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ABSTRACT

In this article, we propose a new test for testing the equality of two population covariance matrices in
the ultra-high dimensional setting that the dimension is much larger than the sizes of both of the two
samples. Our proposed methodology relies on a data splitting procedure and a comparison of a set of well
selected eigenvalues of the sample covariance matrices on the split datasets. Compared to the existing
methods, our methodology is adaptive in the sense that (i). it does not require specioc assumption (e.g.,
comparable or balancing, etc.) on the sizes of two samples; (ii). it does not need quantitative or structural
assumptions of the population covariance matrices; (iii). it does not need the parametric distributions or
the detailed knowledge of the moments of the two populations. Theoretically, we establish the asymptotic
distributions of the statistics used in ourmethod and conduct the power analysis.We justify that ourmethod
is powerful underweak alternatives.We conduct extensivenumerical simulations and show that ourmethod
signiocantly outperforms the existing ones both in terms of size and power. Analysis of two real datasets is
also carried out to demonstrate the usefulness and superior performance of our proposedmethodology. An
R package UHDtst is developed for easy implementation of our proposed methodology. Supplementary
materials for this article are available online, including a standardized description of the materials available
for reproducing the work.
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1. Introduction

Testing the equality of two population covariance matrices is of
fundamental importance in statistical analysis. For two samples
X :=

{

xi ∈ R
p, 1 ≤ i ≤ n1

}

and Y :=
{

yj ∈ R
p, 1 ≤ j ≤ n2

}

with population covariance matrices �1 and �2, respectively,
researchers are interested in testing

H0 : �1 = �2. (1.1)

Testing (1.1) is crucial in multivariate analysis and high dimen-
sional statistics. First, the applications of many commonly used
multivariate tests or techniques rely on whether the population
covariancematrices are identical. For example, if two population
covariance matrices are the same, the asymptotic distribution
of Hotelling’s T2 statistic, which is used to test the equality of
means, will be much easier to compute (Anderson 2003; Yao,
Zheng, and Bai 2015). For another example, for classiocation,
in order to correctly apply the tool of linear discriminant anal-
ysis (LDA), people need to check the equality of population
covariance matrices (Anderson 2003). Second, in many gene
expression data analysis, the two sample test for covariance
matrices serves an important role in understanding, classifying
and selecting gene associations across diferent phenotypes, for
example, see Hu, Qiu, andGlazko (2010) andDudoit, Fridlyand,
and Speed (2002).

In this article, we will propose a novel method to test (1.1) in
the ultra-high dimensional regime that

p � nα1
1 and p � nα2

2 , for some constants α1,α2 > 1. (1.2)
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We orst summarize some related results and methodologies in
Section 1.1 and then provide an overview of our approach in
Section 1.2.

1.1. Some Related Results

In the literature of multivariate statistics, testing (1.1) has been
well studied in the low dimensional regime when the dimension
p is oxed and the sample sizes go to inonity. For example, see
Anderson (2003), Sugiura and Nagao (1968), Nagao (1973),
Manly and Rayner (1987), O’Brien (1992), Gupta and Tang
(1984), andPerlman (1980). A common feature of these statistics
is that they are based on likelihood ratios and use the eigenvalues
of some sample covariance matrices.

On the other hand, the aforementioned methods may lose
their validity as the dimension p diverges with the sample sizes.
Themain reason is that the likelihood ratio which is essentially a
function of the eigenvalues of certain sample covariance matri-
ces, is no more consistent due to the bias caused by the inconsis-
tency of sample covariance matrices Bai et al. (2009). Motivated
by this and based on results in random matrix theory, in the
last decades, various modioed or new statistical methodologies
have been proposed in the high dimensional and comparable
regime that α1 = α2 = 1 in (1.2). We now list but a few in
the following. In Schott (2007), under the assumption that both
samples are Gaussian, the author proposed a statistic based on
the Frobenius norm of the diference of the sample covariance
matrices of the two samples. In Bai et al. (2009), Zheng (2012),
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Zheng, Bai, and Yao (2015), and Zou et al. (2021), assuming
that p < n1 or p < n2 so that the precision matrices exist at
least for one sample, the authors proposed several tests based
on the eigenvalues of the F matrices. The condition p < n1 or
p < n2 is weakened to some extent later in Zhang, Hu, and Bai
(2017). We emphasize again that the aforementioned methods
are all developed in the comparable regime that α1 = α2 = 1
in (1.2). In fact, they usually assume that p/n1 → y1 and
p/n2 → y2 and both y1 and y2 will appear in the asymptotic
distributions of their proposed statistics. Moreover, to correctly
implement their methodologies, people normally either need to
assume the samples are Gaussian or have prior knowledge of the
moments of the entries of the random vectors. More recently,
Zheng et al. (2019) proposed a power-enhancement test with
no distributional or sparsity assumptions, but in the comparable
regime, that is, p/nk → ck ∈ (0,∞), k = 1, 2.

However, much less is touched in the ultra-high dimensional
regime (1.2) except for a few ones under various additional
assumptions. In Srivastava and Yanagihara (2010), under the
assumption that both samples are Gaussian and n1 � n2 (i.e.,
α1 = α2 in (1.2)), the authors proposed a test based some
normalized traces of the sample covariance matrices. In Li and
Chen (2012), assuming that n1 � n2 (i.e., α1 = α2 in (1.2)),
under certain regularity conditions on �1 and �2, the authors
proposed a test based on someU-statistics which is an unbiased
estimator of the Frobenius norm of �1 − �2. Later on, with
additional assumption that both �1 and �2 are banded, He
and Chen (2018) proposed another U-statistics based test but
only targeting on the super-diagonal elements of the covariance
matrices. Finally, in Cai, Liu, and Xia (2013), under the assump-
tion that n1 � n2 (i.e., α1 = α2 in (1.2)), somemoment assump-
tions on the random vectors and certain sparsity assumptions
on �1 and �2, the authors introduced a test based on the
maximum standardized element-wise diferences between the
sample covariance matrices which can be computationally very
expensive. In summary, all the existing methods concerning the
ultra-high dimensional setting (1.2) require that the sample sizes
are comparably large n1 � n2 (i.e., α1 = α2 in (1.2)). Moreover,
they need to impose somequantitative or structural assumptions
on �1 and �2 and distributional assumptions on the random
vectors.

Motivated by the above issues, in the current article, we
propose a novel methodology to test (1.1) in the ultra-high
dimensional setting (1.2). Our approach does not need assump-
tions on the sample sizes n1, n2, or quantitative or structural
assumptions on the population covariance matrices. Moreover,
we do not require the random vectors to have specioc distribu-
tions like Gaussian. An overview of our method will be given in
Section 1.2.

1.2. AnOverview of OurMethod

In contrast to the methods developed in Srivastava and Yanagi-
hara (2010), Li and Chen (2012), He and Chen (2018), and Cai,
Liu, and Xia (2013), which all directly compare the entries of
the sample covariance matrices, our proposed approach uses
the eigenvalues of the sample covariance matrices. However, if
we directly compare all the eigenvalues, it can result in sev-

eral issues. First, since the values of the sample sizes n1 and
n2 are diferent in general, a direct comparison can lead to
bias especially when their orders are diferent. For example, if
n1 � n2, in our regime (1.2), the sample Y will have much
fewer nonzero eigenvalues to be considered. Second, and most
importantly, as has been demonstrated in Bai et al. (2009), Ding
and Wang (2023), Yao, Zheng, and Bai (2015), and Zheng, Bai,
and Yao (2015), the distribution of the statistics that use all
the eigenvalues usually involves more unknown quantities like
the orst four moments of the random samples and the detailed
information of �1 and �2.

To address the above issues, inspired by the recent devel-
opments in random matrix theory (Li, Schnelli, and Xu 2021;
Ding and Wang 2023), we only compare a subset of the eigen-
values of the two sample covariance matrices. This resolves the
issue of using too many eigenvalues of one sample covariance
matrix. Moreover, as will be seen in Corollary 3.1, under the
null hypothesis, the asymptotic distribution of the statistic is
very universal in the sense that it does not require the knowl-
edge of any particular information of the population covariance
matrices and the moments of the random vectors. In fact, as
can be seen in Theorem 3.1, regardless of whether (1.1) holds,
only the mean parts encode the information of the population
covariance matrices. This further makes it easier to study the
power of the statistics which shows that our method can reject
the null hypothesis under very weak alternative.

Our proposed methodology (see Algorithm 2.2) will be pre-
sented in Section 2. It consists of three important components.
The orst one is a data splitting procedure (see Algorithm 2.1)
which divides the data in X ∪ Y into three parts, denoted as
X s,Y s and Z s with the same size n satisfying (2.1). X s and
Y s are the testing beds and Z s is used to generate some useful
quantities for us to choose a subset of the eigenvalues of the
sample covariance matrices associated with X s and Y s. The
selection of the subset of the eigenvalues is done via the choice
of a location parameter γ (see (2.2)) and a tuning bandwidth η0
(see Algorithm B.1 of our supplement). Both parameters can be
chosen automatically. Our statistic in (2.4) primarily considers
the eigenvalues lyingwithin the interval [γ −1.05η0, γ +1.05η0].
Here we choose [γ − 1.05η0, γ + 1.05η0] instead of [γ −
η0, γ + η0] mainly for technical reasons. However, the major
contribution comes from those eigenvalues lying in [γ −η0, γ +
η0]. The construction of the above statistic only uses one split
dataset so that some samples may be omitted. In order to use as
much information as possible and stabilize our procedure, our
second component of the methodology is to repeat the splitting
procedure multiple times. Instead of using the statistic in (2.4)
once, we generate a sequence of such statistics and construct a
summary statistic called decision ratio (see (2.10)). Such a pro-
cedure will reduce the variability of testing (1.1) compared with
only one data splitting. The last component of our methodology
is to provide a critical value δ for the decision ratio to suggest
whether we should accept or reject the null hypothesis. This
will be done by a calibration procedure (see Algorithm B.2 of
our supplement) which uses the very universal properties of our
statistics under the null hypothesis (1.1).

On the theoretical side, we establish the asymptotic dis-
tributions for our statistics and decision ratio in Section 3.2.
Moreover, we conduct detailed power analysis for our method-



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 3

ology in Section 3.3 which shows that our proposed method
will be powerful under weak alternatives. We test our proposed
methodology and compare it with the state-of-the-art methods
(Srivastava and Yanagihara 2010; Li and Chen 2012; He and
Chen 2018; Cai, Liu, and Xia 2013) on both simulated and two
real datasets. The numerical results show that our proposed
method outperforms the existing ones.

1.3. Organization of the Article

The rest of the article is organized as follows. In Section 2,
we introduce our test procedure. Section 3 provides theoretical
guarantees for our procedure, establishing the asymptotic dis-
tributions of the test statistics and conducting power analysis. In
Section 4, we compare our proposed methodology with several
existing methods via Monte Carlo simulations and two real data
analysis. An online supplementary ole is enclosed to provide the
technical proofs in Section A, the arguments of tuning param-
eter selection in Section B, additional simulations in Section C,
and additional discussions in Section D. An R package UHDtst
is developed for easy implementation.

2. Methodology

In this section, we introduce our proposed methodology.

2.1. Construction of Test Statistics

Our orst step is the data splitting procedure via random sam-
pling. For some integer n satisfying that

n < N, where N := min

{

max{n1, n2}
2

, n1, n2

}

, (2.1)

we follow Algorithm 2.1 to split the data.

Algorithm 2.1 Data splitting

Inputs: n, the datasets X and Y .
Step one: Randomly sample n data points from X and Y ,
denoted as X s and Y s, respectively.
Step two: For the dataset with more samples, say X (i.e.,
n1 ≥ n2), we randomly sample n data points from X \X s,
denoted as Z s.
Output: The split datasets X s,Y s, and Z s.

Algorithm 2.1 generates three independent datasets (X s, Y s,
and Z s) with the same sample size n. X s, and Y s are used
for testing (1.1), while Z s serves as the reference dataset to
generate γ , as discussed in Section 1.2. Let the sample covariance
matrices associated with X s,Y s, and Z s be

Qx =
1

√
pn

∑

xi∈X s

(xi − x̄)(xi − x̄)�,

Qy =
1

√
pn

∑

yi∈Y s

(yi − ȳ)(yi − ȳ)�,

Qz =
1

√
pn

∑

zi∈Z s

(zi − z̄)(zi − z̄)�,

where x̄, ȳ and z̄ are their respective sample means. Note that
the scaling (pn)−1/2 difers from the typical 1

n . As shown in
Section 3, it addresses the ultra-high dimensionality (1.2).

We denote the nonzero eigenvalue sequences of the sample
covariance matrices associated with X s, Y s, and Z s as {λj}nj=1,

{μj}nj=1, and {γj}nj=1, respectively, assuming they are in decreas-

ing order. Let

γ := Median{γj}. (2.2)

Given the mollioer function

K(x) :=

⎧

⎪

⎪

«

⎪

⎪

¬

0 |x| ≥ 1.05

1 |x| ≤ 1

exp
(

1
(0.05)2

− 1
(0.05)2−(|x|−1)2

)

1 < |x| < 1.05

(2.3)
and η0 ≡ η0(n) 
 1 chosen from Algorithm B.1 of our
supplement, we will use the statistic

T := Tx − Ty, (2.4)

where

Tx :=
n

∑

j=1

(

λj − γ

η0

)

K

(

λj − γ

η0

)

,

Ty :=
n

∑

j=1

(

μj − γ

η0

)

K

(

μj − γ

η0

)

. (2.5)

We provide a few remarks. First, K(x) is a smooth version
of the indicator function I(x) = 1|x|≤1, mainly for technical
reasons related to the Helfer-Sjöstrand formula; see the dis-
cussion around (A.23) of our supplement. Moreover, similar
results also hold for general test functions other than (2.5), see
Remark A.2 for details. Second, as shown in Figure 1, according
to the deonition in (2.3), instead of using all the eigenvalues, the
statistics in (2.5) mostly sum up the properly scaled and shived

Figure1. Illustration of the statisticsTx andTy . Our test statisticsTx andTymostly
focus on the eigenvalues within the interval [γ − η0 , γ + η0] and therefore are
afected by diference between the spectral densities (blue: �1 , red: �2) within this
interval.
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Figure 2. Possible examples of the LSDs of split datasets (X s ,Ys) and locations of γ . This ogure illustrates how the densities separate and emphasizes that for the test to
be efective, γ computed fromZs should lie in the overlapping region of the supports of both densities.

eigenvalues within the small neighborhood [γ −η0, γ +η0]. For
the choice of γ , we refer to Remark A.4 of the supplement for
detailed discussions. Third, since the statistics in (2.4) use only
one split dataset, to use all available information and stabilize the
procedure, we can repeat the data splitting Algorithm 2.1 and
construct the statistics (2.4) multiple times, as described in the
next subsection.

Denote

v =
1

2π2

∫

R

∫

R

(K (x1) − K (x2))
2

(x1 − x2)
2

dx1dx2. (2.6)

We will see later from Section 3.2 that under the null hypothesis
(1.1), T will be asymptotically N (0, 2v). Therefore, under the
nominal level α, we should reject the null hypothesis if |T| >√
2vz1−α/2, where z1−α/2 is the (1 − α/2)% quantile of the

N (0, 1) random variable.

Remark 2.1. Note that the sample covariance matrices Qx and
Qy have at most rank n and therefore n nonzero eigenvalues.
Even though the full data dimension is p, our test statistics Tx

andTy deoned in (2.5) only sumover the n nonzero eigenvalues,
as the additional p− n zero eigenvalues do not contribute to the
randomness of the sum.

2.2. Test Procedure

To fully use the data and stabilize our testing procedure, we
repeat the data splitting (Algorithm 2.1) and test statistic con-
struction (2.4) multiple times. We generate a sequence of test
statistics and compute a summary statistic called the decision
ratio (2.10), which provides a more robust assessment of the
null hypothesis (1.1), see Remark A.3 of the supplement for the
theoretical motivation behind Algorithms 2.1 and 2.2.

Before stating our inferential procedure, we deone the eo-
cient data splitting scheme.

Deonition 2.1. We call X s,Y s,Z s from Algorithm 2.1 is an ε-
eocient data splitting if

max{|γ − μ1|, |γ − μn|} ≤ Range(Y s) − ε and

max{|γ − λ1|, |γ − λn|} ≤ Range(X s) − ε,

where Range(·) is the range of the eigenvalues of the associated
sample covariance matrices.

Remark 2.2. Deonition 2.1 essentially states that the eigenvalue
ranges of Qx and Qy must overlap, and γ computed from
Qz should lie in the overlapped interval; otherwise, we should
quickly reject the null hypothesis, boosting the power of our test.
Figure 2 illustrates this with three subogures showing various
cases of split datasets. The blue and red curves represent the
possible limiting distributions of the eigenvalues of X s and Y s,
while � (levmost), �, •, �, and � (rightmost) represent ove
possible locations of γ derived from Z s.

First, in Figure 2(a), regardless of the locations of γ , it does
not satisfyDeonition 2.1. In this setting, we should reject the null
hypothesis in (1.1) without testing, as concluded from Lemma
A.2. However, if γ is in the orange bullet • position and we
use our statistic (2.4), we may fail to reject (1.1) since a small
neighborhood of γ contains no eigenvalues of Qx and Qy. To
address this and boost power, Algorithm 2.2 (see (2.7)) directly
rejects H0 if a data splitting like Figure 2(a) happens. Second,
the data splitting is eocient if γ is in the • spot in Figure 2(b)
or�, •, or � spot in Figure 2(c). To boost power, Algorithm 2.2
only considers eocient splitting for cases in Figure 2(b) and (c)
(see (2.8)).

We now propose our two sample test procedure in Algo-
rithm 2.2. The algorithm can be implemented automatically
using our R package UHDtst.

Remark 2.3. Several remarks are in order on Algorithm 2.2.
First, as discussed in Remark 2.2, Steps one and two are mainly
employed to increase the power under the alternative. In fact,
under the null hypothesis when (1.1) holds, as can be seen from
the proof of Corollary 3.2, with high probability, (3.7) holds.
In other words, (2.7) and (2.8) will be skipped and all the split
datasets will be used. Second, as will be seen in Corollary 3.2,
when the null hypothesis (1.1) holds, conditional on the datasets,
{ci} in (2.9) can be asymptotically regarded as a sequence of
iid Bernoulli random variables with probability p = α. Con-
sequently, when n is suociently large, asymptotically, it suoces
to check H0 : p = α Vs Ha : p > α which can be done using
the Binomial test or its Gaussian approximation when K is large.
That is, under the nominal level α, we need to reject the null
hypothesis if

DR >
1

K
BK,α(1−α), or DR > α + z1−α/2

√
α(1 − α)

√
K

, (2.11)
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Algorithm 2.2 Two sample test procedure

Inputs: n, Type I error α, and the datasets X and Y .
Step one: Run Algorithm 2.1 K times (say K = 1000) and record the split datasets as (X s

i ,Y
s
i ,Z

s
i ), whose associated eigenvalues as

({λij}, {μi
j}, {γ i

j }), 1 ≤ j ≤ n, 1 ≤ i ≤ K. For 1 ≤ i ≤ K, let the ranges of {λij}, {μi
j} be as Ri(x), Ri(y), respectively. For 1 ≤ i ≤ K and a

given small positive value ε̃ (say ε̃ = 0.05), if

max{|λi1 − μi
n|, |μi

1 − λin|} > Ri(x) + Ri(y) + ε̃, (2.7)

we record that ci = 1 and denote S0 := {1 ≤ i ≤ K| (2.7) is satisoed}.
Step two: Compute the median values for {γ i

j } as in (2.2) and denote them as {γ i}. For some small value ε (say ε = 0.05), denote

the set

S1 := {{1, 2, . . . , K}\S0|Deonition 2.1 is satisoed}. (2.8)

If S0 ∪ S1 = ∅, redo Steps one and two until S0 ∪ S1 �= ∅.
Step three: For i ∈ S1, together with ({λij}, {μi

j}), run Algorithm B.1 from our supplement to choose a sequence of tuning

parameters {ηi0}. Using the above quantities, construct a sequence of statistics Ti following (2.4) and (2.5).
Step four: For i ∈ S1 and the given type one error α, we record

ci = 1(|Ti| ≥ z1−α/2

√
2v), (2.9)

where z1−α/2 is the (1 − α/2)% quantile of theN (0, 1) random variable.
Step ove: Calculate the decision ratio (DR)

DR =
1

|S0 ∪ S1|

|S0∪S1|
∑

i=1

ci. (2.10)

Output: Reject the null hypothesis (1.1) if DR > δ. Here δ > α is some control threshold which can be tuned using Algorithm B.2
from our supplement.

where BK,α(1 − α) is the (1 − α)% quantile of a binomial
distribution with parameters K and α; see Corollary 3.2 for more
discussions.

Remark 2.4. To implement Algorithm 2.2, several parameters
need to be chosen. The orst one is the split sample size n,
which should satisfy (2.1). Generally, increasing n leads to more
informative statistics. However, it is important to strike a balance
between choosing a reasonably large value for n and ensur-
ing that N and n are separated to allow for multiple splitting
procedures. Section C.2 of the supplement provides a detailed
comparison of diferent choices of n ≡ n(N), suggesting that
when N is large enough, smaller n values can be used to reduce
computational burden while maintaining robust performance.
In our R package UHDtst, for N satisfying (2.1), we set the
default value of n = N − 5, which achieves a balance for both
larger and smaller N values.

The second parameter is the window size in Step three (i.e.,
η0 in (2.5)). η0 can be regarded as a bandwidth that controls
the number of eigenvalues used in the test. Inspired by this, we
provide a smoothing-based approach to choose η0 in Algorithm
B.1 of our supplement. More details can be found in Section B
of the supplement.

The third parameter is the ε-eociency parameter. Current
choice of ε appears to be robust and achieve a constantly
high ratio of ε-eociency under various settings; we refer to
Section C.1 for a comprehensive discussion and supporting
evidence.

The last parameter is the threshold δ. As discussed in
Remark 2.3, according to (2.11), our theory has provided some
theoretically justioed values for δ when n is suociently large.

For onite n, in order to improve the accuracy and power, in
Algorithm B.2 of our supplement, we provide a calibration
procedure to choose δ. The motivation is inspired by the results
in Corollary 3.1 that when the null hypothesis (1.1) holds, the
distribution of (2.4) only relies on (2.6) which is irrelevant of the
matrix� that�1 = �2 = �. Therefore, we can calibrate a δ for
any combinations of (n1, n2, p, K) simply using iid multivariate
Gaussian samples for both X and Y ; see Section B of our
supplement for more details.

3. Theoretical Guarantees

This section analyzes the proposed Algorithm 2.2, focusing on
the asymptotic distributions of our proposed statistics (2.4) and
(2.5), as well as the power of statistic (2.4). For a k×k symmetric
matrix H, its empirical spectral distribution (ESD) is deoned as

μH := 1
k

∑k
i=1 δλi(H), where δ is the Dirac’s delta function and

{λi(H)} are the eigenvalues of H. For any probability measure ν

deoned on R, its Stieltjes transform is deoned as

mν(z) =
∫

1

x − z
dν(x), (3.1)

where z ∈ C+ := {E + iη : E ∈ R, η > 0}. For two
sequences of deterministic positive values an and bn, we write
an = O(bn) if an ≤ Cbn for some constant C > 0, and
an � bn if both an = O(bn) and bn = O(an). Moreover,
we write an = o(bn) if an ≤ cnbn for some positive sequence
cn ↓ 0. Moreover, for a sequence of random variables {xn} and
positive real values {an}, we use xn = OP(an) to state that xn/an
is stochastically bounded. Similarly, we use xn = oP(an) to say
that xn/an converges to zero in probability.
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3.1. Some Background in RandomMatrix Theory

In this section, we provide some background and preliminary
results. Throughout this section, we will need the followingmild
assumptions.

Assumption 3.1. We assume that the following conditions are
satisoed:

1. For dimensionality, we assume (1.2) holds.
2. We assume that the two samples are iid generated according

to xi = �
1/2
1 xi, 1 ≤ i ≤ n1, and yj = �

1/2
2 yj ∈ R

p, 1 ≤ j ≤
n2, where the entries of xi = (xis) and yj = (yjt), 1 ≤ i ≤
n1, 1 ≤ j ≤ n2, are independent and satisfy that for some
positive sequence (Ck)k∈N that for all k ∈ N

Exis = 0, Ex2is = 1, E |xis|k ≤ Ck, (3.2)

Eyjt = 0, Ey2jt = 1, E
∣

∣yjt
∣

∣

k ≤ Ck. (3.3)

3. For �1 and �2, we assume that all of their eigenvalues are
bounded from above and below away from zero.

Remark 3.1. Several remarks on Assumption 3.1 are in order.
First, condition 1 specioes the ultra-high dimensional regime.
Second, condition 2 provides a commonly used data generating
model in high-dimensional data analysis (e.g., Chen, Zhang, and
Zhong 2010; He and Chen 2018; Dobriban and Owen 2019;
Ke, Ma, and Lin 2023). Moreover, we assume centered data for
ease of statements, but our results can be easily generalized to
the nonzero mean setting (see Theorem 2.23 of Bloemendal
et al. (2016)). The moment assumptions in (3.2) and (3.3) can
be weakened with additional technical eforts (see Ding and
Yang 2018; Yang 2019). Finally, condition 3 imposes a mild
assumption on the population covariance matrices.

For the split datasets X s and Y s from our Algorithm 2.1,
under Assumption 3.1, we can write the sample covariance
matrix as follows

Qx =
1

√
pn

�
1/2
1 XX��

1/2
1 , Qy =

1
√
pn

�
1/2
2 YY��

1/2
2 , (3.4)

whereX contains the samples fromX s and Y contains that from
Y s. Since the matrices

Qx =
1

√
pn

X��1X, Qy =
1

√
pn

Y��2Y ,

have the same nonzero eigenvalues with Qx and Qy, it is suo-
cient to work with Qx and Qy. It is well-known that the limiting
spectral distributions (LSD) of Qx and Qy can be best described
by their Stileltjes transforms, denoted as m1(z) and m2(z). The
following lemma characterizesm1(z) andm2(z).

Lemma 3.1. Suppose {σ (i)
j }pj=1 is the sequence of the eigenvalues

of�i and let φ := p
n . Then for each z ∈ C+, there exists a unique

mi ≡ mi(z) ∈ C+, i = 1, 2, satisfying

1

mi
= −z +

1

p

p
∑

j=1

φ

φ1/2(σ
(i)
j )−1 + mi

.

Proof. See Lemma 2.3 of Ding and Wang (2023).

It is well-known that givenmi(z), people can obtain its asso-
ciated density function in the sense of (3.1) using the inverse
formula (Bai and Silverstein 2010) (also see (A.8)). Let �i be the
asymptotic density associated withmi in Lemma 3.1, i = 1, 2. In
(Ding andWang 2023, Lemma 2.5), it has been also proved that
�i, i = 1, 2, are both supported on some single intervals that for
some constants γ i

±

supp �i ∩ (0,∞) = [γ i
−, γ

i
+], (3.5)

where γ i
+ − γ i

− = O(1) and γ i
−, γ

i
+ � (p/n)1/2 for i = 1, 2.

3.2. Asymptotic Distributions of the Statistics

In this section, we establish the CLTs for the statistics (2.4) an
(2.5). For γ in (2.2), we deone

Mx := n

∫

R

t − γ

η0
K

(

t − γ

η0

)

d�1(t),

My := n

∫

R

t − γ

η0
K

(

t − γ

η0

)

d�2(t). (3.6)

Theorem3.1. SupposeAssumption 3.1 holds andmax{γ 1
−, γ

2
−} <

γ < min{γ 1
+, γ

2
+}. For some small constants τ1, τ2 > 0 that

n−1+τ2 < η0 ≤ n−τ1 , we have that for Tx and Ty in (2.5) and v

in (2.6)

Tx − Mx ⇒ N (0, v), Ty − My ⇒ N (0, v).

Proof. See Section A.3.

Remark 3.2. Theorem 3.1 establishes the asymptotic normality
for the statistics Tx and Ty with asymptotically identical vari-
ances, regardless of whether H0 in (1.1) holds. The diferences
lie in the mean parts Mx and My in (3.6). Under (1.1), �1 ≡ �2,
we have that Mx = My and T has zero mean. When (1.1) fails,
�i, i = 1, 2, which encode the information of �i via Lemma 3.1,
will be diferent, causingMx �= My. Regarding the typical (n, p)
sizes needed for the asymptotics to work well in practice, we
have included more detailed discussions in Section C.5 of the
supplement.

For the distribution of T under the null hypothesis (1.1),
due to the independent splitting in Algorithm 2.1, Theorem 3.1
immediately yields the following result.

Corollary 3.1. Suppose Assumption 3.1 holds. Then under the
null hypothesis H0 in (1.1), for some small constants τ1, τ2 > 0
that n−1+τ2 < η0 ≤ n−τ1 , we have

T ⇒ N (0, 2v).

Proof. Under these assumptions, it is clear from Lemma 3.1 and
(3.5) that �1 = �2 ≡ �, γ 1

− = γ 2
− ≡ γ− and γ 1

+ = γ 2
+ ≡ γ+.

Moreover, by Lemma A.2 and the discussion in Remark A.1, we
see that with high probability, γ− < γ < γ+. These also imply
that Mx = My. The proof then follows from Theorem 3.1, the
independence splitting in Algorithm 2.1 and T = (Tx − Mx) −
(Ty − My).
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As a consequence of Corollary 3.1, we immediately obtain
the asymptotic properties of our Algorithm 2.2 in terms of the
decision ratio (DR) in (2.10).

Corollary 3.2. Suppose the assumptions of Corollary 3.1 hold.
Then when n is suociently large, for DR in (2.10) of our Algo-
rithm 2.2, when the null hypothesis H0 in (1.1) holds, we have
that conditional on the datasets (X ,Y)

K × DR ⇒ BK,α ,

where BK,α is a Binomial random variable with size K and
probability α.

Proof. Analogous to the proof of Corollary 3.1, by Lemma A.2
and the discussion in Remark A.1, we see that with high proba-
bility, for all 1 ≤ i ≤ K,

λi1 = γ++o(1), μi
1 = γ++o(1), λin = γ−+o(1), μi

n = γ−+o(1),

and

γ− < γ i < γ+.

In view of (2.7) and Deonition 2.1, we conclude that with high
probability

S0 = ∅, S1 = {1, 2, . . . , K}. (3.7)

Moreover, according to Corollary 3.1, when conditional on the
datasets, we see that {ci} are asymptotically iid Bernoulli random
variables with probability α. This immediately completes the
proof.

Corollary 3.2 states that when n is large, we can essentially
characterize the asymptotic distribution of DR. Therefore, as
discussed in Remark 2.3, we can use it as the statistic to test (1.1)
(see (2.11)).

3.3. Power Analysis

In this section, we study the power of the statistic T in (2.4)
under the alternative that

Ha : �1 �= �2. (3.8)

For notional simplicity, denote the ESDs of�1 and�2 as π1 and
π2 and their associated kth moments as

mk(�i) =
∫

xkπi(dx), i = 1, 2. (3.9)

We point out that Algorithm 2.2 only uses statistics (2.4)
for ε-eocient splits. Thus, we orst study the power of T for
eociently split datasets.

Theorem 3.2. Suppose Assumption 3.1 holds. Moreover, for
some small ε > 0, we assume that (X s,Y s,Z s) generated from
Algorithm 2.1 is an ε-eocient data splitting satisfying Deoni-
tion 2.1. For some small constants τ1, τ2 > 0, we assume that
n−1+τ2 < η0 ≤ n−τ1 . Moreover, suppose that for suociently
large n and any constant c = O(n−1 + φ−1/2), we have that

φ1/2|m1(�1) − m1(�2)| + c|m2(�1) − m2(�2)| �= 0. (3.10)

Then given some Type I error rate α, suppose the alternative
(3.8) holds in the sense that

φ1/2|m1(�1) − m1(�2)| + φ−1/2|m2(�1) − m2(�2)|
> Cαη−2

0 n−1, (3.11)

where the constant Cα ≡ Cα(n) ↑ ∞ as n → ∞, we have that

P

(

|T| >
√
2vz1−α/2

)

= 1. (3.12)

Proof. See Section A.2.

Remark 3.3. A few remarks are in order. First, (3.10) is a mild
condition and can be easily satisoed. In fact, we can actually
remove this condition when φ−1/2 
 n−1, or equivalently,
p � n3. In such a setting, since m2(�i), i = 1, 2, are bounded
from above, we have that c|m2(�2) − m2(�1)| = O(n−1).
Consequently, (3.11) implies (3.10) so we can remove (3.10).
Second, (3.11) is generally a weak alternative. It suggests that
we should use a relatively larger η0 in order to increase the
power. Third, the condition (3.11) does not impose any explicit
structural assumptions on the form of the diference �1 − �2.
Finally, the condition (3.11) also relies on the ratio φ = p/n. It
demonstrates that as the ratio φ increases, weaker alternatives
may be suocient. For example, if p � n3, (3.11) reads as

|m1(�1) − m1(�2)| > Cαφ−1/2η−2
0 n−1,

which can be much weaker than those used in Cai, Liu, and Xia
(2013), and Li and Chen (2012).

Theorem 3.2 also yields the results of the power analysis of
our Algorithm 2.2 in terms of the decision ratio in (2.10).

Corollary 3.3. Suppose Assumption 3.1 and (3.11) hold. For
given Type I error rate α, when n is suociently large, we have
that conditional on the datasets (X ,Y)

DR = 1 + oP(1).

Proof. If S1 = ∅, then by Step one of our Algorithm 2.2, we
have that DR = 1. Otherwise, together with Step four of our
Algorithm 2.2 and (3.12), we can see that DR = 1+ oP(1). This
completes our proof.

Corollary 3.3 implies that when n is large and the weak
local alternative (3.11) holds, DR will converge to 1 with high
probability. Consequently, our Algorithm 2.2 will be able to
reject the null hypothesis under the weak alternative as in (3.11)
for any threshold δ < 1.

4. Numerical Results

In this section, we conduct extensive Monte Carlo simulations
and two real data analysis to show the accuracy and pow-
erfulness of our proposed test procedure Algorithm 2.2. For
illustrations, we compare our Algorithm 2.2 (Proposed) with
ove state-of-the-art methods: CLX2013 Cai, Liu, and Xia (2013),
LC2012 Li and Chen (2012), SY2010 Srivastava and Yanagihara
(2010), HC2018 He and Chen (2018), and ZLGY2020 Zheng et
al. (2019). Section C.4 compares the computational complexity
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of all methods, showing our method is generally more eocient.
For users’ convenience, all these methods can be implemented
using our R package UHDtst.

4.1. Numerical Simulations

In this section, we check and compare the accuracy and power
via Monte Carlo simulations.

4.1.1. Simulation Setup

As in the second condition of Assumption 3.1, our two samples

{xi} and {yj} are generated according to xi = �
1/2
1 xi and

yj = �
1/2
2 yj, where xi = (xis) and yj = (yjt) satisfy (3.2) and

(3.3). For the iid entries xis and yjt , we consider two diferent
distributions: the standard Gaussian distribution N (0, 1) with
vanishing fourth cumulant and the two-point distribution that
P(x =

√
2) = 1/3 and P(x = −

√
2/2) = 2/3 whose fourth

cumulant is −1.5.
We formulate the null hypothesis H0 for the two population

covariance matrices as

H0 : �1 = �2 ≡ �∗. (4.1)

In the simulations, we will consider three diferent cases based
on (4.1) as follows.

(Case I). We consider model two of Cai, Liu, and Xia (2013).
For �∗ in the null hypothesis (4.1), we consider the
Toeplitz matrix�∗ = (σ ∗

ij ), where σ ∗
ij = 0.5|i−j|. For

the alternative (3.8), we consider

Ha : �1 = �∗, �2 = D1/2�∗D1/2.

Here D = diag(dii), where dii’s are generated from
Unif(0.5, 2.5).

(Case II). We consider case one of Li and Chen (2012). For �∗

in (4.1), we consider �∗ = I. For the alternative, we
consider that

Ha : �1 = �∗, �2 = �∗ + �.

Here for some constant ϑ > 0, � is a bandedmatrix
that

�ij = ϑ2 · 1i=j + ϑ · 1|i−j|=1.

In other words,�2 can be regarded as the covariance
matrix of a p-dimensional realization of a stationary
MA(1) process driven by N (0, 1) random variables
with parameter ϑ .

(Case III). For �∗ in (4.1), we set �∗ = QDQ�, where Q is
some orthogonal matrix and D = diag(dii) with dii’s
being generated from Unif(3, 6). For the alternative,
we consider

Ha : �1 = �∗, �2 = �∗ + εIp, (4.2)

where ε > 0 is some constant and Ip is the p × p
identity matrix.

4.1.2. Simulation Results

In this section, we report and discuss the numerical results based
on extensive Monte Carlo simulations. We conduct the simula-
tions following the settings in Section 4.1.1. For the dimension
and sample sizes, we consider p = 6000 and various combina-
tions (n1, n2) = (100, 100), (100, 150), (100, 800), (100, 1000).
We report our results in Tables 1 and 2 and Figure 3. We
elaborate our results in more details as follows.

Tables 1 and 2 summarize the results of the empirical size
and power of our proposed method in Algorithm 2.2 and the
other ove methods in the literature (Cai, Liu, and Xia 2013; He
and Chen 2018; Li and Chen 2012; Srivastava and Yanagihara
2010) for Gaussian samples and two-point samples, respectively.
First, we conclude that across all the simulation settings, our
proposed method (i.e., Proposed) is accurate and powerful. It
also outperforms all the other methods in terms of both size
and power. Second, LC2012 is reasonably accurate for all the
simulation settings but lose their power in Case III. Third, due
to the multiple testing procedure, HC2018 is powerful across
all the settings but at the expense of being inaccurate. Fourth,
SY2010 only works for Case II and is invalid for Cases I and III
both in size and power. Fivh, when the samples areGaussian and
n1 and n2 are comparably large, CLX2013 works in Case I and
II but loses its power in Case III. Moreover, if either n1 and n2
are incomparable or the samples follow two-point distribution,
CLX2013 will be no longer accurate. Finally, ZLGY2020, com-
paring to CLX2013, succeeds in controlling the empirical size in
the unbalanced cases.However, its powermay fall under LC2012
in this ultra-high dimensional regime.

Before concluding this section, to show the mildness of the
condition (3.11) and the powerfulness of our method, in Fig-
ure 3, using Case III with the alternative (4.2), we report how
the simulated power changes with ε. It can be concluded that our
proposedwill achieve power one even for veryweak alternatives,
while all the othermethods either are powerless or requiremuch
larger ε to have nontrivial power.

Additional simulations for scenarios with smaller gaps
between �1 and �2 and cases with smaller sample sizes (n1, n2)
further demonstrate that our method performs well compared
to other methods in various settings. Details can be found in
Section C.3 of the supplement.

4.2. Real Data Analysis

In this section, we consider the analysis of two gene expression
datasets using our proposed method and compare it with the
methods developed in Cai, Liu, and Xia (2013), He and Chen
(2018), Li and Chen (2012), Srivastava and Yanagihara (2010),
and Zheng et al. (2019). The orst dataset is the clinical prostate
cancer dataset Singh et al. (2002)1 and the second one is the adult
T-cell acute lymphocytic leukemia (ALL) dataset (Chiaretti et al.
2004).2 We will see from the analysis below that while some of
these methods (including ours) work for the orst dataset, only
our proposed method works for the second dataset.

1The dataset can be downloaded from https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE68907

2Thedataset canbe loaded from theRpackageALL; seehttps://bioconductor.
org/packages/release/data/experiment/html/ALL.html
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Table 1. Comparison of simulated Type I error and power for Gaussian samples.

Methods/setting (100, 100) (100, 150) (100,800) (100,1000)

Empirical size

Case I
SY2010 0 0 0.007 0.017
LC2012 0.049 0.049 0.07 0.067
CLX2013 0.038 0.046 0.24 0.36
HC2018 0.014 0.017 0.01 0.003
ZLGY2020 0.047 0.043 0.063 0.057
Proposed 0.045 0.047 0.051 0.048

Case II
SY2010 0.035 0.033 0.06 0.06
LC2012 0.054 0.062 0.05 0.05
CLX2013 0.043 0.031 0.223 0.243
HC2018 0.013 0.007 0.01 0
ZLGY2020 0.049 0.061 0.052 0.043
Proposed 0.048 0.049 0.052 0.05

Case III
SY2010 0 0 0.003 0.01
LC2012 0.048 0.049 0.057 0.067
CLX2013 0.052 0.046 0.19 0.223
HC2018 0.024 0.004 0.003 0.007
ZLGY2020 0.067 0.076 0.093 0.053
Proposed 0.047 0.05 0.051 0.051

Empirical power

Case I
SY2010 0 0 0.873 0.917
LC2012 1 1 1 1
CLX2013 1 1 1 1
HC2018 1 1 1 1
ZLGY2020 1 1 1 1
Proposed 1 1 1 1

Case II
SY2010 1 1 1 1
LC2012 1 1 1 1
CLX2013 0.947 1 1 1
HC2018 1 1 1 1
ZLGY2020 1 1 1 1
Proposed 1 1 1 1

Case III
SY2010 0 0 0.013 0.023
LC2012 0.218 0.286 0.45 0.463
CLX2013 0.067 0.057 1 1
HC2018 1 1 1 1
ZLGY2020 0.028 0.046 0.34 0.437
Proposed 1 1 1 1

NOTE: Here we choose the type error α = 0.05 and consider the setups in Section 4.1.1 for four diferent combinations of (n1 , n2) with p = 6000. For Case II, we choose
ϑ = 0.5 for the alternative and for Case III, we choose ε = 1 for the alternative. In our R package UTDtst, the functions TwoSampleTest, LC2012, CLX2013,
SY2010, HC2018, and ZLGY2020 implement our proposed method, LC2012, CLX2013, SY2010, HC2018, and ZLGY2020, respectively. We report the results based on
1000 repetitions.

4.2.1. Prostate Cancer Data

The prostate cancer dataset (Singh et al. 2002) focuses on the
gene expression patterns associated with clinical behaviors of
prostate cancer. This study employed microarray expression
analysis to discern the global biological variations that might
be linked to the common pathological characteristics of prostate
cancer.

The dataset categorizes observations into distinct groups.
More speciocally, it has 12,600 columns of gene expressions and
comprises samples from two groups: a normal group with 50
samples and a tumor group with 52 samples. We point out that
this dataset has been also used for analysis in Cai, Liu, and Xia
(2013). However, to avoid some computational issue, they only
select the top 5000 columns (genes) with the largest t-values
in the sense of group means. In what follows, we will conduct
our analysis on both this subsample with 5000 genes and all the
samples with 12,600 genes.

We conduct the two sample covariance tests both within
groups and between groups. More concretely, for within group
test, we consider the normal group and divide the 50 samples
into two subgroups with sample sizes n1 = 30, n2 = 20. For
between group test, we use all 50 samples for normal group and

all 52 samples for tumor group, that is, n1 = 50, n2 = 52. The
results are summarized in Table 3 andwe canmake the following
conclusions.

First, all of our proposed method, LC2012, HC2018,
CLX2013, and ZLGY2020 will be able to accept the null
hypothesis for the within group test and reject the null
hypothesis for the between group test for both datasets with
diferent numbers of genes. Second, SY2010 is able to accept the
null hypothesis for the between group test but has no power to
reject the null hypothesis.

4.2.2. Acute Lymphoblastic Leukemia Data

The second dataset (Chiaretti et al. 2004) contains gene
expression of adult T-cell acute lymphocytic leukemia (ALL)
of patients with diferent biological indices. This study focuses
on the relation between overall gene expressions and molecular
biology types, helping to reveal the mechanism between
diferent ALL gene expressions and their responses to therapy
and survival.

The dataset contains 128 patients and their genes with length
of 12,625. There are six types of molecular biology in total. Here
we only select the two groups with largest numbers of patients,
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Table 2. Comparison of simulated Type I error and power for two-point samples.

Methods/setting (100, 100) (100, 150) (100,800) (100,1000)

Empirical size

Case I
SY2010 0 0 0.01 0.01
LC2012 0.048 0.050 0.043 0.046
CLX2013 0.176 0.158 0.457 0.513
HC2018 0.01 0.014 0.003 0.007
ZLGY2020 0.054 0.062 0.06 0.054
Proposed 0.049 0.051 0.048 0.047

Case II
SY2010 0.051 0.033 0.117 0.077
LC2012 0.046 0.059 0.066 0.05
CLX2013 0.321 0.306 0.95 0.997
HC2018 0.011 0.013 0.013 0.004
ZLGY2020 0.058 0.06 0.083 0.078
Proposed 0.051 0.052 0.048 0.048

Case III
SY2010 0 0 0.02 0.02
LC2012 0.044 0.051 0.047 0.06
CLX2013 0.037 0.035 0.2 0.233
HC2018 0.019 0.01 0.006 0.008
ZLGY2020 0.058 0.058 0.05 0.047
Proposed 0.051 0.051 0.047 0.048

Empirical power

Case I
SY2010 0 0 0.83 0.843
LC2012 1 1 1 1
CLX2013 1 1 1 1
HC2018 1 1 1 1
ZLGY2020 1 1 1 1
Proposed 1 1 1 1

Case II
SY2010 1 1 1 1
LC2012 1 1 1 1
CLX2013 1 1 1 1
HC2018 1 1 1 1
ZLGY2020 1 1 1 1
Proposed 1 1 1 1

Case III
SY2010 0 0 0 0.01
LC2012 0.237 0.302 0.413 0.39
CLX2013 0.038 0.051 1 1
HC2018 1 1 1 1
ZLGY2020 0.028 0.047 0.374 0.403
Proposed 1 1 1 1

NOTE: Here we choose the type error α = 0.05 and consider the setups in Section 4.1.1 for four diferent combinations of (n1 , n2) with p = 6000. For Case II, we choose
ϑ = 0.5 for the alternative and for Case III, we choose ε = 1 for the alternative. In our R package UTDtst, the functions TwoSampleTest, LC2012, CLX2013,
SY2010, HC2018, and ZLGY2020 implement our proposed method, LC2012, CLX2013, SY2010, HC2018, and ZLGY2020, respectively. We report the results based on
1000 repetitions.

Figure 3. Comparison of power of diferent methods under the alternative (4.2) of
Case III. We use Gaussian samples with n1 = 100, n2 = 150, p = 6000 and report
based on 1000 repetitions.

NEG with size 74 and BCR/ABL with size 37. We conduct our
study on the whole gene sequence that p = 12,625.

We conduct the two sample covariance tests both within
groups and between groups. More concretely, for within group
test, we consider the NEG group and divide the 74 samples into
two subgroups with sample sizes n1 = 30, n2 = 44. For between
group test, we use all 74 samples from the NEG group and all 37

Table 3. Comparison of results for the prostate cancer data.

Methods
Within group Between groups

5000 data 12,600 data 5000 data 12,600 data

SY2010 Accept Accept Accept Accept
LC2012 Accept Accept Reject Reject
CLX2013 Accept Accept Reject Reject
HC2018 Accept Accept Reject Reject
ZLGY2020 Accept Accept Reject Reject
Proposed Accept Accept Reject Reject

NOTE: Here 5000 data only uses p = 5000 genes as in Cai, Liu, and Xia (2013) and
12,600 data contains all genes.

Table 4. Comparison of results for the ALL data.

Methods Within group Between groups

SY2010 Accept Accept
LC2012 Accept Accept
CLX2013 Reject Reject
HC2018 Reject Accept
ZLGY2020 Reject Reject
Proposed Accept Reject

samples from BCR/ABL group, that is, n1 = 74, n2 = 37. The
results are summarized in Table 4.
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We can see that for this dataset, only our proposed method
works while SY2010, LC2012, and HC2018 fail to reject the
null hypothesis for between group test, while CLX2013 and
ZLGY2020 reject the null hypothesis for within group test.

5. Discussions

In this article, we consider the test of equality of two population
covariance matrices (see (1.1)) of ultra-high dimensional (see
(1.2)) random vectors. We propose a novel and adaptive test
procedure which (i). does not require specioc assumption (e.g.,
comparable or balancing, etc.) on the sizes of two samples; (ii).
does not need quantitative or structural assumptions of the pop-
ulation covariance matrices; (iii). does not need the parametric
distributions or the detailed knowledge of the moments of the
two populations.

Our approach, outlined in Algorithm 2.2, has three key
components. First, a data splitting procedure (Algorithm 2.1)
ensures independence of data used in our test statistic from
data used for selecting the location and bandwidth parameters.
Second, we construct statistics based on a subset of eigenvalues
from sample covariance matrices, with the subset determined
by automatically selected location and bandwidth parameters
using (2.2) and Algorithm B.1. This adaptive selection captures
essential eigenvalues for distinguishing null and alternative
hypotheses. Third, we compute a summary statistic (2.10)
and a threshold δ via a calibration procedure detailed in
Algorithm B.2.

The proposed methodology is highly inspired and justioed
by our theoretical development in random matrix theory. We
establish the asymptotic distributions of the statistics used in
our method and conduct the power analysis. We justify that
our method is powerful under very weak alternatives. We also
conduct extensive numerical simulations and show that our
method signiocantly outperforms the existing ones developed
in Cai, Liu, and Xia (2013), He and Chen (2018), Li and Chen
(2012), and Srivastava and Yanagihara (2010), both in terms of
size and power. Analysis of two real datasets is also carried out
to demonstrate the usefulness and superior performance of our
proposed methodology.

Several furtherworks can be considered following the current
article’s spirit. First, besides the two-sample covariance matrix
test, people are also interested in high-dimensional two-sample
mean tests under various settings, as seen in Chen and Qin
(2010), Chen, Li, and Zhong (2019), and Xue and Yao (2020).
Proposing an adaptive, accurate, and powerful test for two-
sample means under the ultra-high dimensional setup (1.2) is
important. Second, we assume that the eigenvalues of �1 and
�2 are bounded from above and below away from zero, which is
realistic in many applications. However, in applications where a
factor model is more beneocial, spiked covariance matrix mod-
els with a few larger or divergent eigenvalues may be considered
(Fan, Guo, and Zheng 2022; Ke, Ma, and Lin 2023; Zhang et
al. 2023). Generalizing our results and methods to the spiked
model would be interesting. Third, since our algorithm involves
multiple data splitting, it is worth exploring the implementation
of Algorithm 2.2 in a parallel or distributed fashion (Dobriban
and Owen 2019; Dobriban and Sheng 2021). Finally, exploring

bootstrap extensions to the proposed testing framework is also
an interesting direction for potential future works.

Supplementary Materials

In the supplement, we provide the details of the technical proof, the
automated procedures for selecting the tuning parameters and additional
numerical studies.
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