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Significance

 Far-from-equilibrium processes 
underlie most modern 
technologies, ranging from solar 
energy harvesting and utilization 
to electronics and 
optoelectronics, imaging and 
sensing, quantum information 
processing, and medical 
therapies. Atomistic time-domain 
modeling of these processes 
reveals key mechanisms allowing 
one to control the flow of energy, 
charge, and information. 
Nonadiabatic molecular 
dynamics provides means to 
achieve this goal; however, only 
simplified small systems can be 
studied in present. We apply 
modern machine learning tools 
and develop a methodology that 
increases system size and 
simulation timescale by orders of 
magnitude. As an example, we 
demonstrate that charge carrier 
losses in modern materials have 
a nontrivial dependence on 
defect concentration under 
realistic conditions.
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Nonadiabatic molecular dynamics (NA-MD) is a powerful tool to model far-from- 
equilibrium processes, such as photochemical reactions and charge transport. NA-MD 
application to condensed phase has drawn tremendous attention recently for development 
of next-generation energy and optoelectronic materials. Studies of condensed matter 
allow one to employ efficient computational tools, such as density functional theory 
(DFT) and classical path approximation (CPA). Still, system size and simulation times-
cale are strongly limited by costly ab initio calculations of electronic energies, forces, and 
NA couplings. We resolve the limitations by developing a fully machine learning (ML) 
approach in which all the above properties are obtained using neural networks based 
on local descriptors. The ML models correlate the target properties for NA-MD, imple-
mented with DFT and CPA, directly to the system structure. Trained on small systems, 
the neural networks are applied to large systems and long timescales, extending NA-MD 
capabilities by orders of magnitude. We demonstrate the approach with dependence of 
charge trapping and recombination on defect concentration in MoS2. Defects provide 
the main mechanism of charge losses, resulting in performance degradation. Charge 
trapping slows with decreasing defect concentration; however, recombination exhibits 
complex dependence, conditional on whether it occurs between free or trapped charges, 
and relative concentrations of carriers and defects. Delocalized shallow traps can become 
localized with increasing temperature, changing trapping and recombination behavior. 
Completely based on ML, the approach bridges the gap between theoretical models and 
realistic experimental conditions and enables NA-MD on thousand-atom systems and 
many nanoseconds.

theoretical chemistry | machine learning | quantum dynamics

 Excited state dynamics play key roles in numerous photophysical and photochemical 
phenomena involving nonequilibrium processes initiated by absorption of a photon, an 
injection of a charge, or an energetic chemical event and form the basis of many modern 
applications ( 1     – 4 ). Examples include solar energy utilization ( 5   – 7 ), optoelectronic devices 
( 8   – 10 ), novel chemistries ( 11 ,  12 ), catalysis ( 13   – 15 ), imaging and biosensing ( 15     – 18 ), 
superconductors ( 19 ,  20 ), superfluids ( 21 ), and quantum information processing ( 22 ). 
Nonadiabatic (NA) molecular dynamics (MD) is an efficient approach for modeling 
coupled electronic and atomic degrees of freedom that evolve far from equilibrium. It 
mimics nature and time-resolved optical experiments in the most direct way, at the atom-
istic level, and in the time domain ( 23     – 26 ). In solar energy applications, electronics, and 
optoelectronics, productive processes, such as charge and energy transfer, or breaking and 
formation of chemical bonds, compete with charge and energy losses. NA-MD provides 
essential insights needed to steer excited state dynamics in the desired directions and to 
mitigate the detrimental effects ( 27   – 29 ). NA-MD needs input from time-consuming 
electronic structure calculations, which limit the method to systems composed of hundreds 
of atoms and picosecond timescales, if performed at an ab initio level. In many cases, 
larger simulation models and longer simulation times are desired in order to mimic realistic 
processes ( 24 ). Examples include twisted bilayer graphene and transition metal dichalco-
genides that exhibit unique electronic and transport properties ( 30   – 32 ) and grain bound-
aries and interfaces that cause charge and energy losses in perovskite solar cells ( 33 ,  34 ). 
Atomistic models of such systems are too computationally expensive for time-domain 
ab initio calculations, and simplifications are essential. Breaking the size and timescale 
limitations of NA-MD is urgent, and machine learning (ML) represents a particularly 
promising direction ( 35   – 37 ).
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 NA-MD simulations generally require calculations of nuclear 
gradients for excited states and NA couplings (NACs) along MD 
trajectories ( 23 ,  38 ). Thermal fluctuations in condensed phase and 
nanoscale systems often dominate structural evolution, allowing 
one to replace expensive excited state calculations by much more 
affordable ground-state calculations, according to the classical path 
approximation (CPA) ( 39 ,  40 ). Still, the cost of ab initio methods 
is high. Density functional theory (DFT) is widely used to obtain 
ground-state electronic properties for a given system geometry. 
DFT becomes expensive as the system size and MD trajectory 
length grow. To address this issue, ML models of force fields (FF) 
( 41 ) and electronic Hamiltonians ( 31 ,  42 ) can be developed using 
DFT data as training sets to obtain the results with ab initio accu-
racy but at a much lower computational cost. ML models based 
on local structural descriptors decompose target properties, such 
as energy, force, and electronic off-diagonal coupling, into atomic 
contributions, which can be trained with small systems and scaled 
up to large systems. This feature is highly promising for condensed 
matter systems because many collective phenomena require large 
atomistic models and generating ab initio training sets for large 
models is unaffordable. Although many global properties, such as 
the NAC, are difficult to capture by local descriptors, most of 
them have analytic relationships with basic interatomic interac-
tions which can be inferred from local configurations by ML. 
Therefore, development of NA-MD methodologies based on 
appropriate local descriptors is a promising route to avoid costly 
ab initio calculations and enable investigations of excited state 
dynamics in complicated systems.

 In this work, we develop a fully ML-based approach for per-
forming NA-MD simulations in condensed phase and nanoscale 
systems composed of thousands of atoms over nanosecond times-
cales. The methodology is inspired by the ML tools for generation 
of ML-FFs to perform MD ( 43 ) and parameterization of elec-
tronic Hamiltonian to obtain electronic state energies and wave-
functions ( 31 ), which are sufficient to replace the ground-state 
ab initio calculations for NA-MD within the CPA. We develop 
means to obtain the NAC within the ML framework and use our 
group’s ML techniques to interpolate NACs over large time inter-
vals ( 35 ,  36 ). We train the ML models for the fundamental prop-
erties needed for NA-MD on small model systems and generate 
the properties for large realistic systems. The ML data are used  
as input to our group’s sophisticated and efficient NA-MD 
approaches designed to model complex excited state processes ( 23 , 
 39 ,  40 ,  44 ). We systematically test the developed technique by 
investigating the dependence of charge carrier trapping and 
recombination dynamics in a modern material, MoS2 , on con-
centration of the most common defect, sulfur vacancy. Such an 
investigation is challenging due to computational limitations on 
the system size. Defect concentration is the key characteristic of 
semiconductor quality in a broad range of applications. Typically, 
defects should be avoided, as they limit carrier mobility and life-
time. However, the practical cost of eliminating defects is high 
and increases rapidly with material purity. In other cases, defects 
are introduced on purpose to manipulate optical response ( 45 ), 
pin excitons ( 46 ), facilitate charge separation ( 47 ), create photo- 
and electrocatalytic sites ( 48 ), etc. Using the developed approach, 
we demonstrate that charge trapping slows down with decreasing 
defect concentration. However, charge recombination rate may 
or may not show concentration dependence, conditional on 
whether the recombination occurs between free and trapped 
charges or trapped charges. Delocalized shallow traps can become 
localized at increased temperature, changing the defect concen-
tration dependence. Compared to ab initio NA-MD, the fully 
ML-based NA-MD approach errs by about 10%, while the 

calculation cost is decreased by orders of magnitude. The error is 
negligible for NA-MD accuracy due to multiple approximations 
involved ( 49 ) and is much smaller than experimental uncertain-
ties. The local descriptor-based ML NA-MD simulations can 
accurately and efficiently replace the ab initio NA-MD calcula-
tions, enabling one to investigate complex phenomena in large 
systems and over long timescales. 

Results

Framework of ML-Based NA-MD Simulation. In NA-MD, electrons 
are treated quantum mechanically, while atomic vibrational 
motions are classical or semiclassical. Hence, NA-MD simulations 
combine multiple methodologies needed to perform classical MD, 
to calculate electronic state energies, wavefunctions, and state-to-
state NA and Coulomb couplings, as well as to evolve the mixed 
quantum-classical system (23, 38, 50). The developed methodology 
combines ML-FFs, as implemented in DeepMD (51) and ML 
Hamiltonian (ML-H) of DeepH (31), with decoherence-induced 
surface hopping (DISH) (52), as implemented in Pyxaid software 
(39, 40). We augment the DeepH (31) approach to calculate the 
NAC, which required modifying and tuning the neural network to 
make the results stable with respect to changes in system geometry 
and calculation of overlap matrix elements (39). ML models of the 
electronic state energies and NAC matrix elements developed in our 
group (35, 36) can be used to interpolate these properties over long 
time intervals to reduce the cost of the ML-H calculations. This 
capability is not employed in present, to provide a more rigorous 
comparison to ab initio NA-MD. The ML models are trained to 
predict the interatomic forces and Hamiltonian matrix elements 
based on local structure, as illustrated in Fig. 1A. The ML models 
can be used in extended systems without size limitations. The 
Hamiltonian matrices defined in a local basis ({ϕi}) are diagonalized 
to produce delocalized molecular orbitals ({ψi}), orbital energies 
({εi}), and NACs ( {dij } ) (39).

  Fig. 1B   displays the workflow of calculating the NA-MD input 
data with the ML models. ML-FF provides atomic force (F ) to 
update atomic positions (R ) and velocities (v ) at the next timestep 
of MD. The MD structure is processed with ML-H to obtain {εi  } 
and {ψi  }. {εi  } give excitation energies at a given timestep, and {ψi  } 
at adjacent timesteps are used for NAC ({dij  }) calculations. The 
combination of the ML-FF and ML-H models allows us to obtain 
evolving electronic energy levels and NAC along the MD trajec-
tory without ab initio calculations. NA-MD uses these data to 
simulate excited state electron-vibrational dynamics, as illustrated 
in  Fig. 1C  . Atomic motions affect energy levels. The reduced 
energy differences lead to strong NAC between the electronic 
states, and transitions are more likely to occur. NA-MD simulates 
the population change in this period, which provides quantum 
mechanical information on excited state electronic processes, such 
as charge carrier trapping and recombination.

 The methodology is applied to and tested with charge carrier 
trapping and recombination processes in defective single-layer 
MoS2  with sulfur vacancies. MoS2  is a two-dimensional semicon-
ductor with promising electronic and optoelectronic applications. 
It has a suitable bandgap and good theoretical carrier mobility, 
but experimental samples show much lower mobility because of 
impurities and defects ( 53 ). Sulfur vacancy is reported as the dom-
inant defect in MoS2  ( 54 ). It introduces trap states in the bandgap, 
accelerating charge trapping and electron–hole recombination 
( 55 ). We demonstrate that, in the testing system containing 107 
atoms, the ML-H model can properly reproduce the energy level 
differences and NACs compared to the DFT calculations, and the 
trajectories obtained with ML-FF exhibit similar distributions of D
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these two results compared to the trajectories from ab initio MD 
(AI-MD) simulations. Then, we apply the developed approach to 
431 and 971 atom systems and establish important and unique 
insights into defect density dependence on charge carrier trapping 
and recombination in semiconductors.  

Calculation of NA-MD Electronic Hamiltonian with ML. We first 
verify the accuracy of ML-H in producing excited state energies 
and NACs. Fig. 2A shows the structure of defective single-layer 

MoS2 with a sulfur vacancy. The density of states (DOS) is plotted 
in Fig. 2B. We use a 6 × 6 supercell to avoid interaction between 
sulfur vacancies in adjacent cells. The properties of the supercell 
can be related to the properties of the unit cell by zone folding 
(30, 56). The sulfur vacancy introduces one occupied state (trap 
1) slightly above the valence band maximum (VBM) and two 
unoccupied states (traps 2 and 3) deep inside the bandgap, 
relatively close to the conduction band minimum (CBM) (57). 
Once an electron is excited to the CB and a hole is generated 

Fig. 1.   Overview of NA-MD simulations with local descriptor ML models. (A) ML predictions based on local structure in extended systems. RN is the neighborhood 
cutoff radius. Hamiltonian matrices H

ij
= �

i
|H|�

j
 are diagonalized to obtain electronic wavefunctions, {ψi}, and energy levels, {εi}. (B) Workflow of generating 

NA-MD input with ML models. The atomic force (F) from the ML-FF is used to update the atomic position (R) and velocity (v). {εi} and {ψi} from the ML-H are used 
to calculate excitation energies and NAC, d

ij
= �

i
|

�

� t
|�

j
 . (C) Scheme of evolution of energy levels and NAC along a MD trajectory and electronic transition from 

ψj to ψi in NA-MD simulation.

Fig. 2.   Validation of ML-H for electronic structure. (A) Top view of the simulation cell. (B) Density of states (DOS) of the defective MoS2. The inset illustrates direct, 
①, and trap-assisted, ② + ③, carrier recombination between conduction band (CB) and valence band (VB). (C) Evolution of energy levels in a 1 ps AI-MD trajectory. 
Gray lines are from DFT and color lines are from ML-H. The energy of trap 1 at the first step is set to zero. (D) Comparison of electronic energy gaps obtained 
with DFT and ML-H. (E) Comparison of absolute NAC matrix elements from DFT and ML-H. The data are taken from a 6 ps AI-MD trajectory with a 1 fs timestep.D
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in the VB, the charges relax to the band edges, i.e., CBM and 
VBM, very fast and then go through interband recombination. 
The carriers can go through direct CBM-VBM recombination (①) 
or trap-assisted recombination (② + ③). Since traps 2 and 3, as 
well as trap 1 and VBM are nearly degenerate, transitions between 
these state pairs are very easy, and the populations of these states 
are combined in the subsequent analysis.

 We use a 6 ps AI-MD trajectory to sample system behavior in 
the atomic phase space.  Fig. 2C   shows evolution of energy levels 
of the CBM, VBM, and trap 1, 2, and 3 states in a representative 
1 ps trajectory. The gray lines are from DFT, and the color lines 
are from ML-H. The ML results agree well with the DFT results, 
and the overall RMS error (RMSE) in the energy gaps is only 9.27 
meV. The entire 6 ps data are displayed in SI Appendix, Fig. S1 . 
 Fig. 2D   compares the energy gaps obtained with DFT and ML. 
The RMSE below 10 meV is insignificant, as the energy gaps are 
at the eV magnitude.  Fig. 2E   compares the NACs. These off- 
diagonal matrix elements govern transition probabilities between 
electronic states. In the weak coupling limit, the transition prob-
ability is proportion to NAC squared ( 58 ). The dependence is 
more complex if NACs are large. The NAC for process ①,  Fig. 2B  , 
is small, indicating that direct CBM-VBM recombination is rel-
atively slow, while the trap-assisted recombination (② + ③) is faster 
since the corresponding couplings are larger. Therefore, carrier 
recombination is primarily trap-assisted. The RMSE is only 0.15 
meV, which is about one order of magnitude lower than the NAC 
values themselves. More detailed comparisons can be found in 
﻿SI Appendix, Fig. S2 .  

Capability of Fully ML-Based NA-MD Simulation. Next, we 
verify the accuracy of ML-FF in MD trajectory sampling. MD 
trajectories generated with the ML-FF should reproduce structural 
fluctuations in the system occurring in AI-MD. We obtain another 
6 ps MD trajectory with the ML-FF and calculate the electronic 
properties along the trajectory with ML-H. Thus, we compare 
distributions of the electronic energy gaps and NACs obtained 

fully ab  initio, i.e., using ab  initio DFT trajectory and DFT 
electronic structure, and fully ML, i.e., with ML-FF trajectory 
and ML-H electronic structure. Fig.  3A shows the probability 
distributions of the energy gaps. The peak pairs arise from splitting 
of the degenerate states during the MD simulation. The fully ML-
based results capture properly the fully DFT-based distributions. 
Comparison of the NAC matrix elements is displayed in Fig. 3B. 
The NAC values fluctuate around zero, and the fluctuation 
amplitude is evaluated with RMS values. The differences in 
the RMS values obtained with ML and DFT are very small, as 
reported in the figure. Only the NAC for the direct recombination 
(①) is slightly overestimated by ML. However, this will not affect 
the overall dynamics since it is dominated by the trap-assisted 
recombination (② + ③).

 Next, we perform NA-MD simulations of the charge trapping 
and recombination dynamics based on DFT and ML input. The 
results are shown in  Fig. 3C  . An electron is promoted from the 
VBM to the CBM to establish the initial excited state, and the 
evolution of populations of the VBM, the CBM and the three 
trap states are calculated to identify the charge trapping and 
recombination mechanisms and timescales. The population of the 
mid-gap trap states (traps 2 and 3) increases at the beginning, as 
the excited electron in the CBM is captured by the traps within 
hundreds of picoseconds. Subsequently, the trapped electron 
recombines with the hole at the VBM or trap 1 on a nanosecond 
timescale. This process constitutes the rate-determining step 
(RDS) of the overall electron–hole recombination. The ML 
dynamics is marginally delayed compared with the DFT dynam-
ics, but the relative differences in the populations of the ground 
and trap states are only 4% and 11% after the 3 ns simulation, 
 Fig. 3C  , which is much lower than the NA-MD error ( 49 ) and 
experimental uncertainties.

 The simulations employ two ML models, used to obtain inde-
pendently the ML-FF and the electronic Hamiltonian. To distin-
guish the impacts of ML-FF and ML-H on the NA-MD 
simulations, we performed an additional DFT/ML calculation, 

Fig. 3.   Validation of ML models for NA-MD simulation. Probability distributions of (A) energy gaps and (B) NACs. The filled regions and solid lines the results fully 
based on DFT and ML, respectively. (C) Carrier trapping and recombination dynamics based fully on DFT and fully on ML. (D) Carrier trapping and recombination 
rate constants obtained using different combinations of DFT and ML models for force-field/electronic-Hamiltonian. E.g., DFT/ML means that DFT was used to 
obtain the MD trajectory, and ML was used to obtain the electronic properties. The values indicate the relative changes compared to the DFT/DFT data.D
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in which we used the AI-MD trajectory and the ML-H electronic 
Hamiltonian. Thus, the errors in this calculation arise only from 
the ML model of the electronic Hamiltonian. The carrier trapping 
and recombination time constants for the three calculations are 
compared in  Fig. 3D  . The values are derived from exponential fits 
of populations of the mid-gap traps (traps 2 and 3) and the ground 
state (VBM and trap 1). The details can be found in SI Appendix, 
Fig. S3 . The ML-H model tends to overestimate the transition 
rates, but the ML-FF can compensate for this effect and even slow 
down the transitions. The errors in the state-to-state transition 
rate constants, arising from the combination of the ML-H and 
ML-FF models reach nearly 30%, however, the error in the overall 
recombination rate is around 10%. These values are fully accept-
able given the multiple approximations involved in the NA-MD 
methodology ( 49 ) and experimental errors.  

Application to Carrier Dynamics in Transition Metal Dicha­
lcogenides with Defects. We have demonstrated that combining 
the local descriptor-based ML-FF and ML-H models can 
properly reproduce the NA-MD results at the ab initio accuracy 
without performing ab initio calculations. This advantage enables 
simulations of larger systems, which cannot be treated by ab initio 
NA-MD, since its computational cost strongly depends on system 
size. Currently, the system size of ab initio NA-MD based on DFT 
is limited to few hundred atoms, which is insufficient to describe 
many realistic systems, e.g., containing point and extended defects, 
surfaces, interfaces, multiple components, etc. (23). Even for 
pristine models, the limited system size overestimates the carrier 
densities compared to the experimental conditions (59). Hence, 
breaking the size limitations of NA-MD is crucial to reduce the 
gap between theoretical and experimental studies. Using the 
developed fully ML approach, we are able to extend the simulation 
cell from 6 × 6 to 12 × 12 and 18 × 18 unit cells and investigate 
the size dependence of the carrier recombination dynamics in 

defective MoS2. The different simulation cell sizes are directly 
related to defect concentration in experiments.

  Fig. 4A   shows the probability distributions of energy levels in 
the three systems of different sizes, and the energy level evolutions 
are given in SI Appendix, Fig. S4 . According to statistical mechanics, 
the relative amplitude of fluctuation is inversely proportional to 
the root of the number of particles. In the present case, the number 
of particles corresponds to the number of atoms supporting a par-
ticular state. The VBM and CBM fluctuations decrease with 
increasing system size since these states are delocalized,  Fig. 4B  . 
Fluctuations of traps 2 and 3 barely change with system size because 
these deep traps are localized. Trap 1 exhibits a mixture of these 
two behaviors since this shallow trap is delocalized at low temper-
atures and becomes localized as temperature increases, cf. the 2nd 
and 3rd panels in  Fig. 4B  . Changes in trap state localization due to 
thermally induced disorder can have a strong influence on charge 
carrier trapping and recombination ( 28 ).        

 The energy level fluctuations reflect response of the electronic 
subsystem to atomic motion, and such response determines the 
NAC. The coupling between delocalized orbitals is reduced as the 
system size increases, and the fluctuations are suppressed. The 
coupling between orbitals localized at the traps is independent of 
system size. The coupling between localized and delocalized states 
decreases with system size, as illustrated in  Fig. 4C  .  Fig. 4D   shows 
the relative changes of the RMS NAC in the different systems. 
The NAC involving delocalized states decreases in proportion to 
﻿1∕
√
N  , where N  is the number of atoms in each system. This 

trend is consistent with the dependence of statistical relative fluc-
tuations on the number of particles. In contrast, the couplings 
between the localized states (i.e., trap 1 and traps 2 and 3) are 
almost maintained because these states are independent of the 
system size. The probability distributions of the NACs are given 
in SI Appendix, Fig. S5 .

Fig. 4.   Dependence of carrier trapping and recombination dynamics on defect concentration, determined by system size. Simulation cells are composed of 
6 × 6, 12 × 12, and 18 × 18 unit cells. (A) Distributions of VBM, CBM, and trap state energies in the three systems. The average energy of VBM is set to zero.  
(B) Wavefunctions of these energy levels in the 6 × 6 system. (C) Dependence of localized and delocalized wavefunctions on simulation cell size. (D) Ratio of 
Hij RMS in different systems relative to the 6 × 6 system. (E) Transition rate constants in the three systems. (F) Scheme of carrier trapping and recombination 
in defective MoS2. Electron trapping is fast, and transition from the deep traps 2 and 3 to the shallow trap 1 and the VBM is the rate-determining step (RDS).D
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 The NAC values indicate that the carrier transitions in the 
defective MoS2  should possess various size dependences, and the 
NA-MD simulations are performed to study the size dependence. 
 Fig. 4E   displays the transition rate constants in the three systems. 
The carrier trapping process (CBM → traps 2 and 3) is fast; how-
ever, it slows down by an order of magnitude as the system size is 
increased. The subsequent electron−hole recombination (traps 2 
and 3 → VBM and trap 1) is slow and is less affected by the system 
size because it is contributed by transitions between localized states 
(traps 2 and 3 → trap 1). The overall carrier recombination follows 
the trend of the electron−hole recombination step (traps 2 and 3 
→ VBM and trap 1) that constitutes the bottleneck, without sig-
nificant size dependence, and the mechanism is illustrated in 
 Fig. 4F  . The sulfur vacancies simultaneously introduce occupied 
and unoccupied trap states in the bandgap, and the trap-assisted 
path is the main recombination channel in the defective MoS2 . 
Since the RDS involves transitions between localized trap states 
with weak size dependence, its rate cannot be efficiently reduced 
by enlarging the system size. Decreasing the concentration of sul-
fur vacancies only reduces the number of recombination centers. 
The simulations show that the charge trapping rate slows down 
with decreasing defect concentration because it involves transitions 
between delocalized band states and localized trap states. The 
charge recombination rate may or may not vary with defect con-
centration, depending on whether the recombination occurs 
between free and trapped charges or two trapped charges. The 
charge trapping and recombination process can also depend on 
the relative concentrations of carriers and defects, since large num-
ber of carriers can saturate all defect sites. The calculation details 
of the rate constant and more NA-MD simulation results can be 
found in SI Appendix, Figs. S6–S8 . These size-dependence results 
provide important insights into understanding the properties of 
defects in semiconductors materials. SI Appendix, Figs. S9 and 
S10  provide validation of the CPA for the current system.  

Experimental Validation. Sulfur vacancies are the most prevalent 
defects in monolayer MoS2 prepared by mechanical exfoliation 
or chemical vapor deposition processes (54), and the defect 
concentration in as-prepared samples is usually around 1013 cm−2 
(60). The defect concentration in our computational models varies 
from 3.23 × 1013 cm−2 to 3.59 × 1012 cm−2, which is comparable 
with the experimental conditions. Photoluminescence studies 
demonstrate that these vacancies lead to localized emission, and 
the emission peak only appears when the defect concentration is 
between 1013 cm−2 and 1015 cm−2 (61). This localized emission 
is thought to originate from excitons trapped at the vacancy sites 
studied in our NA-MD simulations (62). This localized transition 
is size independent, similar to the recombination between the 
trapped electrons (traps 2 and 3) and holes (trap 1) studied here. 
The absence of the localized emission at low vacancy concentrations 
can be attributed to the weak carriers trapping capacity (60). On the 
other hand, high vacancy concentrations promote the nonradiative 
recombination of the trapped electrons and holes, as demonstrated 
here, and quench the photoluminescence process. Although sulfur 
vacancies are identified as carrier traps and accelerate carrier 
recombination, both beneficial and detrimental effects on carrier 
transport are reported (63, 64). The counterintuitive enhancement 
of carrier transport with increasing vacancy concentration is due 
to the fact that sulfur vacancies also serve as the hopping sites 
for carrier transport in MoS2 (65). Our simulations demonstrate 
that hole traps at sulfur vacancy sites are shallow, and holes can 
easily escape into the VB. At the same time, electron traps are 
highly localized, and increasing the defect concentration reduces 
the hopping distance for electron transport. The developed ML 

methodology can provide further insights into understanding the 
reported experimental observations.

Discussion

 NA-MD provides an efficient approach to investigate excited state 
dynamics in condensed matter and molecular systems that give 
rise to optoelectronic and solar energy applications, however, NA-
MD has high computational cost. The simulations require sam-
pling of MD trajectories and evaluation of electronic properties 
along the trajectories. Thousands of ab initio DFT calculations 
needed for this purpose are unaffordable for systems consisting of 
more than a few hundred atoms because the computational cost 
of DFT scales cubically with the number of atoms. However, the 
performance of solar energy and optoelectronic devices depends 
on atomistic properties of structures that require large models. 
Examples include point and extended defects, dopants, impurities, 
nonstoichiometric compositions, interfaces, grain boundaries, etc. 
To break the current size limitation of NA-MD, one needs to 
accelerate the calculation of the input data. NA-MD algorithms 
themselves are typically computationally efficient, unless very large 
numbers of electronic states have to be involved ( 58 ,  66 ). In such 
cases, alternative simulation algorithms are needed ( 67 ,  68 ).

 DFT calculations solve the Kohn–Sham equation to obtain the 
charge density, and this calculation constitutes the computational 
bottleneck. The charge density is used to calculate the interatomic 
forces via the Hellmann–Feynman theorem for MD sampling and 
to construct the Hamiltonian matrix for electronic structure cal-
culations. In order to bypass the time-consuming DFT part, ML 
can be used to correlate the system structure directly to the target 
properties. Nevertheless, the ML models need DFT results as 
training sets, and the system size is still limited by the DFT com-
putational cost. The solution of this problem is provided by local 
descriptor-based ML models, which can be trained with small 
systems and applied to large systems. When the system becomes 
sufficiently large, i.e., thousands of atoms, the diagonalization of 
the Hamiltonian matrix in the ML-H model creates another bot-
tleneck. Still, ML-H is dramatically faster than ab initio DFT, in 
particular because the DFT charge density convergence of large 
systems tends to be difficult. To avoid the Hamiltonian diagonal-
ization one can correlate excitation energies and NAC with struc-
tural features directly. Alternatively, one can minimize the number 
of Hamiltonian diagonalizations by employing time-series inter-
polation of the electronic properties needed for NA-MD simula-
tion ( 35 ,  36 ).

 The performance of our ML-based NA-MD approach depends 
jointly on the accuracies of the DFT calculations, the ML models, 
and the NA-MD techniques. DFT is valid for a broad class of 
systems and processes, nevertheless, it has known limitations, such 
as description of doubly excited states, charge transfer excitations, 
and energy gaps in highly correlated materials ( 69 ,  70 ), leading to 
incorrect excited state energies and unreliable NACs. The latter 
two issues arise from the electron self-interaction problem that can 
be alleviated by employing DFT+U or more costly hybrid func-
tionals. Because the ab initio calculations are carried out with small 
models for generating the training sets for ML, employing advanced 
DFT functionals is a promising direction. Further, the current 
method uses the Kohn–Sham description of electronic excitations. 
The more accurate, linear response time-dependent DFT excita-
tions can be obtained with the ML DFT parameterization. The 
CPA is based on the assumption that an electronic excitation has 
little influence on the atomic motion of the system. State-specific 
forces and trajectories are needed for modeling NA processes with 
large-scale structural changes, such as photochemical reactions. In D
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some cases, the CPA can be applied with excited state forces ( 71 ). 
ML models are an interpolation tool and tend to fail in extrapo-
lation tasks. Application of ML requires that system structures used 
in training are similar to those observed during the finite temper-
ature MD. Note that this requirement is consistent with the CPA. 
Special methods such as nonadiabatic field (NAF) ( 72 ,  73 ) are 
needed to accurately describe NA processes involving strongly 
coupled states in both coupling and asymptotic regions by taking 
care of the nonadiabatic force contributions. Large systems exhibit 
many nearly degenerate states because the density of states is pro-
portional to the number of atoms, and strong couplings between 
these states are expected to greatly influence excited state dynamics. 
For instance, the carrier cooling in quantum dots is mediated by 
many states that are nearly degenerate in large models ( 74 ), and 
the unique excitonic properties of twisted bilayer semiconductors 
originate from the strong interlayer couplings between multiple 
band edge states ( 75 ). Generally, our ML approach serves as a 
platform for developing innovative NA-MD methods for large-scale 
condensed matter systems.  

Conclusions

 To recapitulate, we have developed a fully ML approach to perform 
NA-MD simulations in large condensed-phase, nanoscale, and 
molecular systems. Using MoS2  with a sulfur vacancy as an exam-
ple, we have extended the system size from 100 atoms to 1000 
atoms. We have demonstrated that ML models based on local 
structural descriptors provide all the input needed to perform NA-
MD. The final NA-MD results are close to the ab initio calcula-
tions, performed using DFT and CPA, and the errors are within 
the accuracy of the current NA-MD methodologies and experi-
mental uncertainties. Using the developed approach, we have elu-
cidated the dependence of carrier trapping and recombination in 
defective MoS2  on defect concentration. This information is 
needed for design of optoelectronic and solar energy devices, and 

it is challenging to obtain from the conventional DFT/NA-MD 
investigations. The results show that the charge trapping rate 
decreases with decreasing defect concentration, while the charge 
recombination rate may or may not depend on defect concentra-
tion, conditional on whether the recombination occurs between 
free and trapped, or trapped charges, and on the relative concen-
trations of defects and carriers. The simulations have also shown 
that the dependence on defect concentration can vary with tem-
perature, in particular, since delocalized shallow traps can become 
localized due to structure fluctuations. The developed approach 
provides an orders-of-magnitude speedup of NA-MD simulation 
compared to the traditional ab initio DFT simulation and can be 
accelerated further, presenting a valuable tool for modeling and 
characterization of excited state dynamics in realistic systems.  

Methods

The ab initio MD trajectories were obtained with VASP. The ML-FF was trained with 
DeePMD. OpenMX was used to obtain the ab initio NA-MD Hamiltonian and to 
train the ML model of the electronic Hamiltonian. The ML model of the electronic 
Hamiltonian was generated using DeepH. The NA-MD simulations were per-
formed using PYXAID. Simulation details are provided in Supporting Information.

Data, Materials, and Software Availability. All study data are included in the 
article and/or SI Appendix.
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