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Textureless Deformable Object Tracking
with Invisible Markers

Xinyuan Li, Yu Guo, Yubei Tu, Yu Ji, Yanchen Liu, Jinwei Ye Senior Member, IEEE , and Changxi Zheng

Abstract—Tracking and reconstructing deformable objects with little texture is challenging due to the lack of features. Here we
introduce “invisible markers” for accurate and robust correspondence matching and tracking. Our markers are visible only under
ultraviolet (UV) light. We build a novel imaging system for capturing videos of deformed objects under their original untouched
appearance (which may have little texture) and, simultaneously, with our markers. We develop an algorithm that first establishes
accurate correspondences using video frames with markers, and then transfers them to the untouched views as ground-truth labels. In
this way, we are able to generate high-quality labeled data for training learning-based algorithms. We contribute a large real-world
dataset, DOT, for tracking deformable objects with little or no texture. Our dataset has about one million video frames of various types
of deformable objects. We provide ground truth tracked correspondences in both 2D and 3D. We benchmark state-of-the-art methods
on optical flow and deformable object reconstruction using our dataset, which poses great challenges. By training on DOT, their
performance significantly improves, not only on our dataset, but also on other unseen data.

Index Terms—Deformable Object Tracking, Deformable Surface Reconstruction, Invisible Light Imaging
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1 INTRODUCTION

NUMEROUS applications, ranging from animation syn-
thesis to robotic manipulation, need to track corre-

spondences on deformable objects in order to understand
their motion and deformation. Typical examples include
cloth acquisition [1], [2] and gesture recognition [3], [4].

Many algorithms rely on surface texture to establish
correspondences [5], [6], [7], [8], [9], [10], [11], [12], [13].
However, when an object has little or no texture—such as
human skin or a piece of white paper—these methods all
fall short. Some recent works train neural networks [14],
[15], [16] to predict correspondences on textureless surfaces.
Yet these methods are usually specific to a certain dataset.
Cross-category generalization remains challenging. Further-
more, learning-based methods all face a chicken-and-egg
problem: in order to obtain a dataset for training, one needs
ground truth correspondences on textureless objects in the
first place. A straightforward solution is to attach markers to
explicitly introduce features. However, most markers would
change the object’s original appearance, making it hard to
pair correspondences with the untouched textureless look.

In this paper, we introduce a novel type of “invisible
markers” that add features to a surface without changing its
appearance under normal lighting conditions. Our makers
are made with fluorescent dyes, which are only visible under
ultraviolet (UV) light, whereas invisible under normal light
(in the visible spectrum). To capture the object in its original
appearance, as well as with markers, we build a multi-
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Fig. 1. Sample data of our deformable object tracking dataset (DOT).
DOT has about one million video frames, featuring the deformation of
various kinds of objects. For each deformation, we provide multi-view
video sequences with and without markers, recovered 3D models, and
ground truth surface correspondences in both 2D and 3D.

view imaging system with UV lights: under UV lights, the
markers would appear, providing rich features for accu-
rate correspondence matching and tracking; under normal
lights, the markers become invisible, allowing us to record
the object’s original appearance. The two types of lights are
triggered in an interleaving fashion with a delay of a few
milliseconds. In this way, videos with and without markers
are synced.

Since the two types of videos are captured from different
viewpoints, we transfer the tracked correspondences from
videos with marker to the ones without. Correspondences
are first matched using the marker videos for 3D recon-
struction (among multiple views) and tracking (across time).
We then devise a template-based method for registering
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the tracked correspondences onto the recovered 3D models.
Finally, the correspondences are projected back into marker-
free videos as ground truth labels.

Using our imaging system and reconstruction approach,
we collect a large dataset for deformable object tracking
(DOT). Our dataset contains ∼200 deformable motions of
four types of objects: rope, paper, cloth, and hands (see
examples in Fig. 1). Their original appearance has various
levels of textures, ranging from repetitive patterns to little
or even no texture. For each motion, we provide 2D videos
with and without markers from multiple viewpoints, 3D
models of the deformed object, and tracked ground truth
correspondences in both 2D and 3D. In total, our dataset
has around one million video frames. Experimental results
show DOT poses challenges to deformable surface tracking
and reconstruction methods. Whereas by training on DOT,
network performance significantly improved on weakly tex-
tured scenes, as being demonstrated on both our dataset and
another deformable surface dataset (DeSurT [13]).

In sum, our main contributions are as follows:

• A novel type of invisible marker and an imaging
system that allows simultaneous video acquisition of
deformable objects with and without markers.

• A template-based algorithm for 3D reconstruction
and transferring correspondences from marker view
to marker-free views.

• A large dataset, DOT, for deformable object tracking
with ground truth 2D and 3D correspondences.

2 RELATED WORK

Invisible light imaging. The idea of invisible light imaging
(e.g., in infrared > 750 nm or ultraviolet < 380 nm spec-
trum) has been widely explored in computational imaging.
Many combine color images with near-infrared (NIR) im-
ages for denoising [17], [18], deblurring [19], [20], super-
resolution [21], [22] and geometry estimation [23], [24], [25].
Notably, Wang et al. [26] uses infrared illumination to relight
faces, in order to reduce the effect of uneven face color
in a video conference setting. Krishnan and Fergus [17]
propose the “dark flash” that uses near-infrared (NIR) and
near-ultraviolet (NUV) flashlights to replace the dazzling
conventional flash. In another vein, Blasinski and Farrell [27]
propose using narrow-band multi-spectral flash for color
balancing, and Choe et al. [24] derive an NIR reflectance
model and use NIR images to recover fine-scale surface
geometry.

Unlike widely studied NIR imaging, ultraviolet (UV)
imaging has received much less attention. In our work, we
use the UV fluorescent substance to create invisible markers.

UV fluorescence imaging. UV fluorescence occurs when
a substance absorbs short wavelength light (such as UV
light), and re-emits light at a longer wavelength in visible
spectrum [28], [29]. This phenomenon has a wide range of
imaging applications, including forensics [30], biomedical
imaging [31], [32], and material analysis [33], [34]. In com-
puter vision, the fluorescent reflectance has been studied for
shape reconstruction [35], immersive range scanning [36],
inter-reflection removal [37], multi-spectral reflectance es-
timation [38], and material classification [39], to name a

few. Many prior works analyze the spectral response of
fluorescent reflectance, leading to techniques for appearance
separation [40], [41], fluorescent relighting [42], [43], and
camera spectral sensitivity estimation [44].

In contrast to existing works, we use UV fluorescent
markers to enrich surface features, without changing the
object’s appearance under normal lighting. We also design
an imaging system that simultaneously captures video with
and without fluorescent markers via time multiplexing.

Some prior works use UV fluorescent markers for other
applications, including medical imaging [45], robotics [46],
user interface design [47], and augmented reality [48].
Whereas we use the invisible markers for deformable object
tracking and reconstruction. Our system is of larger scale,
which is more challenging to design, build, and calibrate. In
addition, we systematically study the spectral response of
UV fluorescent dyes to guide our preparation of fluorescent
materials. We design marker patterns for different types
of objects in order to allow more robust tracking and
reconstruction.

Deformable object reconstruction & tracking. Deformable
objects are of great interest in computer vision as they
are ubiquitous in daily life and their motions are often
complex. Various sensor configurations have been explored
for capturing deformable objects, including the use of sin-
gle camera [5], [7], [8], multiple cameras [49], [50], [51],
and color cameras in tandem with depth cameras [52],
[53] and with event cameras [54]. Popular methods utilize
local appearance to find feature correspondences and then
match 2D image features to a 3D shape template for surface
reconstruction and tracking [10], [11], [12], [55]. However,
these methods are hampered when the surface has sparse
or repetitive textures or has no texture at all. In these
cases, the number of feature points is too scarce to establish
reliable matching correspondences. When the deformable
surface has some but sparse textures, dense pixel-level
template matching may be helpful [7], [8], [56], [57]. Nev-
ertheless, none of these methods can handle surfaces with
no texture—for example, a piece of white paper.

In recent years, many learning-based methods have been
proposed for tracking and reconstructing deformable sur-
faces from a single view [14], [15], [16], [58]. These methods
demonstrate great success in handling challenging cases
when an object has repetitive or little texture. A compre-
hensive dataset is critical for training the neural networks,
but datasets on deformable objects are quite limited. Most
existing datasets are specific to a certain kind of object
(e.g., [14] on clothing and [13] on paper, etc.). Furthermore,
none of the real-captured datasets provide ground truth
surface correspondences. In contrast, our DOT dataset has
∼200 deformable motions of four types of objects (i.e.,
rope, paper, cloth, and hands). Besides 2D videos with and
without markers, we also provide high-quality 3D models
and ground truth surface correspondences in 2D and 3D.

3 OUR TECHNIQUE

In this section, we present our method that utilizes in-
visible markers for deformable object reconstruction and
tracking. We first introduce the optical properties of our
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Fig. 2. (left) Illustration of the physics of fluorescence. (right) The
absorption and emission spectra of the fluorescent dyes used for our
invisible markers. We use two types of dyes with the peak emission in
blue (UV-blue) and red (UV-red). The purple curve shows the spectral
profile of our UV light.

markers (Sec. 3.1), and then describe our imaging system for
capturing deformable motions with and without markers
(Sec. 3.2). Lastly, we present our template-based algorithm
for 3D reconstruction and tracking (Sec. 3.3).

3.1 Invisible Markers
We use UV fluorescent dyes to make markers invisible
under normal light but visible under UV light. Fluorescent
substance exhibits Stokes Shift [59]—an optical phenomenon
wherein the material absorbs short wavelength light but
re-emits light at a longer wavelength. This phenomenon is
caused by the material molecules’ quantum behavior: when
electrons of fluorescent material are irradiated by short
wavelength light (e.g., UV light), they enter into an excited
state after absorbing the light energy and then immediately
de-excite and emit outgoing light at a longer wavelength
(in the visible-light spectrum). This principle is illustrated
in Fig. 2.

Specifically, we make a fluorescent dye solution and
use it as the ink in a fountain pen to draw dot- or line-
shaped markers on the object’s surface. The resulting mark-
ers are invisible under the visible light, thereby preserving
the object’s original appearance. The markers emit visible
light (and thus become visible) only under UV light. More-
over, the emitted light fades immediately—often within
10−8sec—after the UV light is off. Therefore, by using the
UV light to trigger the markers’ emission and synchronizing
the trigger with the camera shutters, we can capture images
with and without the markers visible in a time-multiplexed
manner (see details in Section 3.2).

We look for fluorescent dyes that satisfy two criteria: 1)
the fluorescent emission under UV light has high contrast
and strong visibility; and 2) the dyes are biologically safe
and non-toxic to human skin. In our experiments, we use the
MaxMax UV dyes1. For scenes with multiple objects (e.g.,
hand-object interaction), we use two types of fluorescent
dyes: one emits blue light when excited and the other red
(they are referred to as UV-blue and UV-red). In this way,
multiple objects in one image can be easily separated by
color (see Fig. 3).

Fluorescence detection. Since fluorescent emissions are
narrow-banded in wavelength (see Fig. 2), their hue values
in fluorescent images usually have small ranges. Exploiting
this fact, we can detect markers by using hue values: we

1. https://maxmax.com/phosphorsdyesandinks

Fig. 3. Objects covered with our fluorescent ink (UV-blue and UV-red).
(left) Image under visible light. (right) Image under UV light, where the
fluorescent colors become visible.
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Fig. 4. The spectral response of fluorescent solutions with different
concentration levels of the UV-red (left) and UV-blue (right).

convert the images into the HSV color space, and label
pixels whose hue values fall into a certain fluorescent dye’s
emission range. This marker detection in HSV color space
is robust even when the surface itself is fluorescent. This is
because the narrow-banded fluorescent emission peaks at
a specific spectral location, and it is very unlikely that the
surface’s emission peaks at the same location as our two
types of markers.

Dye preparation. To prepare the fluorescent ink for
drawing, we dissolve the UV-blue dye in 70% alcohol and
UV-red in acetone. Both types of markers can be triggered
for emission under 365 nm UV light. We chose this UV light
spectrum, because it is in the range of UVA, the safest UV
spectrum for human skin, abundant in natural sunlight.

Caution is needed when choosing the solution’s concen-
tration level. The higher the concentration is, the brighter
the fluorescent emission under the UV light becomes. On
the one hand, if the fluorescent emission is too bright, the
markers will saturate image pixels, rendering the marker
detection based on hue values much harder. On the other
hand, if the concentration is too low, the markers appear too
dim, and the detection also becomes less robust.

We choose the concentration level through systematic
measurements. We test both UV-blue and UV-red dyes. For
each type of dyes, we prepare the fluorescent solution of
different concentrations spaced by 1/5 dilution ratio (i.e.,
1/5, 1/25, 1/125, ...), covering concentration levels from
1/5 to 1/15625. We then measure the spectral responses
of each sample using a modular multimode microplate
reader (BioTek Synergy H1). Under 365 nm UV light, the
measurement records the response of fluorescent emission
in the range of 400 nm to 700 nm (visible light spectrum)
with a 2 nm step. A subset of the measured response curves
are shown in Fig. 4. Through the measurements, we find
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that for both types of dyes, the desirable concentration
level is 1/625, and we thereafter use this ratio in exper-
iments. Please see the supplementary material for more
details about our fluorescent dyes, including their spectral
responses on different types of materials and multi-object
separation example.

UV safety. Since the UVA spectrum is abundant in
sunlight, short-term and low-dose exposure to UVA light
is harmless to human skin and eyes. In our experiments,
we strictly follow the Threshold Limit Values and Biological
Exposure Indices (TLV/BEI) guidelines [60] to limit the UV
illumination. Specifically, when capturing human targets in
our system, we limit an imaging session to be under 10
minutes, during which the UV lights are turned on for only
36 seconds. Please see the supplementary material for more
detailed discussions about UV safety.

3.2 Imaging System
We design and build a novel imaging system for capturing
videos of deformable objects with and without markers, by
leveraging UV fluorescence.

System configuration. Our imaging system consists of
42 global-shutter color cameras each with a 16 mm lens
and 60 UV LED light units. All cameras and lights are
uniformly mounted on a rhombicuboctahedral rig frame,
facing inward to the frame center. Fig. 5 shows a conceptual
illustration and the real physical setup of our acquisition
system. Since the rhombicuboctahedral frame is a discrete
approximation of a sphere, distances from the cameras and
lights to the center of the frame (where the deformable object
is located) are about the same (∼ 75 cm), which avoids
uneven light attenuation. Please see the supplementary
material for more details about the specs of cameras and
light sources, as well as the camera calibration procedure.

Trigger scheme. Videos of the deformable object with
and without markers are captured in a time-multiplexed
fashion. To this end, we group the cameras into two sets: one
set is triggered when the UV lights are turned on (referred to
as UV cameras2), and the other set is triggered when the UV
lights are off (referred to as reference cameras). In this way, the
UV cameras capture the object with markers, while the ref-
erence cameras capture its original untouched appearance.
In practice, we use 33 UV cameras and 9 reference cameras
for high-quality tracking and 3D reconstruction.

All cameras capture videos at a frame rate of 60 fps. The
time interval between two consecutive frames is therefore
16 ms. Since this interval is much larger than the camera’s
exposure time, we can arrange the exposure period of the
two sets of cameras within the 16 ms window back-to-back
with no overlap. Our triggering scheme is illustrated in
Fig. 5. We custom-build the FPGA control board for syncing
and triggering the cameras and lights.

In practice, we use 2 ms exposure time for all cameras.
The delay between the videos with and without markers
is therefore 2 ms. Although the time difference is very
short, we still use interpolation to reduce the amount of
possible misalignment. The influence of the delay is studied
in Sec. 5.1.

2. These cameras are still regular cameras sensitive to visible light.
Here “UV” means that they capture images under UV lights.

UV Trigger

Reference
Trigger

1/60 Sec
UV LED

Fig. 5. (left) Conceptual illustration of our system with trigger scheme
(green color refers to reference cameras, and purple color refers to UV
cameras). (right) The real physical setup of our system with a zoom-in
view of the UV LED unit.

3.3 Reconstruction and Tracking

Given the videos with and without markers, we first detect
surface correspondences and perform template-based 3D
reconstruction using the video frames that capture markers.
We then apply the tracked correspondences to marker-free
videos as ground-truth labels. Fig. 6 shows our pipeline.

2D marker detection & 3D reconstruction. To detect
markers in UV fluorescent images (captured under UV light-
ing, in which markers appear), we convert the images into
the HSV color space. The fluorescent reflectance typically
exhibits high Saturation (S) and Value (V) values, and their
Hue (H) values fall into a small range depending on the
dye’s emission profile (e.g., H ∈ [0, 15] for UV-red and
H ∈ [110, 125] for UV-blue). We therefore threshold the H
value to detect marker pixels. These markers are used as
features for 3D reconstruction and temporal tracking.

Any 3D photogrammetry-based reconstruction algo-
rithm (e.g., COLMAP [61], [62], Meshroom [63]) can be used
on our multi-view marker images to obtain a 3D point cloud
for each frame of a motion sequence. In our experiment,
we first compute dense disparity maps through semi-global
matching [64], and then project the depth maps to point
cloud. We also perform cross-view validation to enhance
the reconstruction accuracy.

Template fitting. Next, we fit each 3D point cloud to
an object-dependent predefined 3D template and project
the 2D feature correspondences onto the 3D model. We use
different templates for different types of object (see details
about the templates in Sec. 4). Here we present our fitting
algorithm in general that is applicable to all data.

Consider a 3D point cloud S consisting of M points
p = {p1,p2, ...,pM} and a 3D shape template described
by N vertices v = {v1,v2, ..., vN} and K faces. Our goal
is to deform the shape template so that it aligns closely to
the 3D point cloud. We adopt the embedded deformation
graph [65] to deform the template: for every vertex i on the
template shape, its deformed position is described by vi+ti.
To ensure deformation smoothness, every vertex i also has
a local region of influence. Its influence is described by a
rotational matrix Ri ∈ SO(3), which maps any point p in
its local region to the position p′ according to

p′ = Ri(p− vi) + vi + ti. (1)
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Fig. 6. Warping features from marker view (under UV lighting) to maker-
free view (under normal lighting).

We determine ti and Ri (for i = 1..N ) by solving the
following optimization problem:

Etotal = Efit + λmEmarker + λsEsmooth. (2)

The first term Efit measures the `2 distance between the
3D point cloud and the deformed template mesh in two
ways: for each point j in the point cloud S , its distance to
the closest vertex and the closest face on the template. Efit is
thus a summation of two terms, namely,

Efit =

M∑
j=1

‖vc(i) + tc(j) − pj‖22︸ ︷︷ ︸
point-to-vertex distance

+

β

M∑
j=1

‖n>
c(i)(vc(j) + tc(i) − pj)‖22︸ ︷︷ ︸

point-to-face distance

,

(3)

where c(j) indicates the index of the deformed template ver-
tex closet to the point pj , nc(j) denotes the vertex normal,
and β is a weight for balancing the two terms.

The second term Emarker measures the distance between
the detected 2D markers and the projected marker positions
from the template mesh. Consider Nf markers. Their 3D
positions on the undeformed template mesh, denoted by
xj for j = 1...Nf , are initialized at the beginning of the
capture session. xj can be expressed using the barycentric
coordinate αj = [αj,1 αj,2 αj,3] on the template triangle
where it is located, that is, xj =

∑3
k=1 αj,kvj,k, where vj,k

(k = 1, 2, 3) are the vertex positions of the template triangle.
With these notations, Emarker is defined as

Emarker =

Nv∑
i=1

Nf∑
j=1

wij‖pij − πix̃j‖22, (4)

where x̃j is the j-th marker’s 3D position on the deformed
template mesh (i.e., xj =

∑3
k=1 αj,k(vj,k + tj,k)), Nv is the

number of UV camera views; wij is the confidence weight
for the marker j being viewed from the i-th camera. If the
marker j is occluded from the i-th camera, wij vanishes.
Moreover, pij is the 2D position of a marker j (if not
occluded) on the i-th camera view, and πi is the projection
matrix of the i-th camera.

The last term Esmooth regulates the smoothness of the
template mesh’s deformation. This is where the local influ-
ence of each vertex i (and hence Ri) is involved. Following
a similar term defined in [65] (called Ereg therein), Esmooth

encourages the mesh deformation to be locally rigid, defined
as

Esmooth =

N∑
j=1

∑
k∈N (j)

γjk‖Rjvkj − vkj + tj − tk‖22, (5)

where vkj is a shorthand for vkj = vk − vj ; N (j) is
the neighboring vertices of vertex i (here defined as the
10-nearest neighbors of i); and γjk is a weight parameter
determined by distance between vj and vk.

When solving the optimization problem (2), we express
each Ri in Lie algebra SO(3) and use the Levenberg-
Marquardt optimizer. The optimization starts with large λs
and λm values, and gradually reduces them in iterations
until the optimization converges.

Feature warping. Finally, we project 3D marker fea-
tures back to marker-free reference views, in order to label
ground truth surface correspondences on the object’s origi-
nal appearance. Note that the features cannot be differently
warped from marker view to marker-free view in 2D as their
depths are not known. This allows us to pair deformable
objects with little or no textures with their ground truth
surface correspondences.

Recall that our videos with and without markers have a
few millisecond delays. In cases when the motion is slow,
this delay is small enough to be ignored. However, when
an object moves too fast, the delay may cause a notice-
able misalignment between the projected features and the
reference frame. We alleviate the misalignment by linearly
interpolating the 3D models and feature points of two
consecutive frames to the time instant at which the reference
frame is captured. This strategy, albeit simple, is effective in
reducing the misalignment.

4 DEFORMABLE OBJECT TRACKING DATASET

Using our system, we collect a large dataset for deformable
object tracking, which we refer to as DOT. Our dataset
contains deformable motions of four types of objects: rope,
paper, cloth, and hand. Original appearance of these objects
has different levels of textures, ranging from repetitive tex-
ture to little or no texture (see examples in Fig. 7). We draw
different fluorescent patterns on the objects, introducing rich
features for correspondence matching under UV lighting. In
total, we have ∼ 200 deformable motion sequences. Each
sequence has multi-view videos with and without markers,
per-frame 3D models and point clouds, and ground truth
correspondences in both 2D and 3D. The total number of
maker-free video frames is around one million. The details
of our DOT dataset are summarized in Table 1 (see the
supplementary material for video data samples of DOT).

Our dataset is versatile for network training due to its
data abundancy and diversity. By pairing the marker-free
videos with ground-truth correspondences, we can train
networks for deformable object tracking. In addition, we
provide videos from different viewpoints that can suit the
need for different imaging configurations. By pairing either
single-view or multi-view marker-free frames with their 3D
models, our dataset can be used for training deformable ob-
ject reconstruction networks. As we have an ample amount
of objects with little or no textures, training on our dataset
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Fig. 7. Sample scenes in our DOT dataset. Here we show marker-free
images under normal lighting.

can improve networks’ performance in handling these chal-
lenging cases.

Although there are several synthetic datasets on de-
formable objects (e.g., [66]), our dataset is more advanta-
geous because it is real-captured. It is well known that there
is domain gap between rendered images and real-captured
ones. Using real-captured dataset for training could achieve
higher accuracy even with smaller amount of data. In the
following, we provide details about each scene category.

Rope scenes. We capture ropes with different lengths
(5′′, 10′′, and 12′′) and thicknesses (1/2′′, 1/4′′, and 1/8′′).
The motions we perform include swinging, twisting, shak-
ing, pulling, and stretching. We treat the rope as a 1D object
and use connected joints as its template. We attached blue
tapes at the two ends of the rope to indicate the start- and
end-point of our rope object. As for invisible fluorescent
markers, we use UV-red to draw dots on the rope with
0.5′′ intervals. Depending on the length of the rope, we use
different numbers of joints in the template (i.e., 10, 16, and 18
nodes), and these joints are mapped to the invisible markers
as correspondences.

Paper scenes. We use letter-sized non-fluorescent pa-
pers, and print different patterns on them to create varia-
tions in texture. These variations include rich texture (e.g.,
texts and random dots), repetitive texture, smooth texture
(e.g., tie-dye patterns), weak texture (e.g., sparse line draw-
ings), and no texture (pure white paper). Note that these
printed patterns are all visible and are considered as the
paper’s original appearance. To introduce invisible marker
pattern, we draw a 13×15 line grid with UV-blue for all
scenes. We use the same grid as their 3D template. The grid
intersections are used as correspondences for tracking and
reconstruction. We record the deformable motions by hand-
twisting the paper.

Cloth scenes. We use white silk cloth of different sizes.
All motion sequences in the cloth scenes are fully texture-
less. Same as the paper scenes, we draw a 2D line grid
as invisible patterns on the cloth. The size of the grid is
determined by the cloth size. As cloth is more deformable
than paper, we use a rigid frame to stretch the cloth when

TABLE 1
Summary of DOT per category.

Category Rope Paper Cloth Hand

# of Motion Seq. 60 20 30 90
Seq. Length (time) 10s 30s 10s 5s

Seq. Length (frame) 600 1800 600 300
# of Viewpoints 10 6 6 10
Total # of Frame 360K 216K 108K 270K
Template Type Joint Grid Grid Mesh

drawing the grid pattern. Our deformable motions include
swinging, shaking, blowing, and stretching. The motions are
induced by hand manipulation or wind blowing. We also
perform motions at different speeds.

Hand scenes. We include a variety of common hand
motions and gestures performed by a single hand or two
hands. We also include interactive motions between hand(s)
and objects, such as scissors, mugs, dice, and toys. For
invisible markers, We use UV-blue to draw random dots on
hands (see supplementary material for discussions on dye
safety on human skin). For hand-object interactions, we use
UV-red to fully cover the object, such that we can use the hue
difference to separate hand points and object points. This
largely improves the accuracy of template fitting (see the re-
sult in the supplementary material). For reconstruction and
tracking, we use the MANO [67] model as a 3D template for
hand. The invisible markers are registered to the template
using the rest pose. In our acquisition, all hand motions
start with the rest pose for feature initialization. Since we
have 33 UV cameras for capturing images with markers,
our 3D reconstruction and tracked correspondences are very
accurate and robust, even in case of heavy occlusion (e.g.,
crossed hands, or hand occluded by object).

5 EXPERIMENTS

We first perform experiments to evaluate the performance
of our imaging system and effectiveness of tracked markers
(Sec. 5.1). We then benchmark state-of-the-art algorithms on
tracking and reconstruction on our DOT dataset (Sec. 5.2).
We also demonstrate the benefit of using DOT for network
training (Sec. 5.3).

5.1 System Performance
Influence of delayed trigger. We first study the influence
of delayed trigger: how much misalignment between the
reference and UV views would be caused by the trigger
delay, and how effective our interpolation algorithm is at
reducing the misalignment. This analysis is very important
as our goal is to leverage the “invisible” makers in the UV
view for reconstruction and tracking under the reference
view (without markers), and we want to make sure that
the features detected and tracked in frames with markers
are well synchronized with marker-free frames.

We perform experiments using a board paper with a
grid. The grid can be seen in both reference and UV views.
We use the grid corners as features for measuring the pixel
shift caused by the trigger delay. Sample images of the target
are shown in Fig. 8. We illustrate feature points from corre-
sponding reference and UV views (marked in orange and
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Fig. 8. Influence of trigger delay. (left) Sample images of our grid target.
We can see apparent motion between neighboring frames (green circles
in #21 vs. red circles in #22). For the same frame (#21), features
between the marker-free view (orange crosses) and marker view (green
circles) are slightly misaligned due to trigger delay. (right) Point-to-ray
distance curves with respect to the interpolation parameter σ for 1 ms
and 4 ms delays.

green, respectively), as well as those from the consecutive
UV view (marked in red). We can see that features from
the two consecutive UV images have apparent shifts (whose
time interval is 16 ms). The feature misalignment between
the corresponding UV and reference views is slight in this
case but could vary depending on the object’s motion speed
(e.g., the faster the speed, the larger the shift).

We then quantitatively measure the amount of misalign-
ment for different trigger delays, and evaluate the effective-
ness of the following interpolation scheme. We first compute
the 3D coordinates of the feature points via ray triangulation
from all UV views. As the reference views are too sparse for
accurate triangulation, we only trace out rays from features
on the reference view. We use rt to denote the rays traced
out from the reference view at time t. Assume the 3D points
computed by the UV views at time t and time t + 1 are vt

and vt+1, respectively, we then linearly interpolate vt and
vt+1 to obtain an intermediate point v̄σ . We calculate the
point-to-ray distance from v̄σ to rt and use it to measure
how well the features are aligned in 3D.

We test on two delay values: 1 ms and 4 ms. We compute
the point-to-ray distance with respect to various interpola-
tion parameters σ, from 0 to 15. When σ = 0, it is equivalent
as directly using vt (i.e., no interpolation). We plot the
curves of point-to-ray distance with respect to different σ
in Fig. 8. We can see that our interpolation is particularly
useful when the trigger delay is large. For example, in the
case of 4 ms delay, the misalignment is 2.23 mm without
interpolation. Our interpolation brings down the error to
0.28 mm (when σ = 4).
Tracking results with vs. without markers. In order to
show the effectiveness of our fluorescent markers on lack-of-
texture surfaces, we compare the correspondence tracking
results by using our markers versus without using the
markers (i.e., directly apply the tracking algorithm on the
marker-free reference view).

Fig. 9 shows comparison results on a paper scene (P9).
We use the tracking algorithm provided in the commercial
software R3DS Wrap4D2. Features are initialized as grid-
line corners. We can see that our tracked correspondences
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Fig. 9. Feature tracking results with vs. without using fluorescent mark-
ers (paper scene P9).

TABLE 2
Quantitative comparisons of flow errors on rope, cloth and paper

scenes. All errors are reported in pixel unit.

Method Flow Error (Rope)
R14 R15 R16 R17 R18 R19 Avg.

GF [68] 0.934 0.529 0.882 0.227 1.990 0.486 0.841
PWC [69] 0.764 0.525 0.779 0.834 1.941 0.703 0.929
RAFT [70] 1.172 0.887 1.052 0.984 2.360 1.176 1.272
OMNI [72] 1.448 0.871 2.138 0.701 2.971 1.166 1.549
DALF [71] 0.793 0.602 0.884 0.731 1.526 0.645 0.864

Method Flow Error (Cloth)
C2 C3 C4 C5 C9 C10 Avg.

GF [68] 1.587 0.678 2.231 2.970 2.923 2.935 2.221
PWC [69] 0.907 0.689 1.190 1.210 1.171 1.230 1.066
RAFT [70] 1.006 0.689 1.057 1.298 1.546 1.365 1.160
OMNI [72] 1.001 0.679 1.097 1.380 1.423 1.471 1.175
DALF [71] 4.912 2.165 5.920 6.339 9.627 6.048 5.835

Method Flow Error* (Paper)
P1 P2 P4 P5 P7 P8 Avg.

GF [68] 5.429 4.106 6.069 4.747 5.034 3.354 4.662
PWC [69] 8.215 0.564 0.394 0.402 0.362 0.484 0.441
RAFT [70] 196.2 0.625 0.408 0.405 0.374 0.435 0.449
OMNI [72] 1.360 0.954 0.852 0.842 0.860 0.885 0.879
DALF [71] 16.91 5.678 1.833 0.745 0.966 1.061 2.057

*The average errors of paper scenes are calculated without using the P1 errors.

computed using the marker view are reliable and robust
over time on this paper scene, which lacks texture in large
regions. In contrast, if we only use the marker-free video, the
algorithm will lose track of most of the feature points within
20 frames (the entire video has 1800 frames). Therefore, with
our fluorescent markers, the tracking result is more accurate
and robust, with the mismatch rate largely reduced.

5.2 Benchmark Experiments
We benchmark state-of-the-art methods on optical flow,
hand reconstruction, and deformable object tracking and
reconstruction using our DOT dataset.
Optical flow methods. We test on five state-of-the-art op-
tical flow algorithms: classical variational optical flow as
implemented in OpenCV [68] (referred to as “GF”), the two
most popular learning-based optical flow networks—PWC-
Net [69] and RAFT [70], deformable local feature enhanced
optical flow network—DALF [71], and globally consistent
motion tracking algorithm—OmniMotion [72].

We perform experiments on rope, cloth, and paper
scenes. For the sake of space, here we mainly show quantita-
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TABLE 3
Quantitative comparisons of warping errors on cloth and paper scenes.

Method RMSE on warped image (Cloth)
C2 C3 C4 C5 C9 C10 Avg.

GF [68] 4.52 1.63 4.82 5.45 7.51 7.76 5.28
PWC [69] 4.75 1.67 5.21 5.33 7.60 9.38 5.66
RAFT [70] 4.98 1.67 5.20 5.51 7.56 9.20 5.69
OMNI [72] 4.89 1.65 5.52 5.60 7.71 8.93 5.72
DALF [71] 4.73 2.09 5.10 5.19 7.32 6.47 5.15

Method RMSE on warped image (Paper)
P1 P2 P4 P5 P7 P8 Avg.

GF [68] 8.96 11.2 7.91 10.5 11.0 11.7 10.2
PWC [69] 13.8 6.89 4.34 4.85 4.59 6.38 6.89
RAFT [70] 104* 7.40 4.59 5.61 5.36 6.12 5.87
OMNI [72] 7.40 10.2 5.10 6.63 6.12 9.18 7.40
DALF [71] 9.44 14.8 4.59 5.61 4.85 7.40 7.91

*This error is excluded for calculating the average.

tive evaluation results on a subset of scenes in each category.
Rope scenes all have the same thread texture, but the ropes
have different lengths and thicknesses. Cloth scenes are all
pure white silk cloth with various motions. Paper scenes
have different variations of textures: P1 has no texture (i.e.,
white paper); P2 has weak textures and large blank regions;
P4, P5, and P7 has smooth textures with no sharp edges;
P8 has a repetitive pattern (see Fig. 7 for these scenes).

For rope scene, we only use the flow vectors of their 1D
node joints. For both paper and cloth scenes, we interpolate
per-pixel dense flow from the optical flows at grid corners.
Specifically, our dataset provides ground-truth 2D and 3D
coordinates for their grid templates, from which we can
compute the ground-truth 2D and 3D optical flows at grid
corners. We run these algorithms on the marker-free video
captured from a frontal view. We compute the mean square
errors between the estimated optical flow vectors and our
ground truth ones. The errors are reported in Table 2 for all
three categories. For each scene, the error is averaged on the
entire motion sequence. The average error in the last column
is computed using all available scenes. We can see our cloth
scenes and the white paper scene (P1) pose challenges to all
methods. Since P1 errors are too large, we exclude them for
computing the average errors.

We visualize the optical flow estimation results by using
the dense optical flow to warp the deformed frames. Results
on several challenging paper and cloth scenes are shown in
Fig. 10 and 11, respectively. We also show the accumulated
flow trajectory of 11 frames. We can see that most algorithms
have large errors in textureless regions.

We further verified the accuracy of the warped images
based on the grid corners. For each frame, we warp the
image using the estimated flows on grid corners. Since the
ground-truth warped frame image should be the next frame,
we then compare the warped image to the image of the next
frame and calculate the averaged root mean squared error
(RMSE) for all frames in the motion sequence. Results on
several cloth and paper scenes are reported in Table 3.
Hand reconstruction methods. We test on four state-of-
the-art template-based hand reconstruction methods: In-
terNet [73], IntagHand [74], InterWild [75], and DIR [76].
All these methods take a single RGB image as input and
predict the corresponding hand template using the MANO
model [67]. All methods are trained on InterHand2.6M [73].

Ground Truth

RAFT OMNI DALF

GF PWC-Net

Ground Truth GF PWC-Net

RAFT OMNI DALF

P2

P1

Fig. 10. Qualitative comparisons on warped images with accumulated
flow trajectory (paper scene P1 and P2).

Ground Truth

RAFT OMNI DALF

GF PWC-Net

Fig. 11. Qualitative comparisons on warped images with accumulated
flow trajectory (cloth scene C4).

We use our front-view marker-free images as input to these
methods. We project the 3D reconstruction back to the
original 2D image plane and compute the per-pixel error on
the wrapped image. Results on six challenging hand scenes
are reported in Table 4.
Deformable object tracking and reconstruction. We test on
four template-based deformable object tracking methods:
DDD [77], Graph-Matching [13], RoBuSfT [78], and IsMo-
GAN [58]. The first three are optimization-based methods,
and the last one is learning-based. These methods take in
the image and template of a reference frame and output a
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TABLE 4
Quantitative comparisons of hand reconstruction errors.

Method RMSE on warped image (Hand)
H1 H2 H3 H4 H5 H6 Avg.

InterNet [73] 42.46 28.23 82.89 41.92 31.13 50.39 41.92
IntagHand [74] 34.88 27.02 64.09 28.30 30.91 54.64 34.89
InterWild [75] 24.01 18.80 33.61 14.75 14.73 18.07 17.75

DIR [76] 31.57 27.73 50.42 23.32 28.44 44.88 32.16

Method Max error on warped image (Hand)
H1 H2 H3 H4 H5 H6 Avg.

InterNet [73] 111.32 69.42 166.00 123.41 95.51 124.27 97.01
IntagHand [74] 79.25 88.97 212.81 109.85 93.27 262.17 135.57
InterWild [75] 67.10 61.14 116.05 40.49 47.98 63.62 62.80

DIR [76] 96.39 84.66 153.23 132.78 79.25 105.44 103.16

Marker-free View

Ground Truth DDD Graph-Matching

IsMo-GAN ROBUSfT

Fig. 12. Qualitative comparison on template estimation. The ground truth
is reconstructed using our approach and provided in the dataset.

deformed template for a target frame. We test these meth-
ods on marker-free views, evaluating the accuracy of the
estimated template by computing vertex-to-vertex distance
error against our ground truth 3D model. The errors are
reported in Table 5. Note that the results of IsMo-GAN
cannot be evaluated in this way as their templates cannot
be aligned with ours and have different scales. We visualize
estimated deformed templates for one frame in P2 (see
Fig. 12). We can see that all these methods suffer from large
errors on weakly textured paper scene.

5.3 DOT Fine-tuned Network Results

Finally, we demonstrate the benefit of our DOT dataset on
network training. Specifically, we test on optical flow and
3D template estimation. For optical flow, we use RAFT pre-
trained on Flying Chairs [79]. We then fine tune the pre-
trained RAFT on our paper scenes. We apply the fine-tuned
RAFT on P2 in DOT (not used in training), as well as data
from the DeSurT dataset [13], which provides a variety of
challenging deformable surfaces with ground truth meshes.
Dense optical flow results are shown in Fig. 14. Here we
compare the results of fine-tuned RAFT against the pre-
trained RAFT. The ground truth flow maps are interpolated
from the sparse flow at grid points. We also report the
average flow errors. We can see that the accuracy of fine-
tuned RAFT is significantly higher on all cases.

We then combine the fine-tuned flow correspondences
with RoBuSfT [78] for 3D template estimation. Since
RoBuSfT uses SIFT for feature mapping by default, it fails at
textureless regions. Whereas the optical flow fine-tuned on

TABLE 5
Quantitative comparisons on template reconstruction errors.

Method Vertex-to-Vertex Distance Error
P1 P2 P4 P5 P7 Avg.

DDD [77] 25.22 15.14 28.50 24.28 23.75 23.44
Graph-Match [13] 379.77 115.32 95.35 18.48 24.16 126.62

RoBuSfT [78] NAN 60.31 NAN 2.64 NAN 31.48

RoBuSfT [78] 
(SIFT + Warping)Images from [13]

Frame # 179

Frame # 155

Frame # 267

Finetuned Flow + Warping

Fig. 13. Qualitative comparisons on template reconstruction with vs.
without using our fine-tuned flow.

DOT is able to provide reliable correspondences regardless
of textures, which allows accurate warping and template
estimation. Comparison results on template reconstruction
are shown in Fig. 13.

6 CONCLUSIONS

In summary, we demonstrated a solution that uses invis-
ible fluorescent markers for tracking and reconstructing
deformable object with little texture. In contrast to existing
methods, we are able to simultaneous capture videos of
deformable object with and without markers. Videos with
markers are used for accurate 3D reconstruction and feature
tracking. Tracked correspondences can be transferred to the
marker-free videos as ground truth labels. We collected a
large deformable motion dataset, DOT, with 200 motion
sequences and 1M video frames. DOT provides diverse
forms of data, including multi-view videos with and with-
out markers, 3D models and point clouds, and ground truth
correspondences in both 2D and 3D. It can be used for
benchmarking, or training networks for improved accuracy
and robustness on textureless scenes.
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Error: 0.8552

Error: 0.2720

Error: 0.1785

Error: 0.1326

Error: 0.9819

Error: 0.5638

Frame # 179Frame # 019 Frame # 106 Frame # 269

Images from P2 Images from [13]

Error: 2.3319 Error: 3.0464Error: 1.8626 Error: 1.3046

Error: 0.9530 Error: 1.1410Error: 0.9803 Error: 0.9426

Fig. 14. Qualitative comparisons on dense optical flow (pre-trained RAFT vs. fine-tuned RAFT). (left) P2 in DOT. (right) Data from DeSurT [13].

One viable future direction is to increase the diversity
of our data in terms of lighting conditions. We will build a
portable system and capture images under various in-the-
wild environment. In this way, we are able to gather images
with lighting variations, which increases the data diversity.
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