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ABSTRACT: Unraveling the reaction pathway of photoinduced
reactions poses a great challenge owing to its complexity. Recently,
graph theory-based machine learning combined with nonadiabatic
molecular dynamics (NAMD) has been applied to obtain the global
reaction coordinate of the photoisomerization of azobenzene.
However, NAMD simulations are computationally expensive as they
require calculating the nonadiabatic coupling vectors at each time
step. Here, we showed that ab initio molecular dynamics (AIMD) can
be used as an alternative to NAMD by choosing an appropriate initial
condition for the simulation. We applied our methodology to
determine a plausible global reaction coordinate of retinal photo-

isomerization, which is essential for human vision. On rank-ordering the internal coordinates, based on the mutual information (MI)
between the internal coordinates and the HOMO energy, NAMD and AIMD give a similar trend. Our results demonstrate that our
AIMD-based machine learning protocol for retinal is 1.5 times faster than that of NAMD to study reaction coordinates.

1. INTRODUCTION

To develop a clear understanding of a reaction pathway, we
need the potential energy surface (PES)"? of molecules. PESs
form a central concept in the application of electronic structure
methods to the study of the structures, properties, and
reactivities of a molecular system. We can study the dynamics
of the molecule, under the Born—Oppenheimer approximation
(BO),”™ on a single potential energy surface with the aid of
the ab initio molecular dynamics (AIMD)®” method. In the
AIMD method, the potential energy and its derivatives are
evaluated “on the fly”, as needed for the integration of the
equations of motion of the system. Since BO approximation
breaks down whenever two or more electronic states have a
small energy gap, AIMD cannot be used for simulating
nonadiabatic processes.”” Among such processes, we find
radiationless decay, intramolecular energy and charge transfer
and most photochemical reactions. One of the most frequently
used techniques to simulate the dynamics of complex
photochemical reactions is nonadiabatic molecular dynamics
(NAMD) using the fewest switches surface hopping
(FSSH).'”'" In this technique, the forces are computed as
the gradients of single BO PESs and the electronic wave
function is expanded in terms of adiabatic eigenfunctions. The
expansion coefficients are evaluated by solving the time-
dependent Schrddinger equation using NA coupling terms.
The hopping probability between the electronic adiabatic
states depends on the electronic amplitudes as well as
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nonadiabatic coupling terms. Due to the multistate and
multidimensional nature of photoinduced reactions, computa-
tion of the PESs and of the reaction coordinate is highly
demanding.

The knowledge of the reaction coordinates'” provides the
fundamental details of the underlying mechanisms of a given
chemical transformation. Very often, the definition of a
reaction path is based on intuitive considerations. Only
recently, attention was attracted to systematic approaches for
selecting appropriate variables and mapping them onto
multistep kinetics. The search for reaction coordinates usually
involves obtaining and analyzing large amounts of data from
molecular dynamics simulations. This approach considers
every possible internal coordinate as a candidate for the
reaction coordinate. However, accounting for all of the internal
coordinates in the global reaction coordinate is not feasible
except for small molecules. Machine learning-based tools can
be very helpful in determining the most important internal
coordinate involved in the reaction mechanism. Tavadze et
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al."” have used a graph-based technique in the search for the
reaction coordinate of cis—trans isomerization of azobenzene
and shown that the C—N=N-—C dihedral angle corresponds
to the reaction coordinate.

In this work, we model the photoinduced isomerization of
retinal, the chromophore present in the human photoreceptor,
upon excitation to the lowest and brightest excited states.
Photoreceptors consist of a transmembrane protein and a
special light-absorbing chromophore that is covalently attached
to the associated photosensory domain in the protein.'*"* The
primary step in visual transduction is initiated when the
chromophore in the photoreceptor absorbs light of specific
wavelengths.'® The energy provided by the photon causes the
chromophore to undergo photoisomerization, leading to
structural changes in the protein through allosteric inter-
actions. The conformation changes in the photoreceptors
trigger a chemical signaling cascade that initiates visual
phototransduction by the human brain.'” In the initial stage
of vision, retinal is found in the 11-cis-retinal conformation,
which isomerizes to an all-trans-retinal isomer upon capturing
a photonM’ls’18 (see Figure 1). Photoexcitation causes an

Figure 1. Retinal phototoisomerization: transition from 11-cis-retinal
conformation to all-trans-retinal conformation, C in cyan (except
C11=C12 in blue), H in pink, and O in red.

electronic transition that opens the double bond, creating a
temporary single bond that can rotate freely around its axis.
Once the excited retinal decays to the ground state, the double
bond reforms and locks the molecule into the trans
configuration. This photoisomerization process is an ultrafast
event that occurs in a matter of femtoseconds, ®'**° making it
one of the fastest reactions in nature. As a consequence of
isomerization, the chromophore activates the opsin protein
which eventually sends a chemical signal to the visual cortex."”
Thus, understanding the mechanism of retinal photoisomeriza-
tion is fundamental and crucial for the development of
therapies for various visual disorders. In this contribution, we
aim to model the pathway of the photoisomerization reaction
of retinals with the aid of concepts from machine learning such
as MI and graph representations. Photoisomerization in retinal
was simulated using AIMD and NAMD. We attempt to gain
insights into the reaction mechanism using an alternative route
to the conventional ab initio methods. The goal of the current
study is to compare the reaction path obtained with
computationally efficient AIMD simulations to that obtained
with more compute-intensive NAMD simulations. Thus, we
chose a system for which the reaction path is already known.
Application of the proposed method to more general cases
remains a future study.

Herein, we report on a global reaction coordinate
(containing all internal coordinates of retinal) to describe the
reaction mechanism of the photoisomerization of retinal. Our
global coordinate comprises all internal coordinates (bonds,
angles, and dihedral angles) of a retinal molecule. Density

7028

functional theory (DFT) and molecular dynamics provide the
electronic and dynamic properties of a molecule at the atomic
scale. We obtained the internal coordinates from AIMD and
NAMD simulations and calculated the MI between the energy
of the highest occupied molecular orbital (HOMO) and the
internal coordinates collected from the trajectories. Thus, we
rank order all of these coordinates and quantify their
contribution to the reaction mechanism of retinal photo-
isomerization. We construct a graph-based network, where
each node is represented by the HOMO energy and the
corresponding internal coordinates. Nodes are then connected
with edges whose weight is determined using an expression
that takes into account energy difference and the MI of the
internal coordinates (eq 1). The global reaction coordinates
are determined along the network following the paths of the
least action. Here, we showed that the most important internal
coordinate and the reaction path computed with the graph do
not depend on the sampling scheme.

2. THEORETICAL METHODS

We generated configurations with AIMD and NAMD
methods, which were passed for calculating the mutual
information between the internal coordinates and the
HOMO energy at each time step of the simulations. Mutual
Information (MI)*' is a quantity that measures the relationship
between two random data sets that are sampled simulta-
neously. It also captures the nonlinear correlation between two
random data sets. When there is a big data set with a large
range of features, MI can help to select a subset of the most
crucial features in order to discard the irrelevant ones. Thus, it
can be used as an important tool for feature selection.”” For
example, it has been used to determine the structure—property
relationship in nanomaterials.”*** To calculate the MIs, we
first built the data sets from the molecular dynamics
simulations and defined the internal coordinates as the features
of our system. The data sets include information on all the
internal coordinates such as bonds, angles, and dihedrals, at
each time step.

To understand MI*® mathematically, let us consider any two
random variable sets, X and Y, each with its own probability
distribution. In order to evaluate the correlation between these
random variable sets, one begins by measuring how similar the
joint distribution p(X, Y) is to the factored distribution
p(X)p(Y). If X and Y are two independent sets, that is,
p(x, y) = p(x)p(y) where x € X and y € Y, then the MI is
zero. MI between two random variable sets X and Y is given by

j = X, lo M
MICG ¥) = 25 2% plo Vo 0505 m

To check for the correlation between the internal
coordinates in our data set during the course of the reaction,
we have built the correlation matrix, X' X, where X is a matrix
of all the features. We adapted the idea of graph theory and
applied it to find the shortest path between the nodes. Each
configuration along the trajectories is represented as a node in
the graph. We used the Networkx python package™ to find the
shortest path with the help of Dijkstra’s algorithm.””*®

3. COMPUTATIONAL DETAILS

We optimized the geometry of the trans-retinal at the @B97X-
D/6-31+G* level of theory. We generated two sets of
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configurations of retinal. In one set, configurations are
extracted from AIMD trajectories, while in the other set,
configurations are obtained from NAMD trajectories using
Tully’s scheme of FSSH.""

We plotted the HOMO and LUMO in trans-retinal values
calculated with the PBEO/STO-3G level of theory (Figure 2).

HOMO

LUMO

Figure 2. HOMO and LUMO of trans-retinal calculated with the
PBEO/STO-3G level of theory.

We can see that the HOMO is a 7 orbital, whereas the LUMO
is of 7* character. The natural transition orbitals (PBE0/STO-
3G) of the S; and S, transitions (Figure 3) show that the S,

S, transition

—

S, transition

Figure 3. Natural transition orbitals representing transitions from the
ground state to the S, and the S, state in trans-retinal. Holes are
shown on the left, and particles are on the right.

transition is the na* type and the S, transition is the zz* type.
In the photoisomerization of retinals, the S, state is the
optically active excited state. Thus, we performed both our
NAMD and AIMD simulations on the S, surface for the final
analysis. The graph-based approach requires the calculation of
the MI between internal coordinates and the energy gap
between the orbitals involved in the transition that allows the
isomerization of retinal. With a minimal basis set, these orbitals
correspond to the HOMO and LUMO as we show by
comparing them to natural transition orbitals. Using a larger
basis with polarization and diffuse functions would change the
nature of the virtual orbitals, that is, the transition is not
between HOMO and LUMO. This poses an additional
challenge in identifying the proper unoccupied orbital at
each time step in trajectories. Another reason for the choice of
the basis relates to the computational cost of simulations. Since
many geometries need to be generated/sampled, we opted for
the smallest standard basis available in Q-Chem. At the same
time, the accuracy of the ab initio calculations does not affect
the quality of the reaction path. While the minimal basis set
was sufficient for the chosen prototypical photoisomerization,
we do recommend using basis sets of appropriate size after
careful inspection of the orbitals associated with the system at
hand.

We have taken the two transition states for the isomer-
ization, with d31 (the main dihedral angle along which the
photoisomerization occurs, shown in Figure S1 and Table S1,
equal to 90° and 270° respectively, as starting points for
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AIMD simulations. We ran 125 simulations for each
configuration (for a total of 250). We computed 200 AIMD
steps for each trajectory using a step size of 40 au (~1 fs) with
TDDEFT at the PBE0/STO-3G level of theory with Q-Chem.*”
These initial geometries allowed us to sample the TSs in retinal
isomerization while ensuring that half of them end up in the cis
basin and the other half in trans. We observed that such a short
time was sufficient for the molecule to reach the cis or trans
basins. During the time evolution of the system, propagated
with the velocity-Verlet algorithm, atoms were allowed to
exchange energy with a Nose—Hoover thermostat at 300 K. All
AIMD trajectories were computed on the second excited state
of retinal for which the central double bond of d31 opens due
to a zz* transition.

The NAMD simulations were run with TDDFT at the
PBEO0/STO-3G level of theory using the FSSH scheme without
including decoherence with the PySurf™ software package. To
validate the robustness of the graph analysis, we ran NAMD
starting at both S1 and S2 states, with the nonadiabatic
coupling (NAC) vectors being computed with Q-Chem. The
results of NAMD at the S1 state are shown in Supporting
Information. A total of 50 simulations (25 from cis and 25
from trans) were performed with the maximum initial
population in the lowest singlet excited state. Since we did
not observe any photoisomerization happening during the runs
(1000 steps with a time step of 40 au), we sampled the TS in
the same way it was sampled for AIMD, that is, by starting 200
additional simulations from TS geometries and propagating for
30 steps with a time step of 40 au We ended up with 50000
data points from AIMD and 56000 from NAMD simulations,
which were used to calculate the MI between the energy of the
HOMO and all the internal coordinates. Overall, the NAMD
data points comprise 25257 configurations with d31 values
between 0° + 45° (cis isomer) and 25460 configurations with
d31 values between 180° + 45° (trans isomer). We
constructed a graph with these data using the values of
HOMO energy and all the internal coordinates as attributes of
each node. In this way, each node represents a step in the
collection of trajectories generated by the dynamics. Mutual
information was used as the weight of the paths connecting the
nodes in the graph. While MI can be used as such, one needs
to eliminate potential redundancies. To better understand how
the internal coordinates are related to one another, we plotted
the correlation matrices using three data sets.

We constructed the graphs in two steps. First, we connected
the nodes for which the d31 internal coordinate differs by 3°
and the HOMO energy increases while moving from one node
to the next one. We could join two sections in our graph with
these criteria, that is, the nodes between 0° and 90° and 180°
and 270°. In the next step, we kept the constraint on the
dihedral the same as in the last step but followed the nodes
where the difference in HOMO energy decreases on going
from one node to the other. Thus, we constructed the entire
graph in the range 0° to 360°. After the graph was constructed,
we followed the expression of the weight in eq 2 to find the
shortest path from the cis conformer to the trans conformer
using the Dijkstra algorithm. Figure 4 shows a flowchart of our
workflow. In eq 2, the summation runs over the top N internal
coordinates ranked by their MI value. Af; is the difference in
internal coordinate value between the connected nodes, and m;
is the MI value associated with the internal coordinate
considered.
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Figure 4. Flowchart of the computational protocol described in this
text.

N
Wwog = IAE, | D mIAfPY]

i=1

2)

4. RESULTS AND DISCUSSION

Figure 5 shows the energies of HOMO and LUMO as a
function of d31 from the NAMD simulations. The gap
between HOMO and LUMO decreases at the transition state,
that is, when the dihedral angle d31 reaches 90° and 270°. This
is typical for molecules undergoing photoisomerization
reaction, and our NAMD simulation corroborates this pattern.

We used the data from AIMD and NAMD simulations to
calculate the mutual information between the internal
coordinates and the HOMO energy. With the NAMD data,
we compared two cases where we considered (i) the full
NAMD data set and (ii) only data points that are close to the
transition state. Thus, we could investigate the effect of
oversampling the cis and trans basins with NAMD simulations.

Figure 6 (top) shows the mutual information between the
energy of HOMO and internal coordinates obtained from the
AIMD simulation. We have chosen internal coordinates that
are in proximity to the main dihedral responsible for

photoisomerization. From Figure 6 (bottom), one can see
that all the internal coordinates we have chosen are highly
correlated with the energy of the HOMO at each time step of
the NAMD simulations with d31 and d13 being associated
with the highest mutual information value. The MI plot with
an AIMD data set also tells us that the dihedral angles closer to
the reaction center play a more important role than the other
internal coordinates. d13 and d31 represent dihedral C—
Cl11=CI12—C and H-C11=C12—C respectively, which
rotate during the photoisomerization process. Figure 6 (top)
describes the mutual information with the AIMD data set. We
can see that in this case, all the internal coordinates close to
d31 are contributing similarly. A similar situation arises for the
truncated NAMD data set. We can explain the difference in the
mutual information between these three data sets by
considering the oversampling of the cis and trans config-
urations in the NAMD simulations. To generate the AIMD
data set and the selected NAMD data set, we started the
simulations from the initial configurations close to the
transition state. Thus, the resemblance between the mutual
information plots of the truncated NAMD data set and the
AIMD data set is expected. We are interested in identifying
which other internal coordinates may be involved in the
isomerization mechanism, apart from d31/d13. For this reason,
we build the correlation matrix from our AIMD data set. This
is done by normalizing the initial data and calculating the
matrix of the covariances between each internal coordinate.
Performing this procedure on the NAMD data would show
that all features, including d13 and d31, are uncorrelated due
to the fact that the majority of the data points are for structures
of the cis or trans isomer instead of the TS. We found that
avoiding oversampling the cis and trans isomers during NAMD
(Figure 7, middle) results in a correlation matrix similar to the
one obtained from AIMD simulations (Figure 7, top). If we
want to compare the correlation matrices obtained from AIMD
and NAMD simulations, we need to change our NAMD data
set in such a way that it contains the majority of data points
close to the transition state.

The correlation matrix (Figure 7, top) obtained from AIMD
data shows different levels of correlation and anticorrelation
between pairs of internal coordinates. d13 and d31 are
anticorrelated to each other which is expected as they are
alternate angles. In a similar manner, r12 and rl3 are
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Figure 5. Energy in €V of HOMO (blue) and LUMO (red) as function d31 from NAMD (left) and AIMD (right) simulations.
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Figure 6. Mutual information between internal coordinates and
HOMO energy from the AIMD data set (top), selected NAMD data
set (middle), and full NAMD data set (bottom).

anticorrelated, which is coherent with an asynchronous
stretching of these bonds. The positive correlation between
r30 and r31 suggests a synchronous vibration of the C11-H30
and C12—H31 bonds.

We verified our AIMD results after thoroughly comparing
the mutual information and correlation matrices between
AIMD and NAMD data sets and decided to perform the graph
analysis using the mutual information from the AIMD data.
The graphs were constructed with both AIMD and NAMD
data sets. Five internal coordinates with the highest MI values
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Figure 7. Correlation matrix obtained from AIMD data (top),
selected NAMD data (middle), and full NAMD data (bottom). The
color bar denotes the correlation between internal coordinates.

from the AIMD data set were chosen for the construction of
the graph. We have plotted the HOMO energy as a function of
the dihedral angles obtained from the graph with NAMD data
(Figure 8). The HOMO energy increases in the beginning and
reaches its highest when d31 is close to 90° and starts
decreasing, which is consistent with the mechanism of the
photoisomerization. If we compare Figures S and 8, we can see
that the trend in the HOMO energy agrees well between the
NAMD simulation and the graph analysis. We obtained a
similar trend with the AIMD data, that is, maxima at d31 = 90°
and 270°. If we compare NAMD on S1 and S2 surfaces and
AIMD on the second excited (S2) state, we can show that
graph analysis can correctly identify the most important
internal coordinate, and it is independent of the method of

https://doi.org/10.1021/acs.jcim.4c00325
J. Chem. Inf. Model. 2024, 64, 7027—-7034


https://pubs.acs.org/doi/10.1021/acs.jcim.4c00325?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.4c00325?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.4c00325?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.4c00325?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.4c00325?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.4c00325?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.4c00325?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.4c00325?fig=fig7&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.4c00325?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Journal of Chemical Information and Modeling

pubs.acs.org/jcim

—0.06

—0.08 -

—0.10 A

HOMO

—0.12

—0.14 A

—0.16

HOMO

150 200 250 300 350

d31

100

—0.07 4

—0.08 -

—0.09 1

—0.10 1

-0.111

—0.12 4

—0.13 1

—0.14 4

200 250 300 350

d31

100 150

Figure 8. 2D graph representations (blue nodes with black edges) of the data sets produced with NAMD (left) and AIMD (right) simulations.
Nodes are displayed as a function of HOMO energies versus torsional angles of d31. Red nodes show one possible shortest path that can be found
with the Dijkstra algorithm, resembling a potential energy surface for the isomerization of retinal.
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Figure 9. Internal coordinates from the NAMD (left) and AIMD (right) simulation along the reaction path found from the graph analysis.

sampling. Figure 9 shows the trend in internal coordinates as a
function of the path parameter, that is, along the shortest path
(red nodes in Figure 8). We observe excellent agreement
between the AIMD and the NAMD simulations. Note that we
have removed d13, as it is the equivalent dihedral angle of d31.
To further verify the effect of the basis sets, we performed
AIMD simulations with the PBE0/3-21G level of theory. As
can be seen from Figures S6—S9, with the increase in the basis,
there is no significant change in the quality of the graph. We
still find d31 to be the main internal coordinate contributing to
the photoisomerization reaction. The plot of the internal
coordinates along the path parameter (Figure S9) resembles
the one we obtained with the minimal basis set. With this, we
can safely conclude that the change in basis does not have a
drastic effect on the sampling we used and subsequently on the
graph. If one wants to compute the reaction path relying only
on ab initio methods, then both the level of theory and the
basis set size will affect the accuracy of the calculations. As our
goal is to model the isomerization of retinal through a graph
analysis and NAMD/AIMD calculations are used only for
sampling purposes, we can afford to use a low-quality basis set
to save computational cost. AIMD in combination with a graph
analysis provides the potential analysis faster with the same
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accuracy as NAMD with graph theory. We would also like to
mention that for the cases where the nonadiabatic coupling
vectors are unavailable, AIMD can be used to obtain the
reaction path if it is used in conjunction with graphs. On
comparing the computational cost of AIMD and NAMD, we
found that AIMD trajectories are computed 1.5 times faster
(CPU time) than NAMD ones, using Q-Chem software on an
Intel(R)Xeon(R) CPU with the clock speed of 3.07 GHz.
Thus, AIMD can be used as a more affordable alternative to
NAMD while simulating the reaction pathway in photoinduced
reactions.

5. CONCLUSION

In summary, we modeled the photoisomerization reaction with
machine learning and graph-theory tools in a biologically
important system: retinal. From the analysis of the correlation
matrix, we do not notice any relevant internal coordinate
involved in the isomerization apart from the main dihedral
angle (d13/d31). The shortest path constructed from the
graph is consistent with the expected PES associated with the
reaction, with transition states located around the d31 dihedral
angle values of 90° and 270°. Although this computational
protocol does not aim to provide any quantitative measure-
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ment concerning the reaction, it can be used for gaining
insights into a complete description of the reaction coordinates
of chemical processes. We have also shown that the reaction
paths obtained through AIMD and NAMD simulations agree
well with each other, which enables one to model the reaction
paths without involving data from expensive NAMD
simulations. Furthermore, additional improvements to the
protocol can be incorporated by choosing a better method of
assigning weights to the edges in the graph. While we followed
Tavadze et al.'> and calculated the mutual information
between the HOMO energy and the internal coordinates, we
do not exclude the possibility of using other descriptors in
more general cases. As an example, the HOMO—-LUMO gap
during the sampling step can be readily used as a descriptor.
Last, we believe that the protocols described in this work can
be applied to more complex processes other than isomerization
reactions.
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The following data files are available free of charge at https://
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cis and trans retinal and (ii) figure labeling the internal
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