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Abstract

Maintaining crop productivity is challenging as population growth, climate change, and increasing fertilizer costs ne-
cessitate expanding crop production to poorer lands whilst reducing inputs. Enhancing crops’ nutrient use efficiency
is thus an important goal, but requires a better understanding of related traits and their genetic basis. We investigated
variation in low nutrient stress tolerance in a diverse panel of cultivated sunflower genotypes grown under high and
low nutrient conditions, assessing relative growth rate (RGR) as performance. We assessed variation in traits related
to nitrogen utilization efficiency (NUtE), mass allocation, and leaf elemental content. Across genotypes, nutrient limi-
tation generally reduced RGR. Moreover, there was a negative correlation between vigor (RGR in control) and decline
in RGR in response to stress. Given this trade-off, we focused on nutrient stress tolerance independent of vigor. This
tolerance metric correlated with the change in NULE, plasticity for a suite of morphological traits, and leaf element
content. Genome-wide associations revealed regions associated with variation and plasticity in multiple traits, in-
cluding two regions with seemingly additive effects on NUtE change. Our results demonstrate potential avenues for
improving sunflower nutrient stress tolerance independent of vigor, and highlight specific traits and genomic regions
that could play a role in enhancing tolerance.

Keywords: Abiotic stress, GWAS, nutrient stress, plasticity, sunflower, tolerance.

Introduction

Rising population levels and climate change are increasing 90% by 2050 as compared with 2007 (Tilman et al., 2011,
pressures on our global agricultural system to realize higher Alexandratos and Bruinsma, 2012; Ramankutty et al., 2018).
productivity on marginal lands (Ramankutty et al., 2018). To meet this challenge, the utility of increased fertilizer inputs
Additionally, demand for oilseed crops is projected to increase is hampered by increasing costs of fertilizer and large negative
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impacts of fertilizer on the environment (Vitousek ef al., 1997,
Robertson and Vitousek, 2009). A more sustainable strategy is
to improve the nutrient use efficiency of crops; that is, increase
productivity per unit of available nutrients (Xu et al., 2012).
However, maintaining or even expanding productivity under
low nutrient availability is a challenge.

Prior work on cultivated sunflower, a major oilseed crop, has
revealed genotypic variation in tolerance to salt, looding, and
drought stress (Masalia ef al., 2018; Gao et al., 2019; Temme
et al., 2020). Improvements in cultivated sunflower nutrient
uptake and use efficiency can be key in meeting demand while
maintaining or even reducing inputs. Prior work on sunflower
nutrient stress response in a small number of genotypes showed
a remarkable consistency in the performance ranking of geno-
types across a range of nutrient levels (i.e. high performing
genotypes tend to exhibit high performance across conditions,
with lower performing genotypes exhibiting low performance
across conditions; Bowsher et al., 2017). Here, we more fully
explore the effects of nutrient stress in cultivated sunflower and
seek to identify key traits and genomic regions with a potential
for improving nutrient stress tolerance.

Evaluating stress tolerance in the context of vigor (perfor-
mance in benign conditions) is critical for improving resource
use efficiency without associated decreases in productivity. Given
the potential for a trade-off between vigor and the response
to stress (e.g. Temme et al., 2020), relating tolerance directly to
stress response runs the risk of confounding tolerance with low
vigor. Rather, by taking this negative relationship into consid-
eration, we can score genotypes on being more or less tolerant
than expected based on their vigor. Thus, tolerance is defined as
performing better than would be expected based on this trade-
off. This ‘expectation—deviation tolerance’ (ExDev-tolerance)
metric makes it possible to isolate those traits or genomic re-
gions that are directly involved in stress response independent of
those underlying high performance (Temme et al., 2020; Tran
et al., 2020). However, this raises the question of whether there
are trade-offs (sensu Agrawal, 2020) in growth and development
under stressful versus benign conditions and whether different
suites of traits are associated with performance and tolerance.

Much progress has been made in understanding how ni-
trogen (N) use efficiency (growth per unit of available N) and
its components, nitrogen uptake efficiency (efficiency of gath-
ering N from soil) and nitrogen utilization efficiency (NUE,
growth per unit acquired N), can be improved (Han et al.,
2015; Tegeder and Masclaux-Daubresse, 2018; Swarbreck et al.,
2019). Realizing improved NUE could involve efficient (re)
distribution of N [and phosphorus (P)] to upper parts of the
canopy, altering mass allocation, and adjusting leaf mass per area
(LMA) and/or having more efficient photosynthetic machinery
(Lammerts van Bueren and Struik, 2017). Understanding how
these trait changes relate to ExDev-tolerance and NUtE is a
potential avenue for improving tolerance independent of vigor.

An increased growth and development rate has been heavily
selected for during domestication and crop improvement

(Milla et al., 2018). In improving plant traits for specific envi-
ronments, the multivariate nature of trait covariation should
be considered. Traits tend to covary due to a complex web of
interactions (Poorter et al., 2013, 2019, 2021). Identifying in-
dependent axes of trait variation can help focus improvement
efforts to enhance tolerance independent of vigor. Improving
overall nitrogen use efficiency will require integrating phys-
iology and breeding to target the many inter-related (inte-
grated) traits related to nitrogen uptake efficiency and NUtE.

Due to the multivariate nature of trait covariation, breeding
efforts to select on particular traits can have unintended effects
on other traits (Chebib and Guillaume, 2021; Svensson et al.,
2021).Due to pleiotropy or close linkage among traits, selection
on one trait can affect others. Previous work on cultivated sun-
flower has shown a genomic landscape of trait co-localization
where certain genomic regions are associated with a range
of diverse traits (Masalia et al., 2018; Temme et al., 2020). By
studying this landscape of trait co-localization, we can identify
those regions with minimal effects on other traits in order to
decouple and adjust this network of trait covariation. Thus, de-
veloping breeding strategies aimed at improving yields under
a range of environmental conditions is facilitated by an un-
derstanding of the genomic regions underlying trait variation.

To determine the effects of low nutrient stress on key traits
and genomic regions linked to improving nutrient stress toler-
ance in cultivated sunflower, we asked the following questions.
(1) What is the relationship between vigor (growth under be-
nign conditions) and the decline in performance in response to
low nutrient stress? (i1) What 1s the relationship between NUtE
and nutrient stress tolerance independent of vigor (ExDev-
tolerance)? (iii) What is the effect of nutrient stress on traits
potentially related to nutrient stress tolerance (e.g. morphology
and leaf elemental content)? (iv) Which suites of trait variation
and/or trait plasticity relate to ExDev-tolerance and vigor? (v)
Can we identify shared and unique genomic regions associated
with trait variation across a range of traits?

Materials and methods

Material

We grew a subset of 260 (out of 287) genotypes of the Sunflower
Association Mapping (SAM) population (Mandel et al.,2011, 2013).The
SAM population includes both heterotic groups [i.e. male (RHA) and
female (HA) lines] as well as both major market types [i.e. oil and non-oil
(confectionery) lines]. The SAM population has been used extensively
for genome-wide association studies (GWASs) (Masalia et al., 2018; Gao
et al., 2019; Temme ef al., 2020; Stahlhut et al., 2021) because of the sub-
stantial genetic/trait diversity contained within the population, relevant
commercial uses, and the availability of whole-genome re-sequencing
data for the entire population.

Growth conditions

In spring of 2016, we grew individuals of 260 SAM genotypes in a ran-
domized block experimental design with two treatments, which each
contained four replicates, in the Botany greenhouses at the University of
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Georgia (Athens, GA, USA). Seeds were germinated in sand and trans-
planted to pots 7 d after sowing. Individuals were grown in 7.6 liter pots
filled with a 3:1 mixture of sand and turface (Turface Athletics MVP,
PROFILE Products, LLC, Buffalo Grove, IL, USA) to improve water-
holding capacity. Two individuals per genotype were randomly assigned
to each of four greenhouse bays, resulting in 2088 experimental plants.
In each greenhouse bay, the two individuals of each genotype received
either 80 g or 8 g of controlled-release fertilizer granules (Osmocote Plus
15-9-12; ScottsMiracle-Gro, Marysville, OH, USA) mixed into the upper
soil layers at the beginning of the experiment to establish a favorable
nutrient treatment and a broad-spectrum nutrient deficiency treatment,
based on a previous study with a representative subset of 12 genotypes
(Bowsher ef al. 2017).The nutrient profile of the Osmocote Plus fertilizer
pellets is 15.0% total N, 9.0% available phosphate, 12.0% soluble potash,
1.0% magnesium (Mg), 2.3% sulfur (S), 0.02% boron (B), 0.05% copper
(Cu), 0.45% iron (Fe), 0.06% manganese (Mn), 0.02% molybdenum (Mo),
and 0.05% zinc (Zn). We supplemented with calcium (Ca) using 5 ml
of gypsum (Performance Minerals Corporation, Birmingham, AL, USA)
and 5 ml of lime powder (Austinville Limestone, Austinville, VA, USA)
per pot because prior experience has shown that Ca limitation results
in developmental abnormalities under greenhouse conditions. Plants
were initially watered to field capacity daily, and the watering regime
was increased to twice daily to prevent water stress when temperatures
and plant sizes increased. The treatments were immediately implemented
upon transplanting to pots on 19 May 2016. Greenhouse air temperature
and relative humidity were recorded in each of the four greenhouse bays
every 10 min for the duration of the study. Across the four greenhouses,
average air temperature ranged from 20.5 °C to 21.8 °C, maximum air
temperature ranged from 26.7 °C to 28.4 °C, and minimum air tem-
perature ranged from 11.8 °C to 17.0 °C. Across the four greenhouses,
average relative humidity ranged from 63.2% to 72.8%, maximum relative
humidity ranged from 90.8% to 92.2%, and minimum relative humidity
ranged from 25.9% to 29.8%.

Plant harvest and trait measurements

Individual plants were tagged when they reached floral initiation (bud-
ding) (R1 stage) and harvested when they reached R2 stage, when the
peduncle (flower stalk) had elongated to the point at which the pri-
mary bud was >1 cm above the nearest leaves (Schneiter and Miller,
1981).The process of harvesting plants at a specified developmental stage
allowed us to identify the effect of nutrient stress on flowering time and
early flower development while minimizing pot size constraints on bio-
mass. Individuals reached the harvest stage between 19 d and 55 d after
transplanting.

At harvest, plants were measured for height (to the nearest 0.5 cm from
the base of the stem to the top of the stem), stem diameter (using calipers
halfway between the soil and cotyledons), and chlorophyll content index
(MC-100,Apogee Instruments, Inc., Logan, UT, USA) of the most recent
fully expanded leaf (MRFEL). The MRFEL is an easy to define specific
leat in sunflower that standardizes leat selection to a fully developed leaf
toward the top of the plant. Generally, this leaf'is in the upper 10% of the
plant, with the number of underdeveloped leaves higher up on the stem
varying by genotype. Plant biomass was then separated into the MRFEL,
all other leaves, stem and branches [including bud(s)], and root. Roots
were stored in a chilled environment and washed in order of harvest.
Images were taken of the MRFEL at 300 dpi and of a single lateral root
(near the soil surface but <2 mm diameter) at 600 dpi with a flatbed
scanner (Canon CanoScan LiDE120) for use in determining dry LMA
and specific root length (SRL). MRFEL scans were measured for area
using Image] (Schneider ef al., 2012). Root scans were analyzed for SRL
using RhizoVision Explorer v2.0.3 (Seethepalli et al., 2021) to calculate
total length, median root diameter, and branching frequency of the root
sample. LMA was calculated by dividing the MRFEL weight (without

petiole) by its measured area. SRL was calculated by dividing measured
root length by the mass of the sampled root.

After oven drying at 60 °C for at least 48 h, dried samples were stored
until weighing. Prior to weighing, all samples were redried at 60 °C for
at least 2 h. After drying, lateral roots were separated from the taproot (up
to the point at which the taproot and lateral roots had similar widths),
and the primary and axillary buds were separated from the stem. The
resulting biomass samples weighed separately for each individual were:
the MRFEL, remaining leaves, stem, primary bud, axillary buds, taproot,
lateral root, and SRL root sample. Biomass fractions including, root mass
fraction (RMF), leaf mass fraction (LMF), and stem mass fraction (SMF),
were calculated by dividing component parts by the total summed indi-
vidual plant weight. RMF was further divided into tap and fine root mass
as fractions of the whole-plant weight and root biomass.

After weighing, the MRFEL samples (without petiole) were pooled
per genotype and treatment. Samples were coarse ground using a Wiley
Mill (Thomas Scientific, Swedesboro, NJ, USA) and the resulting powder
was homogenized. A 2 ml sample of leaf powder was then transferred to
an Eppendorf tube and ground to a fine powder using a metal bead in
a Tissuelyzer (Qiagen, Germantown, MD, USA). The finely powdered
leat tissue was then sent to Midwest Laboratories (Omaha, NE, USA)
for inductively coupled plasma-MS (ICP-MS) analysis to determine the
amounts of P, potassium (K), Ca, sodium (Na), S, Fe, Zn, Cu, Mg, Mn,
and B, and, via the Dumas method, N, hereafter collectively referred to
as elemental traits.

We assessed relative growth rate (RGR) as a performance metric of the
plant. Following the approach of Hoffmann and Poorter (2002). RGR
(Splant gplam’] d™") was calculated as

In (biomass at harvest)
RGR =

days to harvest ()

Equation 1 assumes exponential growth during the experiment and uni-

form size of the seedlings at transplanting to account for temporal differ-

ences in reaching the R2 stage under stress and non-limiting conditions.
NUEE (e gmmgen’l d™") was subsequently estimated as

RGR
NUtE = ——————
Leaf N fraction @)
This equation for NUE assumes that leaf nitrogen content of the
MREFEL is a good estimate for whole-plant nitrogen content.

Expectation—deviation-tolerance

Tolerance to nutrient stress was defined by Temme et al. (2020) for each
genotype as the ExDev trait. This Ex-Dev trait is calculated as the residual
per genotype to the fitted line between a genotype RGR in control and
their difference in RGR under nutrient-limited conditions. The defi-
nition takes an expected negative linear relationship between RGR in
control conditions and the decrease in RGR under stressed conditions
into account.Visually, one can interpret the ExDev-tolerance trait as the
distance of a genotype to the fitted line between RGR in control condi-
tions and the decrease in RGR under stressed conditions (Temme ef al.,
2020) independent of (i.e. after statistically accounting for) the effect of

genotype vigor.

Statistical analysis

Results were analyzed using R (v4.1.2, R Core Team, 2021) in RStudio
(RStudio Team, 2021). For all traits excluding leaf element content (due
to lack of replication after pooling), we obtained genotype estimated
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marginal means (using emmeans v1.7; Lenth, 2021) from a mixed model
analysis (using LME4 v1.1-27.1; Bates ef al., 2015) taking genotype and
treatment as fixed factors and greenhouse bay as a random factor. Wald’s
¥ test was used to test the significance of the main effects of genotype,
treatment, and their interaction. Type 3 sums of squares were calculated
(using car v3.0-12; Fox and Weisberg, 2011) given the presence of a sig-
nificant interaction between genotype and treatment for many traits. For
the pooled leaf biomass, two-sample f-tests were run to test for an effect
of treatment on element content across genotypes. Genotype mean values
for traits described herein are available in Supplementary Table S1 with
trait naming conventions and descriptions (Supplementary Table S2).

Calculation of trait plasticity

To calculate trait plasticity per genotype, we took the difference in nat-
ural log-transformed values in control and stressed conditions. This pro-
portional [can be converted to A% versus control via e""™9—1] metric
of plasticity has the additional benefit of being viewpoint agnostic. Only
the sign of the natural log difference changes when it is viewed from the
control versus stressed perspective. By using the natural log difference, a
halving or doubling in trait value has the same magnitude of plasticity.
We determined the level of correlation between mean trait values per
genotype separately for trait values under control versus nutrient-limited
conditions and for trait plasticities using Spearman correlation in corrr
v0.4.3 (Kuhn et al., 2020).

Given the level of expected covariation among traits, we explored
major axes of variation within and across environments using principal
component analysis (PCA) employing prcomp on scaled and centered
trait values. To avoid biomass differences masking apparent responses be-
tween treatments, and to be able to relate major axes of trait variation
and trait plasticity to performance, we selected a set of traits deemed
putatively size independent (i.e. not directly reflecting any aspect of plant
biomass) traits. These included chlorophyll content, fine root allocation
(mass fraction and root fraction), LMA, LME RME SME and tap root
allocation (mass fraction and root fraction). In addition to major axes
of variation between treatments, we determined major axes of variation
among genotypes within treatments and in trait plasticity for both size-
independent traits and element content.

Trait heritability was estimated as both broad- (H?) and narrow-sense
heritability (/). Broad-sense heritability, as a measure of genotypic ‘signal’
compared with environmental ‘noise’, was calculated within each treat-
ment on those traits with multiple replicates per genotype by fitting a
mixed effects model with genotype as a random effect and greenhouse
bay as a fixed effect. Subsequently, we calculated H* by dividing the gen-
otypic variance by the sum of genotypic variance and residual variance
divided by the number of replicates {H*= Vo/ [Vt (Vo/n)]}. Narrow-
sense heritability was calculated using the R package heritability (Kruijer
et al., 2015) that combines trait data (at the individual and genotypic
mean level) with genotypic relatedness (based on pairwise genetic dis-
tance calculated using GEMMA; Zhou and Stephens, 2014). This ap-
proach allowed us to estimate /* for traits within each treatment and the
plasticity between them.

Genome-wide association analyses

GWA analyses were carried out following Temme et al. (2020). Single
nucleotide polymorphisms (SNPs) and annotation used were called as
described in Hiibner ef al. (2018) and reordered based on the improved
HA412-HOv2 sunflower genome assembly (Todesco ef al., 2020). Briefly,
a collection of ~1.5 million high quality SNPs with minor allele fre-
quency >5% and heterozygosity <10% were clustered into haplotypic
blocks based on linkage disequilibrium (LD) estimated as D' (Gabriel
et al., 2002) using PLINK v1.9 (Chang et al., 2015).This resulted in 9502
singleton SNPs and 20 652 co-inherited, multi-SNP haplotypic blocks
across all 17 chromosomes that were used for the association analyses.

Due to possible misordering of SNPs, these numbers are likely to be an
overestimate since ‘true’ haplotypic blocks can be broken up by misplaced
SNPs. GWA analyses were then carried out using GEMMA (Zhou and
Stephens, 2014) on the full 1.5 million SNP set with our significance
threshold (00=0.05) being adjusted for the number of observed haplo-
typic blocks (i.e. 0.05/20 652). When different traits had significant
SNPs within the same haplotypic block (even if they were not the same
SNPs), they were considered to co-localize to the same genomic region.
Suggestive SNPs were defined as being in the top 0.01% of all SNPs
(without meeting our significance threshold) for a trait and in a region
that was significant for at least one other trait. All GWA analyses and visu-
alizations were performed using our custom sunflower GWA pipeline
(https://github.com/aatemme/Sunflower-GWAS-v2).

To connect observed instances of trait co-localization with pairwise
trait—trait correlation values, we counted the number of significant and
suggestive overlaps between all possible pairs of traits in each treatment
and their plasticity, and related these counts to observed correlation coef-
ficients. Because pairs of traits frequently shared zero regions, we fitted
a negative binomial model with an |absolute| correlation coeflicient as
the predictor and the number of shared regions as the dependent variable
using glm.nb from MASS v7.3-54 (Venables and Ripley, 2003).

Results

More vigorous genotypes experience a greater effect
of nutrient limitation

Nutrient limitation generally had a significant impact on growth
and development, with strong differences between genotypes
(Table 1; Supplementary Fig. S1 for all individual traits). Under
low nutrient stress, plants had a reduced developmental rate, de-
laying the onset of budding (R1 stage) by a median increase in
days to reach R1 stage of 11.5%. Bud development was further
slowed, resulting in a median increase in days to R2 of 16% (Fig.
1A inset), though genotypes differed widely from a 7% reduc-
tion to an 84% increase in time to reach this stage.

Despite the overall increase in time to reach R2, biomass was
reduced by a median of 47% at R2 (Table 1; Fig. 1A). As geno-
types developed, in both control and stressed conditions, those
that took longer to reach R2 tended to have accumulated more
biomass, though this effect was diminished under nutrient stress
(Fig. 1A). This slower development time and reduced biomass
accumulation due to low nutrient availability resulted in reduced
RGR (Table 1; Fig. 1B). Genotypes with a higher RGR in con-
trol conditions (i.e. higher vigor) tended to have a higher RGR
under low nutrient stress (Fig. 1B).Variation in the treatment ef-
fect on RGR across genotypes did not rise to the level of signit-
icance, as indicated by the lack of a GXT interaction on RGR
(Table 1).This lack of a significant interaction could be the re-
sult of substantial within-genotype variation. However, when
investigated across genotype means, our results do suggest that
genotypes with overall higher vigor (higher RGR under control
conditions) showed larger differences in growth between con-
trol and nutrient stress, indicating a possible trade-off between
vigor and the effect of stress (P<0.001, Fig. 1C).

As we found this negative relationship between vigor and
reduction in RGR, relating tolerance to only the difference in
RGR due to stress runs the risk of confounding tolerance with
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Table 1. Effect of nutrient stress on sunflower morphological and developmental traits

Traits Control Low nutrients Plasticity (A%) T G GxT
‘Size’ traits

RGR (9piant Jplant ' A7) 0.09 (0.04-0.11) 0.06 (0.03-0.08) -31.1 (-49.64 to -6.4) e o ns
Plant mass (g) 14.95 (2.43-61.08) 8.82 (1.93-26.84) -42.6 (-75.04 t0-68.18) e e ns
Leaf mass (g) 8.42 (1.567-28.11) 3.42 (1.13-7.52) -60.3 (-81.82 t0 -3.91) ok ok ok
Stem mass (g) 4.06 (0.36-25.81) 3.53 (0.26-16.3) -14.1 (-71.32t0 -272.18) ok ok ok
Reproductive tissue mass (g) 0.17 (0.06-0.53) 0.16 (0.08-0.34) 0 (-56.47 to -137.41) i E wxx
Tap root mass (g) 1.08 (0.16-3.49) 0.51 (0.12-1.98) -49.2 (-81.25 to -56.18) xxx xxx ns
Lateral root mass (g) 1.27 (0.23-6.26) 1.14 (0.23-4.85) -14.6 (-67.73 to -407.03) wx wx ns
All root mass (g) 2.26 (0.39-8.67) 1.68 (0.41-5.68) -32.4 (-69.78 to —280.73) e e ns
All shoot mass (g) 12.48 (2.04-54.07) 7.03 (1.52-22.91) -45 (-76.27 to -54.39) wx ok o
Height (cm) 51.94 (17.37-118.5) 62 (16.75-126.12) 14.7 (-39.68 to —152.27) o ok ok
Stem diameter (mm) 11.87 (6.37-19.62) 8.86 (5.44-13.46) -25.6 (-52.98 to —17.63) o ek ok
Lateral root diameter (mm) 0.44 (0.3-0.67) 0.41 (0.28-0.55) -8.1 (-37.08 to —42.05) xxx xxx ns
Development traits

Days to R1 stage 26 (18.5-38.75) 28.77 (19.43-44.5) 1.5 (-15.55 to -65.52) o ok wxx
Days to R2 stage 30 (19.75-42.5) 35 (19.5-49.75) 16 (-7.09 to -84.26) % ek xxx
Days between R1 and R2 4.25 (1-11) 6.25 (1-13.75) 41.2 (-30.56 to —200) e o o
Size-independent traits

LMF (Gicaves Jplant ') 0.57 (0.47-0.69) 0.39 (0.25-0.61) -31 (-51.53 to —4.63)
SMF (Gstem Jplant ') 0.26 (0.12-0.41) 0.4 (0.14-0.63) 48.7 (-7.29 to -120.6)
RMF (roots Gptant ") 0.15 (0.09-0.23) 0.19 (0.11-0.28) 21.4 (-28.45 to —132.45) ns
Root shoot ratio (Grets Jshoot ) 0.18 (0.1-0.55) 0.23 (0.13-0.57) 27.6 (-54.05 to -222.89) x o ns
Tap root MF (Grap root Jplant ) 0.07 (0.03-0.15) 0.06 (0.03-0.13) -13.3 (-58.65 to -57.62) e ok ns
Fine root MF (Gine root Jptant ) 0.08 (0.04-0.15) 0.13 (0.07-0.22) 49.2 (-15.57 to —255.51) o ok *
Tap root RF (Giap root Jroots ) 0.46 (0.21-0.74) 0.32 (0.14-0.6) —27.4 (-65.36 to —17.29) ok ok *
Fine root RF (Gne root Jroots ') 0.54 (0.26-0.79) 0.68 (0.4-0.86) 22.8 (-11.76 t0 -91.94) ek ok *
LMA (g m3 36.1 (26.05-59.43) 37.17 (26.05-57.2) 2 (-22.84 to —41.97) e ok oxx
Leaf area ratio (M* gy ') 0.02 (0.01-0.03) 0.01 (0-0.02) -32.9 (-64.51t0 -15.19) o xx *x
Specific stem length (cm g™') 14.72 (4.7-49.39) 18.22 (6.72-62.47) 30.4 (-61.34 t0 -194.28) ok ok ok
Specifc root length (m g™) 9.64 (4.71-19.45) 10.55 (5.98-20.29) 9 (-45.05 to —207.29) o x ns
Root branching frequency (mm™™) 0.47 (0.27-0.74) 0.5 (0.3-0.75) 5 (-45.71 t0 -110.89) e Fx *
Chlorophyll content (index) 22.39 (12.39-36.85) 11.01 (6.95-18.23) -50.2 (-73.6 to —26.55) o ok ok

Traits measured in our cultivated sunflower diversity panel with their median value (based on genotype means) and range (in parentheses) when

grown under control (i.e. high nutrient) and low nutrient (10% of control) conditions, as well as an estimate of their plasticity (trait adjustment) between
treatments. Plasticity was calculated as the difference in natural log-transformed values [In(low nutrients)-In(control)] but converted here to A% versus
control [via e*""%_1] for ease of interpretation. Asterisks indicate significance [Wald’s y? of genotype (G), treatment (T), and their interaction (GxT)]. ns,

non-significant; *P<0.05; **P<0.01; ***P<0.001.

low vigor. By fitting a linear relationship between the difference
in RGR and and vigor for each genotype, performance relative
to the overall expectation can be estimated as the residual from
this fitted line. We define this residual as the ExDev-tolerance of
each genotype, allowing us to score them as being more or less
tolerant than expected based on their vigor.

Expectation—deviation-tolerance is positively correlated
with the change in nitrogen utilization efficiency

Genotypes with a higher leaf nitrogen content at harvest (R2
stage) had a lower RGR, under both control and low nutrient
conditions (Fig. 2A inset). Given that RGR and leaf N con-
tent both changed in response to low nutrient availability, we
used growth rate per unit leaf nitrogen as a metric for NUtE.
Genotypes with the highest NUtE in control conditions

tended to remain the highest under nutrient stress (Fig. 2A).
Moreover, nearly all genotypes increased NUE, indicated by
positive ANUE, though the extent of this varied among geno-
types (Fig. 2B). Strikingly, there was a strong positive relation-
ship between the increase in NUtE and ExDev-tolerance (Fig.
2C). Genotypes that exhibited greater than expected increases
in NUtE (independent of their actual NUtE) tended to have a
higher ExDev-tolerance (i.e. a smaller reduction in RGR than
expected), suggesting a possible role for NUtE in low nutrient
tolerance.

Nutrient stress has large impacts on diverse plant traits
and leaf elemental content

Under control and nutrient-stressed conditions, genotypes
varied substantially in their traits and plasticity in traits (Table 1;
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Fig. 1. Effect of nutrient limitation on development time, relative growth rate (RGR), and the effect of stress. Plants under low nutrient stress had reduced
biomass and RGR, and took longer to reach the R2 stage. (A) Relationship between days to reach the R2 (early budding) stage and biomass at that time
under control conditions (purple) and nutrient limitation treatment (orange). Genotypes (colored dots, n=260) are connected between treatments with
gray lines. Generally, nutrient limitation delayed the R2 stage. The inset panel shows the distribution of the delay in reaching the R2 stage. (B) Relationship
between RGR under control conditions and RGR under nutrient limitation across all genotypes (green dots, n=260). The dotted line shows the 1:1
relationship. (C) RGR in control versus the difference in RGR in nutrient-limited conditions. Genotypes (n=260) are colored by their residual from the fitted
line. This ExDev-tolerance metric shows more sensitive (red) and more tolerant (blue) genotypes. Equations describe the best-fit line with the E’Zadj of that

model.
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Fig. 2. Nitrogen utilization efficiency (NUtE) and its relation to nutrient stress tolerance. (A) Relationship between NUE [estimated as growth rate per unit
leaf nitrogen (Guiomass In~ ' A7) in control conditions and NULE in low limited conditions. The dotted line shows the 1:1 relationship. The inset shows the
relationship between leaf N content and RGR, used to calculate NUtE (control, purple; low nutrients, orange). (B) Relationship between NUE in control
conditions and the change in NUtE from control to low nutrient conditions. (C) Relationship between the deviation from the mean NULE increase and

ExDev-tolerance.

Supplementary Fig. S1). Overall, in the low nutrient treatment,
more biomass was allocated to roots, leading to a median of
21.4% increased RMF as compared with the control; this was
primarily driven by an increase in fine RME In addition to
roots, more biomass was also allocated to stem tissue (Table 1).
Low nutrient stress also resulted in alterations in plant mor-
phology where the MRFEL became smaller and thicker or
denser (i.e. increased LMA), roots became thinner or less dense
(i.e. increased SRL), and stems became thinner despite an in-
crease in height (i.e. increased specific stem length). Chlorophyll
content of the leaf was drastically reduced, by a median of =50%,
tracking the large effect of low nutrient availability on leaf ele-
mental composition (Table 1; Supplementary Fig. S1).

With the exception of Na and Mn, nutrient stress gener-
ally had large and significant (between treatments) effects on
leat element content (Table 2; Supplementary Fig. S1). Leat
N decreased by 49%, P by 36%, and K by 15%. Ca content
increased dramatically, with a 123% increase under low nutrient
conditions versus the control, although it should be noted that
we supplied additional Ca as gypsum and lime, and as such
Ca was abundantly available in both treatments. Additionally,
the Mg content increased by 32%. However, while the con-
centration of Ca and Mg increased, the total amount in the
leat remained largely the same for Ca and was lower for Mg
(Supplementary Fig. S2) due to a concomitant decrease in leaf
mass.
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Table 2. Effect of nutrient stress on sunflower leaf elemental content

Trait Control Low nutrients Plasticity (A%) P(T)
Nitrogen (%) 6.8 (4.74-7.92) 3.41 (2.39-5.21) -48.9 (-63.86 to —22.7) oo
NULE (Gpare O™ d71) 0.01 (0.01-0.02) 0.02 (0.01-0.03) 38.9 (-20.14 to —115.55) o
Phosphorus (%) 0.48 (0.32-0.76) 0.3 (0.21-0.43) -36.4 (-62.07 to -9.37) sox
Potassium (%) 4.91 (3.46-6.85) 4.07 (2.67-6.03) -15.3 (-40.88 to —12.09) *x
Sulfur (%) 0.68 (0.42-1.77) 0.45 (0.24-1.38) -32.1 (-63.75 to —-21.82) o
Calcium (%) 1.07 (0.68-1.76) 2.43 (1.08-4.73) 123.3 (42.86 to —290.35) xrx
Magnesium (%) 0.43 (0.3-0.8) 0.58 (0.24-0.92) 32 (-35.14 to -117.65) wox
Manganese (ppm) 328 (133-878) 320 (160-914) -1.1 (-67.53 to —155.29) ns
Copper (ppm) 24 (13-40) 14 (7-40) -42.9 (-74.19 to -73.91) o
Iron (ppm) 120 (76-468) 81 (49-443) -30 (-85.5 to -340) wex
Boron (ppm) 78 (47-143) 73 38-111) -6.8 (-45.68 to —69.64) wox
Zinc (ppm) 55 (33-96) 42 (20-115) 222 (-63.33t0 -187.18) woox

Leaf element content of the most recent fully expanded leaf measured in bulked samples on our sunflower diversity panel. Values shown are the median
content across genotypes (with range in parentheses) when grown under control (i.e. high nutrient) and nutrient-limited (10% of high nutrients) conditions,
as well as the plasticity (as A%) between them. Plasticity was calculated as the difference in natural log-transformed values [In(low nutrients)-In(control)]
but converted here to A% versus control [via e*""a—1) for ease of interpretation. Element content is shown on a mass basis (g g™'). Since individual
leaves per genotype were bulked, asterisks indicate significance (based on a t-test) of nutrient limitation treatment. ns, non-significant; *P<0.05;

**P<0.01; **P<0.001.

Major axes of trait variation/plasticity correlate with
expectation—deviation-tolerance and vigor

To investigate trait relationships in the context of nutrient
stress tolerance, and to determine if they differ from traits re-
lated to high vigor, we sought to determine the correspond-
ence between tolerance, performance, and variation in broad
multivariate suites of traits. Across both treatments, >60% of
the variation in size-independent traits (Fig. 3A) and >60% of
the variation in leaf elemental content (Fig. 3B) could be cap-
tured in the first two principal components (PCs). Differences
between treatments largely followed PC1, with a shift towards
below-ground resource allocation (i.e. decreased chlorophyll,
LME and LAR, increased RME and investment in fine roots).
Leaf element content was highly correlated between treat-
ments, with reduced levels of N, P, K, S, and Cu coupled with
increased levels of Ca and Mg under low nutrient availability.

To connect trait variation to differences in performance
and tolerance, we adopted a within-treatment and plasticity-
between-treatments approach. We related major axes of trait
variation in (putatively) size-independent traits and leaf ele-
mental traits under control and low nutrient conditions, along
with trait plasticity between treatments to RGR and ExDev-
tolerance. We found that PC1 of size-independent traits under
control and low nutrient conditions was closely correlated
with RGR in those environments (Table 3). ExDev-tolerance
was significantly correlated with the first two PCs of the plas-
ticity in size-independent traits, but the relationship with PC1
was more robust (Table 3; Fig. 4B). Multivariate leaf elemental
content was likewise correlated with RGR as well as ExDev-
tolerance. More specifically, variation in PC2 of leaf elemental
content was associated with RGR and, to a lesser extent,
ExDev-tolerance (Fig. 4D).

Genotypes with a suite of size-independent trait adjustments
related to a greater decrease in LAR and a greater increase in
the fraction of biomass allocated to fine roots (at the expense
of tap root) were more tolerant (Supplementary Table S3;
Fig. 4A, B). In terms of elemental content, genotypes that had
higher leaf N, P, and K content had higher ExDev-tolerance
(Supplementary Table S3; Fig. 4C, D). For a full picture of
trait loadings onto principal components, see Supplementary

Table S3.

Muttiple genomic regions associated with trait variation
and plasticity to nutrient stress

Variation of all measured traits (Table 4) in control and low
nutrients, and trait plasticity between treatments, could be as-
sociated with 215 unique, putatively independent genomic re-
gions (based on LD; Supplementary Fig. S3; Supplementary
Table S4). The number of significantly associated regions per
trait (Table 4) varied widely and tended to be lower for trait
plasticity across treatments as compared with trait values within
treatments. Our finding of >20 distinct regions for S content
in close proximity to each other (Supplementary Fig. S4) may
reflect localized misordering in the genome assembly; in reality,
these regions may very well be grouped together. Thus, our
finding of 215 independent regions should be viewed as an
overestimate; there are likely to be fewer major effect regions
involved in variation in these traits, though there are probably
other regions too with effects below the level of detectability.
Note also that for traits with no significant GXT (Table 1)
when contrasting all individual plants, at the level of geno-
type averages we find occasional significant regions. While false
positives for trait plasticity could be a reason, this could also
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Fig. 3. Multivariate trait shifts in response to low nutrient availability in sunflower. Principal component analysis (PCA) reveals correlated trait adjustments
to low nutrient stress for (A) putatively size-independent traits [chlorophyll content, fine root allocation (mass fraction and root fraction), LMA, LMF, RMF,
SMF, and tap root allocation (mass fraction and root fraction)], SRL, and root branching frequency, and (B) leaf elemental traits (N, P, K, S, Ca, Mg, Mn,
Cu, Fe, B, and Zn) in control (high nutrient) treatment (purple) and low nutrient treatment (orange).

Table 3. Relationship of sunflower relative growth rate and ExDev-tolerance with correlated suites of size-independent and leaf ionomic

traits
Trait suite Treatment PCA RGR control RGR low nutrients ExDev-tolerance
R? R? R?
Size-independent Control PCA 0.51%** 0.2%**
PC2 0.02*
Low nutrients PC1 0.33*** 0.45%** 0.14x**
PC2
Plasticity PC1 0.1 1% 0.23***
PC2 0.06%** 0.02*
Elements Control PC1 0.07***
PC2 0.15%** 0.08***
Low nutrients PC1 0.05%** 0.03**
PC2 0.22%** 0.32%** 0.12%**
Plasticity PCA 0.02*
PC2 0.07*** 0.16%** 0.09***

R? and significance of the ordinary least squares regression of the PC1 and PC2 values of the putatively size-independent traits [chlorophyll content, fine
root allocation (mass fraction and root fraction), LMA, LMF, RMF, SMF, tap root allocation (mass fraction and root fraction)], and elemental traits (B, Ca,
Cu, Fe, Mg, Mn, N, P, K, S, Zn) under control (high nutrients) and low nutrient (10% of control) conditions, as well as the plasticity in trait values between
treatments. Highlighted in bold are the model fits RGR and ExDev-tolerance against the principal components with the highest explanatory power for
vigor and tolerance for each trait. *P<0.05, **P<0.01, **P < 0.001.

reflect a fairly weak genetic effect that is drowned out by indi-
vidual level variability.

Per trait, the overlap in regions significantly (or suggestively)
associating with variation in both treatments and its plasticity was
low (Table 4). Across traits,51 regions (across 13 of the 17 chro-
mosomes, Supplementary Fig. S5) were significantly associated

with multiple trait—environment combinations, though this
number rises to 178 regions if we include suggestive associa-
tions (i.e. regions having SNPs in the top 0.01% of P-values
and significant for at least one other trait) (Supplementary
Table S5; Supplementary Fig. S6 for a complete picture of
trait and region co-localization). Several genomic hotspots
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Fig. 4. Major axes of trait plasticity and leaf elemental content are correlated with ExDev-tolerance. (A) Principal component analysis (PCA) of the
plasticity in (putatively) size-independent traits in response to nutrient limitation (genotypes n=246). (B) Relationship between genotypes (green points)
loading on PC1 of the plasticity in size-independent traits and genotypic nutrient stress ExDev-tolerance. (C) PCA of leaf elemental content under low
nutrient availability (genotypes n=259). (D) Relationship between genotypes (green points) loading on PC2 of leaf elemental content in low nutrients and

genotype nutrient stress tolerance.

associating with multiple traits could be found (Supplementary
Table S6). Of these hotspots, the region associating with vari-
ation in the largest number of traits was region 17-09, which
was significantly associated with nine traits (related to aspects
of root mass, S and Mn content, and development time) and
a diverse set of 54 suggestive traits. Unfortunately, this region
was quite large (>50 Mb) and contained 699 genes, making it

difficult to distinguish between the pleiotropic effects of a single
locus and close linkage of multiple functional variants. In con-
trast, the second largest hotspot, region 03-06, was significantly
associated with eight biomass-related traits and contained only
seven genes. Unfortunately only three of the seven genes had
known or putative functions (Putative EH domain, EF-hand
domain pair protein, Putative protein kinase TKL-CTR1-DRK-2
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family, and Putative Late embryogenesis abundant protein, LEA_2
subgroup), highlighting the difficulty of determining candidate
genes from GWAS results alone.

As one might expect, at the genomic level, we saw a reflection
of the correlated nature of variation in traits (Fig. 5). Strongly
positively or negatively correlated traits tended to share a greater
number of genomic regions with significant and/or suggestive
SNPs associated with those traits. Indeed, in both treatments,
we found a significant relationship between bivariate trait cor-
relation strength and the number of shared genomic regions
associating with those traits. While the shape of this relationship
was comparable between control (high nutrients) and low nu-
trient treatment, highly correlated trait plasticities (a compound
trait, calculated across both treatments) tended to share a lower
number of genomic regions (Fig. 5D).

We found no significant genomic regions directly underlying
nutrient stress tolerance (i.e. having a lower than expected—based
on vigor—reduction in RGR). However, we did find eight regions
with suggestive associations for tolerance that were significant for
key traits identified by our PCAs (e.g. root mass allocation and
NUE; Table 3; Fig. 5). For the genotypic deviations from expected
(average) NULE increase (Fig. 2B), a key trait involved in tolerance
in this study (Fig. 2C), we found two significant genomic regions
(Fig. 6A). These regions on chromosome 1 (01-01) and chromo-
some 17 (17-13) contained 176 genes and 8 genes, respectively.

Focusing on these latter two regions, we found that geno-
types that carry the minor allele in both regions (generally ho-
mozygous due to our filtering) tended to have a higher NUtE
increase under low nutrient conditions as compared with
those carrying the major allele (Fig. 6A). Interestingly, the six
genotypes with the minor alleles of both regions had (on av-
erage) an even further improved NutE, suggesting an additive
effect for these regions (Fig. 6B). While it should be noted that
these regions were not significantly associated with ExDev-
tolerance, when plotted on the relationship between RGR in
control and the decline in RGR (similar to Fig. 1C), it can be
seen that the genotypes that carry the minor allele for either or
both regions tend towards being more tolerant than would be
expected based on their vigor (Fig. 6C).

Discussion

Improving our understanding of crop nutrient stress tolerance
will aid in developing varieties capable of high performance
on marginal lands and/or with reduced inputs (Good et al.,
2004). Here, we sought to determine the traits and genomic
regions involved in low nutrient stress tolerance in cultivated
sunflower, one of the world’s most important oilseed crops.

The greater the vigor the harder the fall

Similar to prior findings for salt stress (Temme et al., 2020;
Tran et al., 2020), plants with higher vigor (high RGR) under

control conditions tended to have the best overall perfor-
mance (i.e. higher RGR) under nutrient-limited conditions.
However, these same genotypes tended to exhibit a greater
reduction in RGR under nutrient-limited conditions. Thus,
genotypes with high performance under nutrient limitation
versus those with a low effect of nutrient limitation on perfor-
mance represent largely non-overlapping sets, making it diffi-
cult to identify ‘tolerance’ on the basis of performance per se.
To address this challenge, our definition of tolerance accounts
for the negative relationship between vigor and the decrease
in RGR due to nutrient limitation. In doing so, genotypes
are scored by their deviation from their expected reduction
in growth, given their vigor. This ExDev-tolerance exhibited
moderate heritability across genotypes, showing the potential
for improving genotypes by focusing on this tolerance metric,
though we did not identify any specific genomic regions asso-
ciated with this trait,

Low nutrient stress slowed sunflower’s rate of development,
with nutrient limitation exhibiting a particularly strong effect
on the number of days to reach R2 (early bud development).
More specifically, we found an average 11.5% increase in the
time to reach R1 (onset of bud development) and a 40% in-
crease in the time to reach the following R2 (Table 1). In an
agricultural setting, such a slowdown in development could
result in plants running into unfavorable environmental condi-
tions (e.g. later season heat, drought) (Kazan and Lyons, 2016).
Interestingly, this slowdown in development was highly het-
erogeneous across genotypes, with a small fraction exhibiting
more rapid development (up to 15.5% shorter time to R1)
while others extended their development time by as much as
65.5%. The low heritability of genotypic plasticity in devel-
opmental time and the lack of overlap in genomic regions as-
sociated with developmental rate traits in both environments
suggests difficulty in optimizing a cultivar for a range of envi-
ronments. However, given the high heritability of develop-
ment time (Table 4) within environments, it may be possible
to optimize cultivars for particular environments.

Higher nitrogen utilization efficiency is associated with
greater expectation—deviation-tolerance

Relating growth to N uptake is of particular interest due to
the essential role N plays in multiple physiological processes,
including the conversion of CO, into biomass. Improving a
plant’s capacity to acquire and use N more efficiently may be
the key to improving performance in poor nutrient condi-
tions (Han ef al., 2015; Tegeder and Masclaux-Daubresse, 2018;
Swarbreck et al., 2019). Similar to results from ryegrass (Zhao
et al., 2020), sunflower was found to generally increase NutE
under nutrient limitation (Fig. 2A). Moreover, in contrast to
RGR, the magnitude of this increase was unrelated to NUtE
under benign conditions. However, we did find substantial
genotypic variation in the magnitude of this NUtE increase
(Fig. 2B).
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Fig. 5. Sunflower trait correlations and genomic co-localization. (A) Spearman correlation matrix of phenotypic and elemental traits in our cultivated

sunflower diversity panel under control (control conditions; lower diagonal) and the number of overlapping genomic regions (at the suggestive level, upper

diagonal). The total number of significant regions listed per trait on the diagonal. Traits are ordered by hierarchical clustering in each panel so that closely
correlated traits are close together. (B) Correlation of traits and overlapping genomic regions under low nutrient conditions. (C) Correlation and overlap
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increase in NUtE across genotypes. Two haplotypic regions, 01-01 and 17-29, are significantly associated with this trait (SNPs above the red line).
Several other regions show suggestive associations that co-localize with other traits (highlighted SNPs above the blue line). (B) Deviation in NUtE increase
under low nutrient conditions (negative values=smaller increase than expected, positive values=larger increase than expected) and minor allele status for
regions 01-01 and 17-29 (the most significant SNP within each haplotypic region was selected as the tag SNP for that region). Genotypes with the minor
allele in either region tend to be more tolerant, with a seemingly additive effect for the few genotypes that have both minor alleles. (C) Visualization of the
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While our measures of growth (RGR) and NUtE are not
wholly independent, relating our measure of ExDev-tolerance
to genotype change in NUE highlights the importance of
NUE in determining the response to low nutrient stress
(Xu et al., 2012; Han et al., 2015). Indeed, genotypes that ex-
hibit greater increases in NUE under stress tend to exhibit
greater ExDev-tolerance. Thus, improving NUtE could be a
strategy for improving nutrient tolerance in sunflower without
reducing vigor. For NUE in control and nutrient-stressed
conditions and genotype deviation from the overall NUtE
increase, we found that moderate narrow-sense heritability

and several genomic regions were associated with variation
in NUtE under low nutrient stress and plasticity in NUE
(Table 4). Interestingly, for the deviation in NUtE, we found
two regions with seemingly additive effects (Fig. 6), showing
the potential for trait optimization via selection.

Vigor and tolerance are correlated with distinct
multivariate suites of traits and trait plasticity

Similar to other species (Weih et al., 2018; Meyer et al., 2019),
low nutrient stress leads to a host of trait changes in cultivated
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sunflower, with broad multivariate changes in trait expression
across environments (Fig. 3). Over 60% of the variation in size-
independent traits and leaf elemental content across control
and low nutrient stress were captured by the first two PCs in
each case. Similarly, variation in traits within treatments and
plasticity between treatments could be simplified into a limited
number of major axes of variation (Supplementary Fig. S3).
These strong multivariate axes of covariation illustrate the dif-
ficulty in isolating changes in individual traits to produce novel
trait combinations (Walsh and Blows, 2009).

With strong covariation among trait variation within treat-
ments as well as plasticity between them, relating single traits to
tolerance would be a gross oversimplification. Rather, we re-
lated the major axes of variation in size-independent traits and
leat element content to Ex-Dev-tolerance and RGR. In both
control treatment and low nutrient stress treatment, RGR_ was
correlated with a suite of traits related to carbon uptake (LAR,
LME and SSL). ExDev-tolerance was, however, correlated
with a suite of trait plasticities, with genotypes exhibiting a
greater decrease in LAR and a greater increase in the frac-
tion of biomass allocated to fine roots at the expense of tap
root being more tolerant overall (Supplementary Table S3; Fig.
4A, B). Results from cotton show this same connection be-
tween RSA and nitrate uptake efficiency (Igbal et al., 2020).
Moreover, comparably with our findings for salt stress (Temme
et al., 2020), traits related to ExDev-tolerance differ from those
related to vigor, indicating that in principle it could be possible
to combine high tolerance with high vigor.

Further comparisons with our findings for salt stress (Temme
et al., 2020) and with a large multienvironment screening of
cultivated sunflower coldXnutrientXdrought response (Mangin
et al., 2017) shows that trait plasticity can be a key factor in
stress tolerance. In both the past salt experiment (Temme et al.,
2020) and the current nutrient experiment we found some
generality in higher ExDev-tolerance associated with plasticity
in allocation. Under salt stress, a greater increase (i.e plasticity)
in whole-plant RMF and in the proportion of fine roots in
root mass were linked with higher ExDev-tolerance. Here, for
nutrients, we find similar results for root plasticity. Due to the
nature of the stress, at the leaf elemental level, we see contrast-
ing responses where under salt stress leaf Na and K content
and ratio were linked with higher ExDev-tolerance whereas
here for nutrients it was maintenance of N, P, and K content
under nutrients stress that was linked with ExDev-tolerance.
Contrasting with broad ecological multispecies patterns of trait
variation under resource-poor environments (Wright et al.,
2004), we found no connection between ExDev-tolerance and
SLA under both salt and nutrient stress. In the field, Mangin
et al. (2017) found a negative relationship between oil yield
and the capacity to plastically adjust traits. However, compa-
rably with our findings, here the existence of high-yielding,
stress-tolerant varieties indicates the potential for combining
these factors through breeding and that there is no inherent
trade-off that would preclude this.

Multiple genomic regions impact trait variation and
plasticity

A large number of genomic regions were involved in trait var-
iation under control and low nutrient conditions. Interestingly,
similar to findings in maize, we find additional genomic re-
gions associated with trait plasticity (Gage ef al., 2017; Kusmec
et al., 2017), often distinct from those involved in variation
in either treatment (Supplementary Fig. S4). The often large
size of regions identified, containing many genes, makes
functional inferences at the level of individual genes difficult
(Supplementary Table S4). While one of the largest genomic
regions can be attributed to the relatively recent conversion of
sunflowers to a hybrid crop (particularly the branching locus
on chromosome 10; Mandel et al., 2013), it stands to reason
that with a larger panel of genotypes our LD-based region
sizes would shrink, lowering the possible number of genes in-
volved (Korte and Farlow, 2013). However, despite this limita-
tion, some interesting trends and key genes could be found in
the regions of interest.

For developmental rate, days to reach R2 (i.e. bud formation)
was significantly associated with region 04_01 under control
conditions. This region of two genes contains a “Transcription
factor interactor and regulator AUX-IAA family’ gene, sug-
gesting a specific mechanism related to auxin transport in-
volved in development rate (Sauer ef al., 2013). Below-ground,
region 08_14, significant for plasticity in RMF and contain-
ing 14 genes, included a “Transcription factor MYB-HB-like
family’ gene. This family of transcription factors is known to
be involved in several processes including response to stress
and development (Ambawat ef al., 2013). Root morphology,
as reflected in root branching frequency, was associated with
two regions (02_03 and 02_06) under low nutrient conditions.
These regions contained 51 and 35 genes, respectively, with
both harboring a putative gene in the RLK/Pelle family of
kinases. This family of kinases is involved in a host of processes
including development (Gish and Clark, 2011). The Putative
protein kinase RLK-Pelle-CrRLK1L-1 family in region 02_06
1s of a type linked to cell expansion (Nissen ef al., 2016), sug-
gesting a mechanism for altered branching frequency. Two
key genomic regions on chromosomes 1 and 17 could be di-
rectly linked to NUtE increases with ostensibly additive eftects.
Region 17-14 (eight genes) contained a ‘LAZY1’ gene, which
is known to be involved in auxin transport (Dong et al., 2013).
However, extreme care should be taken in overinterpreting
these results as far more genes of unknown function are also
contained in these significant regions and, due to LD, any of
these could also be a causal variant.

In comparing overlaps in associated genomic regions among
traits, we found that traits that tended to covary more strongly
tended to share a higher number of genomic regions associated
with those traits (Fig. 5D). In interpreting this result, care should
be taken since some of these correlations could be due to the fact
that trait pairs could be compound traits that share underlying
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physiological processes or have mathematical dependencies. This
connection between phenotypes/traits, also called trait integra-
tion, or the study of an organism’s multivariate phenotype, is an
ongoing avenue of research (Pigliucci and Preston, 2004; Messier
et al., 2017). Experiments have shown that trait adjustments to
the environment rarely happen in isolation and that through un-
derstanding a genotype’s integrated phenotype responses to the
environments can be better understood (Richards et al., 2006).
Due to pleiotropy, based either on close linkage or shared genetic
pathways, selecting on one trait or trait plasticity has the potential
to impact many others (Wagner and Zhang, 2011; Mural ef al.,
2021; Svensson et al.,2021). In a multienvironment study, Mangin
et al. (2017) found distinct suites of trait plasticities associated with
cold, drought, and nutrient stress, indicating the potential for opti-
mizing genotypes for particular environments. A full atlas of trait
and trait plasticity associations on the sunflower genome would
be a key resource showing possibilities of selecting on particular
traits and the consequences of that across multiple environments.

Conclusion

Different abiotic stresses (e.g. drought, salinity, or low nutrient
stress) exhibit different modes of action, and tolerance to these
stresses 1s thus conferred by different sets of traits. However,
here, in cultivated sunflower, we find overall responses to low
nutrient stress that reflect results from prior work on salinity
stress (Temme er al., 2020). Across genotypes, those with the
highest vigor (i.e. growth in benign conditions) tend to re-
main the best performers under low nutrient stress. However,
these same high vigor genotypes also suffer the most under
low nutrient conditions (i.e. they exhibit the greatest decrease
in RGR). In defining tolerance, we therefore took this vigor/
stress effect relationship into account. Genotypes with a smaller
decrease than expected based on their vigor are thus viewed
as being more stress tolerant, and vice versa. For nutrient
stress, we found that this ExDev-tolerance metric was posi-
tively correlated with NUE. More specifically, those geno-
types that exhibited an above average increase in NUE are
those that have a high ExDev-tolerance. In addition to NUEE,
we found that ExDev-tolerance was to a suite of multivar-
iate trait plasticities where genotypes that exhibit a greater de-
crease in LAR, a greater increase in the fraction of biomass
allocated to fine roots, and less to tap root were more tolerant
of low nutrient conditions. Numerous genomic regions were
found to be associated with trait variation and plasticity. While
we found many regions associated with variation in multiple
traits, unique regions for traits were found as well. Thus, while
there are generally more regions involved in variation in mul-
tiple traits, observed instances of genomic regions affecting
only individual traits in this experiment leave open the pos-
sibility of genetically decoupling certain trait combinations in
the interest of exploring novel phenotypic space. Genotypic
variation in ExDev-tolerance, a close tie between ExDev-
tolerance and NUtE, multivariate suites of traits correlated

with ExDev-tolerance, and a host of potential genomic targets
show the potential for enhancing low nutrient stress tolerance
in cultivated sunflower.

Supplementary data

The following Supplementary data are available at JXB online.

Table S1. Data for all genotypes and trait values exhibited
in this study.

Table S2. Trait naming conventions in raw data, GWAS
output, and as used in the body of the text with their units and
description.

Table S3. PC1 and PC2 loadings under control and low
nutrient-stressed conditions and plasticity (companion to Table
3 and Fig. 4).

Table S4. Output from GEMMA analyses of all significant
SNPs and their associated trait and treatment combination.

Table S5. Putative genes contained in significant regions
based on LD.

Table S6. List of significant genomic regions and associated
significant/suggestive traits.

Fig. S1. Detailed per trait response to nutrient limitation.

Fig. S2. Graphical description of whole-leat calcium and
magnesium amounts.

Fig. S3. LD plots per chromosome.

Fig. S4. All Manhattans.

Fig. S5. Significant regions on genome haplotype block.

Fig. S6.Trait co-localization per chromosome.

Fig. S7. All PCAs (companion to Table 3).
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