, including the taxonomy of fact
types and their frequencies, and observed discourse patterns.

A. Taxonomy of Fact Types

The coding process described in Section III-C2 yielded six
atomic types of facts (i.e., the “leaf” nodes of our taxonomy
of reasoning properties). Each fact type is defined in part by
a combination of higher-level reasoning properties. We first
formalize the principles of reasoning properties and then apply
those properties to define the fact types.

Our taxonomy organizes each fact type under two top-
level classes of reasoning roles: premise and conclusion.
Drawing from Levi’s work on legal reasoning [24], as well
as argument patterns on the LSAT [16], these categories serve
our goal of understanding developers’ reasoning patterns to
construct satisfiability arguments. We define a premise as a
descriptive statement taken to be true and that is used as
evidence to support a claim or contextualize a query, i.e., to
substantiate a conclusion. For example, the following fact is a
premise: “OWNER does not process nor store IP_ADDRS.”
This premise is used to contextualize the following query,
which forms a “conclusion” of the source summary: “Must
OWNER obscure IP_ADDRS?”

We define a conclusion as an inferential statement whose
logical validity is not presumed or known and that is supported
or contextualized by other facts (premises). An example of a
conclusion in the form of a claim is: “COMPANY claims it
has immunity from GDPR, given Fact 26.” Conclusions can
also appear in the form of a query: “How can REQUESTS
processing be simplified?”, or as implications derived from
other premises, such as: “APP is not developed by a company.”
This implication follows from two premises: “APP is devel-
oped by a group of individuals, DEVS.”, and “DEVS are not
a company.”. During the coding process, we identify premises
that directly support each conclusion fact.

Note that conclusions can support other conclusions. In
other words, intermediate conclusions act as premise inputs
for “downstream” conclusions. Formally, the conclusion class
can have a recursive relationship to itself. In our analysis,
we found that implications are most commonly intermediate
conclusions, serving as evidence for some final claim or query.

We further organize facts into two presentation styles:
explicit facts appear directly in the source sentence; and
implicit facts are derived by using either 1) logical deduction
for implications, or 2) critical analysis for assumptions, to
identify missing information needed to justify why premises
are relevant to and sufficient in supporting a conclusion [40].
During the coding process, we identify explicit facts that
directly support each implied fact. Finally, the leaves show
the six atomic fact types, which we define as follows:

1) Fixed Fact. An indicative statement in the source text
that is taken to be true in the scope of a satisfiability
argument.

o E.g.: “There is a person entity, PERSON, who works
with COMPANY. ”

2) Hypothetical Fact: A descriptive statement explicitly
stated in the text but, unlike a fixed fact, qualified
with a modal verb, such as “may”, “might”, etc. These
modal verbs represent multiple possible states for a

given system.
o E.g.: “The databases may be stored in the US.”

3) Implication: An implied descriptive statement not ap-
pearing in the source text but that is logically derived
from explicitly stated facts.

o E.g.: “APP is based in the EU.”
o Given: “APP is developed by a group of individuals,
DEVS.” and “DEVS are all based in the EU.”

4) Assumption: An implied descriptive statement not ap-
pearing in the source text that provides a missing detail
required to connect a fixed or hypothetical fact to the
argument’s larger claim. It is analogous to a warrant in
Toumlin argument structures [40].

o E.g.: “3RD_PARTY DATA is sent by WEBSITE.”

o Given: “There is a WEBSITE.”, “WEBSITE
contains a third-party integration with
LaunchDarkly, 3RD_PARTY_LD.”, and “Data,

3RD_PARTY_DATA, is sent to 3RD_PARTY_LD.”

5) Claim: A conclusory, inferential statement in the source
text whose logical validity relies on support from
premise facts.

e E.g.: “COMPANY claims it has immunity from
GDPR, given Fact 26.”

o Given: “COMPANY is involved in crime prevention
in various centers.”

6) Query: A question statement in the source text to inquire
about an unknown claim.

o E.g.: “Must the BANNER include a ‘decline’ but-

ton?”

Reasoning),
Role Premise

T

: /N

Reasoning Properties

Conclusion

/N

(Presentation) |
\(Style \ - ‘ Explicit ‘

A

Fact Type Fixed

‘ Implicit ‘

Hypothetical Assumption

‘ Explicit ‘ ‘ Implicit

l \

Quel Claim Implication

<2

Fig. 1. Taxonomy of Reasoning Properties

Systems

Interface World

[\

General Legal

Machine

Potential
Sub-Systems »> «
Front-End Back-End

Fig. 2. Taxonomy of Systems

In parallel to reasoning properties, we observe that facts can
be organized into three systems: the machine, which directly
relates to a software system; the world, which concerns the
environment into which the software is situated, including the
broader legal context; and the interface, which captures inter-
actions between the software and its larger world environment.
These systems are modeled on the foundational distinctions
introduced by Jackson [18]. The interface system refers to the
collection and sharing of data about the world, e.g., personal
data, but not its processing, which occurs within the machine.

During open coding, we identified one sub-system under
world — the legal system, which we denote as world::legal.
world::legal applies to any fact whose purpose is compliance
related, such as understanding whether certain actions are
compliant with a particular regulation. We present examples
for each system below:

o machine: “STORE uses Google Tag Manager and Google

Analytics 4 to track data.”

o world::general: “Inaccurate tracking may cause ineffec-

tive ads.”

o world::legal: “Is it legal to send TOKEN from the EU to

the US under GDPR?”

o interface: “SAAS collects personal data, DATA.”

Our two taxonomies define the top-level classes from which
facts inherit characteristics, where a characteristic is some
reasoning property or system. Our taxonomy is visually rep-
resented as a rooted tree, where each node is a class. Directed
edges between class nodes point to sub-classes. During open
coding, each fact is assigned one fact type class and one system
class, such that the characteristics of these classes also apply
to the given fact.

For example, take the following fact: “CONNECTION can

Claim
Query

Assumption

Implication

Hypothetical Fixed Fact

Fig. 3. Average fact type composition in a Reddit post summary

reveal user IP addresses, IP_ADDRS.”. We assign it the
fact type of hypothetical fact under the interface system.
The two classes of hypothetical fact and interface produce
a combined sub-class of a hypothetical interface fact. Given
our taxonomies, this fact inherits the reasoning properties of
explicit and premise, while possessing interface characteristics
about interactions between software and the wider world.

B. Fact Type Frequencies

1) Reasoning Property Frequencies: In our analysis, we
found that developers provide minimal conclusory inferences
about “why” and “how” their software could satisfy a re-
quirement. Instead of inferential, interpretive statements (e.g.,
conclusion facts), developers focus on providing descriptive
information (e.g., premise facts). Premises make up ~81.1%
of a typical post summary, whereas conclusion facts are
only ~18.9% of an average summary. Figure 3 breaks down
frequencies by fact type for a typical post summary.

2) System Frequencies: We notice that ~34.2% of all facts
are about software design (machine), and ~35.4% are about
the wider world (world), which includes GDPR and the legal
context (~13.9% of total fact types). ~30.4% of all facts are
about the interface between software (machine) and its broader
context (world). The interface facts capture the boundary
between legal and software systems. Separating this interface
boundary into its own system, distinct from pure legal (world)
and software (machine) systems, allows us to analyze how fact
topics flow from one system to another. We discuss examples
of how facts flow through systems in Section V. Figure 4
shows frequencies of systems by fact type and reasoning role.

Fact Type
Fixed Fact
40.8%

Hypothetical Fact
0.0%

Assumption
44.4%

Machine

Implication

Reasoning Role
Claim
0.0%

Conclusion
18.2%

Premise
36.8%

Query

25.0% 40.0%

Interface 36.7% 66.7% 11.1%

0.0% 20.0% 0.0% 33.8% 9.1%

World::General 14.3% 33.3% 44.4%

75.0% 20.0% 0.0% 23.5% 9.1%

World::Legal 8.2% 0.0% 0.0%

0.0% 20.0% 100.0% 5.9% 63.6%

Fig. 4. System frequency by fact type

C. Fact Coordination Patterns

We describe how facts are arranged in a satisfiability argu-
ment, focusing on how premises are used to draw conclusions.
We visualize a satisfiability argument as an argument graph,
where each node is a variable, or a descriptive feature about a
variable, presented by some fact. We identify “edges” between
variables and feature “nodes”. These edge patterns represent
common relations that connect fact types, reasoning properties,
and systems.

1) Shared Variables Connect Premises: This edge pattern
connects variables from premise facts with a shared variable.
The edge is defined by a common variable, which refers to a
noun phrase entity, that is shared by multiple premise facts.

The edge pattern works as follows: An initial premise
declaration declares some variable X . Subsequent premises,
subsequent;, share X and add additional descriptive features
about X. This information further restricts what real-world
entity X can refer to, akin to a restrictive relative clause in
linguistics. A relative clause is defined as a dependent clause
sharing a noun phrase with the main independent clause [21].
A restrictive relative clause adds information about the shared
noun phrase that limits the meaning of that noun phrase [21].
The edge introduced here is functionally similar to a relative
clause, so we call this edge type a relative clause edge.

Here is a basic demonstration of relative clause edges,
building on Example 1 from Section III:

1) declaration = “There is a WEBSITE.”

2) subsequent_1 = “WEBSITE is hosted in Europe.”

3) subsequent_2 = “WEBSITE is owned by an entity,

OWNER.”

2) Conclusions Connect Unshared Variables: The next
edge pattern connects variables from premise facts without
any explicitly shared variable. The edge is notable since it
also has a reasoning role, namely: conclusions. We found
that conclusions (claims, queries, and implications) operate
as explicit edges tying together entities, and features about
entities, that were introduced in other, disparate facts.

The edge pattern works as follows: Various variables
A,B,...,Z are declared then described by a series of
descriptor’, premises, which is the ith premise about vari-
ables X and Y. For example, we extract the premise: “There
is a person entity, PERSON, who works with COMPANY.” In
this case, X = PERSON and Y = COMPANY.

There are implicit edges connecting entities from premises
with a shared variable (relative clause edges). For in-
stance, there are relative clause edges between descriptor}(y,
descriptor’ ,, and descriptor’; ,, which all share variable X.

However, there are initially no edges connecting enti-
ties from premises without a shared variable. E.g., some
descriptor’y is not connected to some descriptor?, ;.

A conclusion fact, concludex 4, is introduced that refer-
ences multiple variables, X and A, from unconnected facts.
This concludex 4 introduces a new edge between X and A
with additional features that X introduces for A, or vice versa.

As a concrete example, take this conclusion (a claim),
claim_company_exempt: “COMPANY claims that EX-
EMPTS applies to itself.” In our argument graph, this claim
appears as an edge connecting the entities for COMPANY
and EXEMPTS, which are two variables introduced in earlier
premises, namely: “There is a COMPANY.” and “There are
exemptions, EXEMPTS, to UK GDPR related to Crime and
Taxation.” The claim adds potentially new information about
COMPANY by relating it to EXEMPTS, and vice versa.

3) T-Shaped Network of Edges: We can visually plot the
ways that edges sharpen the contour of the “variable topology”
by using a T-shaped diagram, which we call argument graphs.
Relative clause edges typically add depth to a variable in a
given system (Figure 5). Conclusion edges often add breadth
across variables in different systems (Figure 6). We define
depth as additional knowledge about a variable within a single
system, whereas breadth is additional knowledge about rela-
tions between different systems. We discuss the significance
of these diagrams in Section V-D below.

Our T-shaped argument graphs resemble a transposed ver-
sion of Rosch’s vertical and horizontal structures for cate-
gories [31]. To use Rosch’s terms, high-level basic objects
are plotted as breadth in our graph, whereas levels of ab-
straction for basic objects are plotted as depth. A variable’s
depth, which is produced through relative clause edges that
add descriptive features about a variable, echoes Tversky’s
definition of objects as collections of compiled features [41].
These variable features are extracted during fact extraction and
compiled through relative clause edges, deepening the level of
abstraction for that variable.

V. DISCUSSION

A. Missing Information Can Inform Interactive Discourse

Implied facts highlight overlooked premises omitted by
a developer but that may be necessary to fully support a
conclusion. As described in Section IV, we identified two
types of implicit facts: assumptions and implications. These
facts do not explicitly appear in the original text and represent
unstated premises or valid logical deductions, respectively.

machine interface world

<

\ ONLINE_STORE |

OWNER
GOOGLE_ADS

BANNER

—
Relative Clause Edge
I

DECLINE BUTTON

- - >

Fig. 5. Relative Clause Edges

machine interface world::legal world::general

XEMPTS appl fo COMPANY

\ EXEI\’/{PTS |

\ COM;ANY

—
Relative Clause Edge
CRIME

IMMUNITY

- = > GDPR
Claim

CRIME_AND_TAX
DPA_18

Fig. 6. Conclusion Edges

For instance, in Example 2, we have the source sentence:
“The website owner is seeking help regarding GDPR compli-
ance for their website.” We identified one assumption from
this: “WEBSITE is hosted in Europe.” This assumption is an
obvious but necessary premise for the applicability of GDPR.
Otherwise, without this assumption, the other facts that relate
to GDPR may be irrelevant or insufficient in supporting the
argument’s claim or query. Similarly, implications may provide
crucial logical premises for evaluating requirements’ satisfia-
bility. Because these two types are unstated in the original
summary, they are the research analyst’s interpretations of the
summarized posts. The analysts’ ability to infer or deduce
the existence of implicit facts can vary due to differences in
training or other experience in formal logic and reasoning.

We find that implicit facts are occasionally uncovered in a
Reddit post through engagement with responders. The Reddit
data extends beyond the original author’s post to include
responses by responders. These responders, like research ana-
lysts, may have variable levels of expertise: some responders
in our dataset describe themselves as being former data
protection authorities (experts), while others may be fellow
developers offering their own opinions. Implicit facts could
be important sources of interrogation to assess whether the
posters or respondents also made these assumptions or held
these implications. By extending our method and taxonomy
to facts unearthed in the comments, we can better understand
how to prompt developers for missing information.

B. Hypothetical Reasoning

Hypothetical facts can help pinpoint design decisions that
alter the legal compliance of a software system. A hypo-
thetical fact presents possible alternatives. Each alternative
offers a different potential premise with different implications
for a satisfiability argument. These alternatives parallel the
speculative reasoning that a legal analyst may do to evaluate
the compliance risks of software systems. For example, we
identified the following hypothetical fact, H F":

Example 3 (Hypothetical fact, HF):

DEVS may place databases in the EU.

When constructing a satisfiability argument given HF', a
legal analyst may branch the argument into two separate
analyses: one where H F' is true (databases are in the EU), and
another analysis where H F' is false (databases are not in the
EU). This branch analysis is an exploration of the design state
space, where different regions in the space have different legal
implications. Hypothetical facts can inform how to prompt
developers and legal experts alike for information needed to
accurately traverse the design and legal state space.

Hypothetical facts also relate to the idea of missing infor-
mation introduced above, in the context of assumptions and
implications. All three fact types are opportunities to further
engage discussants in question-answering to explore the design
state space. All three types have an element of uncertainty that
must be clarified through further refinement from other facts,
or through exhaustive evaluation of all possibilities. Missing
information and implied facts present future opportunities to
engage discussants in question-answering (Q+A), potentially
in future work on Al-powered Q+A tools.

C. Gap between Premise and Conclusion

We identify a key pattern of flawed logic when coordinating
facts in a satisfiability argument. Ultimately, we want to know
what evidence is needed to answer a query or test a claim. We
also want to identify how much of this necessary evidence is
missing from the provided premises. We equate the missing
evidence with a logical flaw. The missing evidence creates
a gap between the premises and conclusions such that the
premises do not sufficiently connect to conclusions. Thus, the
premises fail to answer a query or support a claim through
logical reasoning.

The system of a premise vs that of a conclusion can
influence the relevance and effectiveness of premises. For
example, in one post summary, the first five premises establish
a design description of an online store in Italy that uses Google
Analytics. The main query is about whether a decline button is
needed to satisfy cookie consent requirements. To answer this
question, we need evidence connecting the premises, which
are in the machine and interface systems, to some world::legal
claim in the same system as the conclusion. However, the
poster attempts to answer this query with several facts in
the world::general system, which assert that declining cookies
leads to wasted money. These facts fail to close the gap be-
tween the world::legal query and machine/interface premises.

As a result, the premises do not answer the query. Argument
graphs can help identify these gaps in logical reasoning.

D. Inflection Points in Argument Graphs

Argument graphs, introduced in Section IV-C3, can help a
developer make design decisions in two main ways: evaluating
argument strength and finding inflection points.

Firstly, the graph may illuminate the strengths or weak-
nesses of a developer’s satisfiability argument. For instance,
the analysis may yield a diagram with an incorrect conclusion
edge between some variable X and some feature A. This
conclusion edge represents the developer’s understanding of
the requirement and the software system. However, that un-
derstanding may be flawed, as described in Section V-C. The
visual representation of this flawed reasoning, expressed as
an incorrect edge, reduces time spent clarifying relationships
expressed in textual descriptions.

Besides argument evaluation, the graph can assist in identi-
fying “inflection points”, which are certain pivotal facts about
software design that trigger non-compliance. For instance, take
the following hypothetical fact: “DEVS may place databases in
the EU.” This is an inflection point that could decide whether
international transfers take place, which would trigger various
GDPR requirements for data transfers to third countries [30].

An inflection point may also produce contradictory conclu-
sions for fulfilling a legal requirement. In one example, we
have several contradictory claims about whether a company
is exempt from certain GDPR requirements: “COMPANY
claims that EXEMPTS applies to itself.” vs “PERSON claims
EXEMPTS is for law enforcement.” and “COMPANY is not
law enforcement.” This inflection point raises design decisions
about what the company’s software can and cannot legally
do if the company is not exempt. Namely, the company’s
software may not be able to perform certain functionalities
if the exemptions do not apply.

E. Trace Accountability through Systems

An argument graph allows us to visually trace the inflection
points where stakeholders in different systems are accountable
for legal compliance. Analyzing the flow of facts through
systems can help organizations identify which parties, e.g.,
developers or lawyers, are responsible for inflection points that
trigger non-compliance. This can pinpoint accountability for
who should resolve issues in legal requirements satisfiability.

FE. Threats to Validity

Construct validity is the correctness of operational measures
used to collect data, build theory, and report findings from
the data [42], and the extent to which an observed mea-
surement fits a theoretical construct [36]. In this study, we
examined Reddit posts to develop a taxonomy of fact types
that contribute to a legal argument. The taxonomy concepts
saturated after coding 48 facts, which shows the reliability
and minimality of the taxonomy to cover the space of fact
types within the post. Because the labels are assigned by a
single analyst, a threat to validity is whether other analysts
would assign the same label to the same statement or phrase.

To mitigate this threat, we conducted a study to measure the
inter-rater reliability of the labeling task by three analysts. All
analysts specialize in computer science research. Our initial
Fleiss Kappa values are: 0.65 for fact types, 0.21 for systems,
and 0.49 for reasoning roles. After this round of coding, the
analysts met to discuss and improve the code definitions; then
they re-coded the data. This resulted in improved Kappa values
for all categories: 0.72 for fact types, 0.47 for systems, and
0.61 for reasoning roles. Using Landis and Koch’s interpreta-
tion scale [23], we report substantial agreement for fact types
and reasoning roles and moderate agreement for systems.

Internal validity is the extent to which measured variables
cause observable effects in the data [42]. The patterns identi-
fied from the fact types rely on a two-step process: itemizing
the facts, and labeling the facts.

External validity determines the scope of environmental
phenomena or domain boundaries to which the theory and
findings generalize [42]. This study examined only seven
Reddit posts, while there are hundreds of such posts to analyze.
Therefore, the results are only limited to this dataset, and
analysis of additional posts is needed to improve generaliz-
ability. Our stratified sampling process relied on opportunistic
decisions to pick Reddit posts with a variety of question topics.
We selected these from a pool of ~50 posts published in
the same time window. Extending this window may improve
generalizability. Lastly, our methodology is time-intensive and
spans multiple steps, some of which require manual interpre-
tation. These factors pose a threat to scaling our approach.
Finding fact coordination patterns may prove particularly
difficult to automate. This analysis involved reasoning over
discourse-level linguistic units, which is an open challenge in
structured commonsense reasoning tasks for NLP [46].

VI. CONCLUSION

Our case study provides a taxonomy for annotating reason-
ing properties in developer discourse regarding software and
legal requirements. Additional studies are needed to extend
the annotated dataset beyond a single case study. Ultimately,
these empirical findings can inform the design of chat-based
interfaces in Q+A tools to check requirements satisfiability.
By annotating Reddit discussions using grounded theory, we
aim to understand the underlying reasoning process used by
developers to assess the legal compliance of their software.

More generally, our taxonomy of fact types can be used for
prompt engineering in Al systems that check legal compliance.
Future studies can explore optimal arrangements of fact types
in a prompt, as a way to maximize the accuracy of language
models when evaluating legal requirements satisfiability. Al-
though the manual interpretations of our approach may prove
difficult to automate, our study can serve as a catalyst for
fostering meaningful discourse about GDPR requirements.

ACKNOWLEDGMENT

This research was funded by NSF Awards #2007298,
#2217572, #2217573, and NSF CAREER #2238047.

[2]

[3]

[5]
[6]

[7]

[9]

[10]
[11]
(12]
(13]
[14]
[15]

[16]
(17]

(18]

[19]

[20]

[21]

[22]
[23]
[24]

[25]

[26]

[27]

[28]

REFERENCES

D. Amyot, S. Ghanavati, J. Horkoff, G. Mussbacher, L. Peyton, E. Yu,
“Evaluating goal models within the goal-oriented requirement language,”
International Journal of Intelligent Systems, Special Issue:Goal-driven
Requirements Engineering, 25(8): 841-877, 2020.

J. Bhatia, T. D. Breaux, J. R. Reidenberg and T. B. Norton, ”A Theory of
Vagueness and Privacy Risk Perception,” 2016 IEEE 24th International
Requirements Engineering Conference (RE), Beijing, China, 2016.
T.D. Breaux, M.W. Vail, A.I. Anton. “Towards regulatory compliance:
Extracting rights and obligations to align requirements with regulations.”
14th IEEE International Requirements Engineering Conference, pp. 49-
58, 2006.

I. Buzhinsky. Formalization of natural language requirements into tem-
poral logics: a survey. 2019 IEEE 17th International Conference on
Industrial Informatics (INDIN), 1, 400-406. 2019.

California Consumer Privacy Act of 2018, Cal. Legis. Serv, 2018.

A. Cimatti, M. Roveri, A. Susi, and S. Tonetta. “Formalization and
Validation of Safety-Critical Requirements”. Electronic Proceedings in
Theoretical Computer Science, 20:68—75, Mar. 2010. Open Publishing
Association.

D. E. Damian, D. Zowghi, “The impact of stakeholders’ geographical
distribution on managing requirements in a multi-site organization,”
IEEE Joint International Conference on Requirements Engineering, pp.
319-328, 2002.

A. Dardenne, A. Van Lamsweerde, and S. Fickas, “Goal-directed
requirements acquisition,” Science of Computer Programming, 20(1):
3-50, 1993.

Z. Delile, S. Radel, J. Godinez, G. Engstrom, T. Brucker, K. Young,
S. Ghanavati, “Evaluating Privacy Questions From Stack Overflow: Can
ChatGPT Compete?”,. In 2023 IEEE 31st International Requirements
Engineering Conference Workshops (REW) (pp. 239-244). IEEE, 2023,
September.

EDPB, ’Guidelines 05/2020 on consent under Regulation 2016/679°, 4
May 2020 (Version 1.1)

https://www.reddit.com/r/gdpr/

GDPR, Chapter 2, Article 7
https://www.reddit.com/r/gdpr/comments/1bfgnmt/is_this_legal/
https://www.reddit.com/r/gdpr/comments/14kmiuj/making_a_request_
for_data_that_i_can_access_on_my/
https://www.reddit.com/r/gdpr/comments/1bmosqu/scraping_involving_
public_pii_data_which_are/
https://www.thinkinglsat.com/articles/argument- parts-and-indicators

R. Hoda, “Socio-Technical Grounded Theory for Software Engineering,”
IEEE Transactions on Software Engineering, 48(10): 3808-3832, 2022.
M. Jackson. “The world and the machine,” 17 th International Confer-
ence on Software Engineering, pp. 283-292, 1995.

S. Jantunen, D.C. Gause, “Using a grounded theory approach for ex-
ploring software product management challenges,” Science of Computer
Programming, 152: 1-37, 2008.

J. Kastrenakes. (December 1, 2020). “Reddit reveals daily active user
count for the first time: 52 million”. The Verge.

E. Keenan, Relative Clauses, In T. Shopen (Ed.), Language Typology
and Syntactic Description (Vol. 2, pp. 141-170), Cambridge: Cambridge
University Press, 1985.

A. van Lamsweerde. Requirements Engineering: From System Goals to
UML Models to Software Specifications, Wiley, 2009.

J. R. Landis and G. G. Koch, “The Measurement of Observer Agreement
for Categorical Data,” Biometrics, vol. 33, no. 1, pp. 159-174, 1977.
Levi, E. H. ”An Introduction to Legal Reasoning,” University of Chicago
Law Review: Vol. 15: Iss. 3, Article 2, 1948.

E. Letier, A. van Lamsweerde. “Reasoning about partial goal satisfaction
for requirements and design engineering.” 12th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering, pp. 53-62,
2004.

A. K. Massey, R. L. Rutledge, A. I. Antén and P. P. Swire, "Identifying
and classifying ambiguity for regulatory requirements,” 2014 IEEE 22nd
International Requirements Engineering Conference (RE), Karlskrona,
Sweden, 2014.

M. Prybylo, S. Haghighi, S. T. Peddinti, S. Ghanavati, “ Evaluating
Privacy Perceptions, Experience, and Behavior of Software Development
Teams”, 2024, https://doi.org/10.48550/arXiv.2404.01283.

L. Michaelis. Sign-Based Construction Grammar. The Oxford Hand-
book of Linguistic Analysis, Oxford University Press, 2015.

[29]

[30]

(31]

(32]

(33]

(34]
[35]

[36]

[37]

[38]

[39]

[40]
[41]
[42]

[43]

[44]

[45]

[46]

J. Parsons, M. Schrider, O. Ogunlela, and S. Ghanavati, “Understanding
Developers Privacy Concerns Through Reddit Thread Analysis,” in Joint
Proceedings of REFSQ-2023 Workshops, Doctoral Symposium, Posters
and Tools Track and Journal Early Feedback co-located with the 28th
International Conference on Requirements Engineering: Foundation for
Software Quality (REFSQ 2023), Barcelona, Catalunya, 2023.
Regulation (EU) 2016/679 of the European Parliament and of the
Council of 27 April 2016 on the protection of natural persons with
regard to the processing of personal data and on the free movement of
such data, and repealing Directive 95/46/EC (General Data Protection
Regulation), 2016, OJ L 119/1.

E. Rosch, Principles of Categorization, E. Rosch and B. Lloyd (eds),
Cognition and categorization, 27-48, Hillsdale, NJ: Lawrence Erlbaum,
1978.

J. Saldana, The Coding Manual for Qualitative Researchers, SAGE
Publications, 2015.

S. Santos, T. Breaux, T. Norton, S. Haghighi and S. Ghanavati, Require-
ments Satisfiability with In-Context Learning, accepted to the 32nd IEEE
Requirements Engineering Conference, Reykjavik, Iceland.

J. R. Searle, Constitutive rules (Version 1). Universita degli studi di
Sassari, 2018.

D. Schiffrin, Discourse Markers. Cambridge: Cambridge University
Press, 1987.

W.R. Shadish, T.D. Cook, and D.T. Campbell. Experimental and Quasi-
experimental Designs for Generalized Causal Inference. Houghton-
Mifflin Company, Boston, Massachusetts, 2002.

K-J. Stol, P. Ralph, B. Fitzgerald. “Grounded theory in software en-
gineering research: a critical review and guidelines.” 8th International
Conference on Software Engineering, pp. 120-131, 2016.

A. Strauss, J. Corbin, Basics of Qualitative Research. Thousand Oaks,
CA, USA: Sage, 1990.

M. Tahaei, K. Vaniea, and N. Saphra, “Understanding privacy-related
questions on Stack Overflow”, in Proceedings of the 2020 CHI Confer-
ence on Human Factors in Computing Systems, pp. 1-14, 2020.

S. Toulmin, The Uses of Argument, 2nd ed. Cambridge University Press,
2003.

A. Tversky, Features of similarity, Psychological Review, 84(4),
327-352, 1977.

R.XK. Yin. Case study research, 6th ed., In Applied Social Research
Methods Series, v.5. Sage Publications, 2018.

D. Wurfel, R. Lutz, S. Diehl. “Grounded requirements engineering:
An approach to use case driven requirements engineering,” Journal of
Systems and Software, 11: pp. 645-657, 2016.

F. Zahid, A. Tanveer, M.M.Y. Kuo, et al. A systematic mapping
of semi-formal and formal methods in requirements engineering of
industrial Cyber-Physical systems. J Intell Manuf 33, 1603-1638 (2022).
https://doi.org/10.1007/s10845-021-01753-8

M. van Zee, F. Bex, S. Ghanavati. “Rational GRL: A framework for
argumentation and goal modeling,” Argument and Computation, 12(2):
191-245, 2021.

L. Zhou, W. Wang, T. Liu, and J. Zhang, “‘Cross-Modal Fusion for Image
and Text Retrieval using Transformer-based Models,” arXiv preprint
arXiv:2210.07128, 2022.

https://www.reddit.com/r/gdpr/
https://www.reddit.com/r/gdpr/comments/1bfgnmt/is_this_legal/
https://www.reddit.com/r/gdpr/comments/14kmiuj/making_a_request_for_data_that_i_can_access_on_my/
https://www.reddit.com/r/gdpr/comments/14kmiuj/making_a_request_for_data_that_i_can_access_on_my/
https://www.reddit.com/r/gdpr/comments/1bmosqu/scraping_involving_public_pii_data_which_are/
https://www.reddit.com/r/gdpr/comments/1bmosqu/scraping_involving_public_pii_data_which_are/
https://www.thinkinglsat.com/articles/argument-parts-and-indicators

	Introduction
	Background and Related Work
	Grounded Theory
	Satisfiability Arguments

	Method and Approach
	The Case: r/GDPR
	Data Preparation
	Analysis Method
	Extracting Facts
	Coding Facts

	Results
	Taxonomy of Fact Types
	Fact Type Frequencies
	Reasoning Property Frequencies
	System Frequencies

	Fact Coordination Patterns
	Shared Variables Connect Premises
	Conclusions Connect Unshared Variables
	T-Shaped Network of Edges

	Discussion
	Missing Information Can Inform Interactive Discourse
	Hypothetical Reasoning
	Gap between Premise and Conclusion
	Inflection Points in Argument Graphs
	Trace Accountability through Systems
	Threats to Validity

	Conclusion
	References

