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ABSTRACT

In this article, we propose a new test for testing the equality of two population covariance matrices in
the ultra-high dimensional setting that the dimension is much larger than the sizes of both of the two
samples. Our proposed methodology relies on a data splitting procedure and a comparison of a set of well
selected eigenvalues of the sample covariance matrices on the split datasets. Compared to the existing
methods, our methodology is adaptive in the sense that (i). it does not require specific assumption (e.g.,
comparable or balancing, etc.) on the sizes of two samples; (ii). it does not need quantitative or structural
assumptions of the population covariance matrices; (iii). it does not need the parametric distributions or
the detailed knowledge of the moments of the two populations. Theoretically, we establish the asymptotic
distributions of the statistics used in our method and conduct the power analysis. We justify that our method
is powerful under weak alternatives. We conduct extensive numerical simulations and show that our method
significantly outperforms the existing ones both in terms of size and power. Analysis of two real datasets is
also carried out to demonstrate the usefulness and superior performance of our proposed methodology. An
R package UHDt st is developed for easy implementation of our proposed methodology. Supplementary
materials for this article are available online, including a standardized description of the materials available
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1. Introduction

Testing the equality of two population covariance matrices is of
fundamental importance in statistical analysis. For two samples
X = {xi e R 1 §i§n1} and Y = {yj eR1<j< nz}
with population covariance matrices X; and X, respectively,
researchers are interested in testing

Hy: % = %,. (1.1)

Testing (1.1) is crucial in multivariate analysis and high dimen-
sional statistics. First, the applications of many commonly used
multivariate tests or techniques rely on whether the population
covariance matrices are identical. For example, if two population
covariance matrices are the same, the asymptotic distribution
of Hotelling’s T? statistic, which is used to test the equality of
means, will be much easier to compute (Anderson 2003; Yao,
Zheng, and Bai 2015). For another example, for classification,
in order to correctly apply the tool of linear discriminant anal-
ysis (LDA), people need to check the equality of population
covariance matrices (Anderson 2003). Second, in many gene
expression data analysis, the two sample test for covariance
matrices serves an important role in understanding, classifying
and selecting gene associations across different phenotypes, for
example, see Hu, Qiu, and Glazko (2010) and Dudoit, Fridlyand,
and Speed (2002).

In this article, we will propose a novel method to test (1.1) in
the ultra-high dimensional regime that

p = n{" and p < n52, for some constants o, > 1. (1.2)

We first summarize some related results and methodologies in
Section 1.1 and then provide an overview of our approach in
Section 1.2.

1.1. Some Related Results

In the literature of multivariate statistics, testing (1.1) has been
well studied in the low dimensional regime when the dimension
p is fixed and the sample sizes go to infinity. For example, see
Anderson (2003), Sugiura and Nagao (1968), Nagao (1973),
Manly and Rayner (1987), O’Brien (1992), Gupta and Tang
(1984), and Perlman (1980). A common feature of these statistics
is that they are based on likelihood ratios and use the eigenvalues
of some sample covariance matrices.

On the other hand, the aforementioned methods may lose
their validity as the dimension p diverges with the sample sizes.
The main reason is that the likelihood ratio which is essentially a
tunction of the eigenvalues of certain sample covariance matri-
ces, is no more consistent due to the bias caused by the inconsis-
tency of sample covariance matrices Bai et al. (2009). Motivated
by this and based on results in random matrix theory, in the
last decades, various modified or new statistical methodologies
have been proposed in the high dimensional and comparable
regime that ; = ay = 1 in (1.2). We now list but a few in
the following. In Schott (2007), under the assumption that both
samples are Gaussian, the author proposed a statistic based on
the Frobenius norm of the difference of the sample covariance
matrices of the two samples. In Bai et al. (2009), Zheng (2012),
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Zheng, Bai, and Yao (2015), and Zou et al. (2021), assuming
that p < ny or p < n, so that the precision matrices exist at
least for one sample, the authors proposed several tests based
on the eigenvalues of the F matrices. The condition p < n; or
p < ny is weakened to some extent later in Zhang, Hu, and Bai
(2017). We emphasize again that the aforementioned methods
are all developed in the comparable regime that ¢ = ay = 1
in (1.2). In fact, they usually assume that p/n; — y; and
p/n2 — y» and both y; and y, will appear in the asymptotic
distributions of their proposed statistics. Moreover, to correctly
implement their methodologies, people normally either need to
assume the samples are Gaussian or have prior knowledge of the
moments of the entries of the random vectors. More recently,
Zheng et al. (2019) proposed a power-enhancement test with
no distributional or sparsity assumptions, but in the comparable
regime, that is, p/ng — ¢, € (0,00), k =1,2.

However, much less is touched in the ultra-high dimensional
regime (1.2) except for a few ones under various additional
assumptions. In Srivastava and Yanagihara (2010), under the
assumption that both samples are Gaussian and n; < n, (ie.,
a1 = oy in (1.2)), the authors proposed a test based some
normalized traces of the sample covariance matrices. In Li and
Chen (2012), assuming that n; < ny (i.e,, 01 = a3 in (1.2)),
under certain regularity conditions on ¥; and X,, the authors
proposed a test based on some U-statistics which is an unbiased
estimator of the Frobenius norm of X; — X,. Later on, with
additional assumption that both X; and X, are banded, He
and Chen (2018) proposed another U-statistics based test but
only targeting on the super-diagonal elements of the covariance
matrices. Finally, in Cai, Liu, and Xia (2013), under the assump-
tion that n; < n; (i.e., @1 = a3 in (1.2)), some moment assump-
tions on the random vectors and certain sparsity assumptions
on X; and X,, the authors introduced a test based on the
maximum standardized element-wise differences between the
sample covariance matrices which can be computationally very
expensive. In summary, all the existing methods concerning the
ultra-high dimensional setting (1.2) require that the sample sizes
are comparably large n; < n, (i.e, o1 = a3 in (1.2)). Moreover,
they need to impose some quantitative or structural assumptions
on ¥; and ¥, and distributional assumptions on the random
vectors.

Motivated by the above issues, in the current article, we
propose a novel methodology to test (1.1) in the ultra-high
dimensional setting (1.2). Our approach does not need assump-
tions on the sample sizes n;,n,, or quantitative or structural
assumptions on the population covariance matrices. Moreover,
we do not require the random vectors to have specific distribu-
tions like Gaussian. An overview of our method will be given in
Section 1.2.

1.2. An Overview of Our Method

In contrast to the methods developed in Srivastava and Yanagi-
hara (2010), Li and Chen (2012), He and Chen (2018), and Cali,
Liu, and Xia (2013), which all directly compare the entries of
the sample covariance matrices, our proposed approach uses
the eigenvalues of the sample covariance matrices. However, if
we directly compare all the eigenvalues, it can result in sev-

eral issues. First, since the values of the sample sizes n; and
ny are different in general, a direct comparison can lead to
bias especially when their orders are different. For example, if
ny 3> ny, in our regime (1.2), the sample ) will have much
fewer nonzero eigenvalues to be considered. Second, and most
importantly, as has been demonstrated in Bai et al. (2009), Ding
and Wang (2023), Yao, Zheng, and Bai (2015), and Zheng, Bai,
and Yao (2015), the distribution of the statistics that use all
the eigenvalues usually involves more unknown quantities like
the first four moments of the random samples and the detailed
information of X; and X%,.

To address the above issues, inspired by the recent devel-
opments in random matrix theory (Li, Schnelli, and Xu 2021;
Ding and Wang 2023), we only compare a subset of the eigen-
values of the two sample covariance matrices. This resolves the
issue of using too many eigenvalues of one sample covariance
matrix. Moreover, as will be seen in Corollary 3.1, under the
null hypothesis, the asymptotic distribution of the statistic is
very universal in the sense that it does not require the knowl-
edge of any particular information of the population covariance
matrices and the moments of the random vectors. In fact, as
can be seen in Theorem 3.1, regardless of whether (1.1) holds,
only the mean parts encode the information of the population
covariance matrices. This further makes it easier to study the
power of the statistics which shows that our method can reject
the null hypothesis under very weak alternative.

Our proposed methodology (see Algorithm 2.2) will be pre-
sented in Section 2. It consists of three important components.
The first one is a data splitting procedure (see Algorithm 2.1)
which divides the data in X' U ) into three parts, denoted as
X%, Y° and Z° with the same size n satistying (2.1). X* and
YV* are the testing beds and Z° is used to generate some useful
quantities for us to choose a subset of the eigenvalues of the
sample covariance matrices associated with A and )*. The
selection of the subset of the eigenvalues is done via the choice
of alocation parameter y (see (2.2)) and a tuning bandwidth 7
(see Algorithm B.1 of our supplement). Both parameters can be
chosen automatically. Our statistic in (2.4) primarily considers
the eigenvalues lying within the interval [y —1.05n¢, y +1.051¢].
Here we choose [y — 1.05n9,y + 1.051¢] instead of [y —
N0,y + no] mainly for technical reasons. However, the major
contribution comes from those eigenvalues lying in [y — 1o, y +
nol. The construction of the above statistic only uses one split
dataset so that some samples may be omitted. In order to use as
much information as possible and stabilize our procedure, our
second component of the methodology is to repeat the splitting
procedure multiple times. Instead of using the statistic in (2.4)
once, we generate a sequence of such statistics and construct a
summary statistic called decision ratio (see (2.10)). Such a pro-
cedure will reduce the variability of testing (1.1) compared with
only one data splitting. The last component of our methodology
is to provide a critical value § for the decision ratio to suggest
whether we should accept or reject the null hypothesis. This
will be done by a calibration procedure (see Algorithm B.2 of
our supplement) which uses the very universal properties of our
statistics under the null hypothesis (1.1).

On the theoretical side, we establish the asymptotic dis-
tributions for our statistics and decision ratio in Section 3.2.
Moreover, we conduct detailed power analysis for our method-



ology in Section 3.3 which shows that our proposed method
will be powerful under weak alternatives. We test our proposed
methodology and compare it with the state-of-the-art methods
(Srivastava and Yanagihara 2010; Li and Chen 2012; He and
Chen 2018; Cai, Liu, and Xia 2013) on both simulated and two
real datasets. The numerical results show that our proposed
method outperforms the existing ones.

1.3. Organization of the Article

The rest of the article is organized as follows. In Section 2,
we introduce our test procedure. Section 3 provides theoretical
guarantees for our procedure, establishing the asymptotic dis-
tributions of the test statistics and conducting power analysis. In
Section 4, we compare our proposed methodology with several
existing methods via Monte Carlo simulations and two real data
analysis. An online supplementary file is enclosed to provide the
technical proofs in Section A, the arguments of tuning param-
eter selection in Section B, additional simulations in Section C,
and additional discussions in Section D. An R package UHDt st
is developed for easy implementation.

2. Methodology

In this section, we introduce our proposed methodology.

2.1. Construction of Test Statistics

Our first step is the data splitting procedure via random sam-
pling. For some integer » satisfying that

max{n, ny}

n < N, where N := min{ 5

)nl)n2}) (21)

we follow Algorithm 2.1 to split the data.

Algorithm 2.1 Data splitting

Inputs: n, the datasets X and ).

Step one: Randomly sample 7 data points from A and ),
denoted as A and )*, respectively.

Step two: For the dataset with more samples, say X (i.e.,
ny > ny), we randomly sample n data points from X\ X,
denoted as Z°.

Output: The split datasets X, ), and Z°.

Algorithm 2.1 generates three independent datasets (X, J*,
and Z°) with the same sample size n. X*, and )* are used
for testing (1.1), while Z* serves as the reference dataset to
generate y, as discussed in Section 1.2. Let the sample covariance
matrices associated with X%, ), and Z° be

Q. = ﬁ xﬁZXfx,- ST

1
Q)= —— i—y i__T,
= yg(y DO =)
Q= Y @-D@i-2),

pn Z,‘GZS
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where X,y and Z are their respective sample means. Note that
the scaling (pn)~1/? differs from the typical % As shown in
Section 3, it addresses the ultra-high dimensionality (1.2).

We denote the nonzero eigenvalue sequences of the sample

covariance matrices associated with X*, )*, and Z° as {)‘j}?:p

{ Mj};’zl, and {y; J’LI, respectively, assuming they are in decreas-

ing order. Let

y := Median{y;}. (2.2)
Given the mollifier function
0 x| > 1.05
Kx)=11 lx| <1
1 1
€xp ((0.05)2 - (0.05)2—(\x|—1)2> 1 <|xf <105
(2.3)
and 79 = no(n) <K 1 chosen from Algorithm B.1 of our
supplement, we will use the statistic
T =T, — T, (2.4)
where
n
TX:ZZ<] V)IC(J V),
- 1o 10
j=1
n
mji—y Krji—Vv
T, = ( )/c( ) (25)
? ]_21: o o

We provide a few remarks. First, C(x) is a smooth version
of the indicator function Z(x) = 1jx<1, mainly for technical
reasons related to the Helffer-Sjostrand formula; see the dis-
cussion around (A.23) of our supplement. Moreover, similar
results also hold for general test functions other than (2.5), see
Remark A.2 for details. Second, as shown in Figure 1, according
to the definition in (2.3), instead of using all the eigenvalues, the
statistics in (2.5) mostly sum up the properly scaled and shifted

Figure 1. lllustration of the statistics Ty and Ty. Our test statistics Ty and T\, mostly
focus on the eigenvalues within the interval [y — ng, ¥ + no] and therefore are
affected by difference between the spectral densities (blue: g1, red: ;) within this
interval.
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'4‘ L,

Figure 2. Possible examples of the LSDs of split datasets (X’*, J*) and locations of y. This figure illustrates how the densities separate and emphasizes that for the test to
be effective, y computed from Z5 should lie in the overlapping region of the supports of both densities.

eigenvalues within the small neighborhood [y — 1o, ¥ +n0]. For
the choice of y, we refer to Remark A.4 of the supplement for
detailed discussions. Third, since the statistics in (2.4) use only
one split dataset, to use all available information and stabilize the
procedure, we can repeat the data splitting Algorithm 2.1 and
construct the statistics (2.4) multiple times, as described in the
next subsection.
Denote

2
V:L//(Km)—/cm)) dydy
27‘[2 RJR

(x1 — x2)?

(2.6)

We will see later from Section 3.2 that under the null hypothesis
(1.1), T will be asymptotically A/ (0, 2v). Therefore, under the
nominal level o, we should reject the null hypothesis if |T| >
ﬂzl_a/z, where z1_q/5 is the (1 — «/2)% quantile of the
N(0,1) random variable.

Remark 2.1. Note that the sample covariance matrices Q and
Q, have at most rank n and therefore n nonzero eigenvalues.
Even though the full data dimension is p, our test statistics Ty
and T, defined in (2.5) only sum over the #n nonzero eigenvalues,
as the additional p — n zero eigenvalues do not contribute to the
randomness of the sum.

2.2. Test Procedure

To fully use the data and stabilize our testing procedure, we
repeat the data splitting (Algorithm 2.1) and test statistic con-
struction (2.4) multiple times. We generate a sequence of test
statistics and compute a summary statistic called the decision
ratio (2.10), which provides a more robust assessment of the
null hypothesis (1.1), see Remark A.3 of the supplement for the
theoretical motivation behind Algorithms 2.1 and 2.2.

Before stating our inferential procedure, we define the effi-
cient data splitting scheme.

Definition 2.1. We call X*, )*, Z° from Algorithm 2.1 is an €-
efficient data splitting if

max{|y — u1l,|y — mnl} < Range()*) — € and
max{|y — A1l,|y — Anl} < Range(X®) — e,

where Range(-) is the range of the eigenvalues of the associated
sample covariance matrices.

Remark 2.2. Definition 2.1 essentially states that the eigenvalue
ranges of Q. and Q, must overlap, and y computed from
Q, should lie in the overlapped interval; otherwise, we should
quickly reject the null hypothesis, boosting the power of our test.
Figure 2 illustrates this with three subfigures showing various
cases of split datasets. The blue and red curves represent the
possible limiting distributions of the eigenvalues of X* and )”,
while A (leftmost), B, o, 4, and * (rightmost) represent five
possible locations of y derived from Z*.

First, in Figure 2(a), regardless of the locations of y, it does
not satisfy Definition 2.1. In this setting, we should reject the null
hypothesis in (1.1) without testing, as concluded from Lemma
A.2. However, if y is in the orange bullet e position and we
use our statistic (2.4), we may fail to reject (1.1) since a small
neighborhood of y contains no eigenvalues of Q, and Q,. To
address this and boost power, Algorithm 2.2 (see (2.7)) directly
rejects Hy if a data splitting like Figure 2(a) happens. Second,
the data splitting is efficient if y is in the o spot in Figure 2(b)
or W, o, or ¢ spot in Figure 2(c). To boost power, Algorithm 2.2
only considers efficient splitting for cases in Figure 2(b) and (c)
(see (2.8)).

We now propose our two sample test procedure in Algo-
rithm 2.2. The algorithm can be implemented automatically
using our R package UHDtst.

Remark 2.3. Several remarks are in order on Algorithm 2.2.
First, as discussed in Remark 2.2, Steps one and two are mainly
employed to increase the power under the alternative. In fact,
under the null hypothesis when (1.1) holds, as can be seen from
the proof of Corollary 3.2, with high probability, (3.7) holds.
In other words, (2.7) and (2.8) will be skipped and all the split
datasets will be used. Second, as will be seen in Corollary 3.2,
when the null hypothesis (1.1) holds, conditional on the datasets,
{ci} in (2.9) can be asymptotically regarded as a sequence of
iid Bernoulli random variables with probability p = «. Con-
sequently, when 7 is sufficiently large, asymptotically, it suffices
tocheck Hy : p = o Vs H, : p > « which can be done using
the Binomial test or its Gaussian approximation when K is large.
That is, under the nominal level «, we need to reject the null
hypothesis if

Ja(l —a)
VK

1
DR > RBK,Q(I —a), or DR> a+z1_q)2 , (2.11)
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Algorithm 2.2 Two sample test procedure

Inputs: n, Type I error o, and the datasets X and ).

Step one: Run Algorithm 2.1 K times (say K = 1000) and record the split datasets as (X}, ), Z}), whose associated eigenvalues as
({)\;},{M]l:}, {)/ji}),l <j<mnl1<i<KForl <i<K,lettheranges of{k]’:},{u;} be as R;(x), Ri(y), respectively. For 1 <i < Kanda

given small positive value € (say € = 0.05), if

max{|A] — uyl, iy = A1} > Rito) + Ri(y) + &,

2.7)

we record that ¢; = 1 and denote Sy := {1 < i < K] (2.7) is satisfied}. .
Step two: Compute the median values for {yj’} as in (2.2) and denote them as {y*}. For some small value € (say € = 0.05), denote

the set

Sy := {{1,2,...,K}\Sp|Definition 2.1 is satisfied}.

If So U S1 = 0, redo Steps one and two until Sop U S # 0.

(2.8)

Step three: For i € S, together with ({)\]’:}, {M;})’ run Algorithm B.1 from our supplement to choose a sequence of tuning

parameters {n}}. Using the above quantities, construct a sequence of statistics T; following (2.4) and (2.5).

Step four: For i € &) and the given type one error o, we record

¢ = 1(|Ti| = z1-¢/2V2V),

2.9)

where z1_g/3 is the (1 — /2)% quantile of the N(0, 1) random variable.

Step five: Calculate the decision ratio (DR)

_ 1
S US|

DR

[SoUS1|

>
i=1

(2.10)

Output: Reject the null hypothesis (1.1) if DR > §. Here § > « is some control threshold which can be tuned using Algorithm B.2

from our supplement.

where Bk, (1 — «) is the (1 — «)% quantile of a binomial
distribution with parameters K and «; see Corollary 3.2 for more
discussions.

Remark 2.4. To implement Algorithm 2.2, several parameters
need to be chosen. The first one is the split sample size n,
which should satisfy (2.1). Generally, increasing n leads to more
informative statistics. However, it is important to strike a balance
between choosing a reasonably large value for n and ensur-
ing that N and n are separated to allow for multiple splitting
procedures. Section C.2 of the supplement provides a detailed
comparison of different choices of n = n(N), suggesting that
when N is large enough, smaller # values can be used to reduce
computational burden while maintaining robust performance.
In our R package UHDtst, for N satisfying (2.1), we set the
default value of n = N — 5, which achieves a balance for both
larger and smaller N values.

The second parameter is the window size in Step three (i.e.,
no in (2.5)). no can be regarded as a bandwidth that controls
the number of eigenvalues used in the test. Inspired by this, we
provide a smoothing-based approach to choose 1 in Algorithm
B.1 of our supplement. More details can be found in Section B
of the supplement.

The third parameter is the e-efliciency parameter. Current
choice of € appears to be robust and achieve a constantly
high ratio of e-efficiency under various settings; we refer to
Section C.1 for a comprehensive discussion and supporting
evidence.

The last parameter is the threshold 4. As discussed in
Remark 2.3, according to (2.11), our theory has provided some
theoretically justified values for § when n is sufficiently large.

For finite #, in order to improve the accuracy and power, in
Algorithm B.2 of our supplement, we provide a calibration
procedure to choose §. The motivation is inspired by the results
in Corollary 3.1 that when the null hypothesis (1.1) holds, the
distribution of (2.4) only relies on (2.6) which is irrelevant of the
matrix ¥ that X = X, = X. Therefore, we can calibrate a § for
any combinations of (11, n2, p, K) simply using iid multivariate
Gaussian samples for both X and ); see Section B of our
supplement for more details.

3. Theoretical Guarantees

This section analyzes the proposed Algorithm 2.2, focusing on
the asymptotic distributions of our proposed statistics (2.4) and
(2.5), as well as the power of statistic (2.4). For a k x k symmetric
matrix H, its empirical spectral distribution (ESD) is defined as
ny = % Zle 83,(H)> where § is the Dirac’s delta function and
{Ai(H)} are the eigenvalues of H. For any probability measure v
defined on R, its Stieltjes transform is defined as

m, (2) =/ ! dv(x), (3.1)
x—z

where z € CL = {E+inp : E € R,n > 0}. For two
sequences of deterministic positive values a, and b,, we write
a, = O(b,) if a, < Cb, for some constant C > 0, and
a, < b, if both a, = O(b,) and b, = O(a,). Moreover,
we write a, = o(by) if a, < ¢,b, for some positive sequence
¢y 4 0. Moreover, for a sequence of random variables {x,} and
positive real values {a,}, we use x, = Op(a,) to state that x,,/a,
is stochastically bounded. Similarly, we use x, = op(a,) to say
that x,,/a, converges to zero in probability.
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3.1. Some Background in Random Matrix Theory

In this section, we provide some background and preliminary
results. Throughout this section, we will need the following mild
assumptions.

Assumption 3.1. We assume that the following conditions are
satisfied:

1. For dimensionality, we assume (1.2) holds.

2. We assume that the two samples are iid generated according
tox; = E;/in,l <i< nl,andyj = 221/2y eRP1<j<

n,, where the entries of x; = (x;s) andy = @j),1 < i <

ny, 1 < j < ny, are independent and satisfy that for some

positive sequence (Cy)xen that for all k € N

Exi=0, Exi=1 Elxl*<C, (32

k
Eyr =0, Eyi=1, Ely| <Ce (3.3)
3. For ¥; and X,, we assume that all of their eigenvalues are

bounded from above and below away from zero.

Remark 3.1. Several remarks on Assumption 3.1 are in order.
First, condition 1 specifies the ultra-high dimensional regime.
Second, condition 2 provides a commonly used data generating
model in high-dimensional data analysis (e.g., Chen, Zhang, and
Zhong 2010; He and Chen 2018; Dobriban and Owen 2019;
Ke, Ma, and Lin 2023). Moreover, we assume centered data for
ease of statements, but our results can be easily generalized to
the nonzero mean setting (see Theorem 2.23 of Bloemendal
et al. (2016)). The moment assumptions in (3.2) and (3.3) can
be weakened with additional technical efforts (see Ding and
Yang 2018; Yang 2019). Finally, condition 3 imposes a mild
assumption on the population covariance matrices.

For the split datasets X and )* from our Algorithm 2.1,
under Assumption 3.1, we can write the sample covariance
matrix as follows

1
Q.= —x/*xxTx? g, = L sinyyTsie,

J o

where X contains the samples from A and Y contains that from
). Since the matrices

(34)

1 1
Q=——=X"5X, Q= ——=Y5,Y,
R/ N/

have the same nonzero eigenvalues with Q, and Q), it is suffi-
cient to work with Q, and Q. It is well-known that the limiting
spectral distributions (LSD) of Q, and Qy can be best described
by their Stileltjes transforms, denoted as m(z) and m;(z). The
following lemma characterizes m; (z) and m;(2).

Lemma 3.1. Suppose {o< )}P
of ¥;andlet¢ := p . Then for each z € C,, there exists a unique
m; = m;(z) € (C+, i = 1,2, satistying

T

| is the sequence of the eigenvalues

¢1/2(a(’)) U+ m;

Proof. See Lemma 2.3 of Ding and Wang (2023). O

It is well-known that given m;(z), people can obtain its asso-
ciated density function in the sense of (3.1) using the inverse
formula (Bai and Silverstein 2010) (also see (A.8)). Let g; be the
asymptotic density associated with m; in Lemma 3.1,i = 1,2.In
(Ding and Wang 2023, Lemma 2.5), it has been also proved that
0i»i = 1,2, are both supported on some single intervals that for
some constants yi

suppo; N (0,00) = [y, yi], (3.5)

where y+ Y. =0()and yi, y+ (p/m)'/? fori=1,2.

3.2. Asymptotic Distributions of the Statistics

In this section, we establish the CLTs for the statistics (2.4) an
(2.5). For y in (2.2), we define

t— r—
M, = n / Yk (—V> doy (1),
R To 1o
t—vy t—y
M, = nf K (—) do> (t).
R 7o Mo

Theorem 3.1. Suppose Assumption 3.1 holds and max{y!,y?} <
y < min{y_‘l_, yi}. For some small constants 71,7, > 0 that
n~ 1T < po < n~ 7, we have that for Ty and Ty in (2.5) and v
in (2.6)

(3.6)

Ty — My = N(O,v), T, — M, = N(0,v).
Proof. See Section A.3. O

Remark 3.2. Theorem 3.1 establishes the asymptotic normality
for the statistics Ty and T, with asymptotically identical vari-
ances, regardless of whether Hy in (1.1) holds. The differences
lie in the mean parts M, and My, in (3.6). Under (1.1), 01 = 02,
we have that My, = M, and T has zero mean. When (1.1) fails,
0i,i = 1,2, which encode the information of ¥; via Lemma 3.1,
will be different, causing M, # M. Regarding the typical (1, p)
sizes needed for the asymptotics to work well in practice, we
have included more detailed discussions in Section C.5 of the
supplement.

For the distribution of T under the null hypothesis (1.1),
due to the independent splitting in Algorithm 2.1, Theorem 3.1
immediately yields the following result.

Corollary 3.1. Suppose Assumption 3.1 holds. Then under the
null hypothesis Hy in (1.1), for some small constants 71, 7, > 0
that 17 < 5y < n™™, we have

T = N(0,2v).

Proof. Under these assumptions, it is clear from Lemma 3.1 and
(3.5)thatg) = g2 = 0, ¥ = y* = y_and vy} =y} = 4.
Moreover, by Lemma A.2 and the discussion in Remark A.1, we
see that with high probability, y_ < y < y4. These also imply
that My, = M,. The proof then follows from Theorem 3.1, the
independence splitting in Algorithm 2.1 and T = (T — My) —
(Ty — M,). O



As a consequence of Corollary 3.1, we immediately obtain
the asymptotic properties of our Algorithm 2.2 in terms of the
decision ratio (DR) in (2.10).

Corollary 3.2. Suppose the assumptions of Corollary 3.1 hold.
Then when # is sufficiently large, for DR in (2.10) of our Algo-
rithm 2.2, when the null hypothesis Hy in (1.1) holds, we have
that conditional on the datasets (X, )

K x DR = Bka»

where Bk, is a Binomial random variable with size K and
probability «.

Proof. Analogous to the proof of Corollary 3.1, by Lemma A.2
and the discussion in Remark A.1, we see that with high proba-
bility, forall 1 <i <K,

A= yyto(), i = yrto(D), A, = y_+o(l), uj, = y_+o(1),

and

y- <y <y

In view of (2.7) and Definition 2.1, we conclude that with high
probability

So=9, 5 =1{1,2,...,KL (3.7)

Moreover, according to Corollary 3.1, when conditional on the
datasets, we see that {c;} are asymptotically iid Bernoulli random
variables with probability «. This immediately completes the
proof. O

Corollary 3.2 states that when n is large, we can essentially
characterize the asymptotic distribution of DR. Therefore, as
discussed in Remark 2.3, we can use it as the statistic to test (1.1)
(see (2.11)).

3.3. Power Analysis

In this section, we study the power of the statistic T in (2.4)
under the alternative that

H,: % # X, (3.8)

For notional simplicity, denote the ESDs of ¥; and ¥, as 771 and
775 and their associated kth moments as

mp(Z)) = /xkni(dx), i=1,2. (3.9)
We point out that Algorithm 2.2 only uses statistics (2.4)

for e-efficient splits. Thus, we first study the power of T for
efficiently split datasets.

Theorem 3.2. Suppose Assumption 3.1 holds. Moreover, for
some small € > 0, we assume that (X%, )*, Z°) generated from
Algorithm 2.1 is an e-efficient data splitting satisfying Defini-
tion 2.1. For some small constants 71, 7, > 0, we assume that
n~1t%2 < py < n~U. Moreover, suppose that for sufficiently
large 7 and any constant c = O(n~! + ¢~1/2), we have that

@2 my(T1) — my(T)] + clma(T1) — ma(T2)| # 0. (3.10)
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Then given some Type I error rate «, suppose the alternative
(3.8) holds in the sense that

¢ mi(21) — mi(To)] + ¢~ Hma(T1) — ma ()]
> Cyng2n Y, (3.11)

where the constant C, = C,(n) 1 0o as n — 00, we have that

P (|’JI‘| > \/2vzl,a/2) —1.

(3.12)

Proof. See Section A.2. O

Remark 3.3. A few remarks are in order. First, (3.10) is a mild
condition and can be easily satisfied. In fact, we can actually
remove this condition when ¢ /2 « n~!, or equivalently,
P> n3. In such a setting, since my(X;),i = 1,2, are bounded
from above, we have that c/my(Z;) — ma(Z1)] = O(xr™h).
Consequently, (3.11) implies (3.10) so we can remove (3.10).
Second, (3.11) is generally a weak alternative. It suggests that
we should use a relatively larger 1o in order to increase the
power. Third, the condition (3.11) does not impose any explicit
structural assumptions on the form of the difference ¥; — X».
Finally, the condition (3.11) also relies on the ratio ¢ = p/n. It
demonstrates that as the ratio ¢ increases, weaker alternatives
may be sufficient. For example, if p 3> n3, (3.11) reads as

[my(21) — my(52)| > Cap™ /P70,

which can be much weaker than those used in Cai, Liu, and Xia
(2013), and Li and Chen (2012).

Theorem 3.2 also yields the results of the power analysis of
our Algorithm 2.2 in terms of the decision ratio in (2.10).

Corollary 3.3. Suppose Assumption 3.1 and (3.11) hold. For
given Type I error rate o, when # is sufficiently large, we have
that conditional on the datasets (X, )

DR = 1+ op(1).

Proof. If Si = ¢, then by Step one of our Algorithm 2.2, we
have that DR = 1. Otherwise, together with Step four of our
Algorithm 2.2 and (3.12), we can see that DR = 1 + op(1). This
completes our proof. O

Corollary 3.3 implies that when # is large and the weak
local alternative (3.11) holds, DR will converge to 1 with high
probability. Consequently, our Algorithm 2.2 will be able to
reject the null hypothesis under the weak alternative as in (3.11)
for any threshold § < 1.

4. Numerical Results

In this section, we conduct extensive Monte Carlo simulations
and two real data analysis to show the accuracy and pow-
erfulness of our proposed test procedure Algorithm 2.2. For
illustrations, we compare our Algorithm 2.2 (Proposed) with
five state-of-the-art methods: CLX2013 Cai, Liu, and Xia (2013),
LC2012 Li and Chen (2012), SY2010 Srivastava and Yanagihara
(2010), HC2018 He and Chen (2018), and ZLGY2020 Zheng et
al. (2019). Section C.4 compares the computational complexity
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of all methods, showing our method is generally more efficient.
For users’ convenience, all these methods can be implemented
using our R package UHDt st.

4.1. Numerical Simulations

In this section, we check and compare the accuracy and power
via Monte Carlo simulations.

4.1.1. Simulation Setup
As in the second condition of Assumption 3.1, our two samples

le/zx,- and

yj = Ezl/zyj, where x; = (xi5) and y; = () satisfy (3.2) and
(3.3). For the iid entries x;s and yj;, we consider two different
distributions: the standard Gaussian distribution N (0, 1) with
vanishing fourth cumulant and the two-point distribution that
P(x = +/2) = 1/3 and P(x = —+/2/2) = 2/3 whose fourth
cumulant is —1.5.

We formulate the null hypothesis Hy for the two population
covariance matrices as

{x;} and {yj} are generated according to x; =

Hy:Z =3%,=3%*% (4.1)
In the simulations, we will consider three different cases based
on (4.1) as follows.

(CaseI). We consider model two of Cai, Liu, and Xia (2013).
For ¥* in the null hypothesis (4.1), we consi'de':r the
Toeplitz matrix * = (a;), where cri;‘f = 0.5/, For

the alternative (3.8), we consider
H,: ¥, = ¥* ¥, = D'/?x*D"2,

Here D = diag(d;), where d;;’s are generated from
Unif (0.5, 2.5).

We consider case one of Li and Chen (2012). For X*
in (4.1), we consider X* = I. For the alternative, we
consider that

(Case II).

H,: 3 =% Z, =Y+ A.

Here for some constant > 0, A is a banded matrix
that

Ay = »?. limj + 9 - Ljimjj=1-

In other words, ¥, can be regarded as the covariance
matrix of a p-dimensional realization of a stationary
MA(1) process driven by A/(0, 1) random variables
with parameter ¢.

(Case III). For * in (4.1), we set £* = QDQ', where Q is
some orthogonal matrix and D = diag(d;;) with d;;’s
being generated from Unif (3, 6). For the alternative,
we consider

H,: % =3% % =X + ¢, (4.2)

where ¢ > 0 is some constant and I, is the p x p

identity matrix.

4.1.2. Simulation Results

In this section, we report and discuss the numerical results based
on extensive Monte Carlo simulations. We conduct the simula-
tions following the settings in Section 4.1.1. For the dimension
and sample sizes, we consider p = 6000 and various combina-
tions (n1,13) = (100,100), (100, 150), (100, 800), (100, 1000).
We report our results in Tables 1 and 2 and Figure 3. We
elaborate our results in more details as follows.

Tables 1 and 2 summarize the results of the empirical size
and power of our proposed method in Algorithm 2.2 and the
other five methods in the literature (Cai, Liu, and Xia 2013; He
and Chen 2018; Li and Chen 2012; Srivastava and Yanagihara
2010) for Gaussian samples and two-point samples, respectively.
First, we conclude that across all the simulation settings, our
proposed method (i.e., Proposed) is accurate and powerful. It
also outperforms all the other methods in terms of both size
and power. Second, LC2012 is reasonably accurate for all the
simulation settings but lose their power in Case III. Third, due
to the multiple testing procedure, HC2018 is powerful across
all the settings but at the expense of being inaccurate. Fourth,
SY2010 only works for Case II and is invalid for Cases I and III
both in size and power. Fifth, when the samples are Gaussian and
ny and ny are comparably large, CLX2013 works in Case I and
II but loses its power in Case III. Moreover, if either n; and n;
are incomparable or the samples follow two-point distribution,
CLX2013 will be no longer accurate. Finally, ZLGY2020, com-
paring to CLX2013, succeeds in controlling the empirical size in
the unbalanced cases. However, its power may fall under LC2012
in this ultra-high dimensional regime.

Before concluding this section, to show the mildness of the
condition (3.11) and the powerfulness of our method, in Fig-
ure 3, using Case III with the alternative (4.2), we report how
the simulated power changes with ¢. It can be concluded that our
proposed will achieve power one even for very weak alternatives,
while all the other methods either are powerless or require much
larger & to have nontrivial power.

Additional simulations for scenarios with smaller gaps
between X} and X, and cases with smaller sample sizes (111, n2)
further demonstrate that our method performs well compared
to other methods in various settings. Details can be found in
Section C.3 of the supplement.

4.2. Real Data Analysis

In this section, we consider the analysis of two gene expression
datasets using our proposed method and compare it with the
methods developed in Cai, Liu, and Xia (2013), He and Chen
(2018), Li and Chen (2012), Srivastava and Yanagihara (2010),
and Zheng et al. (2019). The first dataset is the clinical prostate
cancer dataset Singh et al. (2002)! and the second one is the adult
T-cell acute lymphocytic leukemia (ALL) dataset (Chiaretti et al.
2004).2 We will see from the analysis below that while some of
these methods (including ours) work for the first dataset, only
our proposed method works for the second dataset.

'The dataset can be downloaded from https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE68907

2The dataset can be loaded from the R package ALL; see https.//bioconductor.
org/packages/release/data/experiment/html/ALL.html|



Table 1. Comparison of simulated Type | error and power for Gaussian samples.
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Methods/setting (100, 100) (100, 150) (100,800) (100,1000)
SY2010 0 0 0.007 0.017
Case LC2012 0.049 0.049 0.07 0.067
CLX2013 0.038 0.046 0.24 0.36
HC2018 0.014 0.017 0.01 0.003
Empirical size ZLGY2020 0.047 0.043 0.063 0.057
Proposed 0.045 0.047 0.051 0.048
SY2010 0.035 0.033 0.06 0.06
Casell LC2012 0.054 0.062 0.05 0.05
CLX2013 0.043 0.031 0.223 0.243
HC2018 0.013 0.007 0.01 0
ZLGY2020 0.049 0.061 0.052 0.043
Proposed 0.048 0.049 0.052 0.05
SY2010 0 0 0.003 0.01
Caselll LC2012 0.048 0.049 0.057 0.067
CLX2013 0.052 0.046 0.19 0.223
HC2018 0.024 0.004 0.003 0.007
Z1LGY2020 0.067 0.076 0.093 0.053
Proposed 0.047 0.05 0.051 0.051
SY2010 0 0 0.873 0917
Case | LC2012 1 1 1 1
CLX2013 1 1 1 1
HC2018 1 1 1 1
Empirical power ZLGY2020 1 1 1 1
Proposed 1 1 1 1
SY2010 1 1 1 1
Casell LC2012 1 1 1 1
CLX2013 0.947 1 1 1
HC2018 1 1 1 1
ZLGY2020 1 1 1 1
Proposed 1 1 1 1
SY2010 0 0 0.013 0.023
Caselll LC2012 0.218 0.286 0.45 0.463
CLX2013 0.067 0.057 1 1
HC2018 1 1 1 1
ZLGY2020 0.028 0.046 0.34 0.437
Proposed 1 1 1 1

NOTE: Here we choose the type error « = 0.05 and consider the setups in Section 4.1.1 for four different combinations of (n1, ny) with p = 6000. For Case Il, we choose
¥ = 0.5 for the alternative and for Case Ill, we choose ¢ = 1 for the alternative. In our R package UTDt st, the functions TwoSampleTest, LC2012, CLX2013,
SY2010,HC2018,and ZLGY2020 implement our proposed method, LC2012, CLX2013, SY2010, HC2018, and ZLGY2020, respectively. We report the results based on

1000 repetitions.

4.2.1. Prostate Cancer Data

The prostate cancer dataset (Singh et al. 2002) focuses on the
gene expression patterns associated with clinical behaviors of
prostate cancer. This study employed microarray expression
analysis to discern the global biological variations that might
be linked to the common pathological characteristics of prostate
cancer.

The dataset categorizes observations into distinct groups.
More specifically, it has 12,600 columns of gene expressions and
comprises samples from two groups: a normal group with 50
samples and a tumor group with 52 samples. We point out that
this dataset has been also used for analysis in Cai, Liu, and Xia
(2013). However, to avoid some computational issue, they only
select the top 5000 columns (genes) with the largest ¢-values
in the sense of group means. In what follows, we will conduct
our analysis on both this subsample with 5000 genes and all the
samples with 12,600 genes.

We conduct the two sample covariance tests both within
groups and between groups. More concretely, for within group
test, we consider the normal group and divide the 50 samples
into two subgroups with sample sizes n; = 30,n, = 20. For
between group test, we use all 50 samples for normal group and

all 52 samples for tumor group, that is, n; = 50,1, = 52. The
results are summarized in Table 3 and we can make the following
conclusions.

First, all of our proposed method, LC2012, HC2018,
CLX2013, and ZLGY2020 will be able to accept the null
hypothesis for the within group test and reject the null
hypothesis for the between group test for both datasets with
different numbers of genes. Second, SY2010 is able to accept the
null hypothesis for the between group test but has no power to
reject the null hypothesis.

4.2.2. Acute Lymphoblastic Leukemia Data
The second dataset (Chiaretti et al. 2004) contains gene
expression of adult T-cell acute lymphocytic leukemia (ALL)
of patients with different biological indices. This study focuses
on the relation between overall gene expressions and molecular
biology types, helping to reveal the mechanism between
different ALL gene expressions and their responses to therapy
and survival.

The dataset contains 128 patients and their genes with length
of 12,625. There are six types of molecular biology in total. Here
we only select the two groups with largest numbers of patients,
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Table 2. Comparison of simulated Type | error and power for two-point samples.

Methods/setting (100, 100) (100, 150) (100,800) (100,1000)
SY2010 0 0 0.01 0.01
Case LC2012 0.048 0.050 0.043 0.046
CLX2013 0.176 0.158 0.457 0.513
HC2018 0.01 0.014 0.003 0.007
Empirical size ZLGY2020 0.054 0.062 0.06 0.054
Proposed 0.049 0.051 0.048 0.047
SY2010 0.051 0.033 0.117 0.077
Casell LC2012 0.046 0.059 0.066 0.05
CLX2013 0.321 0.306 0.95 0.997
HC2018 0.011 0.013 0.013 0.004
ZLGY2020 0.058 0.06 0.083 0.078
Proposed 0.051 0.052 0.048 0.048
SY2010 0 0 0.02 0.02
Case lll LC2012 0.044 0.051 0.047 0.06
CLX2013 0.037 0.035 0.2 0.233
HC2018 0.019 0.01 0.006 0.008
ZLGY2020 0.058 0.058 0.05 0.047
Proposed 0.051 0.051 0.047 0.048
SY2010 0 0 0.83 0.843
Case | LC2012 1 1 1 1
CLX2013 1 1 1 1
HC2018 1 1 1 1
Empirical power ZLGY2020 1 1 1 1
Proposed 1 1 1 1
SY2010 1 1 1 1
Casell LC2012 1 1 1 1
CLX2013 1 1 1 1
HC2018 1 1 1 1
ZLGY2020 1 1 1 1
Proposed 1 1 1 1
SY2010 0 0 0 0.01
Caselll LC2012 0.237 0.302 0.413 0.39
CLX2013 0.038 0.051 1 1
HC2018 1 1 1 1
ZLGY2020 0.028 0.047 0.374 0.403
Proposed 1 1 1 1

NOTE: Here we choose the type error « = 0.05 and consider the setups in Section 4.1.1 for four different combinations of (n1, ny) with p = 6000. For Case Il, we choose
¥ = 0.5 for the alternative and for Case Ill, we choose ¢ = 1 for the alternative. In our R package UTDt st, the functions TwoSampleTest, LC2012, CLX2013,
SY2010,HC2018,and ZLGY2020 implement our proposed method, LC2012, CLX2013, SY2010, HC2018, and ZLGY2020, respectively. We report the results based on
1000 repetitions.

1.00- —_— Table 3. Comparison of results for the prostate cancer data.
Methods Methods Within group Between groups
0.751 proposed 5000data  12,600data  5000data 12,600 data
5 gy X013 SY2010 Accept Accept Accept Accept
£ 0.50- — e LC2012 Accept Accept Reject Reject
& — SY2010 CLX2013 Accept Accept Reject Reject
— HC2018 HC2018 Accept Accept Reject Reject
0.251 2LGY2020 ZLGY2020 Accept Accept Reject Reject
Proposed Accept Accept Reject Reject

0.00 .o</. : . : , NOTE: Here 5000 data only uses p = 5000 genes as in Cai, Liu, and Xia (2013) and
0.01 0.05 0.10 . 0.30 0.50 1.00 3.00 12,600 data contains all genes.

Figure 3. Comparison of power of different methods under the alternative (4.2) of Table 4. Comparison of results for the ALL data.
Case lll. We use Gaussian samples with ny = 100,n, = 150,p = 6000 and report

based on 1000 repetitions. Methods Within group Between groups
SY2010 Accept Accept
LC2012 Accept Accept
CLX2013 Reject Reject
NEG with size 74 and BCR/ABL with size 37. We conduct our ~ HC2018 Reject Accept
— ZLGY2020 Reject Reject
study on the whole gene sequence that p = 12,625. Proposed Accept Reject

We conduct the two sample covariance tests both within
groups and between groups. More concretely, for within group
test, we consider the NEG group and divide the 74 samples into
two subgroups with sample sizes n; = 30, n, = 44. For between  samples from BCR/ABL group, that is, n; = 74,1, = 37. The
group test, we use all 74 samples from the NEG group and all 37 results are summarized in Table 4.




We can see that for this dataset, only our proposed method
works while SY2010, LC2012, and HC2018 fail to reject the
null hypothesis for between group test, while CLX2013 and
ZLGY2020 reject the null hypothesis for within group test.

5. Discussions

In this article, we consider the test of equality of two population
covariance matrices (see (1.1)) of ultra-high dimensional (see
(1.2)) random vectors. We propose a novel and adaptive test
procedure which (i). does not require specific assumption (e.g.,
comparable or balancing, etc.) on the sizes of two samples; (ii).
does not need quantitative or structural assumptions of the pop-
ulation covariance matrices; (iii). does not need the parametric
distributions or the detailed knowledge of the moments of the
two populations.

Our approach, outlined in Algorithm 2.2, has three key
components. First, a data splitting procedure (Algorithm 2.1)
ensures independence of data used in our test statistic from
data used for selecting the location and bandwidth parameters.
Second, we construct statistics based on a subset of eigenvalues
from sample covariance matrices, with the subset determined
by automatically selected location and bandwidth parameters
using (2.2) and Algorithm B.1. This adaptive selection captures
essential eigenvalues for distinguishing null and alternative
hypotheses. Third, we compute a summary statistic (2.10)
and a threshold § via a calibration procedure detailed in
Algorithm B.2.

The proposed methodology is highly inspired and justified
by our theoretical development in random matrix theory. We
establish the asymptotic distributions of the statistics used in
our method and conduct the power analysis. We justify that
our method is powerful under very weak alternatives. We also
conduct extensive numerical simulations and show that our
method significantly outperforms the existing ones developed
in Cai, Liu, and Xia (2013), He and Chen (2018), Li and Chen
(2012), and Srivastava and Yanagihara (2010), both in terms of
size and power. Analysis of two real datasets is also carried out
to demonstrate the usefulness and superior performance of our
proposed methodology.

Several further works can be considered following the current
article’s spirit. First, besides the two-sample covariance matrix
test, people are also interested in high-dimensional two-sample
mean tests under various settings, as seen in Chen and Qin
(2010), Chen, Li, and Zhong (2019), and Xue and Yao (2020).
Proposing an adaptive, accurate, and powerful test for two-
sample means under the ultra-high dimensional setup (1.2) is
important. Second, we assume that the eigenvalues of X; and
%, are bounded from above and below away from zero, which is
realistic in many applications. However, in applications where a
factor model is more beneficial, spiked covariance matrix mod-
els with a few larger or divergent eigenvalues may be considered
(Fan, Guo, and Zheng 2022; Ke, Ma, and Lin 2023; Zhang et
al. 2023). Generalizing our results and methods to the spiked
model would be interesting. Third, since our algorithm involves
multiple data splitting, it is worth exploring the implementation
of Algorithm 2.2 in a parallel or distributed fashion (Dobriban
and Owen 2019; Dobriban and Sheng 2021). Finally, exploring

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 1

bootstrap extensions to the proposed testing framework is also
an interesting direction for potential future works.

Supplementary Materials

In the supplement, we provide the details of the technical proof, the
automated procedures for selecting the tuning parameters and additional
numerical studies.
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