CacheGen: KV Cache Compression and Streaming for Fast Large
Language Model Serving

Yuhan Liu, Hanchen Li, Yihua Cheng, Siddhant Ray, Yuyang Huang, Qizheng Zhang*, Kuntai Du, Jiayi Yao,
Shan Lu', Ganesh AnanthanarayananT, Michael Maire, Henry Hoffmann, Ari Holtzman, Junchen Jiang
University of Chicago Microsoft *Stanford University

Abstract

Aslarge language models (LLMs) take on complex tasks, their inputs
are supplemented with longer contexts that incorporate domain
knowledge. Yet using long contexts is challenging as nothing can
be generated until the whole context is processed by the LLM.
While the context-processing delay can be reduced by reusing the
KV cache of a context across different inputs, fetching the KV cache,
which contains large tensors, over the network can cause high extra
network delays.

CacheGen is a fast context-loading module for LLM systems.
First, CacheGen uses a custom tensor encoder, leveraging KV cache’s
distributional properties to encode a KV cache into more compact
bitstream representations with negligible decoding overhead, to
save bandwidth usage. Second, CacheGen adapts the compression
level of different parts of a KV cache to cope with changes in avail-
able bandwidth, in order to maintain low context-loading delay
and high generation quality. We test CacheGen on popular LLMs
and datasets. Compared to the recent systems that reuse the KV
cache, CacheGen reduces the KV cache size by 3.5-4.3x and the
total delay in fetching and processing contexts by 3.2-3.7x with
negligible impact on the LLM response quality. Our code is at:
https://github.com/UChi-JCL/CacheGen.

CCS Concepts

« Computing methodologies — Natural language generation;
- Networks — Application layer protocols; « Information
systems — Information systems applications.

Keywords
Large Language Models, KV Cache, Compression

ACM Reference Format:

Yuhan Liu, Hanchen Li, Yihua Cheng, Siddhant Ray, Yuyang Huang, Qizheng
Zhang, Kuntai Du, Jiayi Yao, Shan Lu, Ganesh Ananthanarayanan, Michael
Maire, Henry Hoffmann, Ari Holtzman, Junchen Jiang. 2024. CacheGen: KV
Cache Compression and Streaming for Fast Large Language Model Serving.
In SIGCOMM 24, August 4—August 8, 2024, Sydney, Australia. ACM, New
York, NY, USA, 18 pages

This work is licensed under a Creative Commons Attribution International 4.0 License.

ACM SIGCOMM °24, August 4-8, 2024, Sydney, NSW, Australia
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0614-1/24/08
https://doi.org/10.1145/3651890.3672274

1 Introduction

With impressive generative quality, large language models (LLMs)
are ubiquitously used [22, 38, 46, 128] in personal assistance, Al
healthcare, and marketing. The wide use of LLM APIs (e.g., OpenAl
GPT-4 [108]) and the industry-quality open-source models (e.g.,
Llama [129]), combined with popular application frameworks (e.g.,
HuggingFace [10], Langchain [83]), further boosts LLMs’ popular-
ity.

To perform complex tasks, users or applications often prepend
an LLM input with a long context containing thousands of tokens
or more. For example, some context supplements user prompts
with domain-knowledge text so that the LLM can generate re-
sponses using specific knowledge not embedded in the LLM it-
self. As another example, a user prompt can be supplemented
with the conversation histories accumulated during the interac-
tions between the user and the LLM. Though short inputs are
useful [94, 124], longer inputs often improve response quality and
coherence [31, 32, 35, 45, 67, 116, 130, 141], which has fueled the
ongoing race to train LLMs that accept ever longer inputs, from 2K
tokens in ChatGPT to 100K in Claude [24].

Using long contexts poses a challenge to the response generation
latency, as no response can be generated until the whole context
is loaded and processed by the LLM. The amount of computation
in processing a long context grows super-linearly with the context
length [31, 47, 116, 131, 150]. While some recent works increase the
throughput of processing long context [17], the delay of processing
the context can still be several seconds for long contexts (2 seconds
for a 3K context) [17, 58]. In response, many systems reduce the
context-processing delay by storing and reusing the KV cache of
the context to skip redundant computation when the context is
used again (e.g., [23, 58, 82, 156]).

Yet, the KV cache of a reused context may not always be in
local GPU memory when the next input comes; instead, the KV
cache may need to be retrieved from another machine(s) first, caus-
ing extra network delays (Figure 1a). For instance, a database of
background documents might reside in a separate storage service,
and the documents (i.e., context) assisting LLM inference are only
to be selected and fetched to the LLM when a relevant query is
received [27, 31, 36, 84, 110].

The extra network delay for fetching the KV cache has not yet
received much attention. Previous systems assume the KV cache of
a context is always kept in the same GPU memory between different
requests sharing the same context [58], or the KV cache is small
enough to be sent quickly by a fast interconnection [111, 157]. Yet, as
elaborated in §3, the delay for fetching a KV cache can be non-trivial,
since a KV cache consists of large high-dimensional floating-point
tensors, whose sizes grow with both the context length and model
size and can easily reach 10s GB. The resulting network delay can

ACM SIGCOMM 24, August 4-8, 2024, Sydney, NSW, Australia

Prmt—1 Promt 1

KV cache of the Compressed
reused context KV cache

€ Network,>

Prompt-2
[Context | ||||\ o

(a) Baseline: Sharing the full-
size KV cache tensor is slow

Prompt-2
[Context []] %D

(b) CacheGen: Speeding up by
compressing (encoding) KV cache
Figure 1: When the context is reused, CacheGen speeds up the sharing
of its KV cache by compressing (encoding) the KV cache.

be 100s milliseconds to over 10 seconds, hurting the interactive user
experience [1, 2, 87]. In short, when loading contexts’ KV cache
from other machines, solely optimizing computational delay may
cause higher response latency, as loading the KV cache increases
the network delay.

There have been a few recent efforts to reduce the run-time size
of KV cache in GPU memory in order to fit the memory limit or
LLM’s input limit. Some drop unimportant tokens from KV cache or
context text [71, 72, 95, 153], and others apply smart quantization
on KV cache tensor [62, 78, 97]. In contrast, we want to reduce
the transmission-time size of KV cache to reduce the network delay.
Thus, we do not need to keep the tensor format of KV cache and,
instead, can encode it into more compact bitstreams.

We present CacheGen, a fast context-loading module in LLM
systems for reducing the network delay in fetching and processing
long contexts (Figure 1b). It entails two techniques.

KV cache encoding and decoding: CacheGen encodes a pre-
computed KV cache into more compact bitstream representations,
rather than keeping the tensor shapes of the KV cache. This greatly
saves bandwidth and delays when sending a KV cache. Our KV
cache encoder employs a custom quantization and arithmetic cod-
ing strategy to leverage the distributional properties of KV cache,
such as locality of KV tensors across nearby tokens and different
sensitivities towards quantization losses at different layers of a KV
cache. Furthermore, the decoding (decompression) of KV caches
is accelerated by a GPU-based implementation, and the decoding
is pipelined with transmission to further reduce its impact on the
overall inference delay.

KV cache streaming: CacheGen streams the encoded bitstreams
of aKV cache in a way that adapts to changes in network conditions.
Before a user query arrives, CacheGen splits a long context into
chunks and encodes the KV of each chunk separately at various
compression levels (similar to video streaming). When sending a
context’s KV cache, CacheGen fetches the chunks one by one and
adapts the per-chunk compression level to maintain high generation
quality while keeping the network delay within a Service-Level
Objective (SLO). When the bandwidth is too low, CacheGen can
also fall back to sending a chunk in text format and leave it to the
LLM to recompute the KV cache of the chunk.

In short, unlike prior systems that optimize the KV cache in
GPU memory, CacheGen focuses on the network delay for sending
the KV cache. We compare CacheGen with a range of baselines,
including KV quantization [120], loading contexts in text form, and
state-of-the-art context compression [72, 153], using three popular

39

Y. Liu, et al
Technique A KV cache size AAccuracy
(in MB, lower the better) (higher the better)
8-bit quantization 622 1.00
CacheGen (this paper) 176 0.98
H20 [153] 282 0.97
CacheGen on H20 71 0.97
LLMLingua [72] 492 0.94
CacheGen on LLMLingua 183 0.94

Table 1: Performance of CacheGen and the baselines on Mistral-7B
with LongChat dataset [90]. Full results are shown in §7.

LLMs of various sizes (from 7B to 70B) and four datasets of long
contexts (662 contexts with 1.4 K to 16 K tokens). Table 1 gives a
preview of the results. Our key findings are:

e In terms of the delay of transmitting and processing contexts
(i.e., time-to-first-token), CacheGen is 3.2-3.7X faster than the
quantization baseline at the similar generation quality (F1 score
and perplexity), and 3.1-4.7X faster than loading the text contexts
with less than 2% accuracy drop. Notably, compared with 8-bit
quantization, a nearly lossless KV cache compression, CacheGen
is still able to reduce the delay of loading context by 1.67-1.81x.

o In terms of the bandwidth usage for sending KV cache, CacheGen
achieves the same generation quality while using 3.5-4.3X less
bandwidth than the quantization baseline.

e When combined with the recent context compression methods [72,
153], CacheGen further reduces the bandwidth usage for sending
their KV caches by 3.3-4.2x.

This work does not raise any ethical issues.
2 Background and Motivation

2.1 Large language model basics

Transformers [37, 44, 131] are the de facto models for most large
language model (LLM) services. At a high level, a transformer takes
a sequence of input tokens! and generates a sequence of output
tokens through two phases.

During the prefill phase, an attention neural network takes in
the input token. Then each of the [layers in the attention module
produces two two-dimensional tensors, a key (K) tensor and a value
(V) tensor. These K and V tensors contain information essential for
LLM to utilize the context later. All the KV tensors across different
layers are together called the KV cache.

During the generation phase, also called the decoding phase, the
KV cache is used to compute the attention score between every pair
of tokens, which constitute the attention matrix, and generate out-
put tokens in an autoregressive manner. For performance reasons,
the KV cache, which has a large memory footprint [82], is usually
kept in GPU memory during this phase and released afterward.
Some emergent optimizations save and reuse the KV cache across
different LLM requests, as we will explain shortly.

In all mainstream models, the compute overhead of the prefill
phase grows superlinearly with the input length. Since the pre-
fill phase must be completed before generating the first output
token, its duration is called Time-to-First-Token (TTFT). This paper

!A “token” can be a punctuation, a word, or a part of a word. Tokenizing an input is
much faster than the generation process.

CacheGen: KV Cache Compression and Streaming for Fast Large Language Model Serving

focuses on reducing TTFT during prefilling while not changing the
decoding process.

2.2 Context in LLM input

LLMs may generate low-quality or hallucinated answers when the
response requires knowledge not already embedded in the models.
Thus, many LLM applications and users supplement the LLM input
with additional texts, referred to as the context [53, 89]. The LLM
can read the context first and use its in-context learning capability
to generate high-quality responses.?

The contexts in LLM input can be used for various purposes.

(i) a user question can be supplemented with a document about
specific domain knowledge, to produce better answers [3, 7, 117],
including using latest news to answer fact-checking inquiries [8, 9],
using case law or regulation documents to offer legal assistance
[118, 125], etc.; (ii) code analysis applications retrieve context from
a code repository to answer questions or generate a summary about
the repository [30, 69, 73], and similarly financial companies use
LLMs to generate summaries or answer questions based on de-
tailed financial documents [105]; (iii) gaming applications use the
description of a particular character as context so that the LLM
can generate character dialogues or actions matching the charac-
ter personality [110, 121, 140]; (iv) in few-shot learning, a set of
question-answer pairs are used as context to teach the LLM to an-
swer certain types of questions [18, 99, 123]; (v) in chatting apps,
the conversational history with a user is often prepended as the con-
text to subsequent user input to produce consistent and informed
responses [26, 76].

We observe that in practice, contexts are often long and often
reused to supplement different user inputs.

Long contexts are increasingly common in practice. For exam-
ple, those contexts discussed above, such as case law documents,
financial documents, news articles, code files, and chat history ac-
cumulated in a session, easily contain thousands of tokens or more.
Intuitively, longer contexts are more likely to include the right
information and hence may improve the quality of the response.
Indeed, FiD [67] shows that the accuracy increases from 40% to
48% when the context increases from 1K tokens to 10K. Retro [35]
similarly shows that the generation quality (perplexity) improves
significantly when the context increases from 6K tokens to 24K.
This paper focuses on contexts such as conversation histories accu-
mulated in a chat session, or a single document input by the user
to provide necessary information needed to accomplish the task.

These long contexts are often reused by different inputs. In the
financial analysis example, consider two queries, “write a short
summary based on the company’s earning report last quarter” and
“what were the company’s top sources of revenue in the last quar-
ter”; the same earning reports are likely to be supplemented to both
queries as the contexts. Similarly, the same law enforcement docu-
ment or latest news article can be used to answer many different
queries in legal assistant or fact-checking apps. As another example,
during a chat session, early chat content will keep getting reused
as part of the context for every later chat input.

2An example of this process is retrieval-augmented generation (RAG), which uses a
separate logic to select the context documents for a given query, It is well-studied in
natural-language literature and widely used in industry.

40

ACM SIGCOMM 24, August 4-8, 2024, Sydney, NSW, Australia

Prompt

Gora (o) o —

M the 1st tok
e 15t token
Network (transfer context) |

Compute (process context v
& prompt)

Decoding

time
(a) Fetching the text of context :
Less data to send but higher computation delay

%@ —
Network (transfer KV)
Compute (process prompt) v

KV cache

Decoding the
1st token

time
(b) Fetching KV cache of the context:
Low computation delay but much more data to send

= o

Decoding
/ the 15t token

Com pressed KV
Context

Network (transfer compressed KV)

Compute (decompress KV &
process prompt)

time
(c) Our work: Load compressed KV (or text) to
save both network delay and computation delay

Figure 2: How different ways of loading context affect the network
delay (to transfer context or KV cache) and the computation delay (to
run the attention module on the context).

In short, longer contexts lead to higher prefill delays and hence
longer TTFT, but since the same contexts are often reused, it is
promising to reduce TTFT by caching the intermediate results
(i.e., the KV cache) and hence avoid prefill recomputation. This
solution has indeed been explored recently [23, 58, 82] and shown
its potential with just one caveat, which we discuss in the next
section.

3 The Hidden Network Bottleneck

While reusing the KV cache of a long context could drastically
reduce TTFT, this benefit comes with a catch—the reused KV cache
must be in the local GPU memory in the first place [23, 58, 82, 156].
Why KV cache needs to be loaded: In practice, however, the
reused KV cache may need to be fetched from another machine(s).
This is because GPU memory is likely not enough to store the
KV caches of many repeated contexts. For example, in a financial
assistance application, an LLM performs data analysis on long finan-
cial reports [107], which can have thousands or tens of thousands
of tokens, leading to a large KV cache size. To make it concrete,
processing Amazon’s annual report for 2023, which has ~80,000
tokens [20], with the model of Llama-34B produces a KV cache of
19 GB, which is on par with the size of the LLM itself. As differ-
ent queries that reuse a KV cache may be several hours apart, the
reused KV cache may have to be offloaded to make space for fresh
chat sessions. Moreover, as newer LLMs can accept ever longer
contexts [51, 56, 63, 91, 138], storing them on dedicated storage
servers, rather than CPUs or GPU, would be more practical and

ACM SIGCOMM 24, August 4-8, 2024, Sydney, NSW, Australia

economical. Besides, different requests that reuse KV cache may
not always hit the same GPU, which also requires the KV cache to
be moved between machines.

Fetching KV cache from another machine causes a substantial

delay, yet this network delay has not received sufficient attention.
Is it a new problem? Although some recent efforts also pro-
pose to send KV cache across GPUs to run multi-GPU inference,
these systems assume that the KV cache is shared via high-speed
links [111, 157], e.g., direct NVLinks, which has bandwidth of up to
several hundred Gbps. In these settings, the network delay to fetch
KV cache can be negligible. However, KV caches also need to be
fetched over lower-bandwidth links, such as between regular cloud
servers, where the bandwidth is usually in the single-digit Gbps
range [70]. As illustrated in Figure 2b, in this setting, the delay of
fetching KV cache into GPU memory can be as long as (or even
longer than) prefill without the KV cache.
Our approach: This paper focuses on reducing the network delay
in fetching the KV cache. To this end, we compress the KV cache by
encoding it into more compact bitstream representations (shown
in Figure 2c). This goal may seem similar to the recent works that
drop words (tokens) from the text context or quantize the KV cache
tensors [62, 78, 95, 97, 153]. However, there is a key difference.
These techniques reduce the run-time GPU memory footprint of
KV cache, thus retaining the tensor shapes of KV cache. In contrast,
we reduce the transmission-time size of KV cache by encoding
it into compact bitstreams to reduce the network delay of sending
it. Moreover, there is a natural synergy—the KV cache shrunk by
these recent works can still be encoded to further reduce the KV
cache size and the network delay of sending KV caches.

4 CacheGen: KV Cache Encoding and Streaming

The need to reduce KV cache transmission delay motivates a new
module in LLM systems, which we call a KV cache streamer. The
KV cache streamer serves three roles:

e (1) Encoding a given KV cache into more compact bitstream rep-
resentations — KV bitstreams. This can be done offline.

o (2) Streaming the encoded KV bitstream through a network con-
nection of varying throughput.

e (3) Decoding the received KV bitstream into the KV cache.

At first glance, our KV cache streamer may look similar to re-
cent techniques (e.g., [72, 95, 153]) that compress long contexts by
dropping less important tokens. Yet, they differ in crucial ways:

Those recent techniques aim at reducing the run-time size of
the KV cache to accommodate the GPU memory-size constraint
or LLM input-window constraint, and yet we aim at reducing the
transmission-time size of the KV cache to reduce network delay.
As a result, previous techniques have to maintain the KV caches’
shapes of large floating-point tensors so that the shrunk KV caches
can be directly consumed by the LLM at the run-time; meanwhile,
they can use information during the generation phase to know
which tokens in the context are more important to the particular
query under processing. In contrast, we need not to maintain the
original tensor shapes, and can encode them into more compact
bitstreams and adapt their representation to network bandwidth.
Meanwhile, we have to decide which compression scheme to use

41

Y. Liu, et al

L
8 0.5 == Original == Original
= = Delta == = Delta
0.0 T T
0 2 2 4

Llama 7B model Llama 13B model

Figure 3: Contrasting the distribution of the original values and the
delta values. We model two Llama models with various long contexts
(§5.1). We show absolute values for clarity.

before a particular query is processed, and hence, we cannot use
information from the generation phase.

This paper presents CacheGen, a concrete design of the KV
cache streamer. First, CacheGen uses a custom KV cache codec
(encoder and decoder) to minimize the size of KV bitreams, by em-
bracing several distributional properties of KV cache tensors (§5.1).
This greatly reduces the bandwidth demand to transmit the KV
cache, thus directly reducing TTFT. Second, when streaming the
KV bitstreams under dynamic bandwidth, CacheGen dynamically
switches between different encoding levels or computing the KV
cache on demand, in order to keep the TTFT within a given deadline
while maintaining a high response quality. The KV encoding/de-
coding incurs a negligible compute overhead and is pipelined with
network transmission to minimize the impact on end-to-end delay.

5 CacheGen Design

We now describe the design of CacheGen, starting with the insights
on KV cache (§5.1) that inspires KV cache encoder (§5.2), followed
by how CacheGen adapts to bandwidth (§5.3).

5.1 Empirical insights of KV cache

We highlight three observations on the characteristics of KV cache
values. Though it is intrinsically hard to prove they apply to any
LLM with any context, here, we use a representative workload to
empirically demonstrate the prevalence of these observations. The
workload includes two LLMs of different capacities (Llama-7B and
Llama-13B) and LongChat dataset [90] (which contains 100 long
contexts between 9.2K and 9.6K tokens, randomly sampled from
the whole set of 200 contexts), one of the largest datasets of long
contexts. Details of this workload can be found in §7.1.

5.1.1 Token-wise locality. The first observation is about how the
Kand V tensor values change across tokens in a context. Specifically,
we observe that

Insight 1. Within the same layer and channel, tokens in closer
proximity have more similar K/V tensor values compared to tokens
that are further apart.

For each model, we contrast the distribution of K (or V) tensors’
original values and the distribution of the deltas—the differences
between K (or V) tensors’ values at the same layer and channel
between every pair of consecutive tokens in the contexts. Figure 3
shows the distribution of absolute values in the original tensor and
the deltas of one layer across all the contexts3. In both models across
the contexts, we can see that the deltas are much more concentrated

3We randomly sampled a single layer from the K tensor because the values in the
different layers have different ranges.

CacheGen: KV Cache Compression and Streaming for Fast Large Language Model Serving

1.0 1.0
>
(&)
Y
5 0.5 0.5
3
<

0.0 0.0

AR 0O P '\\\vaqqu
Q b“b,\‘lz.@)'q,' Q b‘%\(b\@q’,
Layers Layers

Llama 7B model Llama 13B model
Figure 4: Applying data loss to different layers of a KV cache has

different impact on accuracy. (Same workload as Figure 3).

around zero than the original values. Consequently, the variance
of the deltas is 2.4-2.9% lower than that of the original values. The
token-wise locality of K and V tensors inspires CacheGen to encode
deltas rather than original values.

This token-wise locality can be intuitively explained by the trans-
former’s self-attention mechanism, which computes the KV tensors.
The mechanism is mathematically equivalent to calculating the KV
tensors of one token based on the KV tensors of the previous token.
This means KV tensors at one token are intrinsically correlated
with those of the previous token.

5.1.2 Layer-wise sensitivity to loss. The second observation con-
cerns how sensitive different values in the K and V tensors are to
data loss. Our observation is the following:

Insight 2. The output quality of the LLM is more sensitive to losses
in the KV cache values of the shallower layers than to losses in those
of the deeper layers.

The heterogeneous loss sensitivity on different layers suggests
that our KV cache encoder should compress different layers differ-
ently. Figure 4 shows how much accuracy is affected by applying
data losses to the values of a specific layer group in the K and V
tensors. Here, we apply rounding as the data loss, and we compute
the average resulting response accuracy (defined in §7.1) across
100 contexts in the dataset. We can see that the average response
accuracy drops significantly when the loss is applied to the early
layers of a model while applying the same loss on the deeper layers
has much less impact on the average response accuracy. This result
holds consistently across different models we tested.

Intuitively, the deeper layers of a KV cache extract higher-level
structures and knowledge than the shallower layers of a KV, which
embed more primitive information [119, 132]. As a result, the loss
of information by removing precision on the early-layer cache
might propagate and affect the later-layer cache, and thus hinder
the model’s ability to grasp the higher-level structures necessary
to produce quality responses.

5.1.3 Distribution along layers, channels, and tokens. Finally,
regarding the distributions of values along the three dimensions
of KV cache—layers, channels, and token positions—we make the
following observation.

Insight 3. Each value in a KV cache is indexed by its channel,
layer, and token position. The information gain of grouping values by
their channel and layer is significantly higher than the information
gain of grouping values by their token position.

42

ACM SIGCOMM 24, August 4-8, 2024, Sydney, NSW, Australia

I No grouping [EEIBy token By channel EEBYy layer

€ 52 5.4
£
20
% ® 50 5.2
wa
2
5 48

Llama 7B model Llama 13B model

Figure 5: Entropy (bits per element) when using different grouping
strategies (Same workload as Figure 3.)

Intuitively, this can be loosely interpreted as different KV values
in the same channel (or layer) being more similar to each other than
different KV values belonging to the same token position. A possible
explanation is that different channels or layers capture various
features in the input [49, 92]. Some channels capture subject-object
relationships, while others focus on adjectives. As for different
layers, later layers capture more abstract semantic information than
earlier ones according to prior works [49, 92]. On the other hand,
within a given layer and channel, the KV values for different tokens
are more similar, likely because of the self-attention mechanism,
wherein each token’s KV is derived from all preceding tokens. We
leave a more detailed examination to future work.

To empirically verify the insight, we first group the values in the
KV caches produced by the two models and 100 contexts based on
their layers, channels, or token positions, and then compute the
entropy of each group. Figure 5 shows the average entropy (bits per
element) when different grouping strategy is applied, including no
grouping, grouping by tokens positions, grouping by channels, and
grouping by layers. It shows grouping values by token positions
reduces entropy much less than grouping by channel or layer.

5.2 KV cache encoding

The aforementioned insights inspire the design of CacheGen’s KV
cache encoder. The encoding consists of three high-level steps
(elaborated shortly):

First, it calculates the delta tensors (defined later) between the K
and V tensors of nearby tokens. This is inspired by the token-wise
locality observation (§5.1.1) which suggests deltas between tokens
might be easier to compress than the original values in the KV
tensors.

Second, it applies different levels of quantization to different
layers of the delta tensors. The use of different quantizations at
different layers is inspired by the observation of heterogeneous loss
sensitivity (§5.1.2).

Third, it runs a lossless arithmetic coder to encode the quantized
delta tensors into bitstreams. Specifically, inspired by the observa-
tion in §5.1.3, the arithmetic coder compresses the values in each
layer and channel separately (§5.1.3).

These steps may seem similar to video coding, which encodes
pixels into bitstreams. Video coding also computes the delta be-
tween nearby frames, quantizes them, and encodes the delta by
arithmetic coding [126]. Yet, blindly applying existing video codecs
could not work well since they were only optimized for pixel values
in natural video content. Instead, the exact design of CacheGen is
inspired by domain-specific insights on LLM-generated KV cache

(§5.1).

ACM SIGCOMM 24, August 4-8, 2024, Sydney, NSW, Australia

N

Per-token
KV tensors

Tokens

A group of tokens

A group of tokens

Figure 6: Within a token group, CacheGen computes delta tensors
between KV tensors of the anchor token and those of remaining tokens.

Next, we explain the details of each step.

Change-based encoding: To leverage the token-wise locality,
we first split the context into groups of tokens each containing
ten contiguous tokens. As shown in Figure 6, in each group, we
independently (i.e., without referencing other tokens) compress
the KV tensor of the first token, called the anchor token, and then
compress and record the delta tensors with respect to the anchor
token for every other token.

This process is analogous to video coding, where the frames

are separated into groups of pictures, within which it runs similar
delta-based encoding. The difference, however, is that instead of
compressing the delta between each pair of consecutive tokens,
we reference the same anchor token for every token in the chunk.
This allows us to do compression and decompression in parallel
and saves time.
Layer-wise quantization: After partitioning the tokens into
groups, CacheGen uses quantization to reduce the precision of
elements (floating points) in a KV cache so that they can be repre-
sented by fewer bits. Quantization has been used recently to reduce
attention matrices to pack longer contexts in GPU memory [120].
However, in previous work, elements are uniformly quantized with
the same number of bits without leveraging any unique properties
of KV cache. Driven by the insight of heterogeneous loss sensitivity
(§5.1.2), we apply more conservative quantization (i.e., using more
bits) on the delta tensors of earlier layers. Specifically, we split the
transformer layers into three layer groups, the first (earliest) 1/3
of layers, the middle 1/3 of layers, and the last 1/3 of layers, and
apply different amounts of quantization bin size on the delta tensors
at each layer group respectively. The size of the quantization bin
grows larger (i.e., larger quantization errors) from earlier to later
layer groups. Following previous work [48], we use the vectorwise
quantization method, which has been usually used for quantizing
model weights.

Note that we still use 8-bit quantization, a relatively high preci-
sion, on the KV cache of the anchor token (the first token of a token
chunk). This is because these anchor tokens account for a small
fraction of all tokens, but their precision affects the distribution
of all delta tensors of the remaining tokens in a chunk. Thus, it is
important to preserve higher precision just for these anchor tokens.
Arithmetic coding: After quantizing the KV cache into discrete
symbols, CacheGen uses arithmetic coding [135] (AC) to losslessly
compress the delta tensors and anchor tensors of a context into
bitstreams. Like other entropy coding schemes, AC assigns fewer
bits to encode more frequent symbols and more bits to encode less

43

Y. Liu, et al

N
1

Bandwidth
(Gbps)
1

(7]
-Fm—a---rc
o

Baseline KV Quant.

o
4]
1

acheGen w/o adapt]

oo

acheGen

Size of Context
Chunk (GB)

P

Switch to
KV compute

100 A

| x
Switch to
low encoding

CacheGe

0.0

F--1
<
o

CacheGen w/o adapf]

% KV Cache
Received

o
1

Time (s)
Figure 7: Time Series demonstrating CacheGen’s adaptation logic
under bandwidth variation.

frequent symbols. For it to be efficient, AC needs accurate, low-
entropy probability distributions of the elements in the KV cache.

Driven by the observation of the KV value distributions along
layers, channels, and token positions (§5.1.3), we group KV values
by channel and layer to obtain probability distributions. Specifically,
our KV encoder offline profiles a separate probability distribution
for each channel-layer combination of delta tensors and another
for anchor tensors produced by an LLM, and uses the same distri-
butions for all KV caches produced by the same LLM. CacheGen
uses modified AC library [101] with CUDA to speed up encoding
and decoding (§6). In §7.5, we empirically show that our method
reduces the bitstream size by up to 53% compared to the strawman
of using one global symbol distribution.

5.3 KV cache streaming adaptation

Since the transmission of a KV cache may take up to hundreds
of milliseconds to a few seconds, the available bandwidth may
fluctuate during a transmission. Thus, streaming the encoded KV
bitstreams at a fixed encoding level may violate a given service-
level objective (SLO) [33] of fetching the KV cache.* In Figure 7, for
example, at the start of the transmission, the available throughput
is 2 Gbps, and if the bandwidth remains at 2 Gbps, sending a KV
stream of 1 GB can meet the SLO of 4 seconds. However, at t = 2s,
the throughput drops to 0.2 Gbps and only increases to 1 Gbps at
t = 4s, so the actual transmission delay increases from 4 seconds to
7 seconds, which violates the SLO.

Workflow: To handle variations in bandwidth, CacheGen splits
a context into multiple context chunks (or chunks for short) of
consecutive tokens and uses the KV cache encoder to encode each
chunk into multiple bitstreams of different encoding (quantization)
levels that can be decoded independently (explained shortly). This
can be done offline. When fetching a context, CacheGen sends
these chunks one by one, and each chunk can choose one of several
streaming configuration (or configurations for short): it can be
sent at one of the encoding levels or can be sent in the text format
to let the LLM recompute K and V tensors.

“In practice, SLO is defined on TTET. Once the KV cache of the long context is loaded
in GPU, the remaining delay of one forward pass is marginal [82].

CacheGen: KV Cache Compression and Streaming for Fast Large Language Model Serving

CacheGen adapts the configuration of each chunk while stream-
ing the KV cache to keep the transmission delay within an SLO. Fig-
ure 7 illustrates an example adaptation where CacheGen switches
to sending text context and recomputing KV cache from the text
at t = 2s due to the bandwidth drop, and at t = 4s, since the band-
width increases back to 1 Gbps, and CacheGen switch to sending
KV bitstreams of subsequent chunks at a smaller size. With our
adaptation logic (specific algorithm in §C.1), CacheGen can meet
the SLO.

However, to adapt efficiently, several questions remain.

First, how to stream multiple chunks at different streaming con-
figurations without affecting compression efficiency? To encode the
chunks offline, CacheGen first computes the KV cache of the en-
tire context (i.e., prefill) and splits the K and V tensors of the KV
cache along the token dimension into sub-tensors, each of which
contains the layers and channels of the tokens in the same chunk.
It then uses the KV encoder to encode the K or V sub-tensor of a
chunk with different encoding (quantization) levels. Each chunk
is encoded independent to other chunks without affecting the com-
pression efficiency as long as a chunk is longer than a group of
tokens. This is because encoding the KV tensor of a token only
depends on itself and its delta with the anchor token of the group of
tokens (§5.2). Thus, chunks sent with different encoding levels can
be independently decoded and then concatenated to reconstruct the
KV cache. In the case that a chunk is sent in text format, the LLM
will compute its K and V tensors based on the previous chunk’s KV
tensors that have been received and decoded.’

Would streaming chunks at different configurations affect gen-
eration quality? If one chunk is sent at a smaller-sized encoding
level than other chunks (due to low bandwidth), it will have high
compression loss on that single chunk, but this will not affect the
compression loss of other chunks. That said, we acknowledge that
if the bandwidth is too low to send most chunks at a high encoding
level, the quality will still suffer.

Second, how long should a context chunk be? We believe that the
chunk length depends on two considerations.

1. The encoded KV bitstream of a chunk size should not be too big
because, otherwise, it cannot react to bandwidth changes in a
timely manner.

2. The chunk should not be too small either since then we can not
fully utilize the batching ability of GPU to compute KV tensors if
text format is chosen.

With these considerations in mind, we empirically pick 1.5K tokens

as the default chunk length in our experiments®, though more
optimization may find better chunk lengths.

Thirdly, how does CacheGen decide the streaming configuration of
the next chunk? CacheGen estimates the bandwidth by measuring
the throughput of the previous chunk. It assumes this throughput
will remain constant for the remaining chunks and calculates the
expected delay for each streaming configuration accordingly. The
expected delay is calculated by dividing its size by the throughput
(more details in §C). If there are bandwidth fluctuations, CacheGen’s
reaction will be delayed by at most one chunk. Since one chunk is a

SA similar concept has been used to split LLM input into prefill chunks for more
efficient batching [17].

The chunk length is also long enough for the KV bitstream of each chunk to fill the
sender’s congestion window in our experiment setting.

44

ACM SIGCOMM 24, August 4-8, 2024, Sydney, NSW, Australia

small subset of the entire KV cache, this reaction is sufficiently fast
to meet SLO (details in §7.4). It then picks the configuration that
has the least compression loss (i.e., text format or lowest encoding
level) with an expected delay still within the SLO, and uses the
configuration to send the next chunk. For the first chunk, if some
prior knowledge of the network throughput is available, CacheGen
will use it to choose the configuration of the first chunk the same
way. Otherwise, CacheGen starts with a default medium encoding
level (140 MB per chunk for Llama 7B, detailed setting in §C.2).
Finally, how does CacheGen handle the streaming of multiple re-
quests? When multiple requests arrive concurrently within T sec-
onds, CacheGen batches and streams them together. It can batch up
to B requests, which is the maximum number that the GPU server
can handle simultaneously. Each request is divided into chunks of
the same size, even though the total number of chunks may differ
among requests. For each chunk index ¢, CacheGen determines the
number of requests N, that include chunk c. Using the throughput
measured for the previous chunk ¢ — 1, CacheGen calculates the
expected delays for each configuration by multiplying N, by the
delay for a single request. On the GPU servers, the requests are
batched by padding their KV caches and processing them together.

6 Implementation

We implement CacheGen with about 2K lines of code in Python,
and about 1K lines of CUDA kernel code, based on PyTorch v2.0
and CUDA 12.0.

Integration into LLM inference framework: CacheGen oper-

ates the LLM through two interfaces:

e calculate_kv(context) -> KVCache: given a piece of context,
CacheGen invokes LLM through this function to get the corre-
sponding KV cache.

e generate_with_kv(KVCache) -> text: CacheGen passes a KV
cache to the LLM and lets it generate the tokens while skipping
the prefilling of the context.

We implement these two interfaces in HuggingFace models us-

ing the transformers library [64] with about 500 lines of Python

code. Both interfaces are implemented based on the generate func-
tion provided by the library. For calculate_kv, we let LLM only
calculate the KV cache without generating new text, by passing
the options of max_length = @ and return_dict_in_generate =

True when getting the KV cache. The generate_with_kv is imple-

mented by simply passing the KV cache via the past_key_values

argument when calling the generate function. Similar integrations

are also applicable to other LLM libraries, such as FastChat [155],

llama.cpp [98], and GGML [57].

We have also integrated CacheGen in LangChain [83], a pop-
ular LLM application framework. CacheGen is activated in the
_generate function of LangChain’s BaseLLM module. CacheGen
first checks whether the KV cache of the current context already ex-
ists (explained shortly). If so, CacheGen invokes generate_with_kv
to start generating new texts. Otherwise, CacheGen will invoke
calculate_kv to create the KV cache first before generating new
texts.

KV cache management in CacheGen: To manage the KV cache,

CacheGen implements two modules:

ACM SIGCOMM 24, August 4-8, 2024, Sydney, NSW, Australia

Dataset Size Med. Std. P95
LongChat [90] 200 94K 164 9.6K
TriviaQA [75] 200 93K 4497 15K

NarrativeQA [81] 200 14K 1916 15K
WikiText [102] 62 59K 4548 14.8K

Table 2: Size and context lengths of datasets in the evaluation.

e store_kv(LLM) —> {chunk_id: encoded_KV}: calls
caculate_kv, splitting the returned KV cache into context chunks,
and encodes each chunk. Then, it stores a dictionary on the stor-
age server, where it maps the chunk_id to the encoded bitstreams
for the K and V tensors for the corresponding chunk.

e get_kv(chunk_id) -> encoded_KV fetches the encoded KV
tensors corresponding to chunk_id on the storage server and
transmits it to the inference server.

Whenever a new piece of context comes in, CacheGen first calls

store_kv, which first generates the KV cache, and then stores the

encoded bitstreams on the storage server. At run time, CacheGen
calls get_kv to fetch the corresponding chunk of KV cache and
feed into generate_with_kv.

Speed optimization for CacheGen: To speed up the encoding

and decoding of KV cache, we implemented a GPU-based AC li-

brary [101] with CUDA to speed up encoding and decoding. Specif-

ically, each CUDA thread is responsible for encoding/decoding the

KV cache from the bitstream of one token. The probability dis-

tributions are obtained by counting the frequencies of quantized

symbols in the KV feature for the corresponding context. We also
pipeline the transmission of context chunk i with the decoding of

context chunk i — 1.

7 Evaluation

The key takeaways of our evaluation are:

e Across four datasets and three models, CacheGen can reduce
TTFT (including both network and compute delay) by 3.1-4.7x
compared to prefill from text context, and by 3.2-3.7X compared
to the quantization baseline (§7.2).

e CacheGen’s KV encoder reduces the bandwidth for transferring
KV cache by 3.5-4.3x compared to the quantization baseline (§7.2).

e CacheGen’s reduction in bandwidth usage is still effective when
applied to recent context compression baselines [72, 153]. CacheGen
further reduces the bandwidth usage by 3.3-4.2X, compared to
applying quantization on context compression baselines (§7.2).

o CacheGen’s improvement is significant across various workloads,
including different context lengths, network bandwidths, and
numbers of concurrent requests (§7.3).

o CacheGen’s decoding overhead is minimal, in delay and compute,
compared with LLM inference itself (§7.5).

7.1 Setup

Models: We evaluate CacheGen on three models of different sizes,
specifically the fine-tuned versions of Mistral-7B, Llama-34B, and
Llama-70B. All models are fine-tuned such that they can take long
contexts (up to 32K). We did not test CacheGen on other LLMs (e.g.,
OPT, BLOOM) because there are no public fine-tuned versions for
long contexts to our best knowledge.

45

Y. Liu, et al

Datasets: We evaluate CacheGen on 662 contexts from four differ-
ent datasets with different tasks (Table 2):

e LongChat: The task is recently released [90] to test LLMs on
queries like “What was the first topic we discussed?” by using
all the previous conversations as the context. Most contexts are
around 9.2-9.6K tokens.

o TriviaQA: The task tests the reading comprehension ability of the
LLMs [29], by giving the LLMs a single document (context), and
letting it answer questions based on it. The dataset is part of the
LongBench benchmark [29] suite.

o NarrativeQA: The task is used to let LLMs answer questions based
on stories or scripts, provided as a single document (context). The
dataset is also part of LongBench.

o Wikitext: The task is to predict the probability of the next token in
a sequence based on the context consisting of relevant documents
that belong to a specific Wiki page [102].

The dataset we used to design CacheGen’s encoder is a subset
of the datasets we used to evaluate CacheGen. This is for showing
the insights in §5.1 are generalizable to different datasets.
Quality metrics: We measure generation quality using the stan-
dard metric of each dataset.

o Accuracy is used to evaluate the model’s output on the LongChat
dataset. The task predicts the first topic in the conversational
history between the user and the LLM. The accuracy is defined
as the percentage of generated answers that exactly includes the
ground-truth topic.

e F1 score is used to evaluate the model’s response in the Trivi-
aQA and NarrativeQA datasets. It measures the probability that
the generated answer matches the ground-truth answer of the
question-answering task.

o Perplexity is used to evaluate the model’s performance on the
Wikitext dataset. The perplexity is defined as the exponentiated
average negative log-likelihood of the next token [28, 41]. A low
perplexity means that the model likely generates the next token
correctly. While perplexity does not equate to text-generation
quality, it is widely used as a proxy [13] to test the impact of
pruning or quantizing LLMs on generation performance [48, 96,
116, 142].

System metrics: We compare CacheGen with baselines with two

system-wise metrics.

o Size of KV cache is the size of the KV cache after compression,
this measures the bandwidth needed to load KV caches.

o Time-to-first-token (TTFT) is the time from the arrival of the
user query to the generation of the first token. This includes the
loading delay of the KV cache and the prefill delay of the new
questions. This is a metric widely used in industry [14, 25, 77]
and recent works [58, 93].

Baselines: We compare CacheGen with baselines that do not
change the contexts or model (more baselines in §7.5).
o “Default quantization” uses the uniform quantization of KV cache,

specifically the same quantization level (i.e., 3, 4, 8 bits) for every
layer in the LLM (which was used in [120]).

CacheGen: KV Cache Compression and Streaming for Fast Large Language Model Serving

ACM SIGCOMM 24, August 4-8, 2024, Sydney, NSW, Australia

-¥- Quantization —>6 Text —&— CacheGen
194 F® g _———- v X - e E—— ¥ X
> 4 ¥ e
%) II ’ /
o / v
305 / /
3] v S v S &
0 T T T T T T T T
0 2 4 6 1 2 3 0 1 2
TTFT (s) TTFT (s) TTFT (s)
(a) Llama-70B on LongChat. (b) Llama-33B on LongChat. (c) Mistral-7B on LongChat.
95 10 T 30
- oy ———- v X T =
% / ‘; i Q‘,\\Q} % «*® I,L ——————— v X
f= | =
545 1 3 s oo ¥----L5¢ o 5151 v 5
2} 6’0, (5} 2 G//
— Q. a e &
w w
0 T T T 0 T T T 0 T T T
0 2 4 1 2 0.0 25 5.0 7.5
TTFT (s) TTFT (s) TTFT (s)

(e) Llama-70B on TriviaQA.

(f) Llama-70B on WikiText.

(9) Llama-70B on NarrativeQA.

Figure 8: Time-to-first-token (TTFT): Across different models and different datasets, CacheGen reduces TTFT with little negative impacts on

quality (in accuracy, perplexity or F1 score).

o “Text context” fetches the text of the context and feeds it to LLM
to generate the KV cache for it. It represents the design of mini-
mizing data transmission but at the expense of high computation
overhead. We use the state-of-the-art inference engine, vLLM [82],
to run the experiments. vVLLM’s implementation already uses
xFormers [85], which includes speed and memory-optimized
Transformers CUDA kernels and has shown much faster prefill
delay than HuggingFace Transformers. This is a very competitive
baseline.

e “Context compression” either drops tokens in the text context

(LLMlingua [72]) or in the KV cache (H20 [153]).

Hardware settings: We use an NVIDIA A40 GPU server with
four GPUs to benchmark our results. The server is equipped with
384GB of memory and two Intel(R) Xeon(R) Gold 6130 CPUs with
Hyper-threading and Turbo Boost enabled by default.

7.2 Overall improvement

We first show the improvement of CacheGen over the baselines, as
described in §7.1.

TTFT reduction: Figure 8 demonstrate CacheGen’s ability to re-
duce TTFT, across three models and four datasets. Under bandwidth
of 3 Gbps, compared to text context, CacheGen is able to reduce
TTFT by 3.1-4.7x. Compared to default quantization, CacheGen is
able to reduce TTFT by 3.2-3.7x.

It is important to note that even compared with 8-bit quantiza-

tion, an almost lossless KV cache compression technique across the
four datasets, CacheGen can still reduce the TTFT by 1.67-1.81X.
CacheGen’s reduction in TTFT is a result of a shorter transmission
delay to send the smaller KV caches.
Reduction on KV cache size: Figure 8 show that, across four
datasets and three models, CacheGen’s KV encoder reduces the
KV cache size by 3.5-4.3X compared to default quantization when
achieving similar performance for downstream tasks after decod-
ing. Thus, it achieves better quality-size trade-offs across different
settings. The degradation caused by lossy compression is marginal—
the degradation is no more than 2% in accuracy, less than 0.1% in
F1 score, and less than 0.1 in perplexity [65].

46

Some example text outputs for different baselines are available

in §A.
Gains over context compression baselines: We also apply
CacheGen to further reduce the size of context compression base-
lines’ KV cache, including H20 and LLMlingua. Note that H20
drops tokens from KV cache which have low attention scores. Specif-
ically, it requires the query tensors of the prompt to compute the
attention scores in order to determine which tokens to drop. The
query tensors of the prompts are not present in the offline compres-
sion stage. In our experiments, we implement an idealized version
of H20, where the query tensors of the prompts are used in the
offline compression stage.

As shown in Figure 10, compared to the context compression
baseline, H20 [153], CacheGen can further reduce compressed
KV cache (in floating point). Specifically, CacheGen reduces the
size of KV cache by 3.5-4x compared to the H20’s quantized KV
caches, and 3.3-4.2x compared to LLMlingu’s quantized KV caches,
without losing quality. This suggests that even after condensing
contexts by H20 and LLMlingua, the resulting KV caches may still
have the statistical observations behind CacheGen’s KV encoder.
Thus, the techniques used in CacheGen’s encoder remain beneficial
when we encode the KV cache after applying these techniques.
Understanding CacheGen’s improvements: CacheGen outper-
forms various baselines for slightly different reasons. Compared
to the text context baseline, CacheGen has lower TTFT, because it
reuses KV cache to avoid the long prefill delay for processing long
contexts. Compared to the basic quantization baseline, CacheGen
compresses KV cache with layer-wise dynamic quantization and
further encodes the KV cache tensors into bitstreams, thus able to
reduce the transmission delay.

Finally, compared to H20 and LLMlingua, two recent context-
condensing techniques, CacheGen can still compress the KV cache
produced by H20. In short, H20 and other context-condensing
techniques all prune contexts at the token level and their resulting
KV caches are in the form of floating-point tensors, so CacheGen is
complementary and can be used to further compress the KV cache
into much more compact bitstreams.

ACM SIGCOMM 24, August 4-8, 2024, Sydney, NSW, Australia

Accuracy

Y. Liu, et al

-¥-' Quantization = —@— CacheGen
95 —w 10 T 30
-t y--" y- A | o®® F-----
IT ’ P / ! & o®® I,'- V|
/ v e V1L 415 1 /
v [E N R - M
N N o o
T T T 0 T O T T 0 T T
1000 0 1000 0 500 0 1000 0 500 1000 0O 1000 2000
Size (MB) Size (MB) Size (MB) Size (MB) Size (MB) Size (MB)
(a) Llama-70B (b) Llama-33B (d) Mistral-7B (e) Llama-70B (f) Llama-70B (9) Llama-70B
on LongChat. on LongChat. on LongChat. on TriviaQA. on WikiText. on NarrativeQA.

Figure 9: Reducing KV cache size: Across various models, CacheGen reduces size of KV cache with little accuracy decrease on various datasets.

Accuracy

0.5

-4A- Quantization + H20 —A— CacheGen + H20 —#— Quantization + LLMIlingua —&— CacheGen + LLMlingua
& e oy 100 - 15 30 -
k f:ﬁ: " S photha {;yc > S
! / o| & E i ‘{*
4 / 5 2 L'y
& A ONE: X | B g)
@, Y| < By & - oy
L L
I T T T I T T 0 — 0 T 0 T
500 1000 O ~ 500 0 200 400 0 1000 O 500 0 1000
Size (MB) Size (MB) Size (MB) Size (MB) Size (MB) Size (MB)
(a) Llama-70B (b) Llama-33B (d) Mistral-7B (e) Llama-70B on TriviaQA.(f) Llama-70B on (g) Llama-70B on
on LongChat. on LongChat. on LongChat. WikiText. NarrativeQA.

Figure 10: Reducing KV cache size on top of H20 [153] and LLMlingu [72]: Across different models, CacheGen further the size of KV
cache, compared to the KV cache shortened by H20, with little accuracy decrease on different datasets.

Text -¥- Quantization —e— CacheGen
1Y
] [T I S
E M v
] 0>~
h 1 T T
0 5 10 200 400

Bandwidth (Gbps) Bandwidth (Gbps)
Figure 11: CacheGen improves TTFT under a wide range of different

bandwidths. Plotted with Mistral-7B. y-axis is log scale.

Text -¥- Quantization —e— CacheGen
B4
-
w /” O -y
107 557 2 7
b o = "l
~ ¥ + J,r
0 T T O T T T
5 10 5 10 15

Context Length (K)

Figure 12: CacheGen consistently reduces TTFT when there are mul-
tiple concurrent requests on one GPU. Plotted with Mistral-7B.

7.3 Sensitivity analysis

of Concurrent Req.

Available bandwidth: The left and right figures in Figure 11 com-
pare the TTFT of CacheGen with baselines under a wide range of
bandwidth from 0.4-15 Gbps and 15-400 Gbps, while we fix the con-
text length at 16K tokens. We can see that CacheGen consistently
outperforms baselines under almost all bandwidth situations. Ar-
guably, the absolute reduction in TTFT becomes smaller under high
bandwidth (over 20Gbps), compared to the quantization baseline,
since both the quantization baseline and CacheGen can transfer KV
caches much faster.

Number of concurrent requests: The left side of Figure 12 shows
the TTFT under different numbers of concurrent requests. When the

47

- ¥- Quantization CacheGen w/o ada —@—CacheGen

1.0 ®
y
> /
S v
30.5
S S
< Q %
SLO=0.5s 7 SLO=1s 7
00 T T 00 T T T T
0 50 100 0 25 50 75

Violation Rate (%) Violation Rate (%)

Figure 13: CacheGen reduces SLO violation rate over CacheGen with-
out adaptation and the quantization baseline. Plotted with Mistral-7B
model.

number of concurrent requests increases (i.e., fewer available GPU
cycles for one individual query), CacheGen significantly reduces
TTFT than the baselines. This is because the amount of compu-
tation required for prefilling on a long input (9.6K in this case) is
huge, as discussed in §2.2. §D shows CacheGen’s improvement over
a complete space of workloads of different bandwidth and GPU
resources.

Context lengths: The right side of Figure 12 compares CacheGen’s
TTFT with the baselines under different input lengths from 0.1K to
15K tokens under a fixed network bandwidth of 3 Gbps. When the
context is long, the gain of CacheGen mainly comes from reducing
the KV cache sizes. And when the context is short (below 1K),
CacheGen will automatically revert to loading the text context as
that yields a lower TTFT.

7.4 KV streamer adaptation

The adaptation logic described in §5.3 allows CacheGen to adapt to
bandwidth changes and achieve good quality while meeting the SLO
on TTFT. In Figure 13, we generate bandwidth traces where each
context chunk’s bandwidth is sampled from a random distribution

CacheGen: KV Cache Compression and Streaming for Fast Large Language Model Serving

EZ3 Comp. X Decode HMStorage

I Trans. [XEncode
2 -
i~ 2501
= 8
§ i 1257
0 - 0-
Text QuantCacheGen Text CacheGen
(a) TTFT breakdown (b) Flops breakdown
@2 — g—] 4
) °
8 3
0 - 0 -

Quant. CacheGen o(\gd“a(\"\l’\ NPARNE

(c) Offline Delay Breakdown (d) Storage Cost

Figure 14: (a) The breakdown of TTFT for text context, quantization
baseline, and CacheGen. (b) Computation overhead of the text baseline
and CacheGen. (c) Offline delay breakdown for baseline quantization
and CacheGen. (d) The storage cost for CacheGen, quantization base-
line and the uncompressed KV cache. Plotted with Mistral-7B.

of 0.1 — 10 Gbps. Each point is averaged across 20 bandwidth traces
on the LongChat dataset. We can see that CacheGen significantly
outperforms the quantization baseline and CacheGen without adap-
tation. Specifically, given an SLO on the TTFT of 0.5s, CacheGen
reaches the same quality as the quantization baseline with a 60%
lower SLO violation rate. Under an SLO of 1s, CacheGen reaches
the same quality as the quantization baseline, while reducing the
SLO violation rate from 81% to 8%. The reason why CacheGen
has a lower SLO violation rate is that when the bandwidth drops,
CacheGen can dynamically reduce the quantization level or fall
back to the configuration of computing text from scratch, while the
quantization baseline and CacheGen without adaptation cannot.

7.5 Overheads and microbenchmarks

Decoding overhead: While having a better size-quality and TTFT-
quality trade-off, CacheGen requires an extra decoding (decompres-
sion) step compared to the quantization baseline. CacheGen min-
imizes the decoding overhead by accelerating it with GPU-based
implementation and pipelining the decoding of context chunks
with the transmission of the context chunks, so as shown in Fig-
ure 14a, the decoding has minimal impact on the end-to-end delay.
It is also important to note that although CacheGen’s decoding is
performed on GPU (see §6), the amount of computation needed by
CacheGen’s decoding module is negligible compared to the baseline
that generates KV cache from text context.

Offline encoding and storage overheads: Unlike prior methods
that compress each context only once, CacheGen compresses it
into multiple versions (§5.3). CacheGen compresses each context
almost as fast as the baselines because the encoding delay is very
small (200 ms), as shown in Figure 14c. Figure 14d evaluates the
overhead in storage. We can see that despite needing to encode and
store multiple bitstream representations, the total storage cost for
CacheGen is on par with the quantization baseline.

Ablation Study: To study the impact of individual components
in CacheGen’s KV encoder, Figure 15 progressively adds each idea

48

ACM SIGCOMM 24, August 4-8, 2024, Sydney, NSW, Australia

1.00 e Default Quant.
§ ¢ ,'/ -¥- Quant. +AC
gorsq / Quant. +AC
< v + Change

0.50 T T T - —@— CacheGen

025 050 075 1.00
Entropy

Figure 15: Contributions of individual ideas behind KV encoder:
change-based encoding, layer-wise quantization, and AC based on

channel-layer grouping.
B CacheGen

Sample 3

A Original MM Quantization

all ol

Sample 1 Sample 2

N W s
1

Mean Opinion
Scores

Figure 16: Real user study shows CacheGen improves QoE signifi-
cantly over other baselines.

into the baseline of uniform quantization and default AC, starting
with the use of our AC that uses probability distribution for each
channel-layer combination, then change-based encoding, and fi-
nally layer-wise quantization. As shown in the figure, CacheGen’s
AC and change-based encoding significantly improve upon the uni-
form quantization. This indicates that removing the constraint of
maintaining the tensor format of KV cache, and encoding them into
bitstreams with our change-based encoding and AC can further
reduce the size of KV cache after quantization.
Quality of Experience: We performed an IRB-approved user
study to validate the effectiveness of CacheGen. We selected three
conversation histories from the LongChat dataset used in previous
evaluations. For each user, we first present the conversation history
with ChatGPT. Then we show the same response but produced by
different pipelines by adding different TTFTs and letting users rate
the quality of response. With 270 ratings collected from Amazon
MTurk [66], we show that CacheGen consistently outperforms
other pipelines in QoE with shorter TTFT in Figure 16.
Evaluation results of CacheGen with more baselines are available
§B, including using a smaller-sized model to speed up TTFT and
Gisting, another context-shrinking technique.

8 Related Work

Faster LLM serving: Most LLM systems research aims to speed up
LLM training [114, 122] or make serving systems faster. CacheGen
aims at speeding up LLM serving systems by focusing on TTFT re-
duction. Others explore approximately parallelizing generation [86,
103], accelerating inference on edge devices [148], quantizing LLM
weights [21], reducing memory I/O of GPU on-chip SRAM [47]
and reducing self-attention computation complexity [116], better
scheduling strategies [17, 111, 139, 149, 157], and GPU memory
utilization [82]. Another line of work optimizes the communication
delay of transmitting KV cache between GPUs, either by smart
model parallelism strategies [111, 157] or by implementing a new
attention operation [91]. This operation transmits query vectors to
the GPUs that host smaller blocks of KV cache during the decoding
phase. A common approach for faster inference without modifying

ACM SIGCOMM 24, August 4-8, 2024, Sydney, NSW, Australia

the LLMs is by caching the KV of previously used inputs for one LLM
query [95, 103, 112, 120, 137, 152]. CacheGen works as a module
to enable reuse of KV caches across multiple LLM queries in these
frameworks [17, 35, 58, 82].
Longer LLM contexts: Recent efforts aim at enabling LLMs to
process very long contexts [144]. The challenge is to fit the large at-
tention matrices of longer contexts into limited GPU memory. This
is enabled by offloading parts of the attention matrices [120], using
external knowledge via KNN [141], approximating via retraining
self-attention to only attend to top-k keys [19, 32], mapping long
inputs to smaller latent spaces [60] and using local windowed, di-
lated or sparse [31, 50, 150] attention to scale to inputs of ~1 billion
tokens. Longer contexts inflate the KV cache and CacheGen aims
to address this by fast remote loading of the KV cache.
Context shortening: Efforts on shortening long contexts relate
well to CacheGen. They aim to select the most important text seg-
ments and prune the rest. Using similarity between the user query
and the relevant documents [35], only keeping tokens that are less
attended to by the prompt (i.e., heavy-hitter tokens) [95, 152] or
by hybrid policies including keeping nearby tokens or heavy-hitter
tokens [54], using query-aware compression with document re-
ordering to reduce loss-in-the-middle [72, 115] have been explored.
All these methods need to know the query, else they risk dropping
potentially important tokens and they keep the KV cache intact, to
fit into limited GPU memory. Some works retrain LLM models to
use contexts rewritten by gisting [104] or auto-encoding [55].
CacheGen differs by compressing the KV cache into bitstreams
instead of shortening the context. CacheGen’s KV compression
does not need to know the query/prompt and doesn’t risk quality
loss from dropping potentially important tokens. It allows for better
compression rates by leveraging distributional properties of KV
caches and achieves better delay-quality trade-offs than existing
context compressors (§7.5). CacheGen also does not need to retrain
the LLM.
Tensor compression: CacheGen’s KV cache encoding is essen-
tially a tensor compression technique tailored for LLM’s. General
tensor compression has been intensively studied [109, 154]. In DNN
training, tensor compression has been used to compress gradient
updates of DNN weights (e.g., [15, 16, 133]). KV caches and gradi-
ents have very different properties. DNN training systems often
leverage the sparsity of gradients which occurs due to methods
like [42, 43, 151]. However the KV cache is not known to be sparse
in general.
Retrieval augmented generation(RAG): RAG [35, 67, 68, 88, 113,
117, 134] focuses on retrieving relevant documents to the query via
vector based [40, 106, 145] or DNN-based [79, 88, 143, 146] similarity
search algorithms and feeding it as context to generate the answer.
We envision RAG as a fitting use case for CacheGen. Many LLM
inference platforms support feeding KV caches as retrieved context
instead of text [39, 136]. Some works have also attempted to define a
systematic way to choose which KV cache to reuse[59]. Another ap-
proach is to have LLM applications that cache the query’s generated
answers to reduce repetitive query costs [100, 127]. While caching
answers is useful for reuse, CacheGen provides a more generic
way to incorporate context reuse and can generate better-quality
answers.

49

Y. Liu, et al

9 Discussion and Limitations

Compatibility with other KV-cache compression work: Emerg-
ing techniques like smart quantization [62, 78, 97] are complemen-
tary with CacheGen. After quantization, CacheGen can still apply
delta encoding and arithmetic coding, as shown in Figure 10.
Incremental KV cache streaming: Future work includes extend-
ing CacheGen to stream KV caches incrementally, akin to Scalable
Video Coding (SVC) [61], by initially sending low-quality KV caches
and then incrementally improving quality by sending differences.
Context reuse in real-world LLM applications: In §2.2, we
explain why contexts are likely reused across requests using anec-
dotal evidence, but unfortunately, few industry datasets exist to
support it. Future work includes finding or creating such datasets.
Evaluation on higher-end GPUs: In §7, we use NVIDIA A40
GPUs to conduct the experiments. We acknowledge that with very
high-power GPUs and relatively low bandwidth, CacheGen might
not significantly improve over the text context baseline. Further-
more, due to GPU memory limitations, we have not evaluated
our ideas on extra-large models such as OPT-175B. Evaluating
CacheGen on more powerful GPUs and larger LLMs is left for
future work.

Other system designs: §5 covers CacheGen'’s encoder and streamer
design. Other aspects such as which storage device(s) to store KV
cache, caching policies, and locating KV cache quickly are discussed
in concurrent works [52, 74, 147]. We leave combining CacheGen
with these works to future work.

Other limitations: Task-wise, we did not extensively evaluate
CacheGen’s performance on “free-text generation” tasks such as
story generation because the quality metrics are less well-defined
than the tasks in our evaluation. Network-wise, our network model
does not include conditions with extremely high bandwidths. Addi-
tionally, not all LLM applications can cache KV features. Search-
based apps, like Google and Bing, use real-time search results as
context, and their volatile contexts will unlikely be reused unless
for very popular search results. We expect future work to address
these issues.

10 Conclusion

We present CacheGen, a context-loading module to minimize over-
all delays in fetching and processing contexts for LLMs. CacheGen
reduces the bandwidth needed to transmit long contexts’ KV cache
through an encoder tailored to compress KV cache into compact
bitstreams. Experiments across three models of various capacities
and four datasets with various context lengths show that CacheGen
reduces overall delays while maintaining high task performance.

Acknowledgement

We thank all the anonymous reviewers and our shepherd, Chen
Qian, for their insightful feedback and suggestions. The project is
funded by NSF CNS-2146496, CNS-2131826, CNS-2313190, CNS-
1901466, CNS-1956180, CCF-2119184, UChicago CERES Center, and
Marian and Stuart Rice Research Award. The project is also sup-
ported by Chameleon Projects [80].

CacheGen: KV Cache Compression and Streaming for Fast Large Language Model Serving

References

(]

[2

[3

=
i

=
&

=
o

[15

[16

(19]

[20]

[21

[22

(23]

[24

™
)

[26

2021. How latency affects user engagement. https://pusher.com/blog/how-
latency-affects-user-engagement/. (2021). (Accessed on 09/21/2023).

2023. Best Practices for Deploying Large Language Models (LLMs) in Production.
https://medium.com/@_aigeek/best-practices-for-deploying-large-language-
models-1lms-in-production-fdc5bf240d6a. (2023). (Accessed on 09/21/2023).
2023. Building RAG-based LLM Applications for Production. https://www.
anyscale.com/blog/a-comprehensive-guide-for-building-rag-based-1lm-
applications-part-1. (2023). Accessed: 2024-01-25.

2024. Amazon Bedrock Pricing. https://aws.amazon.com/bedrock/pricing/.
(2024). Accessed: 2024-01-25.

2024. Anyscale Pricing. https://docs.endpoints.anyscale.com/pricing. (2024).
Accessed: 2024-01-25.

2024. AWS Pricing examples. https://aws.amazon.com/s3/pricing/. (2024).
Accessed: 2024-01-25.

2024. ChatGPT. https://chat.openai.com/gpts. (2024). Accessed: 2024-01-25.
2024. pathwaycom/llmapp. https://github.com/pathwaycom/llm-app. (2024).
Accessed: 2024-01-25.

2024. Perplexity. https://www.perplexity.ai/. (2024). Accessed: 2024-01-25.
2024. RAG-Transform. https://huggingface.co/transformers/v4.3.0/model_doc/r
ag.html. (2024). Accessed: 2024-01-25.

2024. Replicate Pricing. https://replicate.com/pricing. (2024).
2024-01-25.

2024. together.pricing. https://www.together.ai/pricing. (2024). Accessed:
2024-01-25.

Daniel Adiwardana, Minh-Thang Luong, David R. So, Jamie Hall, Noah Fiedel,
Romal Thoppilan, Zi Yang, Apoorv Kulshreshtha, Gaurav Nemade, Yifeng Lu,
and Quoc V. Le. 2020. Towards a Human-like Open-Domain Chatbot. (2020).
arXiv:cs.CL/2001.09977

Megha Agarwal, Asfandyar Qureshi, Nikhil Sardana, Linden Li, Julian Quevedo,
and Daya Khudia. 2023. LLM Inference Performance Engineering: Best Practices.
(Oct. 2023). https://www.databricks.com/blog/llm-inference-performance-
engineering-best-practices Accessed: 2024-06-01.

Saurabh Agarwal, Hongyi Wang, Kangwook Lee, Shivaram Venkataraman, and
Dimitris Papailiopoulos. 2020. Accordion: Adaptive gradient communication via
critical learning regime identification. arXiv preprint arXiv:2010.16248 (2020).
Saurabh Agarwal, Hongyi Wang, Shivaram Venkataraman, and Dimitris Papail-
iopoulos. 2022. On the Utility of Gradient Compression in Distributed Training
Systems. In Proceedings of Machine Learning and Systems, D. Marculescu, Y. Chi,
and C. Wu (Eds.), Vol. 4. 652-672. https://proceedings.mlsys.org/paper_files/p
aper/2022/file/773862fcc2e29f650d68960ba5bd1101-Paper.pdf

Amey Agrawal, Ashish Panwar, Jayashree Mohan, Nipun Kwatra, Bhargav S.
Gulavani, and Ramachandran Ramjee. 2023. SARATHI: Efficient LLM Inference
by Piggybacking Decodes with Chunked Prefills. (2023). arXiv:cs.LG/2308.16369
Toufique Ahmed and Premkumar Devanbu. 2023. Few-shot training LLMs
for project-specific code-summarization. In Proceedings of the 37th IEEE/ACM
International Conference on Automated Software Engineering (ASE °22). Asso-
ciation for Computing Machinery, New York, NY, USA, Article 177, 5 pages.
https://doi.org/10.1145/3551349.3559555

Joshua Ainslie, Santiago Ontanon, Chris Alberti, Vaclav Cvicek, Zachary
Fisher, Philip Pham, Anirudh Ravula, Sumit Sanghai, Qifan Wang, and Li Yang.
2020. ETC: Encoding Long and Structured Inputs in Transformers. (2020).
arXiv:cs.LG/2004.08483

Amazon.com Inc. 2023. 2023 Annual Report. Annual Report. Amazon.com Inc.
https://s2.q4cdn.com/299287126/files/doc_financials/2024/ar/Amazon-com-
Inc-2023- Annual-Report.pdf

Reza Yazdani Aminabadi, Samyam Rajbhandari, Ammar Ahmad Awan, Cheng
Li, Du Li, Elton Zheng, Olatunji Ruwase, Shaden Smith, Minjia Zhang, Jeff
Rasley, et al. 2022. DeepSpeed-inference: enabling efficient inference of trans-
former models at unprecedented scale. In SC22: International Conference for
High Performance Computing, Networking, Storage and Analysis. IEEE, 1-15.
Zharovskikh Anastasiya. 2023. Applications of Large Language Models - InData
Labs. https://indatalabs.com/blog/large-language-model-apps. (June 2023).
(Accessed on 09/21/2023).

Anonymous. 2024. ChunkAttention: Efficient Attention on KV Cache with
Chunking Sharing and Batching. (2024). https://openreview.net/forum?id=9k
271 TeAZ

Anthropic. 2023. Anthropic \ Introducing 100K Context Windows. https:
//www.anthropic.com/index/100k- context-windows. (May 2023). (Accessed on
09/21/2023).

Anyscale Team. 2023. Comparing LLM Performance: Introducing the Open
Source Leaderboard for LLM APIs. (Dec. 2023). https://www.anyscale.com/b
log/comparing-1lm-performance-introducing- the-open-source-leaderboard-
for-llm Accessed: 2024-06-01.

AuthorName. Year. Can ChatGPT understand context and keep track of conver-
sation history. https://www.quora.com/Can-ChatGPT-understand-context-
and-keep-track-of -conversation-history. (Year). Quora question.

Accessed:

50

[27]

[28]

[29

[30]

[31

[32]

[33

[34

[35

[36

[37]

[38

[39

[40]

[41

[42

[43

[44

[45

[46

ACM SIGCOMM 24, August 4-8, 2024, Sydney, NSW, Australia

AutoGPT. 2023. Significant-Gravitas/Auto-GPT: An experimental open-source
attempt to make GPT-4 fully autonomous. https://github.com/Significant-
Gravitas/Auto-GPT. (September 2023). (Accessed on 09/21/2023).

Leif Azzopardi, Mark Girolami, and Keith van Risjbergen. 2003. Investigating
the Relationship between Language Model Perplexity and IR Precision-Recall
Measures. In Proceedings of the 26th Annual International ACM SIGIR Conference
on Research and Development in Informaion Retrieval (SIGIR "03). Association for
Computing Machinery, New York, NY, USA, 369-370. https://doi.org/10.1145/
860435.860505

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang,
Zhengxiao Du, Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and
Juanzi Li. 2023. LongBench: A Bilingual, Multitask Benchmark for Long Context
Understanding. arXiv preprint arXiv:2308.14508 (2023).

Ramakrishna Bairi, Atharv Sonwane, Aditya Kanade, Vageesh D C, Arun
Iyer, Suresh Parthasarathy, Sriram Rajamani, B. Ashok, and Shashank Shet.
2023. CodePlan: Repository-level Coding using LLMs and Planning. (2023).
arXiv:cs.SE/2309.12499

Iz Beltagy, Matthew E. Peters, and Arman Cohan. 2020. Longformer: The
Long-Document Transformer. (2020). arXiv:cs.CL/2004.05150

Amanda Bertsch, Uri Alon, Graham Neubig, and Matthew R Gormley. 2023.
Unlimiformer: Long-range transformers with unlimited length input. arXiv
preprint arXiv:2305.01625 (2023).

Betsy Beyer, Chris Jones, Jennifer Petoff, and Niall Richard Murphy. 2016. Site
Reliability Engineering: How Google Runs Production Systems (1st ed.). O’Reilly
Media, Inc.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. 2019.
PIQA: Reasoning about Physical Commonsense in Natural Language. (2019).
arXiv:cs.CL/1911.11641

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Ruther-
ford, Katie Millican, George van den Driessche, Jean-Baptiste Lespiau, Bog-
dan Damoc, Aidan Clark, Diego de Las Casas, Aurelia Guy, Jacob Menick,
Roman Ring, Tom Hennigan, Saffron Huang, Loren Maggiore, Chris Jones, Al-
bin Cassirer, Andy Brock, Michela Paganini, Geoffrey Irving, Oriol Vinyals,
Simon Osindero, Karen Simonyan, Jack W. Rae, Erich Elsen, and Laurent Sifre.
2022. Improving language models by retrieving from trillions of tokens. (2022).
arXiv:cs.CL/2112.04426

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Ruther-
ford, Katie Millican, George van den Driessche, Jean-Baptiste Lespiau, Bog-
dan Damoc, Aidan Clark, Diego de Las Casas, Aurelia Guy, Jacob Menick,
Roman Ring, Tom Hennigan, Saffron Huang, Loren Maggiore, Chris Jones, Al-
bin Cassirer, Andy Brock, Michela Paganini, Geoffrey Irving, Oriol Vinyals,
Simon Osindero, Karen Simonyan, Jack W. Rae, Erich Elsen, and Laurent Sifre.
2022. Improving language models by retrieving from trillions of tokens. (2022).
arXiv:cs.CL/2112.04426 https://arxiv.org/abs/2112.04426

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners.
(2020). arXiv:cs.CL/2005.14165

CellStrat. 2023. Real-World Use Cases for Large Language Models (LLMs) |
by CellStrat | Medium. https://cellstrat.medium.com/real-world-use-cases-
for-large-language-models-1lms-d71c3a577bf2. (April 2023). (Accessed on
09/21/2023).

Harrison Chase. 2022. LangChain. (Oct. 2022). https://github.com/langchain-
ai/langchain

Dangi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. 2017. Reading
Wikipedia to Answer Open-Domain Questions. (2017). arXiv:cs.CL/1704.00051
Stanley F Chen, Douglas Beeferman, and Roni Rosenfeld. 2008. Evaluation
Metrics For Language Models. (1 2008). https://doi.org/10.1184/R1/6605324.v1
Tianlong Chen, Zhenyu Zhang, Ajay Jaiswal, Shiwei Liu, and Zhangyang Wang.
2023. Sparse MoE as the New Dropout: Scaling Dense and Self-Slimmable
Transformers. (2023). arXiv:cs.LG/2303.01610

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. 2019. Generating
Long Sequences with Sparse Transformers. (2019). arXiv:cs.LG/1904.10509
Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav
Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Se-
bastian Gehrmann, et al. 2022. Palm: Scaling language modeling with pathways.
arXiv preprint arXiv:2204.02311 (2022).

Zihang Dai”, Zhilin Yang®, Yiming Yang, William W. Cohen, Jaime Carbonell,
Quoc V. Le, and Ruslan Salakhutdinov. 2019. Transformer-XL: Language Model-
ing with Longer-Term Dependency. (2019). https://openreview.net/forum?id=
HJePnoOcYm

Daivi. 21. 7 Top Large Language Model Use Cases And Applications. https://ww
w.projectpro.io/article/large-language-model-use- cases-and-applications/887.
(March 21). (Accessed on 09/21/2023).

ACM SIGCOMM 24, August 4-8, 2024, Sydney, NSW, Australia

(47]

(48]

[49]

(50

v
=

(52

(53

[54

5
=)

‘oo
)

=
=

[61

o
&,

o
&

=
B

o
2

[69]

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. 2022.
FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness.
(2022). arXiv:cs.LG/2205.14135

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. 2022. Llm.
int8 (): 8-bit matrix multiplication for transformers at scale. arXiv preprint
arXiv:2208.07339 (2022).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805 (2018).

Jiayu Ding, Shuming Ma, Li Dong, Xingxing Zhang, Shaohan Huang, Wenhui
Wang, Nanning Zheng, and Furu Wei. 2023. LongNet: Scaling Transformers to
1,000,000,000 Tokens. (2023). arXiv:cs.CL/2307.02486

Yiran Ding, Li Lyna Zhang, Chengruidong Zhang, Yuanyuan Xu, Ning Shang,
Jiahang Xu, Fan Yang, and Mao Yang. 2024. LongRoPE: Extending LLM Context
Window Beyond 2 Million Tokens. arXiv preprint arXiv:2402.13753 (2024).

Bin Gao, Zhuomin He, Puru Sharma, Qingxuan Kang, Djordje Jevdjic, Junbo
Deng, Xingkun Yang, Zhou Yu, and Pengfei Zuo. 2024. AttentionStore: Cost-
effective Attention Reuse across Multi-turn Conversations in Large Language
Model Serving. arXiv preprint arXiv:2403.19708 (2024).

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi,
Yi Dai, Jiawei Sun, Qianyu Guo, Meng Wang, and Haofen Wang. 2024.
Retrieval-Augmented Generation for Large Language Models: A Survey. (2024).
arXiv:cs.CL/2312.10997

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng
Gao. 2023. Model Tells You What to Discard: Adaptive KV Cache Compression
for LLMs. (2023). arXiv:cs.CL/2310.01801

Tao Ge, Jing Hu, Xun Wang, Si-Qing Chen, and Furu Wei. 2023. In-context
Autoencoder for Context Compression in a Large Language Model. arXiv
preprint arXiv:2307.06945 (2023).

Tao Ge, Hu Jing, Lei Wang, Xun Wang, Si-Qing Chen, and Furu Wei. 2024.
In-context Autoencoder for Context Compression in a Large Language Model.
In The Twelfth International Conference on Learning Representations. https:
//openreview.net/forum?id=uREj4ZuGJE

GGML. [n. d.]. GGML - Al at the edge. https://ggml.ai/. ([n. d.]).

In Gim, Guojun Chen, Seung seob Lee, Nikhil Sarda, Anurag Khandelwal, and
Lin Zhong. 2023. Prompt Cache: Modular Attention Reuse for Low-Latency
Inference. (2023). arXiv:cs.CL/2311.04934

In Gim, Guojun Chen, Seung seob Lee, Nikhil Sarda, Anurag Khandelwal, and
Lin Zhong. 2023. Prompt Cache: Modular Attention Reuse for Low-Latency
Inference. (2023). arXiv:cs.CL/2311.04934

Curtis Hawthorne, Andrew Jaegle, Catalina Cangea, Sebastian Borgeaud, Charlie
Nash, Mateusz Malinowski, Sander Dieleman, Oriol Vinyals, Matthew Botvinick,
Ian Simon, Hannah Sheahan, Neil Zeghidour, Jean-Baptiste Alayrac, Joao Car-
reira, and Jesse Engel. 2022. General-purpose, long-context autoregressive
modeling with Perceiver AR. In Proceedings of the 39th International Confer-
ence on Machine Learning (Proceedings of Machine Learning Research), Kamalika
Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan
Sabato (Eds.), Vol. 162. PMLR, 8535-8558. https://proceedings.mlr.press/v162/h
awthorne22a.html

Hermann Hellwagner, Ingo Kofler, Michael Eberhard, Robert Kuschnig, Michael
Ransburg, and Michael Sablatschan. 2011. Scalable Video Coding: Techniques
and Applications for Adaptive Streaming. 1-23. https://doi.org/10.4018/978-1-
61692-831-5

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W Mahoney,
Yakun Sophia Shao, Kurt Keutzer, and Amir Gholami. 2024. KVQuant: Towards
10 Million Context Length LLM Inference with KV Cache Quantization. arXiv
preprint arXiv:2401.18079 (2024).

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima
Rekesh, Fei Jia, and Boris Ginsburg. 2024. RULER: What’s the Real Context
Size of Your Long-Context Language Models? arXiv preprint arXiv:2404.06654
(2024).

Huggingface. [n. d.]. Huggingface Transformers. https://huggingface.co/docs/
transformers/index. ([n. d.]).

Huggingface. [n. d.]. Perplexity in fixed length models. https://huggingface.co
/docs/transformers/perplexity. ([n. d.]).

Amazon Inc. [n. d.]. Amazon Mechanical Turk. https://www.mturk.com/. ([n.
d.]).

Gautier Izacard and Edouard Grave. 2021. Leveraging Passage Retrieval
with Generative Models for Open Domain Question Answering. (2021).
arXiv:cs.CL/2007.01282

Gautier Izacard, Patrick Lewis, Maria Lomeli, Lucas Hosseini, Fabio Petroni,
Timo Schick, Jane Dwivedi-Yu, Armand Joulin, Sebastian Riedel, and Edouard
Grave. 2022. Few-shot learning with retrieval augmented language models.
arXiv preprint arXiv:2208.03299 (2022).

Naman Jain, Tianjun Zhang, Wei-Lin Chiang, Joseph E. Gonzalez, Koushik Sen,
and Jon Stoica. 2023. LLM-Assisted Code Cleaning For Training Accurate Code
Generators. (2023). arXiv:cs.LG/2311.14904

Y. Liu, et al

[70] Paras Jain, Sam Kumar, Sarah Wooders, Shishir G. Patil, Joseph E. Gonzalez, and

Ton Stoica. 2023. Skyplane: Optimizing Transfer Cost and Throughput Using
Cloud-Aware Overlays. In 20th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 23). USENIX Association, Boston, MA, 1375-1389.
https://www.usenix.org/conference/nsdi23/presentation/jain

Huigiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. 2023.
LLMLingua: Compressing Prompts for Accelerated Inference of Large Language
Models. (2023). arXiv:cs.CL/2310.05736

Huiqgiang Jiang, Qianhui Wu, Xufang Luo, Dongsheng Li, Chin-Yew Lin,
Yuqing Yang, and Lili Qiu. 2023. LongLLMLingua: Accelerating and En-
hancing LLMs in Long Context Scenarios via Prompt Compression. (2023).
arXiv:cs.CL/2310.06839

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir
Press, and Karthik Narasimhan. 2023. SWE-bench: Can Language Models
Resolve Real-World GitHub Issues? (2023). arXiv:cs.CL/2310.06770

Chao Jin, Zili Zhang, Xuanlin Jiang, Fangyue Liu, Xin Liu, Xuanzhe Liu, and Xin
Jin. 2024. RAGCache: Efficient Knowledge Caching for Retrieval-Augmented
Generation. arXiv preprint arXiv:2404.12457 (2024).

Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke Zettlemoyer. 2017. Trivi-
aQA: A Large Scale Distantly Supervised Challenge Dataset for Reading Com-
prehension. (2017). arXiv:cs.CL/1705.03551

jwatte. 2023. How does ChatGPT store history of chat. https://community.op
enai.com/t/how-does-chatgpt-store-history-of-chat/319608/2. (Aug 2023).
OpenAl Community Forum.

Waleed Kadous, Kyle Huang, Wendi Ding, Liguang Xie, Avnish Narayan, and
Ricky Xu. 2023. Reproducible Performance Metrics for LLM Inference. (Nov.
2023). https://www.anyscale.com/blog/reproducible-performance-metrics-for-
Ilm-inference Accessed: 2024-06-01.

Hao Kang, Qingru Zhang, Souvik Kundu, Geonhwa Jeong, Zaoxing Liu, Tushar
Krishna, and Tuo Zhao. 2024. Gear: An efficient kv cache compression recipefor
near-lossless generative inference of llm. arXiv preprint arXiv:2403.05527 (2024).
Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey
Edunov, Dangi Chen, and Wen tau Yih. 2020. Dense Passage Retrieval for
Open-Domain Question Answering. (2020). arXiv:cs.CL/2004.04906

Kate Keahey, Jason Anderson, Zhuo Zhen, Pierre Riteau, Paul Ruth, Dan
Stanzione, Mert Cevik, Jacob Colleran, Haryadi S. Gunawi, Cody Hammock,
Joe Mambretti, Alexander Barnes, Francois Halbah, Alex Rocha, and Joe Stubbs.
2020. Lessons Learned from the Chameleon Testbed. In 2020 USENIX An-
nual Technical Conference (USENIX ATC 20). USENIX Association, 219-233.
https://www.usenix.org/conference/atc20/presentation/keahey

Toméas Kocisky, Jonathan Schwarz, Phil Blunsom, Chris Dyer, Karl Moritz Her-
mann, Gabor Melis, and Edward Grefenstette. 2017. The NarrativeQA Reading
Comprehension Challenge. (2017). arXiv:cs.CL/1712.07040

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng,
Cody Hao Yu, Joseph E. Gonzalez, Hao Zhang, and Ion Stoica. 2023. Efficient
Memory Management for Large Language Model Serving with PagedAtten-
tion. In Proceedings of the ACM SIGOPS 29th Symposium on Operating Systems
Principles.

LangChain. 2024. langchain-ai/langchain:Building applications with LLMs
through composability. https://github.com/langchain-ai/langchain. (Feburary
2024). (Accessed on 09/21/2023).

LangChain. 2024. Store and reference chat history | Langchain. https://python.]1
angchain.com/docs/use_cases/question_answering/how_to/chat_vector_db.
(Feburary 2024). (Accessed on 09/21/2023).

Benjamin Lefaudeux, Francisco Massa, Diana Liskovich, Wenhan Xiong, Vittorio
Caggiano, Sean Naren, Min Xu, Jieru Hu, Marta Tintore, Susan Zhang, Patrick
Labatut, Daniel Haziza, Luca Wehrstedt, Jeremy Reizenstein, and Grigory Sizov.
2022. xFormers: A modular and hackable Transformer modelling library. https:
//github.com/facebookresearch/xformers. (2022).

Yaniv Leviathan, Matan Kalman, and Y. Matias. 2022. Fast Inference from
Transformers via Speculative Decoding. In International Conference on Machine
Learning. https://api.semanticscholar.org/CorpusID:254096365

Zijian Lew, Joseph B Walther, Augustine Pang, and Wonsun Shin. 2018.
Interactivity in Online Chat: Conversational Contingency and Response
Latency in Computer-mediated Communication. Journal of Computer-
Mediated Communication 23, 4 (06 2018), 201-221. https://doi.or
g/10.1093/jcmc/zmy009 arXiv:https://academic.oup.com/jemc/article-
pdf/23/4/201/25113924/2my009.pdf

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir
Karpukhin, Naman Goyal, Heinrich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rock-
taschel, et al. 2020. Retrieval-augmented generation for knowledge-intensive nlp
tasks. Advances in Neural Information Processing Systems 33 (2020), 9459-9474.
Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir
Karpukhin, Naman Goyal, Heinrich Kiittler, Mike Lewis, Wen tau Yih, Tim
Rocktischel, Sebastian Riedel, and Douwe Kiela. 2021. Retrieval-Augmented
Generation for Knowledge-Intensive NLP Tasks. (2021). arXiv:cs.CL/2005.11401

CacheGen: KV Cache Compression and Streaming for Fast Large Language Model Serving

[90]

[91

[92

g
3

[94

[95

[96

=
=

[98

[99

[100

[101

[102

[103

[104

[105]

[106]

[107

[108

[109]

[110

[111

[112

[113

Dacheng Li*, Rulin Shao®, Anze Xie, Lianmin Zheng Ying Sheng, Joseph E.
Gonzalez, Ion Stoica, Xuezhe Ma, and Hao Zhang. 2023. How Long Can Open-
Source LLMs Truly Promise on Context Length? (June 2023). https://lmsys.org/
blog/2023-06-29-longchat

Bin Lin, Tao Peng, Chen Zhang, Minmin Sun, Lanbo Li, Hanyu Zhao, Wencong
Xiao, Qi Xu, Xiafei Qiu, Shen Li, Zhigang Ji, Yong Li, and Wei Lin. 2024. Infinite-
LLM: Efficient LLM Service for Long Context with DistAttention and Distributed
KVCache. (2024). arXiv:cs.DC/2401.02669

Tianyang Lin, Yuxin Wang, Xiangyang Liu, and Xipeng Qiu. 2021. A Survey of
Transformers. (2021). arXiv:cs.LG/2106.04554

Jiachen Liu, Zhiyu Wu, Jae-Won Chung, Fan Lai, Myungjin Lee, and Mosharaf
Chowdhury. 2024. Andes: Defining and Enhancing Quality-of-Experience in
LLM-Based Text Streaming Services. arXiv preprint arXiv:2404.16283 (2024).
Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua,
Fabio Petroni, and Percy Liang. 2023. Lost in the middle: How language models
use long contexts. arXiv preprint arXiv:2307.03172 (2023).

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo
Xu, Anastasios Kyrillidis, and Anshumali Shrivastava. 2023. Scissorhands: Ex-
ploiting the Persistence of Importance Hypothesis for LLM KV Cache Compres-
sion at Test Time. arXiv preprint arXiv:2305.17118 (2023).

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo
Xu, Anastasios Kyrillidis, and Anshumali Shrivastava. 2023. Scissorhands: Ex-
ploiting the Persistence of Importance Hypothesis for LLM KV Cache Compres-
sion at Test Time. arXiv preprint arXiv:2305.17118 (2023).

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir
Braverman, Beidi Chen, and Xia Hu. 2024. KIVI: A Tuning-Free Asymmetric
2bit Quantization for KV Cache. arXiv preprint arXiv:2402.02750 (2024).
llama.cpp. [n. d.]. llama.cpp. https://github.com/ggerganov/llama.cpp/. ([n.
d.]).

Sathiya Kumaran Mani, Yajie Zhou, Kevin Hsieh, Santiago Segarra, Trevor
Eberl, Eliran Azulai, Ido Frizler, Ranveer Chandra, and Srikanth Kandula. 2023.
Enhancing Network Management Using Code Generated by Large Language
Models. In Proceedings of the 22nd ACM Workshop on Hot Topics in Networks (Hot-
Nets ’23). Association for Computing Machinery, New York, NY, USA, 196-204.
https://doi.org/10.1145/3626111.3628183

Ignacio Martinez. 2023. privateGPT. https://github.com/imartinez/privateGPT.
(2023).

Fabian Mentzer, Eirikur Agustsson, Michael Tschannen, Radu Timofte, and Luc
Van Gool. 2019. Practical Full Resolution Learned Lossless Image Compression.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. 2016.
Pointer Sentinel Mixture Models. (2016). arXiv:cs.CL/1609.07843

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Rae
Ying Yee Wong, Zhuoming Chen, Daiyaan Arfeen, Reyna Abhyankar, and Zhihao
Jia. 2023. SpecInfer: Accelerating Generative LLM Serving with Speculative
Inference and Token Tree Verification. arXiv preprint arXiv:2305.09781 (2023).
Jesse Mu, Xiang Lisa Li, and Noah Goodman. 2023. Learning to compress
prompts with gist tokens. arXiv preprint arXiv:2304.08467 (2023).

Author’s Name. Year of Publication. LLMs in Finance: BloombergGPT and
FinGPT - What You Need to Know. Medium. (Year of Publication). https:
//12gunika.medium.com/llms-in-finance-bloomberggpt-and-fingpt-what-
you-need-to-know-2fdf3af29217

Yixin Nie, Songhe Wang, and Mohit Bansal. 2019. Revealing the Importance of
Semantic Retrieval for Machine Reading at Scale. (2019). arXiv:cs.CL/1909.08041
Antonio Nucci. 2024. Large Language Models in Financial Services & Banking.
(2024). https://aisera.com/blog/large-language-models-in-financial-services-
banking/

OpenAl 2024. GPT-4 API general availability and deprecation of older models
in the Completions AP https://openai.com/blog/gpt-4-api- general-availability.
(April 2024). (Accessed on 09/21/2023).

1. V. Oseledets. 2011. Tensor-Train Decomposition. SIAM Journal on Scien-
tific Computing 33, 5 (2011), 2295-2317. https://doi.org/10.1137/090752286
arXiv:https://doi.org/10.1137/090752286

Joon Sung Park, Joseph C. O’Brien, Carrie J. Cai, Meredith Ringel Morris, Percy
Liang, and Michael S. Bernstein. 2023. Generative Agents: Interactive Simulacra
of Human Behavior. (2023). arXiv:cs.HC/2304.03442

Pratyush Patel, Esha Choukse, Chaojie Zhang, [fiigo Goiri, Aashaka Shah, Saeed
Maleki, and Ricardo Bianchini. 2023. Splitwise: Efficient generative llm inference
using phase splitting. arXiv preprint arXiv:2311.18677 (2023).

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James
Bradbury, Anselm Levskaya, Jonathan Heek, Kefan Xiao, Shivani Agrawal,
and Jeff Dean. 2022. Efficiently Scaling Transformer Inference. (2022).
arXiv:cs.LG/2211.05102

Ori Ram, Yoav Levine, Itay Dalmedigos, Dor Muhlgay, Amnon Shashua, Kevin
Leyton-Brown, and Yoav Shoham. 2023. In-Context Retrieval-Augmented Lan-
guage Models. (2023). arXiv:cs.CL/2302.00083

52

[114]

[115

[116

[117

[118

[119

[120

[121

[122

[123

[124

[125

[126

[127

[128

[129]

[130

[131

[132

[133

[134

[135]

[136]

ACM SIGCOMM 24, August 4-8, 2024, Sydney, NSW, Australia

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. 2020. Deep-
Speed: System Optimizations Enable Training Deep Learning Models with
Over 100 Billion Parameters. In Proceedings of the 26th ACM SIGKDD Inter-
national Conference on Knowledge Discovery & Data Mining (KDD °20). Asso-
ciation for Computing Machinery, New York, NY, USA, 3505-3506. https:
//doi.org/10.1145/3394486.3406703

Luka Ribar, Ivan Chelombiev, Luke Hudlass-Galley, Charlie Blake, Carlo Luschi,
and Douglas Orr. 2023. SparQ Attention: Bandwidth-Efficient LLM Inference.
(2023). arXiv:cs.LG/2312.04985

Aurko Roy, Mohammad Saffar, Ashish Vaswani, and David Grangier. 2021.
Efficient content-based sparse attention with routing transformers. Transactions
of the Association for Computational Linguistics 9 (2021), 53-68.

Ohad Rubin and Jonathan Berant. 2023. Long-range Language Modeling with
Self-retrieval. arXiv preprint arXiv:2306.13421 (2023).

Ayesha Saleem. 2023. LLM for Lawyers, Enrich Your Precedents with the Use
of AL Data Science Dojo. (25 July 2023). https://datasciencedojo.com/blog/llm-
for-lawyers/

Hang Shao, Bei Liu, and Yanmin Qian. 2024. One-Shot Sensitivity-Aware Mixed
Sparsity Pruning for Large Language Models. (2024). arXiv:cs.CL/2310.09499
Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Daniel Y
Fu, Zhiqiang Xie, Beidi Chen, Clark Barrett, Joseph E Gonzalez, et al. 2023. High-
throughput generative inference of large language models with a single gpu.
arXiv preprint arXiv:2303.06865 (2023).

Zijing Shi, Meng Fang, Shunfeng Zheng, Shilong Deng, Ling Chen, and Yali
Du. 2023. Cooperation on the Fly: Exploring Language Agents for Ad Hoc
Teamwork in the Avalon Game. (2023). arXiv:cs.CL/2312.17515

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared
Casper, and Bryan Catanzaro. 2019. Megatron-lm: Training multi-billion param-
eter language models using model parallelism. arXiv preprint arXiv:1909.08053
(2019).

Yisheng Song, Ting Wang, Puyu Cai, Subrota K. Mondal, and Jyoti Prakash Sahoo.
2023. A Comprehensive Survey of Few-shot Learning: Evolution, Applications,
Challenges, and Opportunities. ACM Comput. Surv. 55, 13s, Article 271 (jul
2023), 40 pages. https://doi.org/10.1145/3582688

Simeng Sun, Kalpesh Krishna, Andrew Mattarella-Micke, and Mohit Iyyer. 2021.
Do long-range language models actually use long-range context? arXiv preprint
arXiv:2109.09115 (2021).

Pavlo Sydorenko. 2023. Top 5 Applications of Large Language Models (LLMs) in
Legal Practice. Medium. (2023). https://medium.com/jurdep/top-5-applications-
of-large-language-models-1lms-in-legal- practice-d29cde9c38ef

Vivienne Sze and Madhukar Budagavi. 2012. High Throughput CABAC Entropy
Coding in HEVC. IEEE Transactions on Circuits and Systems for Video Technology
22,12 (2012), 1778-1791. https://doi.org/10.1109/TCSVT.2012.2221526

Zilliz Technology. 2023. GPTCache. https://github.com/zilliztech/GPTCache.
(2023).

Keary Tim. 2024. 12 Practical Large Language Model (LLM) Applications -
Techopedia. https://www.techopedia.com/12-practical-large-language-model-
Ilm-applications. (January 2024). (Accessed on 09/21/2023).

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Roziére, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guillaume
Lample. 2023. LLaMA: Open and Efficient Foundation Language Models. (2023).
arXiv:cs.CL/2302.13971 https://arxiv.org/abs/2302.13971

Szymon Tworkowski, Konrad Staniszewski, Mikolaj Pacek, Yuhuai Wu, Henryk
Michalewski, and Piotr Milo$. 2023. Focused transformer: Contrastive training
for context scaling. arXiv preprint arXiv:2307.03170 (2023).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2023. Attention Is All You
Need. (2023). arXiv:cs.CL/1706.03762

Yiding Wang, Decang Sun, Kai Chen, Fan Lai, and Mosharaf Chowdhury. 2023.
Egeria: Efficient DNN Training with Knowledge-Guided Layer Freezing. In
Proceedings of the Eighteenth European Conference on Computer Systems (EuroSys
’23). Association for Computing Machinery, New York, NY, USA, 851-866. https:
//doi.org/10.1145/3552326.3587451

Zhuang Wang, Haibin Lin, Yibo Zhu, and T. S. Eugene Ng. 2023. Hi-Speed DNN
Training with Espresso: Unleashing the Full Potential of Gradient Compression
with Near-Optimal Usage Strategies. In Proceedings of the Eighteenth European
Conference on Computer Systems (EuroSys "23). Association for Computing Ma-
chinery, New York, NY, USA, 867-882. https://doi.org/10.1145/3552326.3567505
Zhenhailong Wang, Xiaoman Pan, Dian Yu, Dong Yu, Jianshu Chen, and Heng
Ji. 2023. Zemi: Learning Zero-Shot Semi-Parametric Language Models from
Multiple Tasks. (2023). arXiv:cs.CL/2210.00185

Tan H. Witten, Radford M. Neal, and John G. Cleary. 1987. Arithmetic Coding
for Data Compression. Commun. ACM 30, 6 (jun 1987), 520-540. https://doi.or
g/10.1145/214762.214771

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement De-
langue, Anthony Moi, Perric Cistac, Clara Ma, Yacine Jernite, Julien Plu, Can-
wen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest,

ACM SIGCOMM 24, August 4-8, 2024, Sydney, NSW, Australia

[137

[138

[139

[140]

[141]

[142]

[143

[144

[145

[146

[147]

[148

[149]

[150

[151

[152]

[153

[154]

[155]

and Alexander M. Rush. 2020. Transformers: State-of-the-Art Natural Lan-
guage Processing. Association for Computational Linguistics, 38-45. https:
//www.aclweb.org/anthology/2020.emnlp-demos.6

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement De-
langue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu,
Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest,
and Alexander M. Rush. 2020. Transformers: State-of-the-Art Natural Language
Processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations. Association for Computational
Linguistics, Online, 38-45. https://www.aclweb.org/anthology/2020.emnlp-
demos.6

Bingyang Wu, Shengyu Liu, Yinmin Zhong, Peng Sun, Xuanzhe Liu, and Xin
Jin. 2024. LoongServe: Efficiently Serving Long-context Large Language Models
with Elastic Sequence Parallelism. arXiv preprint arXiv:2404.09526 (2024).
Bingyang Wu, Yinmin Zhong, Zili Zhang, Gang Huang, Xuanzhe Liu, and Xin
Jin. 2023. Fast Distributed Inference Serving for Large Language Models. (2023).
arXiv:cs.LG/2305.05920

Dekun Wu, Haochen Shi, Zhiyuan Sun, and Bang Liu. 2023. Deciphering Digital
Detectives: Understanding LLM Behaviors and Capabilities in Multi-Agent
Mystery Games. (2023). arXiv:cs.Al/2312.00746

Yuhuai Wu, Markus Norman Rabe, DeLesley Hutchins, and Christian Szegedy.
2022. Memorizing Transformers. In International Conference on Learning Repre-
sentations. https://openreview.net/forum?id=TrjbxzRenf-

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song
Han. 2023. Smoothquant: Accurate and efficient post-training quantization for
large language models. In International Conference on Machine Learning. PMLR,
38087-38099.

Wenhan Xiong, Hong Wang, and William Yang Wang. 2021. Progressively
Pretrained Dense Corpus Index for Open-Domain Question Answering. In
Proceedings of the 16th Conference of the European Chapter of the Association
for Computational Linguistics: Main Volume. Association for Computational
Linguistics, Online, 2803-2815. https://doi.org/10.18653/v1/2021.eacl-main.244
Peng Xu, Wei Ping, Xianchao Wu, Lawrence McAfee, Chen Zhu, Zihan Liu,
Sandeep Subramanian, Evelina Bakhturina, Mohammad Shoeybi, and Bryan
Catanzaro. 2024. Retrieval meets Long Context Large Language Models. (2024).
arXiv:cs.CL/2310.03025

Wei Yang, Yuqing Xie, Aileen Lin, Xingyu Li, Luchen Tan, Kun Xiong, Ming Li,
and Jimmy Lin. 2019. End-to-End Open-Domain Question Answering with. In
Proceedings of the 2019 Conference of the North. Association for Computational
Linguistics. https://doi.org/10.18653/v1/n19-4013

Yingrui Yang, Yifan Qiao, Jinjin Shao, Xifeng Yan, and Tao Yang. 2022. Light-
weight Composite Re-Ranking for Efficient Keyword Search with BERT. In
Proceedings of the Fifteenth ACM International Conference on Web Search and
Data Mining (WSDM °22). Association for Computing Machinery, New York,
NY, USA, 1234-1244. https://doi.org/10.1145/3488560.3498495

Jiayi Yao, Hanchen Li, Yuhan Liu, Siddhant Ray, Yihua Cheng, Qizheng Zhang,
Kuntai Du, Shan Lu, and Junchen Jiang. 2024. CacheBlend: Fast Large Language
Model Serving with Cached Knowledge Fusion. arXiv preprint arXiv:2405.16444
(2024).

Rongjie Yi, Liwei Guo, Shiyun Wei, Ao Zhou, Shangguang Wang, and Mengwei
Xu. 2023. EdgeMoE: Fast On-Device Inference of MoE-based Large Language
Models. arXiv preprint arXiv:2308.14352 (2023).

Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and Byung-
Gon Chun. 2022. Orca: A distributed serving system for { Transformer-Based}
generative models. In 16th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 22). 521-538.

Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti,
Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, and
Amr Ahmed. 2021. Big Bird: Transformers for Longer Sequences. (2021).
arXiv:cs.LG/2007.14062

Lin Zehui, Pengfei Liu, Luyao Huang, Junkun Chen, Xipeng Qiu, and Xuanjing
Huang. 2019. DropAttention: A Regularization Method for Fully-Connected
Self-Attention Networks. (2019). arXiv:cs.CL/1907.11065

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi
Cai, Zhao Song, Yuandong Tian, Christopher Re, Clark Barrett, Zhangyang
Wang, and Beidi Chen. 2023. H20: Heavy-Hitter Oracle for Efficient Genera-
tive Inference of Large Language Models. In Workshop on Efficient Systems for
Foundation Models @ ICML2023. https://openreview.net/forum?id=ctPizehA9D
Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi
Cai, Zhao Song, Yuandong Tian, Christopher Ré, Clark Barrett, Zhangyang
Wang, and Beidi Chen. 2023. H,O: Heavy-Hitter Oracle for Efficient Generative
Inference of Large Language Models. (2023). arXiv:cs.LG/2306.14048

Qibin Zhao, Guoxu Zhou, Shengli Xie, Liging Zhang, and Andrzej Cichocki.
2016. Tensor Ring Decomposition. (2016). arXiv:cs.NA/1606.05535

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu,
Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang,

53

[156

[157

Y. Liu, et al

Joseph E. Gonzalez, and Ion Stoica. 2023. Judging LLM-as-a-judge with MT-
Bench and Chatbot Arena. (2023). arXiv:cs.CL/2306.05685

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Jeff Huang, Chuyue Sun,
Cody Hao Yu, Shiyi Cao, Christos Kozyrakis, Ion Stoica, Joseph E Gonzalez,
et al. 2023. Efficiently programming large language models using sglang. arXiv
preprint arXiv:2312.07104 (2023).

Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu, Yibo Zhu, Xuanzhe
Liu, Xin Jin, and Hao Zhang. 2024. DistServe: Disaggregating Prefill and
Decoding for Goodput-optimized Large Language Model Serving. (2024).
arXiv:cs.DC/2401.09670

CacheGen: KV Cache Compression and Streaming for Fast Large Language Model Serving

Note: Appendices are supporting material that has not been
peer-reviewed.

A Text Output Examples of CacheGen

Figure 17 visualizes an example from the LongChat dataset [90]
used in §7.2. The context fed into the LLM is a long, multi-round
conversation history between the LLM and the user. An abridged
context is shown in the upper box, where the first topic is about
the role of art in society. The prompt to the LLM asks “What is
the first topic we discussed? > CacheGen correctly generates the
answer, whereas the default quantization baseline, which has a sim-
ilar compressed KV cache size as CacheGen, generates the wrong
answer.

f Input: \

USER: I would like to discuss the topic of the
role of art in society.

Question: What is the first topic we discussed?

N =
/ Response: \

Ground truth Default quantization CacheGen
The first topic
we discussed was
the impact of
social media on
mental health.

k Wrongx Right j

Figure 17: An example of CacheGen’s output on the LongChat dataset
with LongChat-7b-16k model.

The first topic

we discussed was

the role of art
in society.

The role of
art in society

B CacheGen vs. more intrusive methods

So far, all methods we have evaluated, including CacheGen, do
not modify the LLM or context. As a complement, Figure 18 tests
CacheGen against recent methods that change the context or LLM.

o Smaller models: Replacing the LLM with smaller models may speed
up the computation. Figure 18a replaces the Llama-7B model with
a smaller Llama-3B and applies different quantization levels.

o Token selection: Figure 18b uses Scissorhands as an example of
removing tokens with low self-attention scores from the LLM in-
put [96]. Since the self-attention scores are only available during
the actual generation, it cannot reduce TTFT, but we make an ef-
fort to create an idealized version of Scissorhands (Scissorhands*)
by running the self-attention offline to determine which tokens
to drop and provide this information to Scissorhands* online.

o Gisting Finally, we test Gisting as an example of a more advanced
method that shortens contexts into gist tokens and changes the
LLM to accept the gist tokens [104]. In Figure 18c, we test the
pre-trained gisting model, which is based on Llama-7B. The gist-
ing model retrains the LLM’s attention model in order to run
inference on a compressed version of the input prompts. Since
the gisting model can compress arbitrary long contexts into one
token, we vary the compression ratio of the gisting model to ob-
tain a trade-off in size and accuracy. This is done by adapting the

54

ACM SIGCOMM 24, August 4-8, 2024, Sydney, NSW, Australia

fraction of input tokens that are compressed into one token. We
apply CacheGen on the original Llama-7B model on the PIQA [34]
dataset, which is one of the most popular question-answering
datasets. We did not apply CacheGen on other datasets in our
evaluation because the public pre-trained gisting model can only
take up to 512 tokens, and truncating the dataset into smaller
will not be able to preserve the information in the context.

We can see that CacheGen outperforms these baselines, reducing
TTFT or KV cache size while achieving similar or better LLM’s
performance on the respective tasks. In particular, CacheGen is
faster than smaller models (which are slowed down by transformer
operations), and can reduce KV cache better than context selection
or gisting because it compresses the KV features to more compact
bitstream representations. We want to stress that even though
CacheGen is compared head-to-head with these methods, it makes
no assumption about the context and the model, so one can combine
CacheGen with these methods to potentially further improve the
performance.

ACM SIGCOMM 24, August 4-8, 2024, Sydney, NSW, Australia

Y. Liu, et al
40 :
——Scissorhands* —e—CacheGen & 370 —— Context selection 1.0 —=— Gisting
.%‘30 ——Smaller model k2 5’5 —e— CacheGen § —e— CacheGen
% é 60 o é 0.8 ./.‘

g20 \\ £150 N &N
& %

— . S 0.6 S

0 200 400 600 800 405 200 400 600 800 0 5 10 15 20

Size of KV Cache(MB) Size of KV Cache (MB) Size of KV Cache (MB)

Figure 18: Comparing CacheGen and more intrusive methods, including smaller models, token dropping (left), context selection (middle), and
gisting (right).

55

CacheGen: KV Cache Compression and Streaming for Fast Large Language Model Serving

C CacheGen System Settings

C.1 KV Streamer Adaptation Logic

We present the pseudo-code for the KV streamer logic that adapts
to bandwidth here.

Algorithm 1: CacheGen Streaming Adapter Logic

chunks_to_send < context chunks
while chunks_to_send # empty do
get chunk_data
throughput < network throughput
remaining_time < SLO — time_elapsed
if time_recompute < remaining_time then
cur_chunk « text of chunk_data
else
level «— max(level|size(chunks_to_send, level) +
throughput < remaining_time
cur_chunk < encode(chunk_data, level)
end if
send cur_chunk
chunks_to_send < chunks_to_send \ chunk_data
end while

C.2 Default Encoding Level

By default, CacheGen encoding is done with the following parame-
ters: we partition the layers in the LLM into three groups with equal
distance, and set quantization bins to be 0.5, 1, 1.5 respectively.

D CacheGen’s improvement under various
workloads

Figure 19 shows CacheGen’s improvement over the best baseline
(between quantization and text context) over a complete space of
workloads characterized along the two dimensions of GPU available
cycles (i.e., 1/n with n being the number of concurrent requests)
and available bandwidth (in log scale). Figure 11 and Figure 12 can
be seen as horizontal/vertical cross-sections of this figure.

E Cost of storing KV cache

Our main focus in this paper is to reduce TTFT to achieve service
SLO with minimal impact on the generation quality of LLM. How-
ever, context loading systems, especially CacheGen, could be an
economical choice for LLM service providers as well. For example,
one piece of 8.5K-token context in Llama-13B takes roughly 5GB to
store different versions compressed with CacheGen. It costs $0.05

56

ACM SIGCOMM 24, August 4-8, 2024, Sydney, NSW, Australia

TTFT Reduction @ 10000 Tokens

36 34

Ratio of available GPU cycles (%)
80 70 60 50 40 30 20 10

90

100

G TR T (I P P 59,9 % ,0

NN N

N . o N
’\«‘f? P @%'%«',\’b\‘.\é\}@@.b?{b'

Bandwidth (Gbps)
(Log Scale)

o G A 0@

Figure 19: Heatmap showing CacheGen’s improvement over the best
baseline over a complete space of workloads. Brighter cells means
more TTFT reduction.

per month to store this data on AWS [6]. On the other hand, recom-
puting the KV cache from text costs at least $0.00085 (input only)
every time [4, 5, 11, 12]. If there are more than 150 requests reusing
this piece of context every month, CacheGen will also reduce the
inference cost. The calculation here only serves as a rough estima-
tion to highlight CacheGen’s potential. We leave the design of such
a context loading system targeting cost-saving to future work.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Large language model basics
	2.2 Context in LLM input

	3 The Hidden Network Bottleneck
	4 CacheGen: KV Cache Encoding and Streaming
	5 CacheGen Design
	5.1 Empirical insights of KV cache
	5.2 KV cache encoding
	5.3 KV cache streaming adaptation

	6 Implementation
	7 Evaluation
	7.1 Setup
	7.2 Overall improvement
	7.3 Sensitivity analysis
	7.4 KV streamer adaptation
	7.5 Overheads and microbenchmarks

	8 Related Work
	9 Discussion and Limitations
	10 Conclusion
	References
	A Text Output Examples of CacheGen
	B CacheGen vs. more intrusive methods
	C CacheGen System Settings
	C.1 KV Streamer Adaptation Logic
	C.2 Default Encoding Level

	D CacheGen's improvement under various workloads
	E Cost of storing KV cache

